Sample records for sample matrix elimination

  1. A sensitive chemiluminescence enzyme immunoassay based on molecularly imprinted polymers solid-phase extraction of parathion.

    PubMed

    Chen, Ge; Jin, Maojun; Du, Pengfei; Zhang, Chan; Cui, Xueyan; Zhang, Yudan; She, Yongxin; Shao, Hua; Jin, Fen; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2017-08-01

    The chemiluminescence enzyme immunoassay (CLEIA) method responds differently to various sample matrices because of the matrix effect. In this work, the CLEIA method was coupled with molecularly imprinted polymers (MIPs) synthesized by precipitation polymerization to study the matrix effect. The sample recoveries ranged from 72.62% to 121.89%, with a relative standard deviation (RSD) of 3.74-18.14%.The ratio of the sample matrix-matched standard curve slope rate to the solvent standard curve slope was 1.21, 1.12, 1.17, and 0.85 for apple, rice, orange and cabbage in samples pretreated with the mixture of PSA and C 18 . However, the ratio of sample (apple, rice, orange, and cabbage) matrix-matched standard-MIPs curve slope rate to the solvent standard curve was 1.05, 0.92, 1.09, and 1.05 in samples pretreated with MIPs, respectively. The results demonstrated that the matrices of the samples greatly interfered with the detection of parathion residues by CLEIA. The MIPs bound specifically to the parathion in the samples and eliminated the matrix interference effect. Therefore, the CLEIA method have successfully applied MIPs in sample pretreatment to eliminate matrix interference effects and provided a new sensitive assay for agro-products. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters.

    PubMed

    Van De Steene, Jet C; Lambert, Willy E

    2008-05-01

    When developing an LC-MS/MS-method matrix effects are a major issue. The effect of co-eluting compounds arising from the matrix can result in signal enhancement or suppression. During method development much attention should be paid to diminishing matrix effects as much as possible. The present work evaluates matrix effects from aqueous environmental samples in the simultaneous analysis of a group of 9 specific pharmaceuticals with HPLC-ESI/MS/MS and UPLC-ESI/MS/MS: flubendazole, propiconazole, pipamperone, cinnarizine, ketoconazole, miconazole, rabeprazole, itraconazole and domperidone. When HPLC-MS/MS is used, matrix effects are substantial and can not be compensated for with analogue internal standards. For different surface water samples different matrix effects are found. For accurate quantification the standard addition approach is necessary. Due to the better resolution and more narrow peaks in UPLC, analytes will co-elute less with interferences during ionisation, so matrix effects could be lower, or even eliminated. If matrix effects are eliminated with this technique, the standard addition method for quantification can be omitted and the overall method will be simplified. Results show that matrix effects are almost eliminated if internal standards (structural analogues) are used. Instead of the time-consuming and labour-intensive standard addition method, with UPLC the internal standardization can be used for quantification and the overall method is substantially simplified.

  3. Dependence of matrix effect on ionization polarity during LC-ESI-MS analysis of derivatized amino acids in some natural samples.

    PubMed

    Oldekop, Maarja-Liisa; Rebane, Riin; Herodes, Koit

    2017-10-01

    Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC-ESI-MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC-ESI-MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.

  4. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.

    PubMed

    Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-08-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.

  5. Electrochemical Sample Matrix Elimination for Trace Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes

    PubMed Central

    Chumbimuni-Torres, Karin Y.; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-01-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultra-trace level (sub-nanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination (EMPM) of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth coated electrodes, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte. PMID:18570385

  6. Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample.

    PubMed

    Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu

    2017-08-15

    Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.

  7. [Pretreatment of Aluminum-Lithium Alloy Sample and Determination of Argentum and Lithium by Spectral Analysis].

    PubMed

    Zhou, Hui; Tan, Qian; Gao, Ya-ling; Sang, Shi-hua; Chen, Wen

    2015-10-01

    Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Flame Atomic Absorption Spectrometry (FAAS) and Visible Spectrometry (VS) was applied for determination of Ag and Li in lithium-aluminium alloy standard sample and test sample, their respective advantages and disadvantages were compared, the excellent selectivity of ICP-OES was confirmed by analyses of certified standard sample. Three different sample digestion methods were compared and discussed in this study. It was found that the better accuracy would be obtained by digesting sample with chloroazotic acid while the content of Li was measured by FAAS, and it was better to digest sample with hydrochloric acid and hydrogen peroxide while determining Ag and Li by ICP-OES simultaneously and determining Ag by FAAS and VS. The interference of co-existing elements and elimination methods was detailedly discussed. Ammonium hydroxide was added to adjust the sample solution into alkalescent and Al, Ti, Zr was precipitated by forming hydroxide precipitation, Mg and Cu was formed complex precipitation with 8-hydroxyquinoline in this condition, then the interference from matrix element to determinate Ag by FAAS was eliminated. In addition, phosphate was used to precipitate Ti to eliminate its interference for determination of Li by FAAS. The same treatment of determination for Ag by FAAS was used to eliminate the interference of matrix element for determination of Ag by VS, the excess of nitrate was added into sample and heated to release Ag+ from silver chloride complex, and the color of 8-hydroxyquinoline was eliminated because of decomposed by heating. The accuracy of analysis result for standard sample was conspicuously improved which confirms the efficient of the method to eliminate interference in this study. The optimal digestion method and eliminate interference method was applied to lithium-aluminium alloy samples. The recovery of samples was from 100.39% to 103.01% by ICP-OES determination for Ag, and from 100.42% to 103.01% by ICP-OES determination for Li. The recovery ranged from 95.91% to 99.98% by FAAS determination for Ag, and ranged from 98.04% to 99.98% for FAAS determination of Li. The recovery was from 98.00% to 101.00 by VS determination for Ag, the analysis results all meet the analysis requirement.

  8. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    PubMed

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  9. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water.

    PubMed

    Ens, Waldemar; Senner, Frank; Gygax, Benjamin; Schlotterbeck, Götz

    2014-05-01

    A new method for the simultaneous determination of iodated X-ray contrast media (ICM) and artificial sweeteners (AS) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operated in positive and negative ionization switching mode was developed. The method was validated for surface, ground, and drinking water samples. In order to gain higher sensitivities, a 10-fold sample enrichment step using a Genevac EZ-2 plus centrifugal vacuum evaporator that provided excellent recoveries (90 ± 6 %) was selected for sample preparation. Limits of quantification below 10 ng/L were obtained for all compounds. Furthermore, sample preparation recoveries and matrix effects were investigated thoroughly for all matrix types. Considerable matrix effects were observed in surface water and could be compensated by the use of four stable isotope-labeled internal standards. Due to their persistence, fractions of diatrizoic acid, iopamidol, and acesulfame could pass the whole drinking water production process and were observed also in drinking water. To monitor the fate and occurrence of these compounds, the validated method was applied to samples from different stages of the drinking water production process of the Industrial Works of Basel (IWB). Diatrizoic acid was found as the most persistent compound which was eliminated by just 40 % during the whole drinking water treatment process, followed by iopamidol (80 % elimination) and acesulfame (85 % elimination). All other compounds were completely restrained and/or degraded by the soil and thus were not detected in groundwater. Additionally, a direct injection method without sample preparation achieving 3-20 ng/L limits of quantification was compared to the developed method.

  10. Microgravity processing of particulate reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.

    1989-01-01

    The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.

  11. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. On-Plate Self-Desalting and Matrix-Free LDI MS Analysis of Peptides With a Surface Patterned Sample Support

    NASA Astrophysics Data System (ADS)

    Zeng, Zhoufang; Wang, Yandong; Guo, Xinhua; Wang, Ling; Lu, Nan

    2014-05-01

    A hydrophobic-hydrophilic-hydrophobic pattern has been produced on the surface of a silicon substrate for selective enrichment, self-desalting, and matrix-free analysis of peptides in a single step. Upon sample application, the sample solution is first confined in a small area by a hydrophobic F-SAM outer area, after which salt contaminants and peptides are selectively enriched in the hydrophilic and hydrophobic areas, respectively. Simultaneously, matrix background noise is significantly reduced or eliminated because of immobilization of matrix molecules. As a result, the detection sensitivity is enhanced 20-fold compared with that obtained using the usual MALDI plate, and interference-free detection is achieved in the low m/z range. In addition, peptide ions can be identified unambiguously in the presence of NH4HCO3 (100 mM), urea (1 M), and NaCl (1 M). When the device was applied to the analysis of BSA digests, the peptide recovery and protein identification confidence were greatly improved.

  13. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  14. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.

    PubMed

    Fronczek, Christopher F; You, David J; Yoon, Jeong-Yeol

    2013-02-15

    A direct, sensitive, near-real-time, handheld optical immunoassay device was developed to detect Salmonella typhimurium in the naturally occurring liquid from fresh poultry packages (hereafter "chicken matrix"), with just single pipetting of sample (i.e., no filtration, culturing and/or isolation, thus reducing the assay time and the error associated with them). Carboxylated, polystyrene microparticles were covalently conjugated with anti-Salmonella, and the immunoagglutination due to the presence of Salmonella was detected by reading the Mie scatter signals from the microfluidic channels using a handheld device. The presence of chicken matrix did not affect the light scatter signal, since the optical parameters (particle size d, wavelength of incident light λ and scatter angle θ) were optimized to minimize the effect of sample matrix (animal tissues and blood proteins, etc.). The sample was loaded into a microfluidic chip that was split into two channels, one pre-loaded with vacuum-dried, antibody-conjugated particles and the other with vacuum-dried, bovine serum albumin-conjugated particles. This eliminated the need for a separate negative control, effectively minimizing chip-to-chip and sample-to-sample variations. Particles and the sample were diffused in-channel through chemical agitation by Tween 80, also vacuum-dried within the microchannels. Sequential mixing of the sample to the reagents under a strict laminar flow condition synergistically improved the reproducibility and linearity of the assay. In addition, dried particles were shown to successfully detect lower Salmonella concentrations for up to 8 weeks. The handheld device contains simplified circuitry eliminating unnecessary adjustment stages, providing a stable signal, thus maximizing sensitivity. Total assay time was 10 min, and the detection limit 10 CFU mL(-1) was observed in all matrices, demonstrating the suitability of this device for field assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  16. Optical-fiber-based Mueller optical coherence tomography.

    PubMed

    Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V

    2003-07-15

    An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.

  17. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.

    PubMed

    Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter

    2017-09-01

    An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Field evaluation of the bait toxicant chlorfluazuron in eliminating Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae).

    PubMed

    Peters, Brenton C; Fitzgerald, Christopher J

    2003-12-01

    Two aspects of the Exterra Termite Interception and Baiting System (Ensystex, Fayetteville, NC) were evaluated in a field experiment using 13 termite mounds near Townsville, Australia. First, a cellulose-acetate powder containing either 0.05% wt:wt or 0.25% wt:wt chlorfluazuron (Requiem, Ensystex, Fayetteville, NC) was tested for its efficacy in eliminating colonies of the xylophagous mound-building subterranean termite Coptotermes acinaciformis (Froggatt). The moist bait matrix was replenished during the first inspection of 10 mounds (five mounds by two treatments) used in the experiment. Second, a single application of the moist bait matrix was used on three additional mounds to test termite responses and the effectiveness of 0.25% wt:wt chlorfluazuron. Although there was no evidence of repellence, there was little removal of replenished bait. Five colonies were eliminated by 0.05% wt:wt chlorfluazuron and five colonies by 0.25% wt:wt chlorfluazuron: another colony was moribund, and elimination appeared imminent. Colony decline was first suspected some 12 wk after bait application, and colony elimination was confirmed, by destructive sampling, about 5 wk later. Colony elimination may have occurred within 12 wk. One colony was an anomaly and did not succumb to the effects of the toxicant. Another colony was not eliminated because of invasion of the baiting system by ants. Ants, principally Iridomyrmex purpureus (F. Smith) group and Papyrius nitidus (Mayr) group, occurred commonly in the stations during the experiment. Microcerotermes sp. was found in five of the C. acinaciformis mounds, after colony elimination. Inspections of small sections of mounds and wooden dowels inserted into mounds were reliable methods for monitoring colony health.

  19. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS

    PubMed Central

    Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng

    2010-01-01

    Graphene was utilized for the first time as matrix for the analysis of low-molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with conventional matrix, graphene exhibited high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allowed for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as matrix avoided the fragmentation of analytes and provided good reproducibility and high salt tolerance, underscoring the potential application of graphene as matrix for MALDI-MS analysis of practical samples in complex sample matrices. We also demonstrated that the use of graphene as adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low-molecular weight compounds in areas such as metabolism research and natural products characterization. PMID:20565059

  20. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  1. Detection of Amine Impurity and Quality Assessment of the MALDI Matrix α-Cyano-4-Hydroxy-Cinnamic Acid for Peptide Analysis in the amol Range

    NASA Astrophysics Data System (ADS)

    Rechthaler, Justyna; Pittenauer, Ernst; Schaub, Tanner M.; Allmaier, Günter

    2013-05-01

    We have studied sample preparation conditions to increase the reproducibility of positive UV-MALDI-TOF mass spectrometry of peptides in the amol range. By evaluating several α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix batches and preparation protocols, it became apparent that two factors have a large influence on the reproducibility and the quality of the generated peptide mass spectra: (1) the selection of the CHCA matrix, which allows the most sensitive measurements and an easier finding of the "sweet spots," and (2) the amount of the sample volume deposited onto the thin crystalline matrix layer. We have studied in detail the influence of a contaminant, coming from commercial CHCA matrix batches, on sensitivity of generated peptide mass spectra in the amol as well as fmol range of a tryptic peptide mixture. The structure of the contaminant, N, N-dimethylbutyl amine, was determined by applying MALDI-FT-ICR mass spectrometry experiments for elemental composition and MALDI high energy CID experiments utilizing a tandem mass spectrometer (TOF/RTOF). A recrystallization of heavily contaminated CHCA batches that reduces or eliminates the determined impurity is described. Furthermore, a fast and reliable method for the assessment of CHCA matrix batches prior to tryptic peptide MALDI mass spectrometric analyses is presented.

  2. Extending the solvent-free MALDI sample preparation method.

    PubMed

    Hanton, Scott D; Parees, David M

    2005-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.

  3. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography.

    PubMed

    Ferreira, Fernanda N; Carneiro, Manuel C; Vaitsman, Delmo S; Pontes, Fernanda V M; Monteiro, Maria Inês C; Silva, Lílian Irene D da; Neto, Arnaldo Alcover

    2012-02-03

    A method for determination of formic, acetic, propionic and butyric acids in hypersaline waters by ion-exclusion chromatography (IEC), using steam distillation to eliminate matrix-interference, was developed. The steam distillation variables such as type of solution to collect the distillate, distillation time and volume of the 50% v/v H₂SO₄ solution were optimized. The effect of the addition of NaCl different concentrations to the calibration standards on the carboxylic acid recovery was also investigated. Detection limits of 0.2, 0.5, 0.3 and 1.5 mg L⁻¹ were obtained for formic, acetic, propionic and butyric acids, respectively. Produced waters from petroleum reservoirs in the Brazilian pre-salt layer containing about 19% m/v of NaCl were analyzed. Good recoveries (99-108%) were obtained for all acids in spiked produced water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of on-line desalter-inductively coupled plasma-mass spectrometry system for determination of Cr(III), Cr(VI), and total chromium concentrations in natural water and urine samples

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T.

    2006-02-01

    We have developed a simple and convenient method for the determination of Cr(III), Cr(VI), and the total chromium concentrations in natural water and urine samples that use a flow injection on-line desalter-inductively coupled plasma-mass spectrometry system. When using aqueous ammonium chloride (pH 8) as the stripping solution, the severe interference from sodium in the matrix can be eliminated prior to inductively coupled plasma-mass spectrometry measurement, and the Cr(VI) level can be determined directly. To determine the total concentration of Cr in natural water and urine samples, we used H 2O 2 or HNO 3 to decompose the organic matter and convert all chromium species into the Cr(VI) oxidation state. To overcome the spectral interference caused by the matrix chloride ion in the resulting solutions, we employed cool plasma to successfully suppress chloride-based molecular ion interference during the inductively coupled plasma-mass spectrometry measurement. By significantly eliminating interference from the cationic and anionic components in the matrices prior to the inductively coupled plasma-mass spectrometry measurement, we found that the detection limit reached 0.18 μg L - 1 (based on 3 sigma). We validated this method through the analysis of the total chromium content in two reference materials (NIST 1643c and 2670E) and through measuring the recovery in spiked samples.

  5. A biotin-drug extraction and acid dissociation (BEAD) procedure to eliminate matrix and drug interference in a protein complex anti-drug antibody (ADA) isotype specific assay.

    PubMed

    Niu, Hongmei; Klem, Thomas; Yang, Jinsong; Qiu, Yongchang; Pan, Luying

    2017-07-01

    Monitoring anti-drug antibody (ADA) responses in patients receiving protein therapeutics treatment is an important safety assessment for regulatory agencies, drug manufacturers, clinicians and patients. Recombinant human IGF-1/IGFBP-3 (rhIGF-1/rhIGFBP-3) is a 1:1 formulation of naturally occurring protein complex. The individual IGF-1 and IGFBP-3 proteins have multiple binding partners in serum matrix with high binding affinity to each other, which presents challenges in ADA assay development. We have developed a biotin-drug extraction with acid dissociation (BEAD) procedure followed by an electrochemiluminescence (ECL) direct assay to overcome matrix and drug interference. The method utilizes two step acid dissociation and excess biotin-drug to extract total ADA, which are further captured by soluble biotin-drug and detected in an ECL semi-homogeneous direct assay format. The pre-treatment method effectively eliminates interference by serum matrix and free drug, and enhances assay sensitivity. The assays passed acceptance criteria for all validation parameters, and have been used for clinical sample Ab testing. This method principle exemplifies a new approach for anti-isotype ADA assays, and could be an effective strategy for neutralizing antibody (NAb), pharmacokinetic (PK) and biomarker analysis in need of overcoming interference factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.

    PubMed

    Ötles, Semih; Kartal, Canan

    2016-01-01

    Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.

  7. Effects of lattice morphology upon reaction dynamics in matrix-isolated systems

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1992-11-01

    The dynamics of the cis-d2-ethylene+F2 addition reaction and the subsequent reaction dynamics of the products isolated in vapor-deposited Ar matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix-isolated cis-d2-ethylene+F2 system is generated using a combination of Monte Carlo, damped trajectory, and volume contraction methods. Transport effects of the bulk are simulated using the velocity reset procedure developed by Riley et al. [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface is the same as that employed in our previous investigations of the matrix-isolated, decomposition dynamics of 1,2-difluoroethane-d4 and the bimolecular cis-d2-ethylene+F2 system in face-centered-cubic (fcc) matrices [J. Chem. Phys. 93, 3160 (1990); 95, 8901 (1991)]. It is found that matrices generated by these methods are amorphous with numerous vacancies and other imperfections. On the average, there are approximately three vacancies about each lattice atom compared to the fcc crystal. The calculated lattice density is about 82% that for a bulk fcc Ar solid. Computed radial distribution functions resemble those expected for a liquid which exhibits some short-range order. The imperfections of the lattice remain even after substantial annealing at 50 K. The calculated energy relaxation rate to the lattice phonon modes in these amorphous matrices is about a factor of 4 less than that for a close-packed fcc lattice. The 1,2-difluoroethane product is formed primarily via an αβ-addition process, as is the case for fcc matrices. However, the prominence of this pathway is greatly reduced. The major process leading to a fluoroethylene elimination product in amorphous matrices involves an atomic addition mechanism. Such a reaction path accounts for 94% of the elimination reactions. The probability of internal rotation about the C■C double bond in the fluoroethylene product is increased fivefold over that for fcc lattices. The calculated stabilization/elimination product ratio, the cis/trans ratios of fluoroethylene products, and the HF/DF elimination ratio are all found to be in fair to good accord with the reported experimental data. It is concluded that accurate simulation of matrix-isolation experiments requires a matrix model that properly represents the lattice structure present in the experiments.

  8. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  9. [Rapid detection of caffeine in blood by freeze-out extraction].

    PubMed

    Bekhterev, V N; Gavrilova, S N; Kozina, E P; Maslakov, I V

    2010-01-01

    A new method for the detection of caffeine in blood has been proposed based on the combination of extraction and freezing-out to eliminate the influence of sample matrix. Metrological characteristics of the method are presented. Selectivity of detection is achieved by optimal conditions of analysis by high performance liquid chromatography. The method is technically simple and cost-efficient, it ensures rapid performance of the studies.

  10. On-target separation of analyte with 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix for matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Sekiya, Sadanori; Taniguchi, Kenichi; Tanaka, Koichi

    2012-03-30

    3-Aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self-healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte-3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte-3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on-target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Single-step solubilization of milk samples with N,N-dimethylformamide for inductively coupled plasma-mass spectrometry analysis and classification based on their elemental composition.

    PubMed

    Azcarate, Silvana M; Savio, Marianela; Smichowski, Patricia; Martinez, Luis D; Camiña, José M; Gil, Raúl A

    2015-10-01

    A single-step procedure for trace elements analysis of milk samples is presented. Solubilization with small amounts of dymethylformamide (DMF) was assayed prior to inductively coupled plasma mass spectrometry (ICPMS) detection with a high efficiency sample introduction system. All main instrumental conditions were optimized in order to readily introduce the samples without matrix elimination. In order to assess and mitigate matrix effects in the determination of As, Cd, Co, Cu, Eu, Ga, Gd, Ge, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sm, S, Sr, Ta, Tb, V, Zn, and Zr, matrix matching calibration with (103)Rh as internal standard (IS) was performed. The obtained limits of detection were between 0.68 (Tb) and 30 (Zn) μg L(-1). For accuracy verification, certified Skim milk powder reference material (BCR 063R) was employed. The developed method was applied to trace elements analysis of commercially available milks. Principal components analysis was used to correlate the content of trace metals with the kind of milk, obtaining a classification according to adults, baby or baby fortified milks. The outcomes highlight a simple and fast approach that could be trustworthy for routine analysis, quality control and traceability of milks. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The graphic cell method: a new look at digitizing geologic maps

    USGS Publications Warehouse

    Hanley, J.T.

    1982-01-01

    The graphic cell method is an alternative method of digitizing areal geologic information. It involves a discrete-point sampling scheme in which the computer establishes a matrix of cells over the map. Each cell and the whole cell is assigned the identity or value of the geologic information that is recognized at its center. Cell size may be changed to suit the needs of the user. The computer program resolves the matrix and identifies potential errors such as multiple assignments. Input includes the digitized boundaries of each geologic formation. This method should eliminate a primary bottleneck in the creation and testing of geomathematical models in such disciplines as resource appraisal. ?? 1982.

  13. Post-processing of metal matrix composites by friction stir processing

    NASA Astrophysics Data System (ADS)

    Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra

    2018-05-01

    In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.

  14. Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhang, Z.; Liu, F.; Li, X.

    2017-12-01

    To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would eliminate matrix effects and improve efficiency for the column chemistry.

  15. Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa

    2018-01-01

    A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.

  16. A seismic coherency method using spectral amplitudes

    NASA Astrophysics Data System (ADS)

    Sui, Jing-Kun; Zheng, Xiao-Dong; Li, Yan-Dong

    2015-09-01

    Seismic coherence is used to detect discontinuities in underground media. However, strata with steeply dipping structures often produce false low coherence estimates and thus incorrect discontinuity characterization results. It is important to eliminate or reduce the effect of dipping on coherence estimates. To solve this problem, time-domain dip scanning is typically used to improve estimation of coherence in areas with steeply dipping structures. However, the accuracy of the time-domain estimation of dip is limited by the sampling interval. In contrast, the spectrum amplitude is not affected by the time delays in adjacent seismic traces caused by dipping structures. We propose a coherency algorithm that uses the spectral amplitudes of seismic traces within a predefined analysis window to construct the covariance matrix. The coherency estimates with the proposed algorithm is defined as the ratio between the dominant eigenvalue and the sum of all eigenvalues of the constructed covariance matrix. Thus, we eliminate the effect of dipping structures on coherency estimates. In addition, because different frequency bands of spectral amplitudes are used to estimate coherency, the proposed algorithm has multiscale features. Low frequencies are effective for characterizing large-scale faults, whereas high frequencies are better in characterizing small-scale faults. Application to synthetic and real seismic data show that the proposed algorithm can eliminate the effect of dip and produce better coherence estimates than conventional coherency algorithms in areas with steeply dipping structures.

  17. Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1989-01-01

    The solution of a block tridiagonal matrix using parallel processing is demonstrated. The multiprocessor system on which results were obtained and the software environment used to program that system are described. Theoretical partitioning and resource allocation for the Gaussian elimination method used to solve the matrix are discussed. The results obtained from running 1, 2 and 3 processor versions of the block tridiagonal solver are presented. The PASCAL source code for these solvers is given in the appendix, and may be transportable to other shared memory parallel processors provided that the synchronization outlines are reproduced on the target system.

  18. A comparison of companion matrix methods to find roots of a trigonometric polynomial

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2013-08-01

    A trigonometric polynomial is a truncated Fourier series of the form fN(t)≡∑j=0Naj cos(jt)+∑j=1N bj sin(jt). It has been previously shown by the author that zeros of such a polynomial can be computed as the eigenvalues of a companion matrix with elements which are complex valued combinations of the Fourier coefficients, the "CCM" method. However, previous work provided no examples, so one goal of this new work is to experimentally test the CCM method. A second goal is introduce a new alternative, the elimination/Chebyshev algorithm, and experimentally compare it with the CCM scheme. The elimination/Chebyshev matrix (ECM) algorithm yields a companion matrix with real-valued elements, albeit at the price of usefulness only for real roots. The new elimination scheme first converts the trigonometric rootfinding problem to a pair of polynomial equations in the variables (c,s) where c≡cos(t) and s≡sin(t). The elimination method next reduces the system to a single univariate polynomial P(c). We show that this same polynomial is the resultant of the system and is also a generator of the Groebner basis with lexicographic ordering for the system. Both methods give very high numerical accuracy for real-valued roots, typically at least 11 decimal places in Matlab/IEEE 754 16 digit floating point arithmetic. The CCM algorithm is typically one or two decimal places more accurate, though these differences disappear if the roots are "Newton-polished" by a single Newton's iteration. The complex-valued matrix is accurate for complex-valued roots, too, though accuracy decreases with the magnitude of the imaginary part of the root. The cost of both methods scales as O(N3) floating point operations. In spite of intimate connections of the elimination/Chebyshev scheme to two well-established technologies for solving systems of equations, resultants and Groebner bases, and the advantages of using only real-valued arithmetic to obtain a companion matrix with real-valued elements, the ECM algorithm is noticeably inferior to the complex-valued companion matrix in simplicity, ease of programming, and accuracy.

  19. Application of Quantum Gauss-Jordan Elimination Code to Quantum Secret Sharing Code

    NASA Astrophysics Data System (ADS)

    Diep, Do Ngoc; Giang, Do Hoang; Phu, Phan Huy

    2017-12-01

    The QSS codes associated with a MSP code are based on finding an invertible matrix V, solving the system vATMB (s a) = s. We propose a quantum Gauss-Jordan Elimination Procedure to produce such a pivotal matrix V by using the Grover search code. The complexity of solving is of square-root order of the cardinal number of the unauthorized set √ {2^{|B|}}.

  20. Application of Quantum Gauss-Jordan Elimination Code to Quantum Secret Sharing Code

    NASA Astrophysics Data System (ADS)

    Diep, Do Ngoc; Giang, Do Hoang; Phu, Phan Huy

    2018-03-01

    The QSS codes associated with a MSP code are based on finding an invertible matrix V, solving the system vATMB (s a)=s. We propose a quantum Gauss-Jordan Elimination Procedure to produce such a pivotal matrix V by using the Grover search code. The complexity of solving is of square-root order of the cardinal number of the unauthorized set √ {2^{|B|}}.

  1. Single-Transducer, Ultrasonic Imaging Method for High-Temperature Structural Materials Eliminates the Effect of Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1998-01-01

    NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are manufactured by these companies.

  2. Determination of Aniline and Its Derivatives in Environmental Water by Capillary Electrophoresis with On-Line Concentration

    PubMed Central

    Liu, Shuhui; Wang, Wenjun; Chen, Jie; Sun, Jianzhi

    2012-01-01

    This paper describes a simple, sensitive and environmentally benign method for the direct determination of aniline and its derivatives in environmental water samples by capillary zone electrophoresis (CZE) with field-enhanced sample injection. The parameters that influenced the enhancement and separation efficiencies were investigated. Surprisingly, under the optimized conditions, two linear ranges for the calibration plot, 1–50 ng/mL and 50–1000 ng/mL (R > 0.998), were obtained. The detection limit was in the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the stacking efficiency, the standard addition method was applied to the analysis of water samples from local rivers. PMID:22837668

  3. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.

    PubMed

    Yang, C L; Wei, H Y; Adler, A; Soleimani, M

    2013-06-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.

  4. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    PubMed

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  5. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2006-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  6. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2005-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  7. Block Gauss elimination followed by a classical iterative method for the solution of linear systems

    NASA Astrophysics Data System (ADS)

    Alanelli, Maria; Hadjidimos, Apostolos

    2004-02-01

    In the last two decades many papers have appeared in which the application of an iterative method for the solution of a linear system is preceded by a step of the Gauss elimination process in the hope that this will increase the rates of convergence of the iterative method. This combination of methods has been proven successful especially when the matrix A of the system is an M-matrix. The purpose of this paper is to extend the idea of one to more Gauss elimination steps, consider other classes of matrices A, e.g., p-cyclic consistently ordered, and generalize and improve the asymptotic convergence rates of some of the methods known so far.

  8. Joint Procrustes Analysis for Simultaneous Nonsingular Transformation of Component Score and Loading Matrices

    ERIC Educational Resources Information Center

    Adachi, Kohei

    2009-01-01

    In component analysis solutions, post-multiplying a component score matrix by a nonsingular matrix can be compensated by applying its inverse to the corresponding loading matrix. To eliminate this indeterminacy on nonsingular transformation, we propose Joint Procrustes Analysis (JPA) in which component score and loading matrices are simultaneously…

  9. Preparation and characterization of polysulfone/zeolite mixed matrix membranes for removal of low-concentration ammonia from aquaculture wastewater.

    PubMed

    Moradihamedani, Pourya; Abdullah, Abdul Halim

    2018-01-01

    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.

  10. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  11. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis.

    PubMed

    Matuszewski, B K

    2006-01-18

    A simple experimental approach for studying and identifying the relative matrix effect (for example "plasma-to-plasma" and/or "urine-to-urine") in quantitative analyses by HPLC-MS/MS is described. Using as a database a large number of examples of methods developed in recent years in our laboratories, the relationship between the precision of standard line slopes constructed in five different lots of a biofluid (for example plasma) and the reliability of determination of concentration of an analyte in a particular plasma lot (or subject) was examined. In addition, the precision of standard line slopes was compared when stable isotope-labeled analytes versus analogs were used as internal standards (IS). Also, in some cases, a direct comparison of standard line slopes was made when different HPLC-MS interfaces (APCI versus ESI) were used for the assay of the same compound, using the same IS and the same sample preparation and chromatographic separation conditions. In selected cases, the precision of standard line slopes in five different lots of a biofluid was compared with precision values determined five times in a single lot. The results of these studies indicated that the variability of standard line slopes in different lots of a biofluid [precision of standard line slopes expressed as coefficient of variation, CV (%)] may serve as a good indicator of a relative matrix effect and, it is suggested, this precision value should not exceed 3-4% for the method to be considered reliable and free from the relative matrix effect liability. Based on the results presented, in order to assess the relative matrix effect in bioanalytical methods, it is recommended to perform assay precision and accuracy determination in five different lots of a biofluid, instead of repeat (n=5) analysis in the same, single biofluid lot, calculate standard line slopes and precision of these slopes, and to use <3-4% slope precision value as a guide for method applicability to support clinical studies. It was also demonstrated that when stable isotope-labeled analytes were used as internal standards, the precision of standard line slopes in five different lots of a biofluid was

  12. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  13. Theoretical studies of the reaction dynamics of the matrix-isolated F2+cis-d2 -ethylene system

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1991-12-01

    The molecular dynamics of the F2+cis-d2 -ethylene addition reaction and the subsequent decomposition dynamics of the vibrationally excited 1,2-difluoroethane-d2 product isolated in Ar or Xe matrices at 12 K are investigated using trajectory methods that incorporate nonstatistical sampling to enhance the reaction probabilities. The matrix is represented by a face-centered-cubic crystal containing 125 unit cells with 666 lattice atoms in a cubic (5×5×5) arrangement. Both interstitial and substitutional sites for the F2/cis-d2 -ethylene pair are examined. Transport effects of the bulk are simulated using the velocity reset method introduced by Riley, Coltrin, and Diestler [J. Chem. Phys. 88, 5934 (1988)]. The potential-energy hypersurface for the system is written as the separable sum of a lattice potential, a lattice-substrate interaction, and a gas-phase potential for 1,2-difluoroethane-d2. The first two of these have pairwise form, while the 1,2-difluoroethane-d2 potential is identical to that employed previously to study the unimolecular reaction dynamics of matrix-isolated 1,2-difluoroethane-d4 [J. Chem. Phys. 93, 3160 (1990)]. The major F2+cis-d2 -ethylene reaction mechanism involves a four-center, concerted αβ addition across the C=C double bond. A small contribution from an atomic addition mechanism that initially forms fluoroethyl and fluorine radicals is observed in a xenon matrix, but not in argon. Subsequent to the formation of 1,2-difluoroethane-d2, the observed dynamic processes are vibrational relaxation to the lattice phonon modes, orientational exchange, and HF or DF elimination reactions. Vibrational relaxation is found to be very similar to that observed previously for 1,2-difluoroethane-d4. The process is well described by a first-order rate law with rate coefficients in the range 0.046-0.069 ps-1. The distribution of rate coefficients, as well as the averages, are nearly identical for Ar and Xe lattices. Very little difference is found between the relaxation rates for 1,2-difluoroethane-d2 and those for the HF(DF)+fluoroethylene products. The propensity for 1,2-difluoroethane-d2 to undergo orientational exchange increases as the available free space in the lattice decreases. Thus, it is a more important process in Ar than in Xe matrices. For the same reason, it occurs with greater frequency when the reactants are in an interstitial site than when they are substitutionally held. The probability of HF or DF elimination increases as the available free space in the matrix cage decreases. The relaxation rates show that this effect is not the result of different energy transfer rates. At least five distinct mechanisms play a role in HF and DF elimination reactions in the face-centered-cubic lattice. These are, in order of importance (a) αβ addition followed by syn elimination; (b) hydrogen- or deuterium-atom transfer to fluorine on the adjacent carbon followed by a protracted delay prior to C-F bond rupture; (c) rotation about the C=C double bond in the fluoroethylene product; (d) reversible hydrogen- or deuterium-atom transfer; and (e) atom addition with intervening delay. The computed elimination yield ratios between matrices are in good agreement with the experimental values. The calculated cis/trans ratio of fluoroethylenes formed subsequent to HF elimination in Ar are a factor of 2.7 lower than those observed in the experiments. The stabilization ratios are much larger than the experimental values. These results are interpreted to mean that the experimental matrix environment is more open and spacious than that for the crystal structure used in the calculations.

  14. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    PubMed

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  15. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects.

    PubMed

    Zhang, Yan; Wang, Fengxia; Fang, Li; Wang, Shuo; Fang, Guozhen

    2009-01-01

    To determine ractopamine residues in animal food products (chicken muscle, pettitoes, pig muscle, and pig liver), we established a rapid direct competitive enzyme-linked immunosorbent assay (ELISA) using a polyclonal antibody generated from ractopamine-linker-BSA. The antibody showed high sensitivity and specificity in phosphate buffer, with an IC(50) of 0.6 ng/mL, and the limit of detection was 0.04 ng/mL. The matrix effect of the samples was easily eliminated by one-step extraction with PBS, without any organic solution or clean-up procedure such as SPE or liquid-liquid extraction, making it a much more simple and rapid method than previously reported ones. The detection limit in blank samples was 0.2 mug/kg. To validate this new RAC (ractopamine hydrochloride) ELISA, a RAC-free pig liver sample spiked at three different concentrations was prepared and analyzed by HPLC and ELISA. The results showed a good correlation between the data of ELISA and HPLC (R(2) > 0.95), which proves that the established ELISA is accurate enough to quantify the residue of RAC in the animal derived foods.

  16. Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven

    2015-03-01

    The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.

  17. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    NASA Astrophysics Data System (ADS)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  18. [Study on the determination of trace gallium in molybdenum-coated pyrolytic graphite tube by electrothermal absorption spectrometry].

    PubMed

    Huang, Yu-an; Zhou, Fang-qin; Long, Si-hua; Yang, Liu

    2004-02-01

    The effects on gallium atomization in the pyrolytic graphite tube imposed by different matrix modifiers and different coatings were discussed detailedly in this paper. In the presence of matrix modifier of Ni(NO3)2 the matrix interference was eliminated efficiently. The pyrolytic graphite tubes were coated differently with lanthanum, zirconium, and molybdenum to avoid producing gallium carbide. Results showed that the tube with molybdenum coating was the best. On this basis, the mechanism of gallium atomization in the molybdenum-coated pyrolytic graphite tube using Ni(NO3)2 as a matrix modifier was studied furthermore; in addition, the parameters of the operation were optimized. As a result, a new method improved in many aspects was developed to detect trace gallium in complicated sample of gangue. The outcomes of practical applications indicated that the method could satisfy the requests of analysis and that the manipulations were simple to achieve. The characteristic content, the detection limit, and the adding recoveries were 2.12 x 10(-11) g, 1.4 x 10(-10) g and 97.4%-102.7% respectively, and the relative standard deviation was less than or equal to 3.6% (n = 11).

  19. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples.

    PubMed

    Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan

    2017-09-15

    This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.

  20. Calibration approach for extremely variable laser induced plasmas and a strategy to reduce the matrix effect in general

    NASA Astrophysics Data System (ADS)

    Lazic, V.; De Ninno, A.

    2017-11-01

    The laser induced plasma spectroscopy was applied on particles attached on substrate represented by a silica wafer covered with a thin oil film. The substrate itself weakly interacts with a ns Nd:YAG laser (1064 nm) while presence of particles strongly enhances the plasma emission, here detected by a compact spectrometer array. Variations of the sample mass from one laser spot to another exceed one order of magnitude, as estimated by on-line photography and the initial image calibration for different sample loadings. Consequently, the spectral lines from particles show extreme intensity fluctuations from one sampling point to another, between the detection threshold and the detector's saturation in some cases. In such conditions the common calibration approach based on the averaged spectra, also when considering ratios of the element lines i.e. concentrations, produces errors too large for measuring the sample compositions. On the other hand, intensities of an analytical and the reference line from single shot spectra are linearly correlated. The corresponding slope depends on the concentration ratio and it is weakly sensitive to fluctuations of the plasma temperature inside the data set. A use of the slopes for constructing the calibration graphs significantly reduces the error bars but it does not eliminate the point scattering caused by the matrix effect, which is also responsible for large differences in the average plasma temperatures among the samples. Well aligned calibration points were obtained after identifying the couples of transitions less sensitive to variations of the plasma temperature, and this was achieved by simple theoretical simulations. Such selection of the analytical lines minimizes the matrix effect, and together with the chosen calibration approach, allows to measure the relative element concentrations even in highly unstable laser induced plasmas.

  1. Comparative Evaluation of Veriflow®Listeria Species to USDA Culture-Based Method for the Detection of Listeria spp. in Food and Environmental Samples.

    PubMed

    Joelsson, Adam C; Terkhorn, Shawn P; Brown, Ashley S; Puri, Amrita; Pascal, Benjamin J; Gaudioso, Zara E; Siciliano, Nicholas A

    2017-09-01

    Veriflow® Listeria species (Veriflow LS) is a molecular-based assay for the presumptive detection of Listeria spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only a 24 h enrichment for maximum sensitivity. The Veriflow LS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow LS assay to detect low levels of artificially inoculated Listeria spp. in six distinct environmental and food matrixes. In each unpaired reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow LS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guide Chapter 8.08 reference method. Fifty-one strains of various Listeria spp. were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow LS is a sensitive, selective, and robust assay for the presumptive detection of Listeria spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and RTE food matrixes (hot dogs and deli meat).

  2. Preparation of milk samples for immunoassay and liquid chromatographic screening using matrix solid-phase dispersion.

    PubMed

    Barker, S A; Long, A R

    1994-01-01

    The use of drugs to maintain the health and maximize the output of dairy cattle has made the monitoring of milk for such agents essential. Screening tests based on immunological, microbial inhibition, and bacterial receptor assays have been developed for the detection of violative levels of therapeutic substances. However, such assays are not infallible, and false positive or negative results can occur when contaminants bind receptors or compete for the binding of the target residues. Such effects may arise from dietary sources, diseases, or other variables. Thus, a violation by such a test is not definitive until further confirmation is obtained. Our laboratory has developed extraction procedures for several drugs used in dairy production. Our method uses matrix solid-phase dispersion (MSPD) to isolate drugs away from contaminants and to eliminate many possible interferences. MSPD can also be used to enhance the specificity of such assays by fractionating various classes of drugs that may cross-react. Similarly, such methods may be used for liquid chromatographic screening and confirmation of a suspect sample.

  3. Scanning electron microscopy of bone.

    PubMed

    Boyde, Alan

    2012-01-01

    This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.

  4. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  5. Monte Carlo source simulation technique for solution of interference reactions in INAA experiments: a preliminary report

    NASA Astrophysics Data System (ADS)

    Allaf, M. Athari; Shahriari, M.; Sohrabpour, M.

    2004-04-01

    A new method using Monte Carlo source simulation of interference reactions in neutron activation analysis experiments has been developed. The neutron spectrum at the sample location has been simulated using the Monte Carlo code MCNP and the contributions of different elements to produce a specified gamma line have been determined. The produced response matrix has been used to measure peak areas and the sample masses of the elements of interest. A number of benchmark experiments have been performed and the calculated results verified against known values. The good agreement obtained between the calculated and known values suggests that this technique may be useful for the elimination of interference reactions in neutron activation analysis.

  6. Polarization-sensitive optical coherence tomography measurements with different phase modulation amplitude when using continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-01-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  7. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  8. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  9. A Note on Substructuring Preconditioning for Nonconforming Finite Element Approximations of Second Order Elliptic Problems

    NASA Technical Reports Server (NTRS)

    Maliassov, Serguei

    1996-01-01

    In this paper an algebraic substructuring preconditioner is considered for nonconforming finite element approximations of second order elliptic problems in 3D domains with a piecewise constant diffusion coefficient. Using a substructuring idea and a block Gauss elimination, part of the unknowns is eliminated and the Schur complement obtained is preconditioned by a spectrally equivalent very sparse matrix. In the case of quasiuniform tetrahedral mesh an appropriate algebraic multigrid solver can be used to solve the problem with this matrix. Explicit estimates of condition numbers and implementation algorithms are established for the constructed preconditioner. It is shown that the condition number of the preconditioned matrix does not depend on either the mesh step size or the jump of the coefficient. Finally, numerical experiments are presented to illustrate the theory being developed.

  10. Transferring elements of a density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan

    2010-01-15

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less

  11. Study of matrix effects on the direct trace analysis of acidic pesticides in water using various liquid chromatographic modes coupled to tandem mass spectrometric detection.

    PubMed

    Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F

    2001-08-10

    This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.

  12. Scaling up the Single Transducer Thickness-Independent Ultrasonic Imaging Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.

    1998-01-01

    Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.

  13. Comparative Evaluation of Veriflow® Listeria monocytogenes to USDA and AOAC Culture Based Methods for the Detection of Listeria monocytogenes in Food.

    PubMed

    Joelsson, Adam C; Brown, Ashley S; Puri, Amrita; Keough, Martin P; Gaudioso, Zara E; Siciliano, Nicholas A; Snook, Adam E

    2015-01-01

    Veriflow® Listeria monocytogenes (LM) is a molecular based assay for the presumptive detection of Listeria monocytogenes from environmental surfaces, dairy, and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post PCR amplification and requires only 24 h of enrichment for maximum sensitivity. The Veriflow LM system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification, and does not require complex data analysis. This Performance Tested Method(SM) validation study demonstrated the ability of the Veriflow LM method to detect low levels of artificially inoculated L. monocytogenes in seven distinct environmental and food matrixes. In each unpaired reference comparison study, probability of detection analysis indicated no significant difference between the Veriflow LM method and the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook 8.08 or AOAC 993.12 reference method. Fifty strains of L. monocytogenes were detected in the inclusivity study, while 39 nonspecific organisms were undetected in the exclusivity study. The study results show that Veriflow LM is a sensitive, selective, and robust assay for the presumptive detection of L. monocytogenes sampled from environmental, dairy, or RTE (hot dogs and deli meat) food matrixes.

  14. A matrix equation solution by an optimization technique

    NASA Technical Reports Server (NTRS)

    Johnson, M. J.; Mittra, R.

    1972-01-01

    The computer solution of matrix equations is often difficult to accomplish due to an ill-conditioned matrix or high noise levels. Two methods of solution are compared for matrices of various degrees of ill-conditioning and for various noise levels in the right hand side vector. One method employs the usual Gaussian elimination. The other solves the equation by an optimization technique and employs a function minimization subroutine.

  15. Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry

    PubMed Central

    Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.

    2013-01-01

    We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512

  16. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography.

    PubMed

    Yan, Hongyuan; Wang, Fang; Han, Dandan; Yang, Gengliang

    2012-06-21

    A highly selective molecularly imprinted solid-phase extraction (MISPE) combined with liquid chromatography-ultraviolet detection was developed for the simultaneous isolation and determination of four plant hormones including indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) in banana samples. The new molecularly imprinted microspheres (MIMs) prepared by aqueous suspension polymerization using 3-hydroxy-2-naphthoic acid and 1-methylpiperazine as mimic templates performed with high selectivity and affinity for the four plant hormones, and applied as selective sorbents of solid-phase extraction could effectively eliminate the interferences of the banana matrix. Good linearity was obtained in a range of 0.04-4.00 μg g(-1) and the recoveries of the four plant hormones at three spiked levels ranged from 78.5 to 107.7% with the relative standard deviations (RSD) of less than 4.6%. The developed MISPE-HPLC protocol obviously improved the selectivity and eliminated the effect of template leakage on quantitative analysis, and could be applied for the determination of plant hormones in complicated biological samples.

  17. Improvement of Mishchenko's T-matrix code for absorbing particles.

    PubMed

    Moroz, Alexander

    2005-06-10

    The use of Gaussian elimination with backsubstitution for matrix inversion in scattering theories is discussed. Within the framework of the T-matrix method (the state-of-the-art code by Mishchenko is freely available at http://www.giss.nasa.gov/-crmim), it is shown that the domain of applicability of Mishchenko's FORTRAN 77 (F77) code can be substantially expanded in the direction of strongly absorbing particles where the current code fails to converge. Such an extension is especially important if the code is to be used in nanoplasmonic or nanophotonic applications involving metallic particles. At the same time, convergence can also be achieved for large nonabsorbing particles, in which case the non-Numerical Algorithms Group option of Mishchenko's code diverges. Computer F77 implementation of Mishchenko's code supplemented with Gaussian elimination with backsubstitution is freely available at http://www.wave-scattering.com.

  18. Methods of computing steady-state voltage stability margins of power systems

    DOEpatents

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  19. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    PubMed

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  20. Detection of urinary creatinine using gold nanoparticles after solid phase extraction

    NASA Astrophysics Data System (ADS)

    Sittiwong, Jarinya; Unob, Fuangfa

    2015-03-01

    Label-free gold nanoparticles (AuNPs) were utilized in the detection of creatinine in human urine after a sample preparation by extraction of creatinine on sulfonic acid functionalized silica gel. With the proposed sample preparation method, the interfering effects of the urine matrix on creatinine detection by AuNPs were eliminated. Parameters affecting creatinine extraction were investigated. The aggregation of AuNPs induced by creatinine resulted in a change in the surface plasmon resonance signal with a concomitant color change that could be observed by the naked eye and quantified spectrometrically. The effect of AuNP concentration and reaction time on AuNP aggregation was investigated. The method described herein provides a determination of creatinine in a range of 15-40 mg L-1 with a detection limit of 13.7 mg L-1 and it was successfully used in the detection of creatinine in human urine samples.

  1. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  2. Silicon carbide/calcium aluminosilicate: A notch-insensitive ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cady, C.M.; Mackin, T.J.; Evans, A.G.

    Tension experiments performed on a 0/90 laminated silicon carbide/calcium aluminosilicate composite at room temperature establish that this material is notch insensitive. Multiple matrix cracking is determined to be the stress redistribution mechanism. This mechanism is found to provide a particularly efficient means for creating local inelastic strains, which eliminate stress concentrations.

  3. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization

    PubMed Central

    Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms. PMID:27436996

  4. Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization.

    PubMed

    Zhang, Chunyuan; Zhu, Qingxin; Niu, Xinzheng

    2016-01-01

    By combining with sparse kernel methods, least-squares temporal difference (LSTD) algorithms can construct the feature dictionary automatically and obtain a better generalization ability. However, the previous kernel-based LSTD algorithms do not consider regularization and their sparsification processes are batch or offline, which hinder their widespread applications in online learning problems. In this paper, we combine the following five techniques and propose two novel kernel recursive LSTD algorithms: (i) online sparsification, which can cope with unknown state regions and be used for online learning, (ii) L 2 and L 1 regularization, which can avoid overfitting and eliminate the influence of noise, (iii) recursive least squares, which can eliminate matrix-inversion operations and reduce computational complexity, (iv) a sliding-window approach, which can avoid caching all history samples and reduce the computational cost, and (v) the fixed-point subiteration and online pruning, which can make L 1 regularization easy to implement. Finally, simulation results on two 50-state chain problems demonstrate the effectiveness of our algorithms.

  5. Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix.

    PubMed

    Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E

    2015-12-01

    Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.

  6. Direct determination of trace refractory elements in human serum by ETV-ICP-MS with in-situ matrix removal.

    PubMed

    Li, Shengqing; Hu, Bin; Jiang, Zucheng; Chen, Rui

    2004-08-01

    A method for in-situ removal of matrix is proposed for direct determination of trace refractory elements in human serum by ETV-ICP-MS with the use of poly(tetrafluoroethylene) (PTFE) as fluorinating reagent. Attention has been paid to investigating the vaporization behavior both of refractory elements of interest and of matrix elements (Na, K, Ca, Mg, Cl, S, and P) in a graphite furnace with the PTFE modifier present or not. It was shown that potential interferences from the organic and inorganic matrices in the serum sample could be eliminated or reduced to a negligible level by appropriate dilution of the serum and deliberate optimization of the ETV temperature program. The proposed method has been applied to the direct simultaneous determination of V, Cr, Mo, Ba, La, Ce, and W in human serum. The limits of detection for fivefold diluted serum were 0.18 (V), 0.229 (Cr), 0.050 (Mo), 0.328 (Ba), 0.031 (La), 0.038 (Ce), and 0.019 ng mL(-1) (W), respectively, and the relative standard deviations of the method were in the range 4-15% (2 ng mL(-1) in serum, n=3).

  7. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-07

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  8. Biomechanics of isolated tomato (Solanum lycopersicum L.) fruit cuticles: the role of the cutin matrix and polysaccharides.

    PubMed

    López-Casado, Gloria; Matas, Antonio J; Domínguez, Eva; Cuartero, Jesús; Heredia, Antonio

    2007-01-01

    The mechanical characteristics of the cuticular membrane (CM), a complex composite biopolymer basically composed of a cutin matrix, waxes, and hydrolysable polysaccharides, have been described previously. The biomechanical behaviour and quantitative contribution of cutin and polysaccharides have been investigated here using as experimental material mature green and red ripe tomato fruits. Treatment of isolated CM with anhydrous hydrogen fluoride in pyridine allowed the selective elimination of polysaccharides attached to or incrusted into the cutin matrix. Cutin samples showed a drastic decrease in elastic modulus and stiffness (up to 92%) compared with CM, which clearly indicates that polysaccharides incorporated into the cutin matrix are responsible for the elastic modulus, stiffness, and the linear elastic behaviour of the whole cuticle. Reciprocally, the viscoelastic behaviour of CM (low elastic modulus and high strain values) can be assigned to the cutin. These results applied both to mature green and red ripe CM. Cutin elastic modulus, independently of the degree of temperature and hydration, was always significantly higher for the ripe than for the green samples while strain was lower; the amount of phenolics in the cutin network are the main candidates to explain the increased rigidity from mature green to red ripe cutin. The polysaccharide families isolated from CM were pectin, hemicellulose, and cellulose, the main polymers associated with the plant cell wall. The three types of polysaccharides were present in similar amounts in CM from mature green and red ripe tomatoes. Physical techniques such as X-ray diffraction and Raman spectroscopy indicated that the polysaccharide fibres were mainly randomly oriented. A tomato fruit CM scenario at the supramolecular level that could explain the observed CM biomechanical properties is presented and discussed.

  9. Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation.

    PubMed

    Menapace, Hannes M; Diaz, Nicolas; Weiss, Stefan

    2008-07-01

    Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. For the treatment process a combination of anodic oxidation by boron-doped diamond (BDD) electrodes and ozonation is examined and presented. For the ozone production a non-conventional, separate reactor was used, in which ozone was generated by electrolysis with diamond electrodes For the determination of the achievable remediation rates four complexing agents (e.g., EDTA, NTA) and eight pharmaceutical substances (e.g., diazepam, carbamazepin) were analyzed in several test runs under different conditions (varied flux, varied current density for the diamond electrode and the ozone producing electrode of the ozone generator, different packing materials for the column in the ozone injection system). The flowrates of the treated water samples were varied from 3 L/h up to 26 L/h. For the anodic oxidation the influence of the current density was examined in the range between 22.7 and 45.5 mA/cm(2), for the ozone producing reactor two densities (1.8 a/cm(2) and 2.0 A/cm(2)) were tested. Matrix effects were investigated by test runs with samples from the effluent of an STP and synthetic waste water. Therefore the impact of the organic material in the samples could be determined by the comparison of the redox potential and the achievable elimination rates of the investigated substances. Comparing both technologies anodic oxidation seems to be superior to ozonation in each investigated area. With the used technology of anodic oxidation elimination rates up to 99% were reached for the investigated pharmaceutical substances at a current density of 45.5 mA/cm(2) and a maximum sample flux of 26 L/h.

  10. Expert elicitation, uncertainty, and the value of information in controlling invasive species

    USGS Publications Warehouse

    Johnson, Fred A.; Smith, Brian J.; Bonneau, Mathieu; Martin, Julien; Romagosa, Christina; Mazzotti, Frank J.; Waddle, J. Hardin; Reed, Robert; Eckles, Jennifer Kettevrlin; Vitt, Laurie J.

    2017-01-01

    We illustrate the utility of expert elicitation, explicit recognition of uncertainty, and the value of information for directing management and research efforts for invasive species, using tegu lizards (Salvator merianae) in southern Florida as a case study. We posited a post-birth pulse, matrix model in which four age classes of tegus are recognized: hatchlings, 1 year-old, 2 year-olds, and 3 + year-olds. This matrix model was parameterized using a 3-point process to elicit estimates of tegu demographic rates in southern Florida from 10 herpetology experts. We fit statistical distributions for each parameter and for each expert, then drew and pooled a large number of replicate samples from these to form a distribution for each demographic parameter. Using these distributions, as well as the observed correlations among elicited values, we generated a large sample of matrix population models to infer how the tegu population would respond to control efforts. We used the concepts of Pareto efficiency and stochastic dominance to conclude that targeting older age classes at relatively high rates appears to have the best chance of minimizing tegu abundance and control costs. We conclude that expert opinion combined with an explicit consideration of uncertainty can be valuable in conducting an initial assessment of what control strategy, effort, and monetary resources are needed to reduce and eventually eliminate the invader. Scientists, in turn, can use the value of information to focus research in a way that not only increases the efficacy of control, but minimizes costs as well.

  11. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  12. Analyte quantification with comprehensive two-dimensional gas chromatography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples.

    PubMed

    Samanipour, Saer; Dimitriou-Christidis, Petros; Gros, Jonas; Grange, Aureline; Samuel Arey, J

    2015-01-02

    Comprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS). Target analyte peak volumes were determined using several existing baseline correction algorithms and peak delineation algorithms. Analyte quantifications were conducted using external standards and also using standard additions, enabling us to diagnose matrix effects. We then applied several chemometric tests to these data. We find that the choice of baseline correction algorithm and peak delineation algorithm strongly influence the reproducibility of analyte signal, error of the calibration offset, proportionality of integrated signal response, and accuracy of quantifications. Additionally, the choice of baseline correction and the peak delineation algorithm are essential for correctly discriminating analyte signal from unresolved complex mixture signal, and this is the chief consideration for controlling matrix effects during quantification. The diagnostic approaches presented here provide guidance for analyte quantification using GC×GC. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  14. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  15. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  16. System for information discovery

    DOEpatents

    Pennock, Kelly A [Richland, WA; Miller, Nancy E [Kennewick, WA

    2002-11-19

    A sequence of word filters are used to eliminate terms in the database which do not discriminate document content, resulting in a filtered word set and a topic word set whose members are highly predictive of content. These two word sets are then formed into a two dimensional matrix with matrix entries calculated as the conditional probability that a document will contain a word in a row given that it contains the word in a column. The matrix representation allows the resultant vectors to be utilized to interpret document contents.

  17. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry.

    PubMed

    Wang, X-H; Zhang, G; Fan, Y-Y; Yang, X; Sui, W-J; Lu, X-X

    2013-03-01

    Rapid identification of bacterial pathogens from clinical specimens is essential to establish an adequate empirical antibiotic therapy to treat urinary tract infections (UTIs). We used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) combined with UF-1000i urine flow cytometry of urine specimens to quickly and accurately identify bacteria causing UTIs. We divided each urine sample into three aliquots for conventional identification, UF-1000i, and MALDI-TOF MS, respectively. We compared the results of the conventional method with those of MALDI-TOF MS combined with UF-1000i, and discrepancies were resolved by 16S rRNA gene sequencing. We analyzed 1456 urine samples from patients with UTI symptoms, and 932 (64.0%) were negative using each of the three testing methods. The combined method used UF-1000i to eliminate negative specimens and then MALDI-TOF MS to identify the remaining positive samples. The combined method was consistent with the conventional method in 1373 of 1456 cases (94.3%), and gave the correct result in 1381 of 1456 cases (94.8%). Therefore, the combined method described here can directly provide a rapid, accurate, definitive bacterial identification for the vast majority of urine samples, though the MALDI-TOF MS software analysis capabilities should be improved, with regard to mixed bacterial infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effect of shot peening on the microstructure of laser hardened 17-4PH

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua

    2010-12-01

    In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.

  19. Current advances on polynomial resultant formulations

    NASA Astrophysics Data System (ADS)

    Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar

    2017-08-01

    Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.

  20. On optimal improvements of classical iterative schemes for Z-matrices

    NASA Astrophysics Data System (ADS)

    Noutsos, D.; Tzoumas, M.

    2006-04-01

    Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z- or an M-matrix, that make the associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161-170], Gunawardena et al. [LAA 154-156 (1991) 123-143]. In this work we generalize the previous preconditioners to obtain optimal methods. "Good" Jacobi and Gauss-Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied.

  1. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay.

    PubMed

    Bodero, Marcia; Bovee, Toine F H; Wang, Si; Hoogenboom, Ron L A P; Klijnstra, Mirjam D; Portier, Liza; Hendriksen, Peter J M; Gerssen, Arjen

    2018-02-01

    The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.

  2. [Determination of ten photoinitiators in fruit juices and tea beverages by solid-phase micro-extraction coupled with gas chromatography/mass spectrometry].

    PubMed

    Liu, Pengyan; Chen, Yanjie; Zhao, Chunxia; Tian, Lei

    2013-12-01

    A method for the determination of ten photoinitiators (PIs), benzophenone, ethyl 4-dimethylaminobenzoate, 1-hydroxycyclohexyl-phenylketone, 4-methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 4-chlorobenzophenone, 2-chlorothioxanthone, 2-isopropylthio-xanthone, 2,2-dimethoxy-2-phenylacetophenone, methyl 2-benzoylbenzoate, in 13 kinds of fruit juice and 3 kinds of tea beverage has been established, using solid-phase micro-extraction (SPME) combined with chromatography/mass spectrometry (GC/MS). At first, the major factors of SPME, extraction time and temperature, were studied through orthogonal experiment. Then the optimal operation conditions were obtained via the refinement of various factors. After the sample was extracted by SPME, it was desorbed for target analytes in sampling inlet for 3 min, and separated on an HP-5MS column, then detected by MS in selected ion monitoring mode, and quantified through calibration curve. The working curves were obtained using sample matrix in order to eliminate the matrix interference. The linear range was from 0.3 microg/L to 60 microg/L and the detection limit range was from 3 ng/L to 16 ng/L. The samples were determined five times with four different spiked levels individually and the relative standard deviations of all the samples were less than 14.5%. This determination method was applied in 16 kinds of packed beverages with different brands and different species. Benzophenone had been detected from all the samples. 4-Methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 2-isopropylthioxanthone, 1-hydroxycyclohexyl-phenylketone and 2-chlorothioxanthone had been detected from a portion of samples. Simultaneous determination was achieved for the ten PIs. These results provide a reference to determine the PIs migrated from packing materials in beverage. This method is simple, high sensitive and non-polluting.

  3. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  4. Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements.

    PubMed

    Prchal, Jan; Junkova, Petra; Strmiskova, Miroslava; Lipov, Jan; Hynek, Radovan; Ruml, Tomas; Hrabal, Richard

    2011-09-01

    Matrix proteins play multiple roles both in early and late stages of the viral replication cycle. Their N-terminal myristoylation is important for interaction with the host cell membrane during virus budding. We used Escherichia coli, carrying N-myristoyltransferase gene, for the expression of the myristoylated His-tagged matrix protein of Mason-Pfizer monkey virus. An efficient, single-step purification procedure eliminating all contaminating proteins including, importantly, the non-myristoylated matrix protein was designed. The comparison of NMR spectra of matrix protein with its myristoylated form revealed substantial structural changes induced by this fatty acid modification. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Exposure reconstruction for the TCDD-exposed NIOSH cohort using a concentration- and age-dependent model of elimination.

    PubMed

    Aylward, Lesa L; Brunet, Robert C; Starr, Thomas B; Carrier, Gaétan; Delzell, Elizabeth; Cheng, Hong; Beall, Colleen

    2005-08-01

    Recent studies demonstrating a concentration dependence of elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suggest that previous estimates of exposure for occupationally exposed cohorts may have underestimated actual exposure, resulting in a potential overestimate of the carcinogenic potency of TCDD in humans based on the mortality data for these cohorts. Using a database on U.S. chemical manufacturing workers potentially exposed to TCDD compiled by the National Institute for Occupational Safety and Health (NIOSH), we evaluated the impact of using a concentration- and age-dependent elimination model (CADM) (Aylward et al., 2005) on estimates of serum lipid area under the curve (AUC) for the NIOSH cohort. These data were used previously by Steenland et al. (2001) in combination with a first-order elimination model with an 8.7-year half-life to estimate cumulative serum lipid concentration (equivalent to AUC) for these workers for use in cancer dose-response assessment. Serum lipid TCDD measurements taken in 1988 for a subset of the cohort were combined with the NIOSH job exposure matrix and work histories to estimate dose rates per unit of exposure score. We evaluated the effect of choices in regression model (regression on untransformed vs. ln-transformed data and inclusion of a nonzero regression intercept) as well as the impact of choices of elimination models and parameters on estimated AUCs for the cohort. Central estimates for dose rate parameters derived from the serum-sampled subcohort were applied with the elimination models to time-specific exposure scores for the entire cohort to generate AUC estimates for all cohort members. Use of the CADM resulted in improved model fits to the serum sampling data compared to the first-order models. Dose rates varied by a factor of 50 among different combinations of elimination model, parameter sets, and regression models. Use of a CADM results in increases of up to five-fold in AUC estimates for the more highly exposed members of the cohort compared to estimates obtained using the first-order model with 8.7-year half-life. This degree of variation in the AUC estimates for this cohort would affect substantially the cancer potency estimates derived from the mortality data from this cohort. Such variability and uncertainty in the reconstructed serum lipid AUC estimates for this cohort, depending on elimination model, parameter set, and regression model, have not been described previously and are critical components in evaluating the dose-response data from the occupationally exposed populations.

  6. Hydrogen concentration analysis in clinopyroxene using proton-proton scattering analysis

    NASA Astrophysics Data System (ADS)

    Weis, Franz A.; Ros, Linus; Reichart, Patrick; Skogby, Henrik; Kristiansson, Per; Dollinger, Günther

    2018-02-01

    Traditional methods to measure water in nominally anhydrous minerals (NAMs) are, for example, Fourier transformed infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). Both well-established methods provide a low detection limit as well as high spatial resolution yet may require elaborate sample orientation or destructive sample preparation. Here we analyze the water content in erupted volcanic clinopyroxene phenocrysts by proton-proton scattering and reproduce water contents measured by FTIR spectroscopy. We show that this technique provides significant advantages over other methods as it can provide a three-dimensional distribution of hydrogen within a crystal, making the identification of potential inclusions possible as well as elimination of surface contamination. The sample analysis is also independent of crystal structure and orientation and independent of matrix effects other than sample density. The results are used to validate the accuracy of wavenumber-dependent vs. mineral-specific molar absorption coefficients in FTIR spectroscopy. In addition, we present a new method for the sample preparation of very thin crystals suitable for proton-proton scattering analysis using relatively low accelerator potentials.

  7. In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat middle-ear

    PubMed Central

    Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2013-01-01

    Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats. PMID:23926427

  8. In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat middle-ear.

    PubMed

    Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2013-01-01

    Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats.

  9. Invertible flexible matrices

    NASA Astrophysics Data System (ADS)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  10. First Human Brain Imaging by the jPET-D4 Prototype With a Pre-Computed System Matrix

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Yoshida, Eiji; Obi, Takashi; Ito, Hiroshi; Yoshikawa, Kyosan; Murayama, Hideo

    2008-10-01

    The jPET-D4 is a novel brain PET scanner which aims to achieve not only high spatial resolution but also high scanner sensitivity by using 4-layer depth-of-interaction (DOI) information. The dimensions of a system matrix for the jPET-D4 are 3.3 billion (lines-of-response) times 5 million (image elements) when a standard field-of-view (FOV) of 25 cm diameter is sampled with a (1.5 mm)3 voxel . The size of the system matrix is estimated as 117 petabytes (PB) with the accuracy of 8 bytes per element. An on-the-fly calculation is usually used to deal with such a huge system matrix. However we cannot avoid extension of the calculation time when we improve the accuracy of system modeling. In this work, we implemented an alternative approach based on pre-calculation of the system matrix. A histogram-based 3D OS-EM algorithm was implemented on a desktop workstation with 32 GB memory installed. The 117 PB system matrix was compressed under the limited amount of computer memory by (1) eliminating zero elements, (2) applying the DOI compression (DOIC) method and (3) applying rotational symmetry and an axial shift property of the crystal arrangement. Spanning, which degrades axial resolution, was not applied. The system modeling and the DOIC method, which had been validated in 2D image reconstruction, were expanded into 3D implementation. In particular, a new system model including the DOIC transformation was introduced to suppress resolution loss caused by the DOIC method. Experimental results showed that the jPET-D4 has almost uniform spatial resolution of better than 3 mm over the FOV. Finally the first human brain images were obtained with the jPET-D4.

  11. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  12. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  13. Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence.

    PubMed

    Oliveira, Cindy; Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2016-09-01

    Estriol (E3) is one of the steroidal estrogens ubiquitously found in the aquatic environment, photodegradation being an important pathway for the elimination of such endocrine disrupting compounds. However, it is important to understand how environmentally important components present in aquatic matrices, such as organic matter, may affect their photodegradation. The main objective of this work was to investigate the photodegradation of E3 in water, under simulated solar radiation, as well as the effect of humic substances (HS - humic acids (HA), fulvic acids (FA) and XAD-4 fraction) in E3 photodegradation. Moreover, the photodegradation behaviour of E3 when present in different environmental aquatic matrices (fresh, estuarine and waste water samples) was also assessed. Results showed a completely different E3 degradation rate depending on the aquatic matrix. In ultrapure water the half-life obtained was about 50 h, while in presence of HS it varied between 5 and 10 h. Then, half-life times between 1.6 and 9.5 h were determined in environmental samples, in which it was observed that the matrix composition contributed up to 97% for the overall E3 photodegradation. Therefore, E3 photodegradation in the considered aquatic matrices was mostly caused by photosensitizing reactions (indirect photodegradation). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix.

    PubMed

    Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa

    2008-12-15

    Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.

  15. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurementmore » at very low femtogram levels using this method in a ground water matrix is also demonstrated.« less

  16. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  17. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gkretsi, Vasiliki, E-mail: vasso.gkretsi@gmail.com; Bogdanos, Dimitrios P.; Department of Rheumatology, School of Medicine, University of Thessaly, University Hospital of Larissa, 41110 Larissa

    Migfilin is a novel cell–matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell–matrix and cell–cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin's role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin's expression is elevated in HepG2 cells andmore » its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal–regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis. - Highlights: • Migfilin is a cell–matrix and cell–cell adhesion protein known to interact with VASP. • Nothing is known about Migfilin's role in hepatocellular carcinoma (HCC). • We eliminated Migfilin from 2 HCC cell lines and studied in vitro metastasis. • Its silencing inhibits cell invasion and promotes adhesion in HepG2 invasive cells. • We provide molecular mechanism by which Migfilin elimination halts HCC metastasis.« less

  18. Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis

    NASA Technical Reports Server (NTRS)

    Leif, Roald N.; Simoneit, Bernd R. T.

    1995-01-01

    A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.

  19. Breaking through the uncertainty ceiling in LA-ICP-MS U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, M.

    2016-12-01

    Sources of systematic uncertainty associated with session-to-session bias are the dominant contributor to the 2% (2s) uncertainty ceiling that currently limits the accuracy of LA-ICP-MS U-Pb geochronology. Sources include differential downhole fractionation (LIEF), `matrix effects' and ablation volume differences, which result in irreproducibility of the same reference material across sessions. Current mitigation methods include correcting for LIEF mathematically, using matrix-matched reference materials, annealing material to reduce or eliminate radiation damage effects and tuning for robust plasma conditions. Reducing the depth and volume of ablation can also mitigate these problems and should contribute to the reduction of the uncertainty ceiling. Reducing analysed volume leads to increased detection efficiency, reduced matrix-effects, eliminates LIEF, obviates ablation rate differences and reduces the likelihood of intercepting complex growth zones with depth, thereby apparently improving material homogeneity. High detection efficiencies (% level) and low sampling volumes (20um box, 1-2um deep) can now be achieved using MC-ICP-MS such that low volume ablations should be considered part of the toolbox of methods targeted at improving the reproducibility of LA-ICP-MS U-Pb geochronology. In combination with other strategies these improvements should be feasible on any ICP platform. However, reducing the volume of analysis reduces detected counts and requires a change of analytical approach in order to mitigate this. Appropriate strategies may include the use of high efficiency cell and torch technologies and the optimisation of acquisition protocols and data handling techniques such as condensing signal peaks, using log ratios and total signal integration. The tools required to break the 2% (2s) uncertainty ceiling in LA-ICP-MS U-Pb geochronology are likely now known but require a coherent strategy and change of approach to combine their implementation and realise this goal. This study will highlight these changes and efforts towards reducing the uncertainty contribution for LA-ICP-MS U-Pb geochronology.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Noui, Karim; Laboratoire APC - Astroparticule et Cosmologie,Université Paris Diderot Paris 7,75013 Paris

    In the context of classical mechanics, we study the conditions under which higher-order derivative theories can evade the so-called Ostrogradsky instability. More precisely, we consider general Lagrangians with second order time derivatives, of the form L(ϕ{sup ¨a}, ϕ-dot {sup a},ϕ{sup a}; q-dot {sup i},q{sup i}) with a=1,⋯,n and i=1,⋯,m. For n=1, assuming that the q{sup i}’s form a nondegenerate subsystem, we confirm that the degeneracy of the kinetic matrix eliminates the Ostrogradsky instability. The degeneracy implies, in the Hamiltonian formulation of the theory, the existence of a primary constraint, which generates a secondary constraint, thus eliminating the Ostrogradsky ghost. Formore » n>1, we show that, in addition to the degeneracy of the kinetic matrix, one needs to impose extra conditions to ensure the presence of a sufficient number of secondary constraints that can eliminate all the Ostrogradsky ghosts. When these conditions that ensure the disappearance of the Ostrogradsky instability are satisfied, we show that the Euler-Lagrange equations, which involve a priori higher order derivatives, can be reduced to a second order system.« less

  1. Healthy degenerate theories with higher derivatives

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Noui, Karim; Suyama, Teruaki; Yamaguchi, Masahide; Langlois, David

    2016-07-01

    In the context of classical mechanics, we study the conditions under which higher-order derivative theories can evade the so-called Ostrogradsky instability. More precisely, we consider general Lagrangians with second order time derivatives, of the form L(̈phia, dot phia, phia; qi, qi) with a = 1,⋯,n and i = 1,⋯,m. For n = 1, assuming that the qi's form a nondegenerate subsystem, we confirm that the degeneracy of the kinetic matrix eliminates the Ostrogradsky instability. The degeneracy implies, in the Hamiltonian formulation of the theory, the existence of a primary constraint, which generates a secondary constraint, thus eliminating the Ostrogradsky ghost. For n > 1, we show that, in addition to the degeneracy of the kinetic matrix, one needs to impose extra conditions to ensure the presence of a sufficient number of secondary constraints that can eliminate all the Ostrogradsky ghosts. When these conditions that ensure the disappearance of the Ostrogradsky instability are satisfied, we show that the Euler-Lagrange equations, which involve a priori higher order derivatives, can be reduced to a second order system.

  2. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  3. Release of hydrogen from nanoconfined hydrides by application of microwaves

    NASA Astrophysics Data System (ADS)

    Sanz-Moral, Luis Miguel; Navarrete, Alexander; Sturm, Guido; Link, Guido; Rueda, Miriam; Stefanidis, Georgios; Martín, Ángel

    2017-06-01

    The release of hydrogen from solid hydrides by thermolysis can be improved by nanoconfinement of the hydride in a suitable micro/mesoporous support, but the slow heat transfer by conduction through the support can be a limitation. In this work, a C/SiO2 mesoporous material has been synthesized and employed as matrix for nanoconfinement of hydrides. The matrix showed high surface area and pore volume (386 m2/g and 1.41 cm3/g), which enabled the confinement of high concentrations of hydride. Furthermore, by modification of the proportion between C and SiO2, the dielectric properties of the complex could be modified, making it susceptible to microwave heating. As with this heating method the entire sample is heated simultaneously, the heat transfer resistances associated to conduction were eliminated. To demonstrate this possibility, ethane 1,2-diaminoborane (EDAB) was embedded on the C/SiO2 matrix at concentrations ranging from 11 to 31%wt using a wet impregnation method, and a device appropriate for hydrogen release from this material by application of microwaves was designed with the aid of a numerical simulation. Hydrogen liberation tests by conventional heating and microwaves were compared, showing that by microwave heating hydrogen release can be initiated and stopped in shorter times.

  4. Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection.

    PubMed

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2017-03-01

    Nanostructured nickel oxide (NiO) thin film has been explored as a matrix to develop a reagentless biosensor for free and total cholesterol as well as low density lipoprotein (LDL) detection. The redox property of the matrix has been exploited to enhance the electron transfer between the enzyme and the electrode as well as to eliminate the toxic mediator in solution. X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy were carried out to characterize the NiO thin film. Biosensing response studies were accomplished using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The developed biosensors exhibited a high sensitivity of 27 and 63 μA/mM/cm 2 over a linear range of 0.12-10.23 and 1-12 mM, respectively, for free and total cholesterol. Reagentless estimation of LDL was also achieved over the wide range 0.018-0.5 μM with a sensitivity of 0.12 mA/μM/cm 2 . The results are extremely promising for the realization of an integrated biosensor for complete detection of cholesterol in the serum samples. Graphical Abstract Reagentless sensing mechanism of (a) free cholesterol and (b) total cholesterol using nanostructured NiO matrix.

  5. Improvements in sparse matrix operations of NASTRAN

    NASA Technical Reports Server (NTRS)

    Harano, S.

    1980-01-01

    A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.

  6. Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers.

    PubMed

    Zhou, Yusun; Zhou, Tingting; Jin, Hua; Jing, Tao; Song, Bin; Zhou, Yikai; Mei, Surong; Lee, Yong-Ill

    2015-05-01

    Magnetic molecularly imprinted polymers (MMIPs) were prepared based on surface molecular imprinting using erythromycin (ERY) as template molecule and Fe3O4 nanoparticles as support substrate. The MMIPs possessed high adsorption capacity of 94.1 mg/g for ERY and the imprinting factor was 11.9 indicating good imprinted effect for ERY. Selective evaluation demonstrated favorable selectivity of MMIPs for multiple macrolide antibiotics (MACs). Using MMIPs as adsorptive material, a rapid and convenient magnetic solid-phase extraction (MSPE) procedure was established for simultaneous and selective separation of six MACs in pork, fish and shrimp samples, then the MACs was subjected to high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis. At different fortified concentrations, the extraction recoveries could reach 89.1% and the relative standard deviations were lower than 12.4%. Chromatogram revealed the response signals of MACs in spiked samples were greatly enhanced and matrix interferences were effectively eliminated after treatment with MSPE. The proposed MSPE procedure coupled with HPLC-UV realized selective and sensitive determination of multiple MACs in foodstuff samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. In a 21-2n deformed stainless steel influence of recovery temperature

    NASA Astrophysics Data System (ADS)

    De Ita, A.; Ugalde, P.; Flores, D.

    2017-01-01

    We present the influence high heat treatment temperature of a nitrogen austenitic stainless steel, deform by cold compression, in 10 different percentages. The steel contains high chromium (19.25 %), nickel (1.5 %) and nitrogen (0.2 %). The typical applications for this alloy are automobile parts and special valves for his excellent mechanical properties and corrosion resistance. Produced by hot rolling, they were subjected homogenized treatment at 975 °C for 45 minutes. Subsequently, deformed, by cold compression. We get ten different deformations, from 3 % to 22 %. These samples then to a heat treatment at 750 °C for one, 2 and 4 hours respectively. To observe the microstructure all samples were metallographic study and measured also their Rockwell C hardness. The initial sample has an austenitic matrix with a small amount of precipitates with a 42 RC average hardness. The homogenized sample had a 39 RC hardness. The deformed samples increased their hardness with a maximum of 49 RC. The samples with the treatment, showed a lower hardness with longer time with high dispersion. The decreased of hardness is due to the elimination of residual stresses and precipitates increasing size.

  8. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    PubMed

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  9. Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita; Jordan, Harry F.

    1989-01-01

    It is shown that in sparse matrices arising from electronic circuits, it is possible to do computations on many diagonal elements simultaneously. A technique for obtaining an ordered compatible set directly from the ordered incompatible table is given. The ordering is based on the Markowitz number of the pivot candidates. This technique generates a set of compatible pivots with the property of generating few fills. A novel heuristic algorithm is presented that combines the idea of an order-compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. An elimination set for reducing the matrix is generated and selected on the basis of a minimum Markowitz sum number. The parallel pivoting technique presented is a stepwise algorithm and can be applied to any submatrix of the original matrix. Thus, it is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices using the HEP multiprocessor (Kowalik, 1985) are presented and analyzed.

  10. Matrix change of bone grafting substitute after implantation into guinea pig bulla.

    PubMed

    Punke, Ch; Zehlicke, T; Just, T; Holzhüter, G; Gerber, T; Pau, H W

    2012-05-01

    Many different surgical techniques have been developed to remove open mastoid cavities. In addition to autologous materials, alloplastic substances have been used. A very slow absorption of these materials and extrusion reactions have been reported. We investigated a newly developed, highly porous bone grafting material to eliminate open mastoid cavities, in an animal model. To characterise the transformation process, the early tissue reactions were studied in relation to the matrix transformation of the bone material. NanoBone (NB), a highly porous bone grafting material based on calcium phosphate and silica, was filled into the open bullae from 20 guinea pigs. The bullae were examined histologically. Energy dispersive X-ray spectroscopy (EDX) was used to investigate the change in the elemental composition at different sampling times. The surface topography of the sections was examined by electron microscopy. After 1 week, periodic acid-Schiffs (PAS) staining demonstrated accumulation of glycogen and proteins, particularly in the border area of the NB particles. After 2 weeks, the particles were evenly coloured after PAS staining. EDX analysis showed a rapid absorption of the silica in the bone grafting material. NanoBone showed a rapid matrix change after implantation in the bullae of guinea pigs. The absorption of the silica matrix and replacement by PAS-positive substances like glycoproteins and mucopolysaccharides seems to play a decisive role in the degradation processes of NB. This is associated with the good osteoinductive properties of the material.

  11. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    PubMed

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of a suspect and non-target screening approach to detect veterinary antibiotic residues in a complex biological matrix using liquid chromatography/high-resolution mass spectrometry.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Sauvé, Sébastien

    2015-12-30

    Swine manure can contain a wide range of veterinary antibiotics, which could enter the environment via manure spreading on agricultural fields. A suspect and non-target screening method was applied to swine manure samples to attempt to identify veterinary antibiotics and pharmaceutical compounds for a future targeted analysis method. A combination of suspect and non-target screening method was developed to identify various veterinary antibiotic families using liquid chromatography coupled with high-resolution mass spectrometry (LC/HRMS). The sample preparation was based on the physicochemical parameters of antibiotics for the wide scope extraction of polar compounds prior to LC/HRMS analysis. The amount of data produced was processed by applying restrictive thresholds and filters to significantly reduce the number of compounds found and eliminate matrix components. The suspect and non-target screening was applied on swine manure samples and revealed the presence of seven common veterinary antibiotics and some of their relative metabolites, including tetracyclines, β-lactams, sulfonamides and lincosamides. However, one steroid and one analgesic were also identified. The occurrence of the identified compounds was validated by comparing their retention times, isotopic abundance patterns and fragmentation patterns with certified standards. This identification method could be very useful as an initial step to screen for and identify emerging contaminants such as veterinary antibiotics and pharmaceuticals in environmental and biological matrices prior to quantification. Copyright © 2015 John Wiley & Sons, Ltd.

  13. A simple sample preparation for simultaneous determination of chloramphenicol and its succinate esters in food products using high-performance liquid chromatography/high-resolution mass spectrometry.

    PubMed

    Amelin, Vasiliy; Korotkov, Anton

    2017-02-01

    A simple method is described for the determination of chloramphenicol and its succinate esters in food products. Examination of food products using high-performance liquid chromatography/high-resolution mass spectrometry showed the presence not only of chloramphenicol but also of its succinate forms. A scheme is proposed for determining chloramphenicol and its succinate esters (calculated as chloramphenicol) in meat (beef, pork, poultry), milk, liver, kidney, eggs, fish and honey. Analytes are extracted from a 1.0 g sample with 5 ml acetonitrile. It was found that using the method of standard addition and diluting the extract with water leads to the elimination of matrix effects and also eliminates errors associated with peak splitting due to the separate elution of the differing forms of the analyte. Validation results were satisfactory, with recoveries from 85% to 111% (meat, milk, liver, kidney, eggs, fish and honey) and a relative standard deviation (RSD) lower than 13% for spiked levels of 0.3, 1.0 and 5 µg kg - 1 . The limits of detection and quantification (calculated as chloramphenicol for all forms) were 0.1 and 0.3 µg kg - 1 , respectively. The RSD of the results of the analysis was < 10%. The duration of the analysis was less than 1 h.

  14. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too old age-value. Since annealing at 300 °C, Toyoda and Ikeya [S. Toyoda, M. Ikeya, Geochem. J. 25 (1991) 427-445] states that E1-signal with maximum intensity is obtained, while annealing at 400 °C E1-signal is completely eliminated, the subtraction of the second one from 300 °C heat-treated sample isolate E1-like signal. Since this is radiation dose-dependent, we show that now EPR dating becomes possible.

  15. Elimination patterns of worldwide used sulfonamides and tetracyclines during anaerobic fermentation.

    PubMed

    Spielmeyer, Astrid; Breier, Bettina; Groißmeier, Kathrin; Hamscher, Gerd

    2015-10-01

    Antibiotics such as sulfonamides and tetracyclines are frequently used in veterinary medicine. Due to incomplete absorption in the animal gut and/or unmetabolized excretion, the substances can enter the environment by using manure as soil fertilizer. The anaerobic fermentation process of biogas plants is discussed as potential sink for antibiotic compounds. However, negative impacts of antibiotics on the fermentation process are suspected. The elimination of sulfadiazine, sulfamethazine, tetracycline and chlortetracycline in semi-continuous lab-scale fermenters was investigated. Both biogas production and methane yield were not negatively affected by concentrations up to 38 mg per kg for sulfonamides and 7 mg per kg for tetracyclines. All substances were partly eliminated with elimination rates between 14% and 89%. Both matrix and structure of the target molecule influenced the elimination rate. Chlortetracycline was mainly transformed into iso-chlortetracycline. In all other cases, the elimination pathways remained undiscovered; however, sorption processes seem to have a negligible impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Screening effect in matrix graphene / SiC planar field emmiters

    NASA Astrophysics Data System (ADS)

    Jityaev, I. L.; Svetlichnyi, A. M.; Kolomiytsev, A. S.; Ageev, O. A.

    2017-11-01

    The paper describes simulation of matrix field emission nanostructures on the basis of graphene on a semi-insulating silicon carbide. The planar spike-type field emission cathodes were measured. The electric field distribution in an interelectrode gap of the emission structure was obtained. The models take into account the distance between cathode tops. Screening effect condition was detected in planar field emission structure and a way of eliminating was proposed.

  17. Processing of a fiber-reinforced transparent glass matrix composite and study of micromechanics of load transfer from matrix to fiber using micro-fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Debangshu

    The brittleness of monolithic ceramic materials can be overcome by reinforcing them with high strength, high modulus ceramic fibers. These ceramic matrix composites exhibit improved strength, toughness, and work of fracture. Successful design of a ceramic matrix composite (CMC) depends on two factors: proper choice of fiber, matrix, and interface material, and understanding the mechanics of fracture. The conventional techniques for measuring stress and strain at a local level in CMCs are based on indirect experiments and analytical models. In recent years a couple of optical techniques have been explored for non- contact and direct evaluation of the stress and strain in materials, such as laser Raman spectroscopy and fluorescence spectroscopy. In order to employ spectroscopy to study stress in a composite, a transparent matrix was needed. In this study a SiC fiber reinforced transparent glass matrix composite was developed. A tape casting, binder burnout, and sintering route was adopted to achieve the optimum transparency with proper fiber alignment and interfacial properties. Sapphire fibers were used to act as probe to generate fluorescence signals for measuring stress. A fugitive carbon coating was developed to act as a weak interface for the sapphire fiber, which otherwise, forms a strong bond with the matrix. A fixture was designed to apply stress on the composite specimen, in situ, under the microscope of the spectrometer. Using fluorescence spectroscopy, the micromechanics of load transfer from matrix to fibers were studied. Studies were conducted on both strongly and weakly bonded fibers, as well as on single fiber, and multi fiber situations. Residual stresses arising from thermal expansion mismatch have been mapped along the fiber length with resolution in microns. Residual axial stress was found to follow a shear lag profile along the fiber length. A finite residual axial stress was detected at the fiber ends. Correction of the measured stress for sample probe interaction could not eliminate this finite stress completely. Residual axial stress was also found to vary across the fiber cross section. Analytical models predicting the stress variation along the fiber length and across fiber cross section were developed. (Abstract shortened by UMI.)

  18. [Penile augmentation using acellular dermal matrix].

    PubMed

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  19. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  20. Dried Blood Spot Methodology in Combination With Liquid Chromatography/Tandem Mass Spectrometry Facilitates the Monitoring of Teriflunomide

    PubMed Central

    Lunven, Catherine; Turpault, Sandrine; Beyer, Yann-Joel; O'Brien, Amy; Delfolie, Astrid; Boyanova, Neli; Sanderink, Ger-Jan; Baldinetti, Francesca

    2016-01-01

    Background: Teriflunomide, a once-daily oral immunomodulator approved for treatment of relapsing-remitting multiple sclerosis, is eliminated slowly from plasma. If necessary to rapidly lower plasma concentrations of teriflunomide, an accelerated elimination procedure using cholestyramine or activated charcoal may be used. The current bioanalytical assay for determination of plasma teriflunomide concentration requires laboratory facilities for blood centrifugation and plasma storage. An alternative method, with potential for greater convenience, is dried blood spot (DBS) methodology. Analytical and clinical validations are required to switch from plasma to DBS (finger-prick sampling) methodology. Methods: Using blood samples from healthy subjects, an LC-MS/MS assay method for quantification of teriflunomide in DBS over a range of 0.01–10 mcg/mL was developed and validated for specificity, selectivity, accuracy, precision, reproducibility, and stability. Results were compared with those from the current plasma assay for determination of plasma teriflunomide concentration. Results: Method was specific and selective relative to endogenous compounds, with process efficiency ∼88%, and no matrix effect. Inaccuracy and imprecision for intraday and interday analyses were <15% at all concentrations tested. Quantification of teriflunomide in DBS assay was not affected by blood deposit volume and punch position within spot, and hematocrit level had a limited but acceptable effect on measurement accuracy. Teriflunomide was stable for at least 4 months at room temperature, and for at least 24 hours at 37°C with and without 95% relative humidity, to cover sampling, drying, and shipment conditions in the field. The correlation between DBS and plasma concentrations (R2 = 0.97), with an average blood to plasma ratio of 0.59, was concentration independent and constant over time. Conclusions: DBS sampling is a simple and practical method for monitoring teriflunomide concentrations. PMID:27015245

  1. Production of polyimide ceria nanocomposites by development of molecular hook technology in nano-sonochemistry.

    PubMed

    Hatami, Mehdi

    2018-06-01

    Poly(amic acid), the precursor of polyimide (PI), was used for the preparation of PI/CeO 2 nanocomposites (NC)s by ultrasonic assisted technique via insertion of the surface modified CeO 2 nanoparticles (NP)s into PI matrix. In the preparation stages, in the first, the modifications of CeO 2 NPs by using hexadecyltrimethoxysilane (HDTMS) as a binder were targeted using ultrasonic waves. In the second step, newly designed PI structure was formed from the sonochemical imidization process as a molecular hook. In this step two different reactions were occurred. The acetic acid elimination reaction in the main chain of macromolecule, and the acetylation reaction in the side chains of poly(amic acid) were accomplished. By acetylation process the hook structure was created for trapping of the modified nanoparticles. In the final step the preparation of PI NCs were achieved by sonochemical process. The structural and thermal properties of pure PI and PI/CeO 2 NCs were studied by several techniques such as fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal analyses. FT-IR and 1 H NMR spectra confirmed the success in preparation of PI matrix. The FE-SEM, TEM, and AFM analyses showed the uniform distribution of CeO 2 NPs in PI matrix. The XRD patterns of NCs show the presence of crystalline CeO 2 NPs in amorphous PI matrix. The thermal analysis results reveal that, with increases in the content of CeO 2 NPs in PI matrix, the thermally stability factors of samples were improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  3. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  4. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that ismore » orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(α,β) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(α,β) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.« less

  5. An automated online turboflow cleanup LC/MS/MS method for the determination of 11 plasticizers in beverages and milk.

    PubMed

    Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide

    2013-01-01

    An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.

  6. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    PubMed

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  7. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    NASA Astrophysics Data System (ADS)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, < 0.4-6 ng g - 1 in gasoline, < 0.5-2 ng g - 1 in atmospheric oil, < 6-100 ng g - 1 in heavy vacuum oil and 140-300 ng g - 1 in distillation residue.

  8. Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces.

    PubMed

    Uehara, Takashi; Sartori, Matteo; Tanaka, Toshihisa; Fiori, Simone

    2017-06-01

    The estimation of covariance matrices is of prime importance to analyze the distribution of multivariate signals. In motor imagery-based brain-computer interfaces (MI-BCI), covariance matrices play a central role in the extraction of features from recorded electroencephalograms (EEGs); therefore, correctly estimating covariance is crucial for EEG classification. This letter discusses algorithms to average sample covariance matrices (SCMs) for the selection of the reference matrix in tangent space mapping (TSM)-based MI-BCI. Tangent space mapping is a powerful method of feature extraction and strongly depends on the selection of a reference covariance matrix. In general, the observed signals may include outliers; therefore, taking the geometric mean of SCMs as the reference matrix may not be the best choice. In order to deal with the effects of outliers, robust estimators have to be used. In particular, we discuss and test the use of geometric medians and trimmed averages (defined on the basis of several metrics) as robust estimators. The main idea behind trimmed averages is to eliminate data that exhibit the largest distance from the average covariance calculated on the basis of all available data. The results of the experiments show that while the geometric medians show little differences from conventional methods in terms of classification accuracy in the classification of electroencephalographic recordings, the trimmed averages show significant improvement for all subjects.

  9. Acoustic response of a rectangular levitator with orifices

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael; Wagner, Paul

    1990-01-01

    The acoustic response of a rectangular cavity to speaker-generated excitation through waveguides terminating at orifices in the cavity walls is analyzed. To find the effects of orifices, acoustic pressure is expressed by eigenfunctions satisfying Neumann boundary conditions as well as by those satisfying Dirichlet ones. Some of the excess unknowns can be eliminated by point constraints set over the boundary, by appeal to Lagrange undetermined multipliers. The resulting transfer matrix must be further reduced by partial condensation to the order of a matrix describing unmixed boundary conditions. If the cavity is subjected to an axial temperature dependence, the transfer matrix is determined numerically.

  10. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  11. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  12. Results of quality-control sampling of water, bed sediment, and tissue in the Western Lake Michigan Drainages study unit of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzgerald, S.A.

    1997-01-01

    This report contains the quality control results of the Western Lake Michigan Drainages study unit of the National Water Quality Assessment Program. Quality control samples were collected in the same manner and contemporaneously with environmental samples during the first highintensity study phase in the unit (1992 through 1995) and amounted to approximately 15 percent of all samples collected. The accuracy and precision of hundreds of chemical analyses of surface and ground-water, bed sediment, and tissue was determined through the collection and analysis of field blanks, field replicates and splits, matrix spikes, and surrogates. Despite the several detections of analytes in the field blanks, the concentrations of most constituents in the environmental samples will likely be an order of magnitude or higher than those in the blanks. However, frequent detections, and high concentrations, of dissolved organic carbon (DOC) in several surface and ground-water blanks are probably significant with respect to commonly measured environmental concentrations, and the environmental data will have to be qualified accordingly. The precision of sampling of water on a percent basis, as determined from replicates and splits, was generally proportional to the concentration of the constituents, with constituents present in relatively high concentrations generally having less sampling variability than those with relatively low concentrations. In general, analytes with relatively high variability between replicates were present at concentrations near the reporting limit or were associated with relatively small absolute concentration differences, or both. Precision of replicates compared to that for splits in bed sediment samples was similar, thus eliminating sampling as a major source of variability in analyte concentrations. In the case the phthalates in bed sediment, contamination in either the field or laboratory could have caused the relatively large variability between replicate samples and between split samples.Variability of analyte concentrations in tissue samples was relatively low, being 29 percent or less for all constituents. Recoveries of most laboratory schedule 2001/2010 pesticide spike compounds in surfacewater samples were reasonably good. Low intrinsic method recovery resulted in relatively low recovery forp,p'-DDE, metribuzin, and propargite. In the case of propargite, decomposition with the environmental sample matrices was also indicated. Recoveries of two compounds, cyanazine and thiobencarb, might have been biased high due to interferences. The one laboratory schedule 2050/2051 field matrix pesticide spike indicated numerous operational problems with this method that biased recoveries either low or high. Recoveries of pesticides from both pesticide schedules in field spikes of ground-water samples generally were similar to those of field matrix spikes of surface- water samples. High maximum recoveries were noted for tebuthiuron, disulfoton, DCPA, and permethrin, which indicates the possible presence of interferents in the matrices for these compounds. Problems in the recoveries of pesticides on schedule 2050/2051 from ground-water samples generally were the same as those for surfacewater samples. Recoveries of VOCs in field matrix spikes were reasonable when consideration was given for the use of the micropipettor that delivered only about 80 percent on average of the nominal mass of spiked analytes. Finally, the recoveries of most surrogate compounds in surface and ground-water samples were reasonable. Problems in sample handling (for example, spillage) were likely not the cause of any of the low recoveries of spiked compounds.

  13. Use of a porous silicon-gold plasmonic nanostructure to enhance serum peptide signals in MALDI-TOF analysis.

    PubMed

    Li, Xiao; Tan, Jie; Yu, Jiekai; Feng, Jiandong; Pan, Aiwu; Zheng, Shu; Wu, Jianmin

    2014-11-07

    Small peptides in serum are potential biomarkers for the diagnosis of cancer and other diseases. The identification of peptide biomarkers in human plasma/serum has become an area of high interest in medical research. However, the direct analysis of peptides in serum samples using mass spectrometry is challenging due to the low concentration of peptides and the high abundance of high-molecular-weight proteins in serum, the latter of which causes severe signal suppression. Herein, we reported that porous semiconductor-noble metal hybrid nanostructures can both eliminate the interference from large proteins in serum samples and significantly enhance the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) yields of peptides captured on the nanostructure. Serum peptide fingerprints with high fidelity can be acquired rapidly, and successful discrimination of colorectal cancer patients based on peptide fingerprints is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of a sustained fluoride delivery system.

    PubMed

    Baturina, Olga; Tufekci, Eser; Guney-Altay, Ozge; Khan, Shadeed M; Wnek, Gary E; Lindauer, Steven J

    2010-11-01

    To develop a novel delivery system by which fluoride incorporated into elastomeric rings, such as those used to ligate orthodontic wires, will be released in a controlled and constant manner. Polyethylene co-vinyl acetate (PEVA) was used as the model elastomer. Samples (N = 3) were prepared by incorporating 0.02 to 0.4 g of sodium fluoride (NaF) into previously prepared PEVA solution. Another group of samples prepared in the same manner were additionally dip-coated in PEVA to create an overcoat. Fluoride release studies were conducted in vitro using an ion selective electrode over a period of 45 days. The amount of fluoride released was compared to the optimal therapeutic dose of 0.7 microg F(-)/ring/d. Only coated samples with the highest fluoride content (group D, 0.4 g of NaF) were able to release fluoride at therapeutic levels. When fluoride release from coated and uncoated samples with the same amount of NaF were compared, it was shown that the dip-coating technique resulted in a fluoride release in a controlled manner while eliminating the initial burst effect. This novel fluoride delivery matrix provided fluoride release at a therapeutically effective rate and profile.

  15. Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor.

    PubMed

    Pinacho, Daniel G; Sánchez-Baeza, Francisco; Pividori, María-Isabel; Marco, María-Pilar

    2014-08-28

    An amperometric magneto-immunosensor (AMIS) for the detection of residues of fluoroquinolone antibiotics in milk samples is described for the first time. The immunosensor presented combines magnetic beads biomodified with an antibody with a broad recognition profile of fluoroquinolones, a haptenized enzyme and a magnetic graphite-epoxy composite (m-GEC) electrode. After the immunochemical reaction with specific enzyme tracer, the antibody biomodified magnetic beads are easily captured by an electrode made of graphite-epoxy composite containing a magnet, which also acts as transducer for the electrochemical detection. In spite of the complexity of milk, the use of magnetic beads allows elimination of potential interferences caused by the matrix components; hence the AMIS could perform quantitative measurements, directly in these samples, without any additional sample cleanup or extraction step. The immunosensor is able to detect up to seven different fluoroquinolones far below the MRLs defined by the UE for milk; for example ciprofloxacin is detected directly in milk with an IC50 of 0.74 µg/L and a LOD of 0.009 µg/L. This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis fluoroquinolones in complex samples.

  16. Electrochemical Detection of Fluoroquinolone Antibiotics in Milk Using a Magneto Immunosensor

    PubMed Central

    Pinacho, Daniel G.; Sánchez-Baeza, Francisco; Pividori, María-Isabel; Marco, María-Pilar

    2014-01-01

    An amperometric magneto-immunosensor (AMIS) for the detection of residues of fluoroquinolone antibiotics in milk samples is described for the first time. The immunosensor presented combines magnetic beads biomodified with an antibody with a broad recognition profile of fluoroquinolones, a haptenized enzyme and a magnetic graphite–epoxy composite (m-GEC) electrode. After the immunochemical reaction with specific enzyme tracer, the antibody biomodified magnetic beads are easily captured by an electrode made of graphite-epoxy composite containing a magnet, which also acts as transducer for the electrochemical detection. In spite of the complexity of milk, the use of magnetic beads allows elimination of potential interferences caused by the matrix components; hence the AMIS could perform quantitative measurements, directly in these samples, without any additional sample cleanup or extraction step. The immunosensor is able to detect up to seven different fluoroquinolones far below the MRLs defined by the UE for milk; for example ciprofloxacin is detected directly in milk with an IC50 of 0.74 μg/L and a LOD of 0.009 μg/L. This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis fluoroquinolones in complex samples. PMID:25171120

  17. [Method of fused sample preparation after nitrify-determination of primary and minor elements in manganese ore by X-ray fluorescence spectrometry].

    PubMed

    Song, Yi; Guo, Fen; Gu, Song-hai

    2007-02-01

    Eight components, i. e. Mn, SiO2, Fe, P, Al2O3, CaO, MgO and S, in manganese ore were determined by X-ray fluorescence spectrometer. Because manganese ore sample releases a lot of air bubbles during fusion which effect accuracy and reproducibility of determination, nitric acid was added to the sample to destroy organic matter before fusion by the mixture flux at 1000 degrees C. This method solved the problem that the flux splashed during fusion because organic matter volatilized brought out a lot of air bubbles, eliminated particle size effects and mineral effect, while solved the problem of volatilization of sulfur during fusion. The experiments for the selection of the sample preparation conditions, i. e. fusion flux, fusion time and volume of HNO3, were carried out. The matrix effects on absorption and enhancement were corrected by variable theoretical alpha coefficient to expand the range of determination. Moreover, the precision and accuracy experiments were performed. In comparison with chemical analysis method, the quantitative analytical results for each component are satisfactory. The method has proven rapid, precise and simple.

  18. Elimination Rates of Dioxin Congeners in Former Chlorophenol Workers from Midland, Michigan

    PubMed Central

    Collins, James J.; Bodner, Kenneth M.; Wilken, Michael; Bodnar, Catherine M.

    2012-01-01

    Background: Exposure reconstructions and risk assessments for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxins rely on estimates of elimination rates. Limited data are available on elimination rates for congeners other than TCDD. Objectives: We estimated apparent elimination rates using a simple first-order one-compartment model for selected dioxin congeners based on repeated blood sampling in a previously studied population. Methods: Blood samples collected from 56 former chlorophenol workers in 2004–2005 and again in 2010 were analyzed for dioxin congeners. We calculated the apparent elimination half-life in each individual for each dioxin congener and examined factors potentially influencing elimination rates and the impact of estimated ongoing background exposures on rate estimates. Results: Mean concentrations of all dioxin congeners in the sampled participants declined between sampling times. Median apparent half-lives of elimination based on changes in estimated mass in the body were generally consistent with previous estimates and ranged from 6.8 years (1,2,3,7,8,9-hexachlorodibenzo-p-dioxin) to 11.6 years (pentachlorodibenzo-p-dioxin), with a composite half-life of 9.3 years for TCDD toxic equivalents. None of the factors examined, including age, smoking status, body mass index or change in body mass index, initial measured concentration, or chloracne diagnosis, was consistently associated with the estimated elimination rates in this population. Inclusion of plausible estimates of ongoing background exposures decreased apparent half-lives by approximately 10%. Available concentration-dependent toxicokinetic models for TCDD underpredicted observed elimination rates for concentrations < 100 ppt. Conclusions: The estimated elimination rates from this relatively large serial sampling study can inform occupational and environmental exposure and serum evaluations for dioxin compounds. PMID:23063871

  19. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, S.L.

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  20. Carrier Aviation and Hybrid Conflict: The Future of the Strike Fighter

    DTIC Science & Technology

    2011-05-01

    MDTC NTA NTSIR OCA OEF OIF PGM. ROE SACT SAM SAR· SEAD SFARP SFTI SFWT .STW T& R TST UAS UCAS-D ULT Acronyms Anti Air Warfare...34tance ’ \\ ’ ’ of air-to-air training, or suggest a change to the training and readiness matrix (T& R ) or IDRC, but rather examine the mission...illustrate another example of the emphasis on air-to~air. In 2008, the new T & R matrix for the USMC F/ A-18 eliminated the Air Combat Tactics

  1. Density matrix Monte Carlo modeling of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian

    2017-10-01

    By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.

  2. Single-run determination of polybrominated diphenyl ethers (PBDEs) di- to deca-brominated in fish meal, fish oil and fish feed by isotope dilution: application of automated sample purification and gas chromatography/ion trap tandem mass spectrometry (GC/ITMS).

    PubMed

    Blanco, Sonia Lucía; Vieites, Juan M

    2010-07-05

    The present paper describes the application of automated cleanup and fractionation procedures of the Power Prep system (Fluid Management Systems) for the determination of polybrominated diphenyl ethers (PBDEs) in feeding stuffs and fish meal and oil. Gas chromatography (GC) separation followed by ion trap tandem mass spectrometry detection in EI mode (ITMS) allowed the analysis of di- to deca-BDEs in the samples matrices used in fish aquaculture. The method developed enabled the determination of 26 native PBDE congeners and 11 (13)C(12)-labelled congeners, including deca-BDE 209, in a single-run analysis, using isotope dilution. The automated cleanup, consisting of a succession of multilayer silica and basic alumina columns previously applied by Wyrzykowska et al. (2009) [28] in combustion flue gas, was successfully applied in our complex matrices. The method allowed an increase in productivity, i.e. lower time was required to process samples, and simultaneous purification of several samples was achieved at a time, reducing analyst dedication and human error input. Average recoveries of 43-96% were obtained. GC/ITMS can overcome the complexity originating from the sample matrix, eliminating matrix effects by tandem MS, to enable the detection of congeners penta- to nona-BDEs where interferent masses were present. The provisional detection limits, estimated in the samples, were 5-30 pg for di-, tri-, tetra-, and penta-BDEs, 20-65 pg for hexa-, hepta-, octa- and nona-BDEs, and 105 pg for deca-BDE. Reduction of deca-BDE 209 blank values is of concern to ongoing research. Good accuracy was obtained by application of the whole procedure, representing an efficient, low-cost and fast alternative for routine analyses. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Computing row and column counts for sparse QR and LU factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, John R.; Li, Xiaoye S.; Ng, Esmond G.

    2001-01-01

    We present algorithms to determine the number of nonzeros in each row and column of the factors of a sparse matrix, for both the QR factorization and the LU factorization with partial pivoting. The algorithms use only the nonzero structure of the input matrix, and run in time nearly linear in the number of nonzeros in that matrix. They may be used to set up data structures or schedule parallel operations in advance of the numerical factorization. The row and column counts we compute are upper bounds on the actual counts. If the input matrix is strong Hall and theremore » is no coincidental numerical cancellation, the counts are exact for QR factorization and are the tightest bounds possible for LU factorization. These algorithms are based on our earlier work on computing row and column counts for sparse Cholesky factorization, plus an efficient method to compute the column elimination tree of a sparse matrix without explicitly forming the product of the matrix and its transpose.« less

  4. General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2006-01-01

    We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).

  5. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump.

  6. Organic nitrogen chemistry during low-grade metamorphism

    USGS Publications Warehouse

    Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.

    2008-01-01

    Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ??-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve finished-water samples containing free chlorine, 2004-10

    USGS Publications Warehouse

    Valder, Joshua F.; Delzer, Gregory C.; Bender, David A.; Price, Curtis V.

    2011-01-01

    This report presents finished-water matrix-spike recoveries of 270 anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine. Percent recoveries were calculated using analytical results from a study conducted during 2004-10 for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The study was intended to characterize the effect of quenching on finished-water matrix-spike recoveries and to better understand the potential oxidation and transformation of 270 anthropogenic organic compounds. The anthropogenic organic compounds studied include those on analytical schedules 1433, 2003, 2033, 2060, 2020, and 4024 of the USGS National Water Quality Laboratory. Three types of samples were collected from 34 NAWQA locations across the Nation: (1) quenched finished-water samples (not spiked), (2) quenched finished-water matrix-spike samples, and (3) nonquenched finished-water matrix-spike samples. Percent recoveries of anthropogenic organic compounds in quenched and nonquenched finished-water matrix-spike samples are presented. Comparisons of percent recoveries between quenched and nonquenched spiked samples can be used to show how quenching affects finished-water samples. A maximum of 18 surface-water and 34 groundwater quenched finished-water matrix-spike samples paired with nonquenched finished-water matrix-spike samples were analyzed. Percent recoveries for the study are presented in two ways: (1) finished-water matrix-spike samples supplied by surface-water or groundwater, and (2) by use (or source) group category for surface-water and groundwater supplies. Graphical representations of percent recoveries for the quenched and nonquenched finished-water matrix-spike samples also are presented.

  8. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun

    2012-11-01

    A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure.

    PubMed

    Murillo-Zamora, Sergio; Castro-Gutiérrez, Víctor; Masís-Mora, Mario; Lizano-Fallas, Verónica; Rodríguez-Rodríguez, Carlos E

    2017-11-01

    Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGES

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; ...

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 10 2. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 -5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 -5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 10 2. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 -5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 -5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  12. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae.

    PubMed

    Ishikawa, Masaaki; Ohnishi, Hiroe; Skerleva, Desislava; Sakamoto, Tatsunori; Yamamoto, Norio; Hotta, Akitsu; Ito, Juichi; Nakagawa, Takayuki

    2017-06-01

    The present study examined the efficacy of a neural induction method for human induced pluripotent stem (iPS) cells to eliminate undifferentiated cells and to determine the feasibility of transplanting neurally induced cells into guinea-pig cochleae for replacement of spiral ganglion neurons (SGNs). A stepwise method for differentiation of human iPS cells into neurons was used. First, a neural induction method was established on Matrigel-coated plates; characteristics of cell populations at each differentiation step were assessed. Second, neural stem cells were differentiated into neurons on a three-dimensional (3D) collagen matrix, using the same protocol of culture on Matrigel-coated plates; neuron subtypes in differentiated cells on a 3D collagen matrix were examined. Then, human iPS cell-derived neurons cultured on a 3D collagen matrix were transplanted into intact guinea-pig cochleae, followed by histological analysis. In vitro analyses revealed successful induction of neural stem cells from human iPS cells, with no retention of undifferentiated cells expressing OCT3/4. After the neural differentiation of neural stem cells, approximately 70% of cells expressed a neuronal marker, 90% of which were positive for vesicular glutamate transporter 1 (VGLUT1). The expression pattern of neuron subtypes in differentiated cells on a 3D collagen matrix was identical to that of the differentiated cells on Matrigel-coated plates. In addition, the survival of transplant-derived neurons was achieved when inflammatory responses were appropriately controlled. Our preparation method for human iPS cell-derived neurons efficiently eliminated undifferentiated cells and contributed to the settlement of transplant-derived neurons expressing VGLUT1 in guinea-pig cochleae. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Social accounting matrix and the effects of economic reform on health price index and household expenditures: Evidence from Iran.

    PubMed

    Keshavarz, Khosro; Najafi, Behzad; Andayesh, Yaghob; Rezapour, Aziz; Abolhallaj, Masoud; Sarabi Asiabar, Ali; Hashemi Meshkini, Amir; Sanati, Ehsan; Mirian, Iman; Nikfar, Shekoofeh; Lotfi, Farhad

    2017-01-01

    Background: Socioeconomic indicators are the main factors that affect health outcome. Health price index (HPI) and households living costs (HLC) are affected by economic reform. This study aimed at examining the effect of subsidy targeting plan (STP) on HPI and HLC. Methods: The social accounting matrix was used to study the direct and indirect effects of STP. We chose 11 health related goods and services including insurance, compulsory social security services, hospital services, medical and dental services, other human health services, veterinary services, social services, environmental health services, laundry& cleaning and dyeing services, cosmetic and physical health services, and pharmaceutical products in the social accounting matrix to examine the health price index. Data were analyzed by the I-O&SAM software. Results: Due to the subsidy release on energy, water, and bread prices, we found that (i) health related goods and services groups' price index rose between 33.43% and 77.3%, (ii) the living cost index of urban households increased between 48.75% and 58.21%, and (iii) the living cost index of rural households grew between 53.51% and 68.23%. The results demonstrated that the elimination of subsidy would have negative effects on health subdivision and households' costs such that subsidy elimination increased the health prices index and the household living costs, especially among low-income families. The STP had considerable effects on health subdivision price index. Conclusion: The elimination or reduction of energy carriers and basic commodities subsidies have changed health price and households living cost index. Therefore, the policymakers should consider controlling the price of health sectors, price fluctuations and shocks.

  14. Potential of SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in achieving integrated magneto-optical isolators

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2017-05-01

    We have investigated the potential of the SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in order to overcome the problem of integration of the magneto-optical isolators (MOIs). In this way, we have performed a theoretical study for the case of designing perfect and adjustable MOIs based on magnetophotonic crystals (MPCs) containing SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles as a magnetic medium. Despite the existence the attenuation coefficient for SiO2/ZrO2 matrix at wavelength 1550 nm that leads to a non-perfect transmittance, we could introduce an MPC structure having no reflectance; therefore, an ideal MOI for eliminating unwanted back-reflection could be achieved.

  15. Preparation and characterization of 6-layered functionally graded nickel-alumina (Ni-Al2O3) composites

    NASA Astrophysics Data System (ADS)

    Latiff, M. I. A.; Nuruzzaman, D. M.; Basri, S.; Ismail, N. M.; Jamaludin, S. N. S.; Kamaruzaman, F. F.

    2018-04-01

    The present research study deals with the preparation of 6-layered functionally graded (FG) metal-ceramic composite materials through powder metallurgy technique. Using a cylindrical die-punch set made of steel, the nickel-alumina (Ni-Al2O3) graded composite structure was fabricated. The samples consist of four gradual inter layers of varied nickel composition (80wt.%, 60wt.%, 40wt.%, 20wt.%) sandwiched with pure Ni and Al2O3 powders at the ends (100wt.% and 0wt.% nickel) were fabricated under 30 ton compaction load using a hydraulic press. After that, two-step sintering was carried out at sintering temperature 1200ºC and soaking time 3 hours was maintained in a tube furnace. The properties of the prepared samples were characterized by radial shrinkage, optical microscopy and hardness testing. Results showed that larger shrinkage occurred within the ceramic phase which proves that more porosities were eliminated in the ceramic rich layers. From the microstructural analysis, it was observed that alumina particles are almost uniformly distributed in nickel matrix, so as nickel particles in the ceramic matrix of alumina-dominant layers. From interfacial analyses, it was observed that a smooth transition in microstructure from one layer to the next confirms a good interfacial solid state bonding between metal-ceramic constituents and good compaction process. On the other hand, microhardness test results suggest that there might be increasing percentage of porosities in the graded structure as the ceramic content rises.

  16. Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei

    2017-03-01

    Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H 2 O 2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L -1 for each and a throughput rate of 30 samples h -1 . The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. One-step purification of Enterocytozoon bieneusi spores from human stools by immunoaffinity expanded-bed adsorption.

    PubMed

    Accoceberry, I; Thellier, M; Datry, A; Desportes-Livage, I; Biligui, S; Danis, M; Santarelli, X

    2001-05-01

    An original, reliable, and reproducible method for the purification of Enterocytozoon bieneusi spores from human stools is described. We recently reported the production of a species-specific monoclonal antibody (MAb) 6E52D9 immunoglobulin G2a (IgG2a) raised against the exospore of E. bieneusi spore walls. The MAb was used as a ligand to develop an immunoaffinity matrix. The mouse IgG2a MAb was bound directly to a Streamline rProtein A adsorbent, used for expanded-bed adsorption of immunoglobulins, for optimal spatial orientation of the antibody and maximum binding efficiency of the antigen. The complex was then cross-linked covalently using dimethyl pimelimidate dihydrochloride. After incubation of the immunoaffinity matrix with filtered stool samples containing numerous E. bieneusi spores and before elution with 6 M guanidine HCl, the expansion of the adsorbent bed eliminated all the fecal contaminants. The presence of spores in the elution fractions was determined by an indirect immunofluorescence antibody test (IFAT). E. bieneusi spores were found in the elution fraction in all four experiments and were still highly antigenic as indicated by IFAT. Smears examined by light microscopy contained very clean spores with no fecal debris or background bacterial and fungal contaminants. However, spore recovery rates were relatively low: an average of 10(7) spores were purified per run. This technique for isolating E. bieneusi spores directly from human stool samples with a high degree of purity opens up new approaches for studying this parasite.

  18. Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing.

    PubMed

    Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao

    2017-04-01

    Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.

  19. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  20. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  1. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  2. Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jeon, G. J.

    1983-01-01

    Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.

  3. An Elimination Method of Temperature-Induced Linear Birefringence in a Stray Current Sensor

    PubMed Central

    Xu, Shaoyi; Li, Wei; Xing, Fangfang; Wang, Yuqiao; Wang, Ruilin; Wang, Xianghui

    2017-01-01

    In this work, an elimination method of the temperature-induced linear birefringence (TILB) in a stray current sensor is proposed using the cylindrical spiral fiber (CSF), which produces a large amount of circular birefringence to eliminate the TILB based on geometric rotation effect. First, the differential equations that indicate the polarization evolution of the CSF element are derived, and the output error model is built based on the Jones matrix calculus. Then, an accurate search method is proposed to obtain the key parameters of the CSF, including the length of the cylindrical silica rod and the number of the curve spirals. The optimized results are 302 mm and 11, respectively. Moreover, an effective factor is proposed to analyze the elimination of the TILB, which should be greater than 7.42 to achieve the output error requirement that is not greater than 0.5%. Finally, temperature experiments are conducted to verify the feasibility of the elimination method. The results indicate that the output error caused by the TILB can be controlled less than 0.43% based on this elimination method within the range from −20 °C to 40 °C. PMID:28282953

  4. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  5. Automated MALDI matrix coating system for multiple tissue samples for imaging mass spectrometry.

    PubMed

    Mounfield, William P; Garrett, Timothy J

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  6. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    PubMed

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  7. Interlaboratory Validation of a Stable Isotope Dilution and Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Aflatoxins in Milk, Milk-Based Infant Formula, and Feed.

    PubMed

    Zhang, Kai; Liao, Chia-Ding; Prakash, Shristi; Conway, Michael; Cheng, Hwei-Fang

    2018-05-01

    An interlaboratory study was conducted to evaluate stable isotope dilution and LC tandem MS (MS/MS) for the determination of aflatoxins B1, B2, G1, G2, and M1 (AFB1, AFB2, AFG1, AFG2, and AFM1) in milk, milk-based infant formula (formula), and feed. Samples were first fortified with five 13C uniformly labeled aflatoxins {[13C]-internal standard (IS)} corresponding to the five native aflatoxins, which were subsequently extracted with acetonitrile-water (50 + 50, v/v), followed by centrifugation, filtration, and LC-MS/MS analysis. In addition to certified milk powder and animal feed, the three participating laboratories also analyzed milk, formula, and feed fortified with the five aflatoxins at concentrations ranging from 0.5 to 50 ng/g. The majority of recoveries ranged from 80 to 120%, with RSDs < 20%. Method LOQs were determined by the three laboratories using the three sample matrixes in replicates (n = 8), and the determined LOQs of AFB1, AFB2, AFG1, AFG2, and AFM1 ranged from 0.1 to 0.91, 0.24 to 0.64, 0.28 to 1.52, 0.19 to 3.80, and 0.12 to 0.45 ng/g, respectively. For detected aflatoxins in the certified materials, all measured concentrations were within ±25% of the certified values. Using [13C]-IS eliminated the need for matrix-matched calibration standards for quantitation, simplified sample preparation, and achieved simultaneous identification and quantitation of the aflatoxins in a simple LC-MS/MS procedure.

  8. A solid-phase microextraction GC/MS/MS method for rapid quantitative analysis of food and beverages for the presence of legally restricted biologically active flavorings.

    PubMed

    Bousova, Katerina; Mittendorf, Klaus; Senyuva, Hamide

    2011-01-01

    A method was developed using automated headspace solid-phase microextraction coupled with GC/MS/MS to simultaneously determine the presence of seven biologically active flavoring substances whose levels of use in processed foods is controlled by statutory limits. The method can be applied to identify and quantify the presence of 1,2-benzopyrone (coumarin), beta-asarone, 1-allyl-4-methoxybenzene (estragole), menthofuran, 4-allyl-1 ,2-dimethoxybenzene (methyl eugenol), pulegone, and thujone at levels ranging from 0.5 to 3000 mg/kg. The method has been optimized and validated for three different generic food types categorized on the basis of composition and anticipated use levels of flavorings and food ingredients. The food categories are alcoholic and nonalcoholic beverages; semisolid processed foods (e.g., soups, sauces, confectionary, etc.); and solid foods (muesli, bakery products, etc.). The method is simple, inexpensive, and rapid, and eliminates the use of flammable and toxic solvents. There is no sample preparation, and using MSIMS, unequivocal confirmation of identification is achieved even in highly complex matrixes containing many potential interfering volatiles. The method precision for spiked samples ranged from 2 to 21%, with the greatest variability associated with solid matrixes. The LOD and LOQ values were well below 0.1 and 0.5 mg/kg, respectively, in all cases for individual substances, fulfilling requirements for enforcement purposes. The robustness of the method was demonstrated in a small survey of retail samples of four spirits, five flavored milks, three energy drinks, five liqueurs, five soups, 10 sauces, five herbal teas, and three breakfast cereals.

  9. Forage digestibility: the intersection of cell wall lignification and plant tissue anatomy

    USDA-ARS?s Scientific Manuscript database

    Cellulose and the other polysaccharides present in forage cell walls can be completely degraded by the rumen microflora but only when these polysaccharides have been isolated from the wall and all matrix structures eliminated. Understanding how cell wall component interactions limit microbial degrad...

  10. Characterization of Full Set Material Constants and Their Temperature Dependence for Piezoelectric Materials Using Resonant Ultrasound Spectroscopy

    PubMed Central

    Tang, Liguo; Cao, Wenwu

    2016-01-01

    During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants and  were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS. PMID:27168336

  11. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: influence of matrix porosity, matrix permeability, and fracture coating minerals.

    PubMed

    Reimus, Paul W; Callahan, Timothy J; Ware, S Doug; Haga, Marc J; Counce, Dale A

    2007-08-15

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ((3)HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient (D(m)/D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of (D(m)/D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log(D(m)/D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log(D(m)/D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  12. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    NASA Astrophysics Data System (ADS)

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.

    2007-08-01

    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  13. Method of thermal strain hysteresis reduction in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)

    1987-01-01

    A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.

  14. Block LU factorization

    NASA Technical Reports Server (NTRS)

    Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.

    1992-01-01

    Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.

  15. Low-Cost Chemical-Responsive Adhesive Sensing Chips.

    PubMed

    Tan, Weirui; Zhang, Liyuan; Shen, Wei

    2017-12-06

    Chemical-responsive adhesive sensing chip is a new low-cost analytical platform that uses adhesive tape loaded with indicator reagents to detect or quantify the target analytes by directly sticking the tape to the samples of interest. The chemical-responsive adhesive sensing chips can be used with paper to analyze aqueous samples; they can also be used to detect and quantify solid, particulate, and powder analytes. The colorimetric indicators become immediately visible as the contact between the functionalized adhesives and target samples is made. The chemical-responsive adhesive sensing chip expands the capability of paper-based analytical devices to analyze solid, particulate, or powder materials via one-step operation. It is also a simpler alternative way, to the covalent chemical modification of paper, to eliminate indicator leaching from the dipstick-style paper sensors. Chemical-responsive adhesive chips can display analytical results in the form of colorimetric dot patterns, symbols, and texts, enabling clear understanding of assay results by even nonprofessional users. In this work, we demonstrate the analyses of heavy metal salts in silica powder matrix, heavy metal ions in water, and bovine serum albumin in an aqueous solution. The detection is one-step, specific, sensitive, and easy-to-operate.

  16. Rapid estimation of frequency response functions by close-range photogrammetry

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1985-01-01

    The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.

  17. Material properties of biofilms – key methods for understanding permeability and mechanics

    PubMed Central

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  18. Material properties of biofilms—a review of methods for understanding permeability and mechanics

    NASA Astrophysics Data System (ADS)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-02-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

  19. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  20. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H. Lee; Ganti, Anand; Resnick, David R

    2013-10-22

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  1. Design, decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-06-17

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  2. Decoding and optimized implementation of SECDED codes over GF(q)

    DOEpatents

    Ward, H Lee; Ganti, Anand; Resnick, David R

    2014-11-18

    A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.

  3. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer.

    PubMed

    Vu, Binh Thanh; Shahin, Sophia Allaf; Croissant, Jonas; Fatieiev, Yevhen; Matsumoto, Kotaro; Le-Hoang Doan, Tan; Yik, Tammy; Simargi, Shirleen; Conteras, Altagracia; Ratliff, Laura; Jimenez, Chiara Mauriello; Raehm, Laurence; Khashab, Niveen; Durand, Jean-Olivier; Glackin, Carlotta; Tamanoi, Fuyuhiko

    2018-06-04

    New therapy development is critically needed for ovarian cancer. We used the chicken egg CAM assay to evaluate efficacy of anticancer drug delivery using recently developed biodegradable PMO (periodic mesoporous organosilica) nanoparticles. Human ovarian cancer cells were transplanted onto the CAM membrane of fertilized eggs, resulting in rapid tumor formation. The tumor closely resembles cancer patient tumor and contains extracellular matrix as well as stromal cells and extensive vasculature. PMO nanoparticles loaded with doxorubicin were injected intravenously into the chicken egg resulting in elimination of the tumor. No significant damage to various organs in the chicken embryo occurred. In contrast, injection of free doxorubicin caused widespread organ damage, even when less amount was administered. The lack of toxic effect of nanoparticle loaded doxorubicin was associated with specific delivery of doxorubicin to the tumor. Furthermore, we observed excellent tumor accumulation of the nanoparticles. Lastly, a tumor could be established in the egg using tumor samples from ovarian cancer patients and that our nanoparticles were effective in eliminating the tumor. These results point to the remarkable efficacy of our nanoparticle based drug delivery system and suggests the value of the chicken egg tumor model for testing novel therapies for ovarian cancer.

  4. Effect of Reheating Temperature and Cooling Treatment on the Microstructure, Texture, and Impact Transition Behavior of Heat-Treated Naval Grade HSLA Steel

    NASA Astrophysics Data System (ADS)

    Sk, Md. Basiruddin; Ghosh, A.; Rarhi, N.; Balamuralikrishnan, R.; Chakrabarti, D.

    2017-07-01

    In order to achieve the desired mechanical properties [YS > 390 MPa, total elongation >16 pct and Charpy impact toughness of 78 J at 213 K (-60 °C)] for naval application, samples from a low-carbon microalloyed steel have been subjected to different austenitization (1223 K to 1523 K) (950 °C to 1250 °C) and cooling treatments (furnace, air, or water cooling). The as-rolled steel and the sample air cooled from 1223 K (950 °C) could only achieve the required tensile properties, while the sample furnace cooled from 1223 K (950 °C) showed the best Charpy impact properties. Water quenching from 1223 K (950 °C) certainly contributed to the strength but affected the impact toughness. Overall, predominantly ferrite matrix with fine effective grain size and intense gamma-fiber texture was found to be beneficial for impact toughness as well as impact transition behavior. Small size and fraction of precipitates (like TiN, Nb, and V carbonitrides) eliminated the possibility of particle-controlled crack propagation and grain size-controlled crack propagation led to cleavage fracture. A simplified analytical approach has been used to explain the difference in impact transition behavior of the investigated samples.

  5. DISSOLVED ORGANIC FLUOROPHORES IN SOUTHEASTERN US COASTAL WATERS: CORRECTION METHOD FOR ELIMINATING RAYLEIGH AND RAMAN SCATTERING PEAKS IN EXCITATION-EMISSION MATRICES

    EPA Science Inventory

    Fluorescence-based observations provide useful, sensitive information concerning the nature and distribution of colored dissolved organic matter (CDOM) in coastal and freshwater environments. The excitation-emission matrix (EEM) technique has become widely used for evaluating sou...

  6. Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z

    ERIC Educational Resources Information Center

    Beaver, Scott

    2015-01-01

    For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.

  7. Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix.

    PubMed

    Yoon, Donhee; Lee, Dongkun; Lee, Jong-Hyeon; Cha, Sangwon; Oh, Han Bin

    2015-01-30

    Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Biological monitoring of Persistent Organic Pollutants in human milk in Israel.

    PubMed

    Wasser, Janice; Berman, Tamar; Lerner-Geva, Liat; Grotto, Itamar; Rubin, Lisa

    2015-10-01

    The Stockholm Convention on Persistent Organic Pollutants (POPs) aims to eliminate or restrict the production and use of POPs around the globe. The Ministry of Health, collaborating with the Ministry of Environmental Protection, measured the exposure of the population to POPs as part of the WHO-coordinated exposure study. Human milk, with a relatively high fat content is a preferred matrix for the monitoring of exposure. Donors of breast milk were recruited from three hospitals after signing informed consent forms. Breast milk was collected from 52 primipara women, aged 23-35, living in Israel for the last 10 years who gave birth to singleton full term healthy infants. Samples, collected at 3-17 weeks postpartum, were stored at -20 °C until sent to the WHO Reference Laboratory, State Laboratory for Chemical and Veterinary Analysis of Food (CVUA), in Frieburg, Germany for a single pooled analysis. Mothers were provided with the pooled analysis results. Out of over 50 Persistent Organic Pollutants listed in the analysis, 16, including aldrin, endrin, parlar and mirex were not found at detectable levels in the Israeli pooled sample. For the indicator compounds found at detectable levels, most were lower than those reported in European countries. Since 1982, levels of POPs contamination as measured in breast milk have declined significantly. This is likely due to restrictions on agricultural, industrial, and other uses of many POPs in Israel. Ongoing biomonitoring in Israel and inter-ministerial collaboration supports the elimination of POPs in the environment and human milk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    PubMed Central

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to evaluate the quality and performance on different matrixes and extraction techniques. The effect of PCR efficiency on the resulting GMO content is demonstrated. Conclusion The crucial influence of extraction technique and sample matrix properties on the results of GMO quantification is demonstrated. Appropriate extraction techniques for each matrix need to be determined to achieve accurate DNA quantification. Nevertheless, as it is shown that in the area of food and feed testing matrix with certain specificities is impossible to define strict quality controls need to be introduced to monitor PCR. The results of our study are also applicable to other fields of quantitative testing by real-time PCR. PMID:16907967

  10. Compressed sensing of hyperspectral images based on scrambled block Hadamard ensemble

    NASA Astrophysics Data System (ADS)

    Wang, Li; Feng, Yan

    2016-11-01

    A fast measurement matrix based on scrambled block Hadamard ensemble for compressed sensing (CS) of hyperspectral images (HSI) is investigated. The proposed measurement matrix offers several attractive features. First, the proposed measurement matrix possesses Gaussian behavior, which illustrates that the matrix is universal and requires a near-optimal number of samples for exact reconstruction. In addition, it could be easily implemented in the optical domain due to its integer-valued elements. More importantly, the measurement matrix only needs small memory for storage in the sampling process. Experimental results on HSIs reveal that the reconstruction performance of the proposed measurement matrix is comparable or better than Gaussian matrix and Bernoulli matrix using different reconstruction algorithms while consuming less computational time. The proposed matrix could be used in CS of HSI, which would save the storage memory on board, improve the sampling efficiency, and ameliorate the reconstruction quality.

  11. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters.

    PubMed

    McClure, Evelyn L; Wong, Charles S

    2007-10-26

    In this work, we optimize a solid phase microextraction (SPME) method for the simultaneous collection of antibiotics (sulfonamides, macrolides, and trimethoprim) present in wastewaters. The performance of the SPME method is compared to a solid phase extraction (SPE) method. Analytes in both cases were quantified by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) with electrospray ionization. The advantages offered by SPME in this application are: decreased sample volume requirements, ease of sample processing and extraction, decreased cost, and most importantly, elimination of electrospray matrix effects. Despite having higher limits of quantification (16-1380 ng/L in influent and 35-260 ng/L in effluent), nearly all of the compounds found to be present in Edmonton Gold Bar wastewater by SPE were measurable by SPME (i.e., sulfamethoxazole, trimethoprim, erythromycin, and clarithromycin), with values similar to those obtained using the former method. Limits of quantification for the SPE method for the measured compounds were 4.7-15 ng/L and 0.86-6.1 ng/L for influent and effluent, respectively.

  12. Analysis of barium and strontium in sediments by dc plasma emission spectrometry

    USGS Publications Warehouse

    Bowker, P.C.; Manheim, F. T.

    1982-01-01

    The dc plasma are is suited to analysis of barium and strontium in a wide range of sedimentary rock matrices, from sands, shales, and carbonates, to ferromanganese nodules. Samples containing 10 ppm to more than 3000 ppm barium and strontium were studied. Both alkali (3500 ppm lithium borate, from a preliminary fusion) and lanthanum salts (1%) in the final solution are needed to achieve freedom from systematic effects due to extreme variation in matrix. In the absence of La, neither Li, Na, K, nor Cs totally eliminated effects of Al and other constituents on emission. Silica addition to the fusion helps achieve proper flux viscosity to aid removal of fused beads from graphite crucibles. The effect of refractory-substance formers such as aluminum with calcium can be reduced or removed by selection of a portion of the are for emission measurement. However, it was decided not to pursue this approach because of loss in analytical sensitivity and need for greater precision in optical adjustment. Analysis of standard rock samples showed generally satisfactory agreement with precision methods of analysis, and some new standard rock data are reported.

  13. An Efficient Multicore Implementation of a Novel HSS-Structured Multifrontal Solver Using Randomized Sampling

    DOE PAGES

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...

    2016-10-27

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  14. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction.

    PubMed

    Niu, Yiming; Wang, Jiayi; Zhang, Chi; Chen, Yiqiang

    2017-04-15

    The objective of this study was to develop a micro-plate based colorimetric assay for rapid and high-throughput detection of copper in animal feed. Copper ion in animal feed was extracted by trichloroacetic acid solution and reduced to cuprous ion by hydroxylamine. The cuprous ion can chelate with 2,2'-bicinchoninic acid to form a Cu-BCA complex which was detected with high sensitivity by micro-plate reader at 354nm. The whole assay procedure can be completed within 20min. To eliminate matrix interference, a statistical partitioning correction approach was proposed, which makes the detection of copper in complex samples possible. The limit of detection was 0.035μg/mL and the detection range was 0.1-10μg/mL of copper in buffer solution. Actual sample analysis indicated that this colorimetric assay produced results consistent with atomic absorption spectrometry analysis. These results demonstrated that the developed assay can be used for rapid determination of copper in animal feed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of Polyimide Matrix Resins and Prepregs

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  16. Direct determination of uranium in seawater by laser fluorimetry.

    PubMed

    Kumar, Sanjukta A; Shenoy, Niyoti S; Pandey, Shailaja; Sounderajan, Suvarna; Venkateswaran, G

    2008-10-19

    A method for estimation of uranium in seawater by using steady state laser flourimetry is described. Uranium present in seawater, in concentration of approximately 3 ng ml(-1) was estimated without prior separation of matrix. Quenching effect of major ions (Cl(-), Na(+), SO(4)(-), Mg(+), Ca(+), K(+), HCO(3)(-), Br(-)) present in seawater on fluorescence intensity of uranium was studied. The concentration of phosphoric acid required for maximum enhancement of fluorescence intensity was optimized and was found to be 5%. Similarly the volume of concentrated nitric acid required to eliminate the quenching effect of chloride and bromide completely from 5 ml of seawater were optimized and was found to be 3 ml. A simple equation was derived using steady state fluorescence correction method and was used for calculation of uranium concentration in seawater samples. The method has a precesion of 1% (1s, n=3). The values obtained from laser fluorimetry were validated by analyzing the same samples by linear sweep adsorptive stripping voltametry (LSASV) of the uranium-chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) complex. Both the values are well in agreement.

  17. Understanding radio polarimetry. V. Making matrix self-calibration work: processing of a simulated observation

    NASA Astrophysics Data System (ADS)

    Hamaker, J. P.

    2006-09-01

    Context: .This is Paper V in a series on polarimetric aperture synthesis based on the algebra of 2×2 matrices. Aims: .It validates the matrix self-calibration theory of the preceding Paper IV and outlines the algorithmic methods that had to be developed for its application. Methods: .New avenues of polarimetric self-calibration opened up in Paper IV are explored by processing a simulated observation. To focus on the polarimetric issues, it is set up so as to sidestep some of the common complications of aperture synthesis, yet properly represent physical conditions. In addition to a representative collection of observing errors, the simulated instrument includes strongly varying Faraday rotation and antennas with unequal feeds. The selfcal procedure is described in detail, including aspects in which it differs from the scalar case, and its effects are demonstrated with a number of intermediate image results. Results: .The simulation's outcome is in full agreement with the theory. The nonlinear matrix equations for instrumental parameters are readily solved by iteration; a convergence problem is easily remedied with a new ancillary algorithm. Instrumental effects are cleanly separated from source properties without reference to changes in parallactic rotation during the observation. Polarimetric images of high purity and dynamic range result. As theory predicts, polarimetric errors that are common to all sources inevitably remain; prior knowledge of the statistics of linear and circular polarization in a typical observed field can be applied to eliminate most of them. Conclusions: .The paper conclusively demonstrates that matrix selfcal per se is a viable method that may foster substantial advancement in the art of radio polarimetry. For its application in real observations, a number of issues must be resolved that matrix selfcal has in common with its scalar sibling, such as the treatment of extended sources and the familiar sampling and aliasing problems. The close analogy between scalar interferometry and its matrix-based generalisation suggests that one may apply well-developed methods of scalar interferometry. Marrying these methods to those of this paper will require a significant investment in new software. Two such developments are known to be foreseen or underway.

  18. Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer

    DOEpatents

    Chastgner, P.

    1991-05-08

    This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

  19. Laboratory evaluation of anti-biofilm agents for use in dental unit waterlines.

    PubMed

    Meiller, T F; Kelley, J I; Baqui, A A; DePaola, L G

    2001-01-01

    Dental unit waterline biofilm has been recognized as a potential point of contamination and a risk to patients with any level of immunocompromise. Biofilm in dental unit waterlines, once established, has proven formidable to efforts in disinfection/disruption. This project compared standardized evaluation techniques by assessing the efficacy of a variety of agents that have been reported or suggested as useful in surface disinfection and/or antiseptic protocols. The zones of inhibition, minimum inhibitory/bactericidal concentrations and use-dilution with stainless steel carrier replicates tests assessed the disinfection of planktonic organisms using standardized microbial testing procedures. The disruption and/or disinfection of planktonic and biofilm organisms within naturally occurring dental unit waterlines were evaluated by culture and scanning electron microscopy. The six commercially available antimicrobial agents used to assess the techniques were bleach (sodium hypochlorite), Cavicide, glutaraldehyde, Listerine Antiseptic, Peridex and Sterilex Ultra. Comparisons between the results for each technique evaluated were determined for each product. All six agents demonstrated antimicrobial efficacy at the working concentrations designated by the manufacturers. Biofilm matrix elimination evaluated by scanning electron microscopy found virtually 0% elimination by glutaraldehyde to an estimated 90% elimination by Sterilex Ultra and bleach after one treatment. Treatment with Cavicide, Listerine Antiseptic and Peridex resulted in negligible elimination of the biofilm matrix. For comparability, the use of standardized testing techniques to evaluate a disinfection agent's efficacy against dental unit waterline contamination is essential. This project demonstrates a model system for evaluating disinfection agents potentially useful in the management of dental unit waterline biofilm, and should assist in educating the dental clinician in the appraisal of existing and future product claims.

  20. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint technique. Various numerical results up to 1025 parameters are presented to demonstrate the ability of the RMHMC method in exploring the geometric structure of the problem to propose (almost) uncorrelated/independent samples that are far away from each other, and yet the acceptance rate is almost unity. The results also suggest that for the PDE models considered the proposed fixed metric RMHMC can attain almost as high a quality performance as the original RMHMC, i.e. generating (almost) uncorrelated/independent samples, while being two orders of magnitude less computationally expensive.

  1. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)

  2. MoSi2-Base Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2003-01-01

    Addition of 30 to 50 vol% of Si3N4 particulate to MoSi2 eliminated its low temperature catastrophic failure, improved room temperature fracture toughness and the creep resistance. The hybrid composite SCS-6/MoSi2-Si3N4 did not show any matrix cracking and exhibited excellent mechanical and environmental properties. Hi-Nicalon continuous fiber reinforced MoSi2-Si3N4 also showed good strength and toughness. A new MoSi2-base composite containing in-situ whisker-type (Beta)Si3N4 grains in a MoSi2 matrix is also described.

  3. On the use and computation of the Jordan canonical form in system theory

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Jordan, D.

    1974-01-01

    This paper investigates various aspects of the application of the Jordan canonical form of a matrix in system theory and develops a computational approach to determining the Jordan form for a given matrix. Applications include pole placement, controllability and observability studies, serving as an intermediate step in yielding other canonical forms, and theorem proving. The computational method developed in this paper is both simple and efficient. The method is based on the definition of a generalized eigenvector and a natural extension of Gauss elimination techniques. Examples are included for demonstration purposes.

  4. A diagonal implicit scheme for computing flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Imlay, Scott

    1990-01-01

    A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.

  5. The current matrix elements from HAL QCD method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  6. [Amanitine determination as an example of peptide analysis in the biological samples with HPLC-MS technique].

    PubMed

    Janus, Tomasz; Jasionowicz, Ewa; Potocka-Banaś, Barbara; Borowiak, Krzysztof

    Routine toxicological analysis is mostly focused on the identification of non-organic and organic, chemically different compounds, but generally with low mass, usually not greater than 500–600 Da. Peptide compounds with atomic mass higher than 900 Da are a specific analytical group. Several dozen of them are highly-toxic substances well known in toxicological practice, for example mushroom toxin and animal venoms. In the paper the authors present an example of alpha-amanitin to explain the analytical problems and different original solutions in identifying peptides in urine samples with the use of the universal LC MS/MS procedure. The analyzed material was urine samples collected from patients with potential mushroom intoxication, routinely diagnosed for amanitin determination. Ultra filtration with centrifuge filter tubes (limited mass cutoff 3 kDa) was used. Filtrate fluid was directly injected on the chromatographic column and analyzed with a mass detector (MS/MS). The separation of peptides as organic, amphoteric compounds from biological material with the use of the SPE technique is well known but requires dedicated, specific columns. The presented paper proved that with the fast and simple ultra filtration technique amanitin can be effectively isolated from urine, and the procedure offers satisfactory sensitivity of detection and eliminates the influence of the biological matrix on analytical results. Another problem which had to be solved was the non-characteristic fragmentation of peptides in the MS/MS procedure providing non-selective chromatograms. It is possible to use higher collision energies in the analytical procedure, which results in more characteristic mass spectres, although it offers lower sensitivity. The ultra filtration technique as a procedure of sample preparation is effective for the isolation of amanitin from the biological matrix. The monitoring of selected mass corresponding to transition with the loss of water molecule offers satisfactory sensitivity of determination.

  7. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads.

    PubMed

    Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei

    2016-12-02

    A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10-100 CFU mL -1 with a detection limit of 10 CFU mL -1 , and a good specificity for the detection of Vibrio alginolyticus . This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures.

  8. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  9. Discrete-Time Zhang Neural Network for Online Time-Varying Nonlinear Optimization With Application to Manipulator Motion Generation.

    PubMed

    Jin, Long; Zhang, Yunong

    2015-07-01

    In this brief, a discrete-time Zhang neural network (DTZNN) model is first proposed, developed, and investigated for online time-varying nonlinear optimization (OTVNO). Then, Newton iteration is shown to be derived from the proposed DTZNN model. In addition, to eliminate the explicit matrix-inversion operation, the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is introduced, which can effectively approximate the inverse of Hessian matrix. A DTZNN-BFGS model is thus proposed and investigated for OTVNO, which is the combination of the DTZNN model and the quasi-Newton BFGS method. In addition, theoretical analyses show that, with step-size h=1 and/or with zero initial error, the maximal residual error of the DTZNN model has an O(τ(2)) pattern, whereas the maximal residual error of the Newton iteration has an O(τ) pattern, with τ denoting the sampling gap. Besides, when h ≠ 1 and h ∈ (0,2) , the maximal steady-state residual error of the DTZNN model has an O(τ(2)) pattern. Finally, an illustrative numerical experiment and an application example to manipulator motion generation are provided and analyzed to substantiate the efficacy of the proposed DTZNN and DTZNN-BFGS models for OTVNO.

  10. The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data

    PubMed Central

    Kalinowski, Jarosław A.; Makal, Anna; Coppens, Philip

    2011-01-01

    A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. PMID:22199400

  11. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0.1 mg/L. The method showed a linearity coefficient of 0.98 and relative standard deviations of 10%, using small water sample volumes between 0.3 and 0.6 L. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Strong, Tough, and Pest Resistant MoSi2-Base Hybrid Composite for Structural Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Nathal, M. V.

    1997-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  13. MoSi2-Base Hybrid Composites from Aeroengine Applications

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2000-01-01

    Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved low temperature accelerated oxidation resistance by forming a Si2ON2 protective scale and thereby eliminated catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness, and significantly lowered the CTE of the MoSi2 which eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited this excellent strength and toughness improvement up to 1673 K. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites due to improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. These hybrid composites remain competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  14. A novel baseline-correction method for standard addition based derivative spectra and its application to quantitative analysis of benzo(a)pyrene in vegetable oil samples.

    PubMed

    Li, Na; Li, Xiu-Ying; Zou, Zhe-Xiang; Lin, Li-Rong; Li, Yao-Qun

    2011-07-07

    In the present work, a baseline-correction method based on peak-to-derivative baseline measurement was proposed for the elimination of complex matrix interference that was mainly caused by unknown components and/or background in the analysis of derivative spectra. This novel method was applicable particularly when the matrix interfering components showed a broad spectral band, which was common in practical analysis. The derivative baseline was established by connecting two crossing points of the spectral curves obtained with a standard addition method (SAM). The applicability and reliability of the proposed method was demonstrated through both theoretical simulation and practical application. Firstly, Gaussian bands were used to simulate 'interfering' and 'analyte' bands to investigate the effect of different parameters of interfering band on the derivative baseline. This simulation analysis verified that the accuracy of the proposed method was remarkably better than other conventional methods such as peak-to-zero, tangent, and peak-to-peak measurements. Then the above proposed baseline-correction method was applied to the determination of benzo(a)pyrene (BaP) in vegetable oil samples by second-derivative synchronous fluorescence spectroscopy. The satisfactory results were obtained by using this new method to analyze a certified reference material (coconut oil, BCR(®)-458) with a relative error of -3.2% from the certified BaP concentration. Potentially, the proposed method can be applied to various types of derivative spectra in different fields such as UV-visible absorption spectroscopy, fluorescence spectroscopy and infrared spectroscopy.

  15. Selective Extraction and Purification of Azaspiracids from Blue Mussels ( Mytilus edulis) Using Boric Acid Gel.

    PubMed

    Miles, Christopher O; Kilcoyne, Jane; McCarron, Pearse; Giddings, Sabrina D; Waaler, Thor; Rundberget, Thomas; Samdal, Ingunn A; Løvberg, Kjersti E

    2018-03-21

    Azaspiracids belong to a family of more than 50 polyether toxins originating from marine dinoflagellates such as Azadinium spinosum. All of the azaspiracids reported thus far contain a 21,22-dihydroxy group. Boric acid gel can bind selectively to compounds containing vic-diols or α-hydroxycarboxylic acids via formation of reversible boronate complexes. Here we report use of the gel to selectively capture and release azaspiracids from extracts of blue mussels. Analysis of the extracts and fractions by liquid chromatography-tandem mass spectrometry (LC-MS) showed that this procedure resulted in an excellent cleanup of the azaspiracids in the extract. Analysis by enzyme-linked immunoasorbent assay (ELISA) and LC-MS indicated that most azaspiracid analogues were recovered in good yield by this procedure. The capacity of boric acid gel for azaspiracids was at least 50 μg/g, making this procedure suitable for use in the early stages of preparative purification of azaspiracids. In addition to its potential for concentration of dilute samples, the extensive cleanup provided by boric acid gel fractionation of azaspiracids in mussel samples almost eliminated matrix effects during subsequent LC-MS and could be expected to reduce matrix effects during ELISA analysis. The method may therefore prove useful for quantitative analysis of azaspiracids as part of monitoring programs. Although LC-MS data showed that okadaic acid analogues also bound to the gel, this was much less efficient than for azaspiracids under the conditions used. The boric acid gel methodology is potentially applicable to other important groups of natural toxins containing diols including ciguatoxins, palytoxins, pectenotoxins, tetrodotoxin, trichothecenes, and toxin glycosides.

  16. One-Step Purification of Enterocytozoon bieneusi Spores from Human Stools by Immunoaffinity Expanded-Bed Adsorption

    PubMed Central

    Accoceberry, Isabelle; Thellier, Marc; Datry, Annick; Desportes-Livage, Isabelle; Biligui, Sylvestre; Danis, Martin; Santarelli, Xavier

    2001-01-01

    An original, reliable, and reproducible method for the purification of Enterocytozoon bieneusi spores from human stools is described. We recently reported the production of a species-specific monoclonal antibody (MAb) 6E52D9 immunoglobulin G2a (IgG2a) raised against the exospore of E. bieneusi spore walls. The MAb was used as a ligand to develop an immunoaffinity matrix. The mouse IgG2a MAb was bound directly to a Streamline rProtein A adsorbent, used for expanded-bed adsorption of immunoglobulins, for optimal spatial orientation of the antibody and maximum binding efficiency of the antigen. The complex was then cross-linked covalently using dimethyl pimelimidate dihydrochloride. After incubation of the immunoaffinity matrix with filtered stool samples containing numerous E. bieneusi spores and before elution with 6 M guanidine HCl, the expansion of the adsorbent bed eliminated all the fecal contaminants. The presence of spores in the elution fractions was determined by an indirect immunofluorescence antibody test (IFAT). E. bieneusi spores were found in the elution fraction in all four experiments and were still highly antigenic as indicated by IFAT. Smears examined by light microscopy contained very clean spores with no fecal debris or background bacterial and fungal contaminants. However, spore recovery rates were relatively low: an average of 107 spores were purified per run. This technique for isolating E. bieneusi spores directly from human stool samples with a high degree of purity opens up new approaches for studying this parasite. PMID:11326019

  17. A symmetrical subtraction combined with interpolated values for eliminating scattering from fluorescence EEM data

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Liu, Xiaofei; Wang, Yutian

    2016-08-01

    Parallel factor analysis is a widely used method to extract qualitative and quantitative information of the analyte of interest from fluorescence emission-excitation matrix containing unknown components. Big amplitude of scattering will influence the results of parallel factor analysis. Many methods of eliminating scattering have been proposed. Each of these methods has its advantages and disadvantages. The combination of symmetrical subtraction and interpolated values has been discussed. The combination refers to both the combination of results and the combination of methods. Nine methods were used for comparison. The results show the combination of results can make a better concentration prediction for all the components.

  18. Improving the analyte ion signal in matrix-assisted laser desorption/ionization imaging mass spectrometry via electrospray deposition by enhancing incorporation of the analyte in the matrix.

    PubMed

    Malys, Brian J; Owens, Kevin G

    2017-05-15

    Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  20. Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry.

    PubMed

    Baluya, Dodge L; Garrett, Timothy J; Yost, Richard A

    2007-09-01

    Careful matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is critical for producing reproducible analyte ion signals. Traditional methods for matrix deposition are often considered an art rather than a science, with significant sample-to-sample variability. Here we report an automated method for matrix deposition, employing a desktop inkjet printer (<$200) with 5760 x 1440 dpi resolution and a six-channel piezoelectric head that delivers 3 pL/drop. The inkjet printer tray, designed to hold CDs and DVDs, was modified to hold microscope slides. Empty ink cartridges were filled with MALDI matrix solutions, including DHB in methanol/water (70:30) at concentrations up to 40 mg/mL. Various samples (including rat brain tissue sections and standards of small drug molecules) were prepared using three deposition methods (electrospray, airbrush, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed that matrix crystals were formed evenly across the sample. There was minimal background signal after storing the matrix in the cartridges over a 6-month period. Overall, the mass spectral images gathered from inkjet-printed tissue specimens were of better quality and more reproducible than from specimens prepared by the electrospray and airbrush methods.

  1. Fabrication of metal matrix composites by powder metallurgy: A review

    NASA Astrophysics Data System (ADS)

    Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.

    2018-04-01

    Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.

  2. Determination of flumazenil in serum by liquid chromatography-mass spectrometry: Application to kinetics study in acute diazepam overdose.

    PubMed

    Djordjević, Snezana; Jović-Stosić, Jasmina; Kilibarda, Vesna; Segrt, Zoran; Perković-Vukcević, Natasa

    2016-02-01

    Flumazenil is benzodiazepine receptor antagonist. It has been studied for a various indications, including reversal of sedation after surgery or diagnostic procedures, awakening of comatose patients in benzodiazepine overdose, or for symptomatic treatment of hepatic encephalopathy. Some drugs, like theophylline, may prolong its elimination half-life. Considering the long half-life of diazepam and its metabolites, concomitant use of theophylline may reduce the need for repeated dosing of flumazenil in patients with acute diazepam poisoning. The aim of this study was to introduce a reliable and accurate method for determining the concentration of flumazenil after therapeutic application in patients with acute poisoning, and using that method to assess whether the kinetics of flumazenil change in the presence of aminophylline (combination of theophylline and ethylenediamine in a 2:1 ratio) applied as concomitant therapy. Blood samples from patients with acute diazepam poisoning that received flumazenil at the dose of 0.5 mg, or the same dose with 3 mg/kg of body weight of aminophylline, were collected 1, 3, 10, 30, 60, 120 and 240 min after its intravenous administration. Samples were prepared by solid-phase extraction on Oasis HLB cartridges with ethylacetate as extracting agens. Flumazenil was determined by liquid chromatography with mass spectrometry (LC-MS) in single ionmonitoring mode at m/z 304. Separation of flumazenil from matrix compound was performed on Lichrospher RP-8 column usingthe mixture of acidic acetonitrile and 20 mM of ammonium acetatein water (55 : 45) as a mobile phase. The applied analitycal method showed excellent recovery (94.65%). The obtained extracts were much cleaner than the extracts obtained by the sameextractant in the process of liquid-liquid extraction. The limit ofdetection of the LC-MS method described in this paper was 0.5 ng/mL and the limit of quantitation was 1 ng/mL. In the patientstreated with both flumazenil and aminophylline, the eliminationconstant for flumazenil was significantly lower and the elimination half-life was longer (p < 0.05) in comparison with the same parameters in.the patients who received flumazenil alone. The applied LC-MS method for the determination of flumazenil in serum samples of patients with acute diazepam poisoning is rapid, sensitive, precise and specific. Concomitant use with theophylline significantly prolonged elimination of flumazenil during the treatment of acute poisonings with diazepam.

  3. Improvements and application of a modified gas chromatography atomic fluorescence spectroscopy method for routine determination of methylmercury in biota samples.

    PubMed

    Gorecki, Jerzy; Díez, Sergi; Macherzynski, Mariusz; Kalisinska, Elżbieta; Golas, Janusz

    2013-10-15

    Improvements to the application of a combined solid-phase microextraction followed by gas chromatography coupled to pyrolysis and atomic fluorescence spectrometry method (SPME-GC-AFS) for methylmercury (MeHg) determination in biota samples are presented. Our new method includes improvements in the methodology of determination and the quantification technique. A shaker instead of a stirrer was used, in order to reduce the possibility of sample contamination and to simplify cleaning procedures. Then, optimal rotation frequency and shaking time were settled at 800 rpm and 10 min, respectively. Moreover, the GC-AFS system was equipped with a valve and an argon heater to eliminate the effect of the decrease in analytical signal caused by the moisture released from SPME fiber. For its determination, MeHg was first extracted from biota samples with a 25% KOH solution (3h) and then it was quantified by two methods, a conventional double standard addition method (AC) and a modified matrix-matched calibration (MQ) which is two times faster than the AC method. Both procedures were successfully tested with certified reference materials, and applied for the first time to the determination of MeHg in muscle samples of goosander (Mergus merganser) and liver samples of white-tailed eagle (Haliaeetus albicilla) with values ranging from 1.19 to 3.84 mg/kg dry weight (dw), and from 0.69 to 6.23 mg kg(-1) dw, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep

    2011-05-01

    This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.

  5. Design and experimental verification for optical module of optical vector-matrix multiplier.

    PubMed

    Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin

    2013-06-20

    Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.

  6. Influence of engineered interfaces on residual stresses and mechanical response in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Wilt, Thomas E.

    1992-01-01

    Because of the inherent coefficient of thermal expansion (CTE) mismatch between fiber and matrix within metal and intermetallic matrix composite systems, high residual stresses can develop under various thermal loading conditions. These conditions include cooling from processing temperature to room temperature as well as subsequent thermal cycling. As a result of these stresses, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber matrix interface region. A number of potential solutions for reducing this thermally induced residual stress field have been proposed recently. Examples of some potential solutions are high CTE fibers, fiber preheating, thermal anneal treatments, and an engineered interface. Here the focus is on designing an interface (by using a compensating/compliant layer concept) to reduce or eliminate the thermal residual stress field and, therefore, the initiation and propagation of cracks developed during thermal loading. Furthermore, the impact of the engineered interface on the composite's mechanical response when subjected to isothermal mechanical load histories is examined.

  7. An analysis of rotor blade twist variables associated with different Euler sequences and pretwist treatments

    NASA Technical Reports Server (NTRS)

    Alkire, K.

    1984-01-01

    A nonlinear analysis which is necessary to adequately model elastic helicopter rotor blades experiencing moderately large deformations was examined. The analysis must be based on an appropriate description of the blade's deformation geometry including elastic bending and twist. Built-in pretwist angles complicate the deformation process ant its definition. Relationships between the twist variables associated with different rotation sequences and corresponding forms of the transformation matrix are lasted. Relationships between the twist variables associated with first, the pretwist combined with the deformation twist are included. Many of the corresponding forms of the transformation matrix for the two cases are listed. It is shown that twist variables connected with the combined twist treatment are related to those where the pretwist is applied initially. A method to determine the relationships and some results are outlined. A procedure to evaluate the transformation matrix that eliminates the Eulerlike sequence altogether is demonstrated. The resulting form of the transformation matrix is unaffected by rotation sequence or pretwist treatment.

  8. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.

    PubMed

    Han, Fang; Liu, Han

    2017-02-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.

  9. Matrix-Assisted Plasma Atomization Emission Spectrometry for Surface Sampling Elemental Analysis

    PubMed Central

    Yuan, Xin; Zhan, Xuefang; Li, Xuemei; Zhao, Zhongjun; Duan, Yixiang

    2016-01-01

    An innovative technology has been developed involving a simple and sensitive optical spectrometric method termed matrix-assisted plasma atomization emission spectrometry (MAPAES) for surface sampling elemental analysis using a piece of filter paper (FP) for sample introduction. MAPAES was carried out by direct interaction of the plasma tail plume with the matrix surface. The FP absorbs energy from the plasma source and releases combustion heating to the analytes originally present on its surface, thus to promote the atomization and excitation process. The matrix-assisted plasma atomization excitation phenomenon was observed for multiple elements. The FP matrix served as the partial energy producer and also the sample substrate to adsorb sample solution. Qualitative and quantitative determinations of metal ions were achieved by atomic emission measurements for elements Ba, Cu, Eu, In, Mn, Ni, Rh and Y. The detection limits were down to pg level with linear correlation coefficients better than 0.99. The proposed MAPAES provides a new way for atomic spectrometry which offers advantages of fast analysis speed, little sample consumption, less sample pretreatment, small size, and cost-effective. PMID:26762972

  10. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    PubMed

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modifying Matrix Materials to Increase Wetting and Adhesion

    NASA Technical Reports Server (NTRS)

    Zhong, Katie

    2011-01-01

    In an alternative approach to increasing the degrees of wetting and adhesion between the fiber and matrix components of organic-fiber/polymer matrix composite materials, the matrix resins are modified. Heretofore, it has been common practice to modify the fibers rather than the matrices: The fibers are modified by chemical and/or physical surface treatments prior to combining the fibers with matrix resins - an approach that entails considerable expense and usually results in degradation (typically, weakening) of fibers. The alternative approach of modifying the matrix resins does not entail degradation of fibers, and affords opportunities for improving the mechanical properties of the fiber composites. The alternative approach is more cost-effective, not only because it eliminates expensive fiber-surface treatments but also because it does not entail changes in procedures for manufacturing conventional composite-material structures. The alternative approach is best described by citing an example of its application to a composite of ultra-high-molecular- weight polyethylene (UHMWPE) fibers in an epoxy matrix. The epoxy matrix was modified to a chemically reactive, polarized epoxy nano-matrix to increase the degrees of wetting and adhesion between the fibers and the matrix. The modification was effected by incorporating a small proportion (0.3 weight percent) of reactive graphitic nanofibers produced from functionalized nanofibers into the epoxy matrix resin prior to combining the resin with the UHMWPE fibers. The resulting increase in fiber/matrix adhesion manifested itself in several test results, notably including an increase of 25 percent in the maximum fiber pullout force and an increase of 60-65 percent in fiber pullout energy. In addition, it was conjectured that the functionalized nanofibers became involved in the cross linking reaction of the epoxy resin, with resultant enhancement of the mechanical properties and lower viscosity of the matrix.

  12. An Improved Wavefront Control Algorithm for Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Basinger, Scott A.; Redding, David C.

    2008-01-01

    Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.

  13. Elimination of field colonies of a mound-building termite Globitermes sulphureus (Isoptera: Termitidae) by bistrifluron bait.

    PubMed

    Neoh, Kok-Boon; Jalaludin, Nur Atiqah; Lee, Chow-Yang

    2011-04-01

    The efficacy of Xterm, which contains 1% bistrifluron, in the form of cellulose bait pellets was evaluated for its efficacy in eradicating field colonies of the mound-building termite Globitermes sulphureus (Haviland) (Isoptera: Termitidae). The termite mounds were dissected at the end of the experiment to determine whether the colonies were eliminated. By approximately 2 mo postbaiting, the body of termite workers appeared marble white, and mites were present on the body. The soldier-worker ratio increased drastically in the colonies, and the wall surface of the mounds started to erode. Colony elimination required at least a 4-mo baiting period. Mound dissection revealed wet carton materials (food store) that were greatly consumed and overgrown by fast-growing fungi. Decaying cadavers were scattered all over the nests. On average, 84.1 +/- 16.4 g of bait matrix (68.9 +/- 13.4%, an equivalent of 841 +/- 164 mg of bistrifluron) was consumed in each colony. Moreover, we found that a mere 143 mg of bistrifluron was sufficient to eliminate a colony of C. sulphureus.

  14. Modified zirconium-eriochrome cyanine R determination of fluoride

    USGS Publications Warehouse

    Thatcher, L.L.

    1957-01-01

    The Eriochrome Cyanine R method for determining fluoride in natural water has been modified to provide a single, stable reagent solution, eliminate interference from oxidizing agents, extend the concentration range to 3 p.p.m., and extend the phosphate tolerance. Temperature effect was minimized; sulfate error was eliminated by precipitation. The procedure is sufficiently tolerant to interferences found in natural and polluted waters to permit the elimination of prior distillation for most samples. The method has been applied to 500 samples.

  15. LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices.

    PubMed

    Choi, B K; Hercules, D M; Gusev, A I

    2001-02-01

    The application of LC separation and mobile phase additives in addressing LC-MS/MS matrix signal suppression effects for the analysis of pesticides in a complex environmental matrix was investigated. It was shown that signal suppression is most significant for analytes eluting early in the LC-MS analysis. Introduction of different buffers (e.g. ammonium formate, ammonium hydroxide, formic acid) into the LC mobile phase was effective in improving signal correlation between the matrix and standard samples. The signal improvement is dependent on buffer concentration as well as LC separation of the matrix components. The application of LC separation alone was not effective in addressing suppression effects when characterizing complex matrix samples. Overloading of the LC column by matrix components was found to significantly contribute to analyte-matrix co-elution and suppression of signal. This signal suppression effect can be efficiently compensated by 2D LC (LC-LC) separation techniques. The effectiveness of buffers and LC separation in improving signal correlation between standard and matrix samples is discussed.

  16. Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres.

    PubMed

    Shi, Peng; Ma, Rong; Zhou, Qing; Li, Aimin; Wu, Bing; Miao, Yu; Chen, Xun; Zhang, Xuxiang

    2015-03-21

    This study aimed to compare the toxicity reduction performance of conventional drinking water treatment (CT) and a treatment (NT) with quaternized magnetic microspheres (NDMP) based on chemical analyses. Fluorescence excitation-emission-matrix combined with parallel factor analysis identified four components in source water of different rivers or lake, and the abundance of each component differed greatly among the different samples. Compared with the CT, the NT evidently reduced the concentrations of dissolved organic carbon, adsorbable organic halogens (AOX), bromide and disinfection by-products. Toxicological evaluation indicated that the NT completely eliminated the cytotoxicity, and greatly reduced the genotoxicity and oxidative stress of all raw water. In contrast, the CT increased the cytotoxicity of Taihu Lake and the Zhongshan River water, genotoxicity of Taihu Lake and the Mangshe River water, as well as the levels of superoxide dismutase and malondialdehyde of the Mangshe River water. Correlation analysis indicated that the AOX of the treated samples was significantly correlated with the genotoxicity and glutathione concentration, but exhibited no correlation with either of them for all the samples. As it can effectively reduce pollutant levels and the toxicities of drinking water, NDMP might be widely used for drinking water treatment in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites.

    PubMed

    Starost, Kristof; Frijns, Evelien; Van Laer, Jo; Faisal, Nadimul; Egizabal, Ainhoa; Elizextea, Cristina; Blazquez, Maria; Nelissen, Inge; Njuguna, James

    2017-10-15

    The risk assessment, exposure and understanding of the release of embedded carbon nanotubes (CNTs) and carbon nanofibers (CNFs) from commercial high performance composites during machining processes are yet to be fully evaluated and quantified. In this study, CNTs and CNFs were dispersed in epoxy matrix through calendaring process to form nanocomposites. The automated drilling was carried out in a specially designed drilling chamber that allowed elimination of background noise from the measurements. Emission measurements were taken using condensed particle counter (CPC), scanning mobility particle sizer (SMPS) and DMS50 Fast Particulate Size Spectrometer. In comparison to the neat epoxy, the study results revealed that the nano-filled samples produced an increase of 102% and 227% for the EP/CNF and EP/CNT sample respectively in average particle number concentration emission. The particle mass concentration indicated that the EP/CNT and EP/CNF samples released demands a vital new perspective on CNTs and CNFs embedded within nanocomposite materials to be considered and evaluated for occupational exposure assessment. Importantly, the increased concentration observed at 10nm aerosol particle sizes measurements strongly suggest that there are independent CNTs being released at this range. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Interaction effects in Aharonov-Bohm-Kondo rings

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Yoshii, Ryosuke; Affleck, Ian

    2013-12-01

    We study the conductance through an Aharonov-Bohm ring, containing a quantum dot in the Kondo regime in one arm, at finite temperature and arbitrary electronic density. We develop a general method for this calculation based on changing the basis to the screening and nonscreening channels. We show that an unusual term appears in the conductance, involving the connected four-point Green's function of the conduction electrons. However, this term and the terms quadratic in the T matrix can be eliminated at sufficiently low temperatures, leading to an expression for the conductance linear in the Kondo T matrix. Explicit results are given for temperatures that are high compared to the Kondo temperature.

  19. Effect of oxidation on the mechanical properties of a NbAl3 alloy at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Hebsur, M.; Locci, I. E.; Doychak, J.

    1992-01-01

    The effect of environment on the mechanical properties of an Nb-67Al-7Cr-0.25W-0.5Y alloy was investigated experimentally in the temperature range 800-1200 K. It is found that the severity of environmental attack in the alloy is determined by both matrix plasticity and oxidation kinetics. The former determines the ability of the matrix to accommodate the localized stresses generated during deformation and oxidation, while the latter governs the rate of formation of a protective oxide scale. The environmental degradation of the alloy can thus be reduced or eliminated by increasing atomic mobility.

  20. An efficient method for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1989-01-01

    An efficient method of computation of the manipulator inertia matrix is presented. Using spatial notations, the method leads to the definition of the composite rigid-body spatial inertia, which is a spatial representation of the notion of augmented body. The previously proposed methods, the physical interpretations leading to their derivation, and their redundancies are analyzed. The proposed method achieves a greater efficiency by eliminating the redundancy in the intrinsic equations as well as by a better choice of coordinate frame for their projection. In this case, removing the redundancy leads to greater efficiency of the computation in both serial and parallel senses.

  1. Chemical Mobility, Variability, and Components of the Yaxcopoil Impact Melt Breccia Matrix as a Function of Depth

    NASA Astrophysics Data System (ADS)

    Nelson, M. J.; Newsom, H.

    2005-05-01

    The matrix in the Yaxcopoil 1 drill core produced by the Chicxulub event is semi-amorphous, containing clays and evidence for elemental mobility. We analyzed matrix in impact melt and suevitic breccia samples from the drill hole to detect mineralogical and chemical variability with depth in upper and lower core samples. SEM, microprobe, Cameca 4f ion probe, and XRD were used to determine chemical mobility and variation, and clay structure in several YAX samples, covering the top five units, at a depth range of about 61m. We investigated the possibility of glass, clay, and metastable eutectic dehydroxylates as components in the matrix. Matrix in upper suevite is not optically distinct, but a type of groundmass, with an admixture of calcite, crystallites, and several melt phases with melt texture indicative of simultaneous formation. With an increase in depth, flow tex-ture in the melt matrix is obvious around clasts on all scales, indicating a different temporal relationship than in the upper suevite. Chemically, the matrix is Si and Mg rich in most samples. With an increase in depth, the bulk matrix contains a strong linear increase of Mg, and a decrease of Al. With depth, the increasingly Mg-rich matrix exhibits a stronger flow texture. Aluminum also appears mobile, with enrichments mostly around clasts and veins. In addition, Li and B are strongly correlated, and decrease linearly with depth. The matrix contains materials that appear to be chemically and structurally consistent with smectites at all depths. The compositions range from that of an average montmorillonite in the uppermost units to that of a magnesium rich saponite in the lower units. Aside from the exis-tence of clays, we are considering the possibility that the matrix could contain metastable condensates from the im-pact dust cloud. As an introductory step to test this, matrix compositions were plotted among metastable eutectic dehydroxylate (MED) end members. This produced a remarkably co-linear trend with the join between MED pyro-phyllite and MED serpentine. High resolution equipment will be used to follow up on this idea. The matrix in lower samples had more element mobility, and likely more chemical reactions occurring among phases. An increase in mobility and transport of Mg could help explain this bulk enrichment in lower samples. In addition, variations in the original target material would logically contribute to chemical variations in the matrix. Dolomite and mafic minerals present at greater depth could react with matrix in the melt breccia, while dust and clay may exist in variable amounts within the drill core samples. The linear trend toward metastable dehydroxylate eutec-tic compositions is an encouraging first step to further investigate the possible existence of condensates from the impact cloud within the matrix.

  2. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-06-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 μm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions.

  3. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  4. Classification and identification of molecules through factor analysis method based on terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jianglou; Liu, Jinsong; Wang, Kejia; Yang, Zhengang; Liu, Xiaming

    2018-06-01

    By means of factor analysis approach, a method of molecule classification is built based on the measured terahertz absorption spectra of the molecules. A data matrix can be obtained by sampling the absorption spectra at different frequency points. The data matrix is then decomposed into the product of two matrices: a weight matrix and a characteristic matrix. By using the K-means clustering to deal with the weight matrix, these molecules can be classified. A group of samples (spirobenzopyran, indole, styrene derivatives and inorganic salts) has been prepared, and measured via a terahertz time-domain spectrometer. These samples are classified with 75% accuracy compared to that directly classified via their molecular formulas.

  5. A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS.

    PubMed

    Lou, Xianwen; de Waal, Bas F M; Milroy, Lech-Gustav; van Dongen, Joost L J

    2015-05-01

    In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re-dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried-droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Wiener-matrix image restoration beyond the sampling passband

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.

    1991-01-01

    A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.

  7. A symmetrical subtraction combined with interpolated values for eliminating scattering from fluorescence EEM data.

    PubMed

    Xu, Jing; Liu, Xiaofei; Wang, Yutian

    2016-08-05

    Parallel factor analysis is a widely used method to extract qualitative and quantitative information of the analyte of interest from fluorescence emission-excitation matrix containing unknown components. Big amplitude of scattering will influence the results of parallel factor analysis. Many methods of eliminating scattering have been proposed. Each of these methods has its advantages and disadvantages. The combination of symmetrical subtraction and interpolated values has been discussed. The combination refers to both the combination of results and the combination of methods. Nine methods were used for comparison. The results show the combination of results can make a better concentration prediction for all the components. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Systems of Inhomogeneous Linear Equations

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Many problems in physics and especially computational physics involve systems of linear equations which arise e.g. from linearization of a general nonlinear problem or from discretization of differential equations. If the dimension of the system is not too large standard methods like Gaussian elimination or QR decomposition are sufficient. Systems with a tridiagonal matrix are important for cubic spline interpolation and numerical second derivatives. They can be solved very efficiently with a specialized Gaussian elimination method. Practical applications often involve very large dimensions and require iterative methods. Convergence of Jacobi and Gauss-Seidel methods is slow and can be improved by relaxation or over-relaxation. An alternative for large systems is the method of conjugate gradients.

  9. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution

    PubMed Central

    Han, Fang; Liu, Han

    2016-01-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068

  10. Matrix effect and optimization of LC-MSn determination of trachylobane-360 in mice blood.

    PubMed

    Pita, João Carlos Lima Rodrigues; Gomes, Isis Fernandes; Dos Santos, Socrates Golzio; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Diniz, Margareth de Fátima Formiga Melo; Sobral, Marianna Vieira

    2014-11-01

    Xylopia langsdorffiana A. St.-Hil. & Tul. (Annonaceae) is popularly known as "pimenteira-da-terra". Various constituents have been isolated from this species, including diterpenes, such as 8(17), 12E, 14-labdatrien-18-oic acid, ent-atisan-7α, 16α-diol (xylodiol), ent-7α-hydroxytrachyloban-18-oic acid (trachylobane-318) and ent-7α-acetoxytrachyloban-18-oic acid, a crystalline solid with a molecular weight of 360 and molecular formula of C22H32O4 (trachylobane-360). When administered intraperitoneally to mice, trachylobane-360 (T-360) significantly inhibits growth of the solid tumor sarcoma 180 transplanted in mice, without causing alterations in biochemical, hematological and histopathological parameters that are frequently associated with the clinical use of antineoplastic. Furthermore, this diterpene blocks voltage-dependent calcium channels (Cav), showing spasmolytic activity. The present study shows that variables such as extraction solvent (methanol, acetonitrile and chloroform), centrifugation force (1000, 7000 and 14,000×g), and centrifugation time (5, 15 and 25min), are important in the liquid-liquid extraction of T-360 from male Swiss mice blood in HPLC-MSn studies. The study confirms matrix influence on recovery and detection of T-360. The recovery for T-360 was 37.02% using chloroform as better extractor solvent, while centrifuged at 14,000×g for 15min demonstrated the importance of the parameters chosen for the extraction/recovery process of analyte. The effect of mice blood matrix for T-360 was -51.23%. This method was optimized by repeating the extraction procedure and acidification of samples. These conditions were essential in increasing recovery (49.47%) by decreasing the matrix effect (-37.60%). The efficiency of the process, after optimization with two extractions and acidification, increased by 14.19% when compared to the initial method, from 18.05% to 32.24%. According to Marchi et al. (2010), the matrix effect does not necessarily need to be reduced or eliminated, but it does need to be identified and quantified. Therefore, these findings are essential for the subsequent evaluation of the pharmacokinetic parameters of this promising natural product. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography.

    PubMed

    Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2017-06-02

    An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.

  12. Elimination of interference from water in KBr disk FT-IR spectra of solid biomaterials by chemometrics solved with kinetic modeling.

    PubMed

    Gordon, Sherald H; Harry-O'kuru, Rogers E; Mohamed, Abdellatif A

    2017-11-01

    Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting distortion is critical or even fatal, as in quantitative analyses of protein secondary structure, because the water has been impossible to measure or eliminate. Therefore, a new chemometric method was devised that corrects spectra of materials in KBr disks by mathematically eliminating the water interference. A new concept termed the Beer-Lambert law absorbance ratio (R-matrix) model was augmented with water concentration ratios computed via an exponential decay kinetic model of the water absorption process in KBr, which rendered the otherwise indeterminate system of linear equations determinate and thus possible to solve in a formal analytic manner. Consequently, the heretofore baffling KBr water elimination problem is now solved once and for all. Using the new formal solution, efforts to eliminate water interference from KBr disks in research will be defeated no longer. Resulting spectra of protein were much more accurate than attenuated total reflection (ATR) spectra corrected using the well-accepted Advanced ATR Correction Algorithm. Published by Elsevier B.V.

  13. Effectiveness of radiation processing for elimination of Salmonella Typhimurium from minimally processed pineapple (Ananas comosus Merr.).

    PubMed

    Shashidhar, Ravindranath; Dhokane, Varsha S; Hajare, Sachin N; Sharma, Arun; Bandekar, Jayant R

    2007-04-01

    The microbiological quality of market samples of minimally processed (MP) pineapple was examined. The effectiveness of radiation treatment in eliminating Salmonella Typhimurium from laboratory inoculated ready-to-eat pineapple slices was also studied. Microbiological quality of minimally processed pineapple samples from Mumbai market was poor; 8.8% of the samples were positive for Salmonella. D(10) (the radiation dose required to reduce bacterial population by 90%) value for S. Typhimurium inoculated in pineapple was 0.242 kGy. Inoculated pack studies in minimally processed pineapple showed that the treatment with a 2-kGy dose of gamma radiation could eliminate 5 log CFU/g of S. Typhimurium. The pathogen was not detected from radiation-processed samples up to 12 d during storage at 4 and 10 degrees C. The processing of market samples with 1 and 2 kGy was effective in improving the microbiological quality of these products.

  14. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  15. A method to eliminate wetting during the homogenization of HgCdTe

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1986-01-01

    Adhesion of HgCdTe samples to fused silica ampoule walls, or 'wetting', during the homogenization process was eliminated by adopting a slower heating rate. The idea is to decrease Cd activity in the sample so as to reduce the rate of reaction between Cd and the silica wall.

  16. Automated acoustic matrix deposition for MALDI sample preparation.

    PubMed

    Aerni, Hans-Rudolf; Cornett, Dale S; Caprioli, Richard M

    2006-02-01

    Novel high-throughput sample preparation strategies for MALDI imaging mass spectrometry (IMS) and profiling are presented. An acoustic reagent multispotter was developed to provide improved reproducibility for depositing matrix onto a sample surface, for example, such as a tissue section. The unique design of the acoustic droplet ejector and its optimization for depositing matrix solution are discussed. Since it does not contain a capillary or nozzle for fluid ejection, issues with clogging of these orifices are avoided. Automated matrix deposition provides better control of conditions affecting protein extraction and matrix crystallization with the ability to deposit matrix accurately onto small surface features. For tissue sections, matrix spots of 180-200 microm in diameter were obtained and a procedure is described for generating coordinate files readable by a mass spectrometer to permit automated profile acquisition. Mass spectral quality and reproducibility was found to be better than that obtained with manual pipet spotting. The instrument can also deposit matrix spots in a dense array pattern so that, after analysis in a mass spectrometer, two-dimensional ion images may be constructed. Example ion images from a mouse brain are presented.

  17. Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow.

    PubMed

    Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong

    2015-01-01

    Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time.

  18. Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow

    PubMed Central

    Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong

    2015-01-01

    Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time. PMID:26351657

  19. Determination of low-molecular-weight amines and ammonium in saline waters by ion chromatography after their extraction by steam distillation.

    PubMed

    Ferreira, Fernanda Nunes; Afonso, Julio Carlos; Pontes, Fernanda Veronesi Marinho; Carneiro, Manuel Castro; Neto, Arnaldo Alcover; Tristão, Maria Luiza Bragança; Monteiro, Maria Inês Couto

    2016-04-01

    A new method was developed for the determination of ammonium ion, monomethylamine and monoethylamine in saline waters by ion chromatography. Steam distillation was used to eliminate matrix interferences. Variables such as distillation time, concentration of sodium hydroxide solution and analyte mass were optimized by using a full two-level factorial (2(3) ) design. The influence of steam distillation on the analytical curves prepared in different matrices was also investigated. Limits of detection of 0.03, 0.05 and 0.05 mg/L were obtained for ammoniumion, monomethylamine and monoethylamine, respectively. Saline water samples from the Brazilian oil industry, containing sodium and potassium concentrations between 2.0-5.2% w/v and 96-928 mg/L, respectively, were analyzed. Satisfactory recoveries (90-105%) of the analytes were obtained for all spiked samples, and the precision was ≤ 7% (n = 3). The proposed method is adequate for analyzing saline waters containing sodium to ammoniumion, monomethylamine and monoethylamine concentration ratios up to 28 000:1 and potassium to ammonium, monomethylamine and monoethylamine concentration ratios up to 12 000:1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    PubMed

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  1. High Resolution Chemical Study of ALH84001

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela G.; Douglas, Susanne; Kuhlman, Kimberly R.

    2001-01-01

    We have studied the chemistry of a sample of the SNC meteorite ALH84001 using an environmental scanning electron microscope (ESEM) with an energy dispersive chemical analytical detector and a focused ion beam secondary ion mass spectrometer (FIB-SIMS). Here we present the chemical data, both spectra and images, from two techniques that do not require sample preparation with a conductive coating, thus eliminating the possibility of preparation-induced textural artifacts. The FIB-SIMS instrument includes a column optimized for SEM with a quadrupole type mass spectrometer. Its spatial and spectral resolution are 20 nm and 0.4 AMU, respectively. The spatial resolution of the ESEM for chemical analysis is about 100 nm. Limits of detection for both instruments are mass dependent. Both the ESEM and the FIB-SIMS instrument revealed contrasting surficial features; crumbled, weathered appearance of the matrix in some regions as well as a rather ubiquitous presence of euhedral halite crystals, often associated with cracks or holes in the surface of the rock. Other halogen elements present in the vicinity of the NaCl crystals include K and Br. In this report, elemental inventories are shown as mass spectra and as X-ray maps.

  2. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review.

    PubMed

    Bévalot, Fabien; Cartiser, Nathalie; Bottinelli, Charline; Fanton, Laurent; Guitton, Jérôme

    2016-01-01

    Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.

  3. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  4. Validation of Modifications to the ANSR(®) Listeria Method for Improved Ease of Use and Performance.

    PubMed

    Caballero, Oscar; Alles, Susan; Le, Quynh-Nhi; Gray, R Lucas; Hosking, Edan; Pinkava, Lisa; Norton, Paul; Tolan, Jerry; Mozola, Mark; Rice, Jennifer; Chen, Yi; Odumeru, Joseph; Ryser, Elliot

    2016-01-01

    A study was conducted to validate minor reagent formulation, enrichment, and procedural changes to the ANSR(®) Listeria method, Performance-Tested Method(SM) 101202. In order to improve ease of use and diminish risk of amplicon contamination, the lyophilized reagent components were reformulated for increased solubility, thus eliminating the need to mix by pipetting. In the alternative procedure, an aliquot of the lysate is added to lyophilized ANSR reagents, immediately capped, and briefly mixed by vortexing. When three foods (hot dogs, Mexican-style cheese, and cantaloupe) and sponge samples taken from a stainless steel surface were tested, significant differences in performance between the ANSR and U.S. Food and Drug Administration Bacteriological Analytical Manual or U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedures were seen with hot dogs and Mexican-style cheese after 16 h enrichment, with the reference methods producing more positive results. After 24 h enrichment, however, there were no significant differences in method performance for any of the four matrixes tested. Robustness testing was also conducted, with variations to lysis buffer volume, lysis time, and sample volume having no demonstrable effect on assay results. Accelerated stability testing was carried out over a 10-week period and showed no diminishment in assay performance. A second phase of the study examined performance of the ANSR assay following enrichment in a new medium, LESS Plus broth, designed for use with all food and environmental sample types. With the alternative LESS Plus broth, there were no significant differences in performance between the ANSR method and the reference culture procedures for any of the matrixes tested after either 16 or 24 h enrichment, although 24 h enrichment is recommended for hot dogs due to higher sensitivity. Results of inclusivity and exclusivity testing using LESS Plus broth showed that the ANSR assay is highly specific, with 100% expected results for target and nontarget bacteria.

  5. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    NASA Astrophysics Data System (ADS)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  6. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    PubMed

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.

  7. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-12-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species.

  8. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed Central

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-01-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9831545

  9. Photochemistry of matrix isolated (trifluoromethyl)sulfonyl azide, CF₃SO₂N₃.

    PubMed

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram

    2015-03-19

    The photochemistry of matrix isolated (trifluoromethylsulfonyl) azide, CF3SO2N3, has been studied at low temperatures. Upon ArF laser irradiation (λ = 193 nm), the azide eliminates N2 and furnishes triplet [(trifluoromethyl)sulfonyl]nitrene, CF3SO2N, which has been characterized by IR and EPR spectroscopy. Upon subsequent UV light irradiation (λ = 260-400 nm) the nitrene converts to CF3N═SO2 and CF3S(O)NO through a Curtius-type rearrangement. Further two new species CF2N═SO2F and FSNO were identified together with CF2NF, SO2, F2CO, CF3NO, and SO as side products. In addition, triplet nitrene CF3N was detected by its EPR and IR spectra. The complex stepwise photodecomposition of matrix isolated CF3SO2N3 is discussed in terms of the observed photolysis products and quantum chemical calculations.

  10. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betz, R.F.; Lootens, R.J.; Becker, M.K.

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare themore » way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.« less

  11. Inactivation of Adenovirus Type 5, Rotavirus WA and Male Specific Coliphage (MS2) in Biosolids by Lime Stabilization

    PubMed Central

    Hansen, Jacqueline J.; Warden, Paul S.; Margolin, Aaron B.

    2007-01-01

    The use of lime to reduce or eliminate pathogen content is a cost-effective treatment currently employed in many Class B biosolids production plants in the United States. A bench scale model of lime stabilization was designed to evaluate the survival of adenovirus type 5, rotavirus Wa, and the male specific bacteriophage, MS2, in various matrices. Each virus was initially evaluated independently in a reverse osmosis treated water matrix limed with an aqueous solution of calcium hydroxide for 24-hr at 22 ± 5°C. In all R/O water trials, adenovirus type 5, rotavirus Wa and MS2 were below detectable levels (<100.5 TCID50/mL and <1 PFU/mL respectively) following 0.1-hr of liming. Adenovirus type 5, rotavirus Wa, and MS2, were inoculated into composted, raw and previously limed matrices, representative of sludge and biosolids, to achieve a final concentration of approximately 104 PFU or TCID50/mL. Each matrix was limed for 24-hr at 22 ± 5°C and 4 ± 2°C. In all trials virus was below detectable levels following a 24-hr incubation. The time required for viral inactivation varied depending on the temperature and sample matrix. This research demonstrates reduction of adenovirus type 5, rotavirus Wa, and male-specific bacteriophage, in water, sludge and biosolids matrices following addition of an 8% calcium hydroxide slurry to achieve a pH of 12 for 2-hr reduced to 11.5 for 22-hr by addition of 0.1 N HCl. In these trials, MS2 was a conservative indicator of the efficacy of lime stabilization of adenovirus Type 5 and rotavirus Wa and therefore is proposed as a useful indicator organism. PMID:17431317

  12. VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.

    2012-01-01

    VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.

  13. Determination of perfluorinated carboxylic acids in fish fillet by micro-solid phase extraction, followed by liquid chromatography-triple quadrupole mass spectrometry.

    PubMed

    Lashgari, Maryam; Lee, Hian Kee

    2014-11-21

    In the current study, a simple, fast and efficient combination of protein precipitation and micro-solid phase extraction (μ-SPE) followed by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) was developed for the determination of perfluorinated carboxylic acids (PFCAs) in fish fillet. Ten PFCAs with different hydrocarbon chain lengths (C5-C14) were analysed simultaneously using this method. Protein precipitation by acetonitrile and μ-SPE by surfactant-incorporated ordered mesoporous silica were applied to the extraction and concentration of the PFCAs as well as for removal of interferences. Determination of the PFCAs was carried out by LC-MS/MS in negative electrospray ionization mode. MS/MS parameters were optimized for multiple reaction monitoring of the analytes. (13)C mass labelled PFOA as a stable-isotopic internal standard, was used for calibration. The detection limits of the method ranged from 0.97 ng/g to 2.7 ng/g, with a relative standard deviation of between 5.4 and 13.5. The recoveries were evaluated for each analyte and were ranged from 77% to 120%. The t-test at 95% confidence level showed that for all the analytes, the relative recoveries did not depend on their concentrations in the explored concentration range. The effect of the matrix on MS signals (suppression or enhancement) was also evaluated. Contamination at low levels was detected for some analytes in the fish samples. The protective role of the polypropylene membrane used in μ-SPE in the elimination of matrix effects was evaluated by parallel experiments in classical dispersive solid phase extraction. The results evidently showed that the polypropylene membrane was significantly effective in reducing matrix effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Research and implementation of simulation for TDICCD remote sensing in vibration of optical axis

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-hong; Kang, Xiao-jun; Lin, Zhe; Song, Li

    2013-12-01

    During the exposure time, the charge transfer speed in the push-broom direction and the line-by-lines canning speed of the sensor are required to match each other strictly for a space-borne TDICCD push-broom camera. However, as attitude disturbance of satellite and vibration of camera are inevitable, it is impossible to eliminate the speed mismatch, which will make the signal of different targets overlay each other and result in a decline of image resolution. The effects of velocity mismatch will be visually observed and analyzed by simulating the degradation of image quality caused by the vibration of the optical axis, and it is significant for the evaluation of image quality and design of the image restoration algorithm. How to give a model in time domain and space domain during the imaging time is the problem needed to be solved firstly. As vibration information for simulation is usually given by a continuous curve, the pixels of original image matrix and sensor matrix are discrete, as a result, they cannot always match each other well. The effect of simulation will also be influenced by the discrete sampling in integration time. In conclusion, it is quite significant for improving simulation accuracy and efficiency to give an appropriate discrete modeling and simulation method. The paper analyses discretization schemes in time domain and space domain and presents a method to simulate the quality of image of the optical system in the vibration of the line of sight, which is based on the principle of TDICCD sensor. The gray value of pixels in sensor matrix is obtained by a weighted arithmetic, which solves the problem of pixels dismatch. The result which compared with the experiment of hardware test indicate that this simulation system performances well in accuracy and reliability.

  15. Multi-color incomplete Cholesky conjugate gradient methods for vector computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, E.L.

    1986-01-01

    This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less

  16. Elimination of bioweapons agents from forensic samples during extraction of human DNA.

    PubMed

    Timbers, Jason; Wilkinson, Della; Hause, Christine C; Smith, Myron L; Zaidi, Mohsin A; Laframboise, Denis; Wright, Kathryn E

    2014-11-01

    Collection of DNA for genetic profiling is a powerful means for the identification of individuals responsible for crimes and terrorist acts. Biologic hazards, such as bacteria, endospores, toxins, and viruses, could contaminate sites of terrorist activities and thus could be present in samples collected for profiling. The fate of these hazards during DNA isolation has not been thoroughly examined. Our goals were to determine whether the DNA extraction process used by the Royal Canadian Mounted Police eliminates or neutralizes these agents and if not, to establish methods that render samples safe without compromising the human DNA. Our results show that bacteria, viruses, and toxins were reduced to undetectable levels during DNA extraction, but endospores remained viable. Filtration of samples after DNA isolation eliminated viable spores from the samples but left DNA intact. We also demonstrated that contamination of samples with some bacteria, endospores, and toxins for longer than 1 h compromised the ability to complete genetic profiling. © 2014 American Academy of Forensic Sciences.

  17. Evaluation of Apical Vapor Lock Formation and comparative Evaluation of its Elimination using Three different Techniques: An in vitro Study.

    PubMed

    Agarwal, Anand; Deore, Rahul B; Rudagi, Kavitarani; Nanda, Zinnie; Baig, Mirza Osman; Fareez, Md Adil

    2017-09-01

    The aim of this study was (i) to evaluate the formation of air bubbles in the apical region of root canal (apical vapor lock) during syringe irrigation, using cone beam computed tomography (CBCT) and (ii) comparative evaluation of the elimination of an established vapor lock by EndoActivator, ultrasonics, and manual dynamic agitation (MDA), using CBCT. A total of 60 extracted human single-rooted teeth were equally divided into three groups of 20 teeth each. The samples were decoronated 17 mm from the apex, cleaned, and shaped to size F4 Protaper using 3% sodium hypochlorite. Samples were irrigated with 3% sodium hypochlorite + cesium chloride radiopaque dye, and preoperative CBCT images were obtained. After formation of apical vapor lock in the scanned teeth, EndoActivator (group I), passive ultrasonic irrigation (group II), and MDA with K-file (group III) were performed and the teeth were again placed in CBCT scanner and results analyzed using the chi-square test. The apical vapor lock was formed in all the samples. Out of the 20 teeth in each group, the apical vapor lock was eliminated in 18 samples of EndoActivator group (90%), 16 samples of ultrasonic group (80%), while it was eliminated in 10 samples by MDA (50%). It is concluded that (1) apical vapor lock is consistently formed during endodontic irrigation in closed canal systems and (2) sonic activation performs better than the ultrasonics and MDA in eliminating the apical vapor lock, with statistically significant difference between all the three groups (p < 0.05). The results suggest that the apical vapor lock (dead water zone) is consistently formed during routine endodontic irrigation which impedes irrigant penetration till the working length, thereby leading to inefficient debridement. Hence, to eliminate this vapor lock, techniques, such as sonics or ultrasonics should be used along with the irrigant after shaping and cleaning of the root canal.

  18. Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity.

    PubMed

    Serna-Galvis, Efraim A; Giraldo-Aguirre, Ana L; Silva-Agredo, Javier; Flórez-Acosta, Oscar A; Torres-Palma, Ricardo A

    2017-03-01

    This study evaluates the treatment of the antibiotic cloxacillin (CLX) in water by means of electrochemical oxidation, TiO 2 photocatalysis, and the photo-Fenton system. The three treatments completely removed cloxacillin and eliminated the residual antimicrobial activity from synthetic pharmaceutical wastewater containing the antibiotic, commercial excipients, and inorganic ions. However, significant differences in the degradation routes were found. In the photo-Fenton process, the hydroxyl radical was involved in the antibiotic removal, while in the TiO 2 photocatalysis process, the action of both the holes and the adsorbed hydroxyl radicals degraded the pollutant. In the electrochemical treatment (using a Ti/IrO 2 anode in sodium chloride as supporting electrolyte), oxidation via HClO played the main role in the removal of CLX. The analysis of initial by-products showed five different mechanistic pathways: oxidation of the thioether group, opening of the central β-lactam ring, breakdown of the secondary amide, hydroxylation of the aromatic ring, and decarboxylation. All the oxidation processes exhibited the three first pathways. Moreover, the aromatic ring hydroxylation was found in both photochemical treatments, while the decarboxylation of the pollutant was only observed in the TiO 2 photocatalysis process. As a consequence of the degradation routes and mechanistic pathways, the elimination of organic carbon was different. After 480 and 240 min, the TiO 2 photocatalysis and photo-Fenton processes achieved ∼45 and ∼15 % of mineralization, respectively. During the electrochemical treatment, 100 % of the organic carbon remained even after the antibiotic was treated four times the time needed to degrade it. In contrast, in all processes, a natural matrix (mineral water) did not considerably inhibit pollutant elimination. However, the presence of glucose in the water significantly affected the degradation of CLX by means of TiO 2 photocatalysis.

  19. An Easy Method to Eliminate the Effect of Lupus Anticoagulants in the Coagulation Factor Assay.

    PubMed

    Tang, Ning; Yin, Shiyu

    2016-07-01

    To build and evaluate intrinsic coagulation factor assays which can eliminate the effect of lupus anticoagulants (LAC). Commercial silica clotting time confirmatory (SCT-C) reagent containing sufficient synthetic phospholipid and routine activated partial thromboplastin time (APTT) reagent were each used for one-stage detection of FVIII, FIX, and FXI activities, in samples with or without LAC, and the results were compared. For samples without LAC, consistent results of FVIII, FIX, and FXI using both SCT-C reagent and APTT reagent were obtained. For samples with LAC, the assays with SCT-C reagent not only could eliminate the effect of strong lupus anticoagulants but also needed fewer dilutions than that with routine APTT reagent. The intrinsic factor detections by SCT-C reagent are credible and convenient to be used for samples with LAC.

  20. The Augmented Lagrange Multipliers Method for Matrix Completion from Corrupted Samplings with Application to Mixed Gaussian-Impulse Noise Removal

    PubMed Central

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu

    2014-01-01

    This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the -norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image. PMID:25248103

  1. Characterization of Cryptosporidium parvum by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Magnuson, Matthew L.; Owens, James H.; Kelty, Catherine A.

    2000-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used to investigate whole and freeze-thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtained after the oocysts were lysed with a freeze-thaw procedure. Spectral-marker patterns for C. parvum were distinguishable from those obtained for Cryptosporidium muris. One spectral marker appears specific for the genus, while others appear specific at the species level. Three different C. parvum lots were investigated, and similar spectral markers were observed in each. Disinfection of the oocysts reduced and/or eliminated the patterns of spectral markers. PMID:11055915

  2. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  3. Iterative-method performance evaluation for multiple vectors associated with a large-scale sparse matrix

    NASA Astrophysics Data System (ADS)

    Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo

    2016-07-01

    Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.

  4. Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    NASA Technical Reports Server (NTRS)

    David, R. E.

    1984-01-01

    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.

  5. Effects of sample size on estimates of population growth rates calculated with matrix models.

    PubMed

    Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M

    2008-08-28

    Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

  6. Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation.

    PubMed

    Jiao, Shuliang; Todorović, Milos; Stoica, George; Wang, Lihong V

    2005-09-10

    We report on a new configuration of fiber-based polarization-sensitive Mueller matrix optical coherence tomography that permits the acquisition of the round-trip Jones matrix of a biological sample using only one light source and a single depth scan. In this new configuration, a polarization modulator is used in the source arm to continuously modulate the incident polarization state for both the reference and the sample arms. The Jones matrix of the sample can be calculated from the two frequency terms in the two detection channels. The first term is modulated by the carrier frequency, which is determined by the longitudinal scanning mechanism, whereas the other term is modulated by the beat frequency between the carrier frequency and the second harmonic of the modulation frequency of the polarization modulator. One important feature of this system is that, for the first time to our knowledge, the Jones matrix of the sample can be calculated with a single detection channel and a single measurement when diattenuation is negligible. The system was successfully tested by imaging both standard polarization elements and biological samples.

  7. Distribution of the Determinant of the Sample Correlation Matrix: Monte Carlo Type One Error Rates.

    ERIC Educational Resources Information Center

    Reddon, John R.; And Others

    1985-01-01

    Computer sampling from a multivariate normal spherical population was used to evaluate the type one error rates for a test of sphericity based on the distribution of the determinant of the sample correlation matrix. (Author/LMO)

  8. Elimination of falsely reactive results in a commercially-available West Nile virus IgM capture enzyme-linked immunosorbent assay by heterophilic antibody blocking reagents.

    PubMed

    Prince, Harry E; Lapé-Nixon, Mary; Givens, Tara S; Bradshaw, Tiffany; Nowicki, Marek J

    2017-05-01

    All sera initially reactive in the Focus Diagnostics West Nile virus IgM capture enzyme-linked immunosorbent assay (WNV IgM ELISA) must be retested with background subtraction to identify falsely-reactive (FR) samples due to antibodies that bind to immunoglobulins of other animal species (heterophilic antibodies). In some settings, such as pre-transplant testing of organ donors, the reporting delay associated with retesting can have an adverse impact on donor procurement and organ placement. We sought to determine if inclusion of heterophilic antibody blockers in assay conjugate could eliminate the nonspecific reactivity of FR samples. Of 6 blocking reagents evaluated using a well-characterized FR sample, immunoglobulin inhibiting reagent from Bioreclamation (IIR) and blocker from Fitzgerald Industries (BFI) were superior in their ability to inhibit false reactivity; these 2 blockers were then used to evaluate 20 additional FR and 21 truly-reactive (TR) samples. Both blockers eliminated the reactivity of 20/21 FR samples, whereas all 21 TR samples remained reactive; further, all 13 truly non-reactive (NR) samples evaluated remained non-reactive when using blocker-containing conjugate. A subset of 22 samples were tested in parallel using the initial lot and a second lot of IIR and BFI; with one exception, all samples showed the same qualitative result using both lots of a given blocker. These findings demonstrate that modification of the Focus WNV IgM screening ELISA to include heterophilic antibody blocker IIR or BFI in assay conjugate eliminates the reactivity of most FR samples, markedly reducing the number of samples requiring further testing by background subtraction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of motion and b-matrix correction for high resolution DTI with short-axis PROPELLER-EPI

    PubMed Central

    Aksoy, Murat; Skare, Stefan; Holdsworth, Samantha; Bammer, Roland

    2010-01-01

    Short-axis PROPELLER-EPI (SAP-EPI) has been proven to be very effective in providing high-resolution diffusion-weighted and diffusion tensor data. The self-navigation capabilities of SAP-EPI allow one to correct for motion, phase errors, and geometric distortion. However, in the presence of patient motion, the change in the effective diffusion-encoding direction (i.e. the b-matrix) between successive PROPELLER ‘blades’ can decrease the accuracy of the estimated diffusion tensors, which might result in erroneous reconstruction of white matter tracts in the brain. In this study, we investigate the effects of alterations in the b-matrix as a result of patient motion on the example of SAP-EPI DTI and eliminate these effects by incorporating our novel single-step non-linear diffusion tensor estimation scheme into the SAP-EPI post-processing procedure. Our simulations and in-vivo studies showed that, in the presence of patient motion, correcting the b-matrix is necessary in order to get more accurate diffusion tensor and white matter pathway reconstructions. PMID:20222149

  10. Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive

    NASA Astrophysics Data System (ADS)

    Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid

    2018-05-01

    The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.

  11. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity.

    PubMed

    Anjana, J; Mohandas, Annapoorna; Seethalakshmy, S; Suresh, Maneesha K; Menon, Riju; Biswas, Raja; Jayakumar, R

    2018-04-15

    Chronic diabetic wounds is characterised by increased microbial contamination and overproduction of matrix metalloproteases that would degrade the extracellular matrix. A bi-layer bandage was developed, that promotes the inhibition of microbial infections and matrix metalloprotease (MMPs) activity. Bi-layer bandage containing benzalkonium chloride loaded gelatin nanoparticles (BZK GNPs) in chitosan-Hyaluronic acid (HA) as a bottom layer and sodium alendronate containing chitosan as top layer was developed. We hypothesized that the chitosan-gelatin top layer with sodium alendronate could inhibit the MMPs activity, whereas the chitosan-HA bottom layer with BZK GNPs (240±66nm) would enable the elimination of microbes. The porosity, swelling and degradation nature of the prepared Bi-layered bandage was studied. The bottom layer could degrade within 4days whereas the top layer remained upto 7days. The antimicrobial activity of the BZK NPs loaded bandage was determined using normal and clinical strains. Gelatin zymography shows that the proteolytic activity of MMP was inhibited by the bandage. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  13. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  14. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads

    PubMed Central

    Zhao, Guangtao; Ding, Jiawang; Yu, Han; Yin, Tanji; Qin, Wei

    2016-01-01

    A potentiometric aptasensing assay that couples the DNA nanostructure-modified magnetic beads with a solid-contact polycation-sensitive membrane electrode for the detection of Vibrio alginolyticus is herein described. The DNA nanostructure-modified magnetic beads are used for amplification of the potential response and elimination of the interfering effect from a complex sample matrix. The solid-contact polycation-sensitive membrane electrode using protamine as an indicator is employed to chronopotentiometrically detect the change in the charge or DNA concentration on the magnetic beads, which is induced by the interaction between Vibrio alginolyticus and the aptamer on the DNA nanostructures. The present potentiometric aptasensing method shows a linear range of 10–100 CFU mL−1 with a detection limit of 10 CFU mL−1, and a good specificity for the detection of Vibrio alginolyticus. This proposed strategy can be used for the detection of other microorganisms by changing the aptamers in the DNA nanostructures. PMID:27918423

  15. A time dependent difference theory for sound propagation in ducts with flow. [characteristic of inlet and exhaust ducts of turbofan engines

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

  16. Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Pilchak, A. L.; Sargent, G. A.; Semiatin, S. L.

    2018-03-01

    The early stages of microstructure evolution during annealing of Ti-6Al-4V in the beta phase field were established. For this purpose, a series of short-time heat treatments was performed using sheet samples that had a noticeable degree of alpha-phase microtexture in the as-received condition. Reconstruction of the beta-grain structure from electron-backscatter-diffraction measurements of the room-temperature alpha-phase texture revealed that microstructure evolution at short times was controlled not by general grain growth, but rather by nucleation-and-growth events analogous to discontinuous recrystallization. The nuclei comprised a small subset of beta grains that were highly misoriented relative to those comprising the principal texture component of the beta matrix. From a quantitative standpoint, the transformation kinetics were characterized by an Avrami exponent of approximately unity, thus suggestive of metadynamic recrystallization. The recrystallization process led to the weakening and eventual elimination of the initial beta texture through the growth of a population of highly misoriented grains.

  17. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    PubMed

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  18. SIS and SIR epidemic models under virtual dispersal

    PubMed Central

    Bichara, Derdei; Kang, Yun; Castillo-Chavez, Carlos; Horan, Richard; Perrings, Charles

    2015-01-01

    We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number R0 is computed as a function of a patch residence-times matrix ℙ. Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: there is a unique globally stable endemic equilibrium when R0 > 1 while the disease free equilibrium is globally stable when R0 ≤ 1. Our further analysis indicates that the dispersal behavior described by the residence-times matrix ℙ has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence times matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease prevalence driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state dependent ℙ on disease dynamics. PMID:26489419

  19. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires.

    PubMed

    Templeton, Alan R; Brazeal, Hilary; Neuwald, Jennifer L

    2011-09-01

    Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.

  20. An efficient numerical technique for calculating thermal spreading resistance

    NASA Technical Reports Server (NTRS)

    Gale, E. H., Jr.

    1977-01-01

    An efficient numerical technique for solving the equations resulting from finite difference analyses of fields governed by Poisson's equation is presented. The method is direct (noniterative)and the computer work required varies with the square of the order of the coefficient matrix. The computational work required varies with the cube of this order for standard inversion techniques, e.g., Gaussian elimination, Jordan, Doolittle, etc.

  1. Chromium Elimination and Cannon Life Extension for Gun Tubes

    DTIC Science & Technology

    2012-08-30

    the use of hexavalent chromium (VI) in the production of cannon barrels by developing a cost effective environmentally friendly Explosive Bonding...erosion- resistant chrome cobalt alloy matrix with 15% tungsten. Stellite is used as M60 machine gun barrel liner. Tantalum Cobalt Tungsten...Grounds (YPG) Preliminary proof of principle endurance testing at YPG shows promising results when conducted side by side to a chrome plated

  2. Fabrication of enrofloxacin imprinted organic-inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples.

    PubMed

    He, Hai-Bo; Dong, Chen; Li, Bin; Dong, Jun-Ping; Bo, Tian-Yu; Wang, Tian-Lin; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-09-26

    This paper reports a nanomagnetic polyhedral oligomeric silsesquioxanes (POSS)-directing strategy toward construction of molecularly imprinted hybrid materials for antibiotic residues determination in milk samples. The imprinted polymeric layer was facilely obtained through the copolymerization of active vinyl groups present on the nanomagnetic POSS (Fe3O4@POSS) surface and functional monomer (methacrylic acid) binding with template (enrofloxacin). Herein, the octavinyl POSS acted as not only the building blocks for hybrid rigid architectures but also the cross-linker for the formation of effective recognition sites during the imprinting process. The molecularly imprinted Fe3O4@POSS nanoparticles (Fe3O4@MI-POSS) demonstrated much higher adsorption capacity and selectivity toward enrofloxacin molecules and its analogs than the non-imprinted Fe3O4@POSS (Fe3O4@NI-POSS) materials. The imprinted particles were applied as a selective sorbent in solid-phase extraction focusing upon sample pretreatment in complex matrices prior to chromatographic analysis. The three FQs (ofloxacin, enrofloxacin, danofloxacin) could be selectively extracted from the biological matrix, while the matrix interferences were effectively eliminated simultaneously under the optimum extraction conditions. A simple, rapid and sensitive method based on the Fe3O4@MI-POSS material combined with HPLC-UV detection was then established for the simultaneous determination of three FQs from milk samples. The average recoveries of the three FQs were in the range of 75.6-108.9%. The relative standard deviations of intra- and inter-day ranging from 2.91 to 8.87% and from 3.6 to 11.5%, respectively. The limits of detections (S/N=3) were between 1.76 and 12.42 ng mL(-1). It demonstrates the effectiveness of trace analysis in complicated biological matrices utilizing magnetic separation in combination with molecularly imprinted solid-phase extraction, the rich chemistry of POSS makes it possible to be an ideal platform for generating molecular imprinted hybrid materials is also exhibited. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Machine Learning Toolkit for Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-03-31

    Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less

  4. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  5. Structured Matrix Completion with Applications to Genomic Data Integration.

    PubMed

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  6. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  7. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  8. Simultaneous determination of potassium and total fluoride in toothpastes using a SIA system with two potentiometric detectors.

    PubMed

    Pérez-Olmos, R; Soto, J C; Zárate, N; Díez, I

    2008-05-12

    A sequential injection analysis (SIA) system has been developed for the first time to quantify potassium and total fluoride in toothpastes and gels used to prevent both dentinal hypersensitivity and dental caries. To enable this simultaneous determination, potentiometric detection, using a conventional fluoride electrode and a tubular potassium selective electrode, formed by a PVC membrane containing valinomycin as ionophore, was carried out. A manifold that uses a three-way solenoid valve was designed. The former under binary sampling conditions, provides reproducible mixing ratios of two solutions. This fact facilitates that the system automatically generates, on-line, the calibration curves required by the analytical procedure. The calibration ranged from 1.0 x 10(-4) to 1.0 x 10(-3) mol L(-1) for both potassium and total fluoride determinations. The R.S.D. (11 readings) resulted to be less than 1.5% for both determinations. Off-line studies related to the dissolution of the solid samples, the transformation of monofluorophosphate in fluoride, the elimination of organic matrix interference onto the plastic membrane of the potassium electrode, and the selection of the most adequate TISAB solution for fluoride determination, were also considered. A sampling rate of 18 samples h(-1) for both determinations was attained, their precisions and accuracies being statistically indistinguishable from those achieved by atomic emission spectroscopy (for potassium determination) and by a conventional batch potentiometry (for total fluoride determination) adopted as reference techniques.

  9. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cm3 in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.

  10. Petroleomics by electrospray ionization FT-ICR mass spectrometry coupled to partial least squares with variable selection methods: prediction of the total acid number of crude oils.

    PubMed

    Terra, Luciana A; Filgueiras, Paulo R; Tose, Lílian V; Romão, Wanderson; de Souza, Douglas D; de Castro, Eustáquio V R; de Oliveira, Mirela S L; Dias, Júlio C M; Poppi, Ronei J

    2014-10-07

    Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

  11. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Trace element analysis of extraterrestrial metal samples by inductively coupled plasma mass spectrometry: the standard solutions and digesting acids.

    PubMed

    Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting

    2016-02-28

    Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Development and validation of LC-HRMS and GC-NICI-MS methods for stereoselective determination of MDMA and its phase I and II metabolites in human urine

    PubMed Central

    Schwaninger, Andrea E.; Meyer, Markus R.; Huestis, Marilyn A.; Maurer, Hans H.

    2013-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a racemic drug of abuse and its R- and S-enantiomers are known to differ in their dose-response curve. The S-enantiomer was shown to be eliminated at a higher rate than the R-enantiomer most likely explained by stereoselective metabolism that was observed in various in vitro experiments. The aim of this work was the development and validation of methods for evaluating the stereoselective elimination of phase I and particularly phase II metabolites of MDMA in human urine. Urine samples were divided into three different methods. Method A allowed stereoselective determination of the 4-hydroxy-3-methoxymethamphetamine (HMMA) glucuronides and only achiral determination of the intact sulfate conjugates of HMMA and 3,4-dihydroxymethamphetamine (DHMA) after C18 solid-phase extraction by liquid chromatography–high-resolution mass spectrometry with electrospray ionization. Method B allowed the determination of the enantiomer ratios of DHMA and HMMA sulfate conjugates after selective enzymatic cleavage and chiral analysis of the corresponding deconjugated metabolites after chiral derivatization with S-heptafluorobutyrylprolyl chloride using gas chromatography–mass spectrometry with negativeion chemical ionization. Method C allowed the chiral determination of MDMA and its unconjugated metabolites using method B without sulfate cleavage. The validation process including specificity, recovery, matrix effects, process efficiency, accuracy and precision, stabilities and limits of quantification and detection showed that all methods were selective, sensitive, accurate and precise for all tested analytes. PMID:21656610

  14. Trap elimination and reduction of size dispersion due to aging in CdS x Se1- x quantum dots

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek; Nagpal, Swati; Pandey, Praveen K.; Bhatnagar, P. K.; Mathur, P. C.

    2007-12-01

    Quantum Dots of CdS x Se1- x embedded in borosilicate glass matrix have been grown using Double-Step annealing method. Optical characterization of the quantum dots has been done through the combinative analysis of optical absorption and photoluminescence spectroscopy at room temperature. Decreasing trend of photoluminescence intensity with aging has been observed and is attributed to trap elimination. The changes in particle size, size distribution, number of quantum dots, volume fraction, trap related phenomenon and Gibbs free energy of quantum dots, has been explained on the basis of the diffusion-controlled growth process, which continues with passage of time. For a typical case, it was found that after 24 months of aging, the average radii increased from 3.05 to 3.12 nm with the increase in number of quantum dots by 190% and the size-dispersion decreased from 10.8% to 9.9%. For this sample, the initial size range of the quantum dots was 2.85 to 3.18 nm. After that no significant change was found in these parameters for the next 12 months. This shows that the system attains almost a stable nature after 24 months of aging. It was also observed that the size-dispersion in quantum dots reduces with the increase in annealing duration, but at the cost of quantum confinement effect. Therefore, a trade off optimization has to be done between the size-dispersion and the quantum confinement.

  15. Scytonemin Plays a Potential Role in Stabilizing the Exopolysaccharidic Matrix in Terrestrial Cyanobacteria.

    PubMed

    Gao, Xiang

    2017-02-01

    Cyanobacteria are photosynthetic oxygen-evolving prokaryotes that are distributed in diverse habitats. They synthesize the ultraviolet (UV)-screening pigments, scytonemin (SCY) and mycosporine-like amino acids (MAAs), located in the exopolysaccharide (EPS) matrix. Multiple roles for both pigments have gradually been recognized, such as sunscreen ability, antioxidant activity, and heat dissipation from absorbed UV radiation. In this study, a filamentous terrestrial cyanobacterium Nostoc flagelliforme was used to evaluate the potential stabilizing role of SCY on the EPS matrix. SCY (∼3.7 %) was partially removed from N. flagelliforme filaments by rinsing with 100 % acetone for 5 s. The physiological damage to cells resulting from this treatment, in terms of photosystem II activity parameter Fv/Fm, was repaired after culturing the sample for 40 h. The physiologically recovered sample was further desiccated by natural or rapid drying and then allowed to recovery for 24 h. Compared with the normal sample, a relatively slower Fv/Fm recovery was observed in the SCY-partially removed sample, suggesting that the decreased SCY concentration in the EPS matrix caused cells to suffer further damage upon desiccation. In addition, the SCY-partially removed sample could allow the release of MAAs (∼25 %) from the EPS matrix, while the normal sample did not. Therefore, damage caused by drying of the former resulted from at least the reduction of structural stability of the EPS matrix as well as the loss of partial antioxidant compounds. Considering that an approximately 4 % loss of SCY led to this significant effect, the structurally stabilizing potential of SCY on the EPS matrix is crucial for terrestrial cyanobacteria survival in complex environments.

  16. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    NASA Astrophysics Data System (ADS)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  17. Application of lot quality assurance sampling for leprosy elimination monitoring--examination of some critical factors.

    PubMed

    Gupte, M D; Murthy, B N; Mahmood, K; Meeralakshmi, S; Nagaraju, B; Prabhakaran, R

    2004-04-01

    The concept of elimination of an infectious disease is different from eradication and in a way from control as well. In disease elimination programmes the desired reduced level of prevalence is set up as the target to be achieved in a practical time frame. Elimination can be considered in the context of national or regional levels. Prevalence levels depend on occurrence of new cases and thus could remain fluctuating. There are no ready pragmatic methods to monitor the progress of leprosy elimination programmes. We therefore tried to explore newer methods to answer these demands. With the lowering of prevalence of leprosy to the desired level of 1 case per 10000 population at the global level, the programme administrators' concern will be shifted to smaller areas e.g. national and sub-national levels. For monitoring this situation, we earlier observed that lot quality assurance sampling (LQAS), a quality control tool in industry was useful in the initially high endemic areas. However, critical factors such as geographical distribution of cases and adoption of cluster sampling design instead of simple random sampling design deserve attention before LQAS could generally be recommended. The present exercise was aimed at validating applicability of LQAS, and adopting these modifications for monitoring leprosy elimination in Tamil Nadu state, which was highly endemic for leprosy. A representative sample of 64000 people drawn from eight districts of Tamil Nadu state, India, with maximum allowable number of 25 cases was considered, using LQAS methodology to test whether leprosy prevalence was at or below 7 per 10000 population. Expected number of cases for each district was obtained assuming Poisson distribution. Goodness of fit for the observed and expected cases (closeness of the expected number of cases to those observed) was tested through chi(2). Enhancing factor (design effect) for sample size was obtained by computing the intraclass correlation. The survey actually covered a population of 62157 individuals, of whom 56469 (90.8%) were examined. Ninety-six cases were detected and this number far exceeded the critical value of 25. The number of cases for each district and the number of cases in the entire surveyed area both followed Poisson distribution. The intraclass correlation coefficients were close to zero and the design effect was observed to be close to one. Based on the LQAS exercises leprosy prevalence in the state of Tamil Nadu in India was above 7 per 10000. LQAS method using clusters was validated for monitoring leprosy elimination in high endemic areas. Use of cluster sampling makes this method further useful as a rapid assessment procedure. This method needs to be tested for its applicability in moderate and low endemic areas, where the sample size may need increasing. It is further possible to consider LQAS as a monitoring tool for elimination programmes with respect to other disease conditions.

  18. Adjustment of Pesticide Concentrations for Temporal Changes in Analytical Recovery, 1992-2006

    USGS Publications Warehouse

    Martin, Jeffrey D.; Stone, Wesley W.; Wydoski, Duane S.; Sandstrom, Mark W.

    2009-01-01

    Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ('spiked' QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report examines temporal changes in the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as 'pesticides') that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 to 2006 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Temporal changes in pesticide recovery were investigated by calculating robust, locally weighted scatterplot smooths (lowess smooths) for the time series of pesticide recoveries in 5,132 laboratory reagent spikes; 1,234 stream-water matrix spikes; and 863 groundwater matrix spikes. A 10-percent smoothing window was selected to show broad, 6- to 12-month time scale changes in recovery for most of the 52 pesticides. Temporal patterns in recovery were similar (in phase) for laboratory reagent spikes and for matrix spikes for most pesticides. In-phase temporal changes among spike types support the hypothesis that temporal change in method performance is the primary cause of temporal change in recovery. Although temporal patterns of recovery were in phase for most pesticides, recovery in matrix spikes was greater than recovery in reagent spikes for nearly every pesticide. Models of recovery based on matrix spikes are deemed more appropriate for adjusting concentrations of pesticides measured in groundwater and stream-water samples than models based on laboratory reagent spikes because (1) matrix spikes are expected to more closely match the matrix of environmental water samples than are reagent spikes and (2) method performance is often matrix dependent, as was shown by higher recovery in matrix spikes for most of the pesticides. Models of recovery, based on lowess smooths of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.

  19. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-09-08

    Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

  20. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for determination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Arslan, Zikri; Oymak, Tulay; White, Jeremy

    2018-05-30

    In this paper, we report an improved magnesium hydroxide, Mg(OH) 2 , coprecipitation method for the determination of 16 trace elements (Al, V, Cr, Mn, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sb, Sn and Pb) and 18 rare earth elements (REEs), including Sc, Y, U and Th in seawater and estuarine water samples. The procedure involves coprecipitation of the trace elements and REEs on Mg(OH) 2 upon addition of a small volume of triethylamine (TEA) followed by analysis of the dissolved pellet solutions by inductively coupled plasma mass spectrometry (ICP-MS). Three-step sequential coprecipitation was carried out on 10 mL aliquots of seawater to eliminate the matrix ions and to preconcentrate the analytes of interest into a 1 mL final volume. Spike recoveries varied from 85% (Th) to 105% (Y). Calcium (Ca), sodium (Na) and potassium (K) matrices were virtually eliminated from the analysis solutions. Collision reaction interface (CRI) technology utilizing H 2 and He gases was employed to determine its effectiveness in removing the spectral interferences originating from the residual Mg matrix, TEA and plasma gases. H 2 was more effective than He in reducing spectral interferences from TEA and plasma gases. Limits of detection (LODs) ranged from 0.01 ng L -1 (Ho) to 72 ng L -1  (Al). The method was validated by using certified seawater (CASS-4) and estuarine water (SLEW-3) reference materials. Precision for five (n = 5) replicate measurements were between 1.2% (Pr) and 18% (Lu). Fe, Pb, Sn, and Zn impurities in TEA were significant in comparison to the levels in CASS-4 and SLEW-3, while relatively high background signals impacted determinations of low levels of Sc and Th. The effects of these hurdles on precision and accuracy were alleviated by measuring these elements in spiked CASS-4 and SLEW-3. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Positive matrix factorization of PM2.5 - eliminating the effects of gas/particle partitioning of semivolatile organic compounds.

    PubMed

    Xie, M; Barsanti, K C; Hannigan, M P; Dutton, S J; Vedal, S

    2013-01-01

    Gas-phase concentrations of semi-volatile organic compounds (SVOCs) were calculated from gas/particle (G/P) partitioning theory using their measured particle-phase concentrations. The particle-phase data were obtained from an existing filter measurement campaign (27 January 2003-2 October 2005) as a part of the Denver Aerosol Sources and Health (DASH) study, including 970 observations of 71 SVOCs (Xie et al., 2013). In each compound class of SVOCs, the lighter species (e.g. docosane in n alkanes, fluoranthene in PAHs) had higher total concentrations (gas + particle phase) and lower particle-phase fractions. The total SVOC concentrations were analyzed using positive matrix factorization (PMF). Then the results were compared with source apportionment results where only particle-phase SVOC concentrations were used (particle only-based study; Xie et al., 2013). For the particle only-based PMF analysis, the factors primarily associated with primary or secondary sources ( n alkane, EC/sterane and inorganic ion factors) exhibit similar contribution time series ( r = 0.92-0.98) with their corresponding factors ( n alkane, sterane and nitrate+sulfate factors) in the current work. Three other factors (light n alkane/PAH, PAH and summer/odd n alkane factors) are linked with pollution sources influenced by atmospheric processes (e.g. G/P partitioning, photochemical reaction), and were less correlated ( r = 0.69-0.84) with their corresponding factors (light SVOC, PAH and bulk carbon factors) in the current work, suggesting that the source apportionment results derived from particle-only SVOC data could be affected by atmospheric processes. PMF analysis was also performed on three temperature-stratified subsets of the total SVOC data, representing ambient sampling during cold (daily average temperature < 10 °C), warm (≥ 10 °C and ≤ 20 °C) and hot (> 20 °C) periods. Unlike the particle only-based study, in this work the factor characterized by the low molecular weight (MW) compounds (light SVOC factor) exhibited strong correlations ( r = 0.82-0.98) between the full data set and each sub-data set solution, indicating that the impacts of G/P partitioning on receptor-based source apportionment could be eliminated by using total SVOC concentrations.

  2. Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry.

    PubMed

    Kruve, Anneli; Künnapas, Allan; Herodes, Koit; Leito, Ivo

    2008-04-11

    Three sample preparation methods: Luke method (AOAC 985.22), QuEChERS (quick, easy, cheap, effective, rugged and safe) and matrix solid-phase dispersion (MSPD) were applied to different fruits and vegetables for analysis of 14 pesticide residues by high-performance liquid chromatography with electrospray ionization-mass spectrometry (HPLC/ESI/MS). Matrix effect, recovery and process efficiency of the sample preparation methods applied to different fruits and vegetables were compared. The Luke method was found to produce least matrix effect. On an average the best recoveries were obtained with the QuEChERS method. MSPD gave unsatisfactory recoveries for some basic pesticide residues. Comparison of matrix effects for different apple varieties showed high variability for some residues. It was demonstrated that the amount of co-extracting compounds that cause ionization suppression of aldicarb depends on the apple variety as well as on the sample preparation method employed.

  3. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  4. The Performance Analysis Based on SAR Sample Covariance Matrix

    PubMed Central

    Erten, Esra

    2012-01-01

    Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976

  5. Occurrence and elimination of antibiotics in three sewage treatment plants with different treatment technologies in Urumqi and Shihezi, Xinjiang.

    PubMed

    Liu, Jiang; Lu, Jianjiang; Tong, Yanbin; Li, Chao

    2017-03-01

    Fourteen antibiotics, including five quinolones (QNs), five sulfonamides (SAs), and four tetracyclines (TCs), were selected to investigate their occurrence and elimination in three sewage treatment plants (STPs) by employing different treatment technologies in Urumqi (two STPs) and Shihezi (one STP), China. The STP in Shihezi was chosen as representative to investigate the distribution of antibiotics in a sludge-sewage system. Results showed that the concentrations of most detected antibiotics ranged from tens to hundreds of nanograms per liter in influent samples and under 100 ng L -1 in effluent samples. QNs and TCs were dominant species with concentrations of 2.33 mg kg -1 to 3.34 mg kg -1 and 0.36 mg kg -1 to 0.47 mg kg -1 in sludge samples, respectively. The elimination rates of target antibiotics by various STPs ranged from 17% to 100%. The STP with anaerobic/anoxic/aerobic and membrane bio-reactor technology removed antibiotics more efficiently than those with anaerobic/anoxic/oxic and oxidation ditch technology. The elimination capacities of treatment units from the three STPs were also investigated. SAs were mainly degraded in biological treatment units; conversely, QNs and TCs were significantly eliminated in sedimentary treatment units. Ozonation effectively removed remaining antibiotics but not UV and chlorination disinfection in this study.

  6. Spectroscopic studies of clusterization of methanol molecules isolated in a nitrogen matrix

    NASA Astrophysics Data System (ADS)

    Vaskivskyi, Ye.; Doroshenko, I.; Chernolevska, Ye.; Pogorelov, V.; Pitsevich, G.

    2017-12-01

    IR absorption spectra of methanol isolated in a nitrogen matrix are recorded at temperatures ranging from 9 to 34 K. The changes in the spectra with increasing matrix temperature are analyzed. Based on quantum-chemical calculations of the geometric and spectral parameters of different methanol clusters, the observed absorption bands are identified. The cluster composition of the sample is determined at each temperature. It is shown that as the matrix is heated there is a redistribution among the different cluster structures in the sample, from smaller to larger clusters.

  7. Pre-treatment of multi-walled carbon nanotubes for polyetherimide mixed matrix hollow fiber membranes.

    PubMed

    Goh, P S; Ng, B C; Ismail, A F; Aziz, M; Hayashi, Y

    2012-11-15

    Mixed matrix hollow fibers composed of multi-walled carbon nanotubes (MWCNTs) and polyetherimide (PEI) were fabricated. Pre-treatment of MWCNTs was carried out prior to the incorporation into the polymer matrix using a simple and feasible two stages approach that involved dry air oxidation and surfactant dispersion. The characterizations of the surface treated MWCNTs using TEM and Raman spectroscopy have evidenced the effectiveness of dry air oxidation in eliminating undesired amorphous carbon and metal catalyst while surfactant dispersion using Triton X100 has suppressed the agglomeration of MWCNTs. The resultant mixed matrix hollow fibers were applied for O(2)/N(2) pure gas separation. Interestingly, it was found that removal of disordered amorphous carbons and metal particles has allowed the hollow structures to be more accessible for the fast and smooth transport of gas molecules, hence resulted in noticeable improvement in the gas separation properties. The composite hollow fibers embedded with the surface modified MWCNTs showed increase in permeability as much as 60% while maintaining the selectivity of the O(2)/N(2) gas pair. This study highlights the necessity to establish an appropriate pre-treatment approach for MWCNTs in order to fully utilize the beneficial transport properties of this material in mixed matrix polymer nanocomposite for gas separation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Study of drug release and tablet characteristics of silicone adhesive matrix tablets.

    PubMed

    Tolia, Gaurav; Li, S Kevin

    2012-11-01

    Matrix tablets of a model drug acetaminophen (APAP) were prepared using a highly compressible low glass transition temperature (T(g)) polymer silicone pressure sensitive adhesive (PSA) at various binary mixtures of silicone PSA/APAP ratios. Matrix tablets of a rigid high T(g) matrix forming polymer ethyl cellulose (EC) were the reference for comparison. Drug release study was carried out using USP Apparatus 1 (basket), and the relationship between the release kinetic parameters of APAP and polymer/APAP ratio was determined to estimate the excipient percolation threshold. The critical points attributed to both silicone PSA and EC tablet percolation thresholds were found to be between 2.5% and 5% w/w. For silicone PSA tablets, satisfactory mechanical properties were obtained above the polymer percolation threshold; no cracking or chipping of the tablet was observed above this threshold. Rigid EC APAP tablets showed low tensile strength and high friability. These results suggest that silicone PSA could eliminate issues related to drug compressibility in the formulation of directly compressed oral controlled release tablets of poorly compressible drug powder such as APAP. No routinely used excipients such as binders, granulating agents, glidants, or lubricants were required for making an acceptable tablet matrix of APAP using silicone PSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  10. Strategies to eradicate minimal residual disease in small cell lung cancer: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

    PubMed

    Krug, L M; Grant, S C; Miller, V A; Ng, K K; Kris, M G

    1999-10-01

    In the last 25 years, treatment for small cell lung cancer (SCLC) has improved with advances in chemotherapy and radiotherapy. Standard chemotherapy regimens can yield 80% to 90% response rates and some cures when combined with thoracic irradiation in limited-stage patients. Nonetheless, small cell lung cancer has a high relapse rate due to drug resistance; this has resulted in poor survival for most patients. Attacking this problem requires a unique approach to eliminate resistant disease remaining after induction therapy. This review will focus on three potential strategies: high-dose chemotherapy with autologous bone marrow transplantation, matrix metalloproteinase inhibitors, and BEC2 plus BCG vaccination.

  11. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the fullmore » system. Significant improvements in the solution time are observed for several test problems.« less

  12. Dynamics of fractional condensation of a substance on a probe for spectral analysis

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.

    2008-11-01

    The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.

  13. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  14. Strategies and approaches to vector control in nine malaria-eliminating countries: a cross-case study analysis.

    PubMed

    Smith Gueye, Cara; Newby, Gretchen; Gosling, Roland D; Whittaker, Maxine A; Chandramohan, Daniel; Slutsker, Laurence; Tanner, Marcel

    2016-01-04

    There has been progress towards malaria elimination in the last decade. In response, WHO launched the Global Technical Strategy (GTS), in which vector surveillance and control play important roles. Country experiences in the Eliminating Malaria Case Study Series were reviewed to identify success factors on the road to elimination using a cross-case study analytic approach. Reports were included in the analysis if final English language draft reports or publications were available at the time of analysis (Bhutan, Cape Verde, Malaysia, Mauritius, Namibia, Philippines, Sri Lanka, Turkey, Turkmenistan). A conceptual framework for vector control in malaria elimination was developed, reviewed, formatted as a matrix, and case study data was extracted and entered into the matrix. A workshop was convened during which participants conducted reviews of the case studies and matrices and arrived at a consensus on the evidence and lessons. The framework was revised and a second round of data extraction, synthesis and summary of the case study reports was conducted. Countries implemented a range of vector control interventions. Most countries aligned with integrated vector management, however its impact was not well articulated. All programmes conducted entomological surveillance, but the response (i.e., stratification and targeting of interventions, outbreak forecasting and strategy) was limited or not described. Indoor residual spraying (IRS) was commonly used by countries. There were several examples of severe reductions or halting of IRS coverage and subsequent resurgence of malaria. Funding and operational constraints and poor implementation had roles. Bed nets were commonly used by most programmes; coverage and effectiveness were either not measured or not articulated. Larval control was an important intervention for several countries, preventing re-introduction, however coverage and impact on incidence were not described. Across all interventions, coverage indicators were incomparable, and the rationale for which tools were used and which were not used appeared to be a function of the availability of funding, operational issues and cost instead of evidence of effectiveness to reduce incidence. More work is required to fill gaps in programme guidance, clarify the best methods for choosing and targeting vector control interventions, and support to measure cost, cost-effectiveness and cost-benefit of vector surveillance and control interventions.

  15. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOEpatents

    Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  16. Population clustering based on copy number variations detected from next generation sequencing data.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping

    2014-08-01

    Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.

  17. Technique for fast and efficient hierarchical clustering

    DOEpatents

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  18. Resolution of the carbon contamination problem in ion irradiation experiments

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Taller, S.; Jiao, Z.; Monterrosa, A. M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E.

    2017-12-01

    The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation.

  19. Hydrogen generation through static-feed water electrolysis

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1975-01-01

    A static-feed water electrolysis system (SFWES), developed under NASA sponsorship, is presented for potential applicability to terrestrial hydrogen production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials-compatibility problems, (2) a method where the electrolyte is retained in a thin porous matrix eliminating bulk electrolyte, and (3) a static water-feed mechanism to prevent electrode and electrolyte contamination and to promote system simplicity.

  20. Development of Manufacturable Process to Deposit Metal Matrix Composites on Inverted Metamorphic Multijunction Solar Cells

    DTIC Science & Technology

    2015-01-14

    substrates using a titanium adhesion layer, and (3) characterized hardness and electrical conductivity of plated silver before and after rapid thermal...layer composite films. We observed that the silver erosion during carboxylated carbon nanotube deposition leads to significant porosity within the...composite films. We plan to explore amine-terminated carbon nanotubes in the near future to eliminate the porosity and study how different

  1. Gauss Elimination: Workhorse of Linear Algebra.

    DTIC Science & Technology

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  2. Fluid sampling apparatus and method

    DOEpatents

    Yeamans, David R.

    1998-01-01

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

  3. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    NASA Astrophysics Data System (ADS)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  4. Algebraic solution for the forward displacement analysis of the general 6-6 stewart mechanism

    NASA Astrophysics Data System (ADS)

    Wei, Feng; Wei, Shimin; Zhang, Ying; Liao, Qizheng

    2016-01-01

    The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Gröbner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Gröbner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9´9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix.

  5. Sample preparation for sequencing hits from one-bead-one-peptide combinatorial libraries by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A

    2010-05-15

    Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Factor Covariance Analysis in Subgroups.

    ERIC Educational Resources Information Center

    Pennell, Roger

    The problem considered is that of an investigator sampling two or more correlation matrices and desiring to fit a model where a factor pattern matrix is assumed to be identical across samples and we need to estimate only the factor covariance matrix and the unique variance for each sample. A flexible, least squares solution is worked out and…

  7. Perilymph pharmacokinetics of markers and dexamethasone applied and sampled at the lateral semi-circular canal.

    PubMed

    Salt, Alec N; Hartsock, Jared J; Gill, Ruth M; Piu, Fabrice; Plontke, Stefan K

    2012-12-01

    Perilymph pharmacokinetics was investigated by a novel approach, in which solutions containing drug or marker were injected from a pipette sealed into the perilymphatic space of the lateral semi-circular canal (LSCC). The cochlear aqueduct provides the outlet for fluid flow so this procedure allows almost the entire perilymph to be exchanged. After wait times of up to 4 h the injection pipette was removed and multiple, sequential samples of perilymph were collected from the LSCC. Fluid efflux at this site results from cerebrospinal fluid (CSF) entry into the basal turn of scala tympani (ST) so the samples allow drug levels from different locations in the ear to be defined. This method allows the rate of elimination of substances from the inner ear to be determined more reliably than with other delivery methods in which drug may only be applied to part of the ear. Results were compared for the markers trimethylphenylammonium (TMPA) and fluorescein and for the drug dexamethasone (Dex). For each substance, the concentration in fluid samples showed a progressive decrease as the delay time between injection and sampling was increased. This is consistent with the elimination of substance from the ear with time. The decline with time was slowest for fluorescein, was fastest for Dex, with TMPA at an intermediate rate. Simulations of the experiments showed that elimination occurred more rapidly from scala tympani (ST) than from scala vestibuli (SV). Calculated elimination half-times from ST averaged 54.1, 24.5 and 22.5 min for fluorescein, TMPA and Dex respectively and from SV 1730, 229 and 111 min respectively. The elimination of Dex from ST occurred considerably faster than previously appreciated. These pharmacokinetic parameters provide an important foundation for understanding of drug treatments of the inner ear.

  8. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  9. ParTIES: a toolbox for Paramecium interspersed DNA elimination studies.

    PubMed

    Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda

    2016-02-15

    Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS.

    PubMed

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-02-13

    For many sample matrices, matrix effects are a troublesome phenomenon using the electrospray ionization source. The increasing use of supercritical fluid chromatography with CO 2 in combination with the electrospray ionization source for MS detection is therefore raising questions: is the matrix effect behaving differently using SFC in comparison with reversed phase LC? This was investigated using urine, plasma, influent- and effluent-wastewater as sample matrices. The matrix effect was evaluated using the post-extraction addition method and through post-column infusions. Matrix effect profiles generated from the post-column infusions in combination with time of flight-MS detection provided the most valuable information for the study. The combination of both qualitative and semi-quantitative information with the ability to use HRMS-data for identifying interfering compounds from the same experiment was very useful, and has to the authors' knowledge not been used this way before. The results showed that both LC and SFC are affected by matrix effects, however differently depending on sample matrix. Generally, both suppressions and enhancements were seen, with a higher amount of enhancements for LC, where 65% of all compounds and all sample matrices were enhanced, compared to only 7% for SFC. Several interferences were tentatively identified, with phospholipids, creatinine, and metal ion clusters as examples of important interferences, with different impact depending on chromatographic technique. SFC needs a different strategy for limiting matrix interferences, owing to its almost reverse retention order compared to RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Research on Ratio of Dosage of Drugs in Traditional Chinese Prescriptions by Data Mining.

    PubMed

    Yu, Xing-Wen; Gong, Qing-Yue; Hu, Kong-Fa; Mao, Wen-Jing; Zhang, Wei-Ming

    2017-01-01

    Maximizing the effectiveness of prescriptions and minimizing adverse effects of drugs is a key component of the health care of patients. In the practice of traditional Chinese medicine (TCM), it is important to provide clinicians a reference for dosing of prescribed drugs. The traditional Cheng-Church biclustering algorithm (CC) is optimized and the data of TCM prescription dose is analyzed by using the optimization algorithm. Based on an analysis of 212 prescriptions related to TCM treatment of kidney diseases, the study generated 87 prescription dose quantum matrices and each sub-matrix represents the referential value of the doses of drugs in different recipes. The optimized CC algorithm can effectively eliminate the interference of zero in the original dose matrix of TCM prescriptions and avoid zero appearing in output sub-matrix. This results in the ability to effectively analyze the reference value of drugs in different prescriptions related to kidney diseases, so as to provide valuable reference for clinicians to use drugs rationally.

  12. Singular boundary method for wave propagation analysis in periodic structures

    NASA Astrophysics Data System (ADS)

    Fu, Zhuojia; Chen, Wen; Wen, Pihua; Zhang, Chuanzeng

    2018-07-01

    A strong-form boundary collocation method, the singular boundary method (SBM), is developed in this paper for the wave propagation analysis at low and moderate wavenumbers in periodic structures. The SBM is of several advantages including mathematically simple, easy-to-program, meshless with the application of the concept of origin intensity factors in order to eliminate the singularity of the fundamental solutions and avoid the numerical evaluation of the singular integrals in the boundary element method. Due to the periodic behaviors of the structures, the SBM coefficient matrix can be represented as a block Toeplitz matrix. By employing three different fast Toeplitz-matrix solvers, the computational time and storage requirements are significantly reduced in the proposed SBM analysis. To demonstrate the effectiveness of the proposed SBM formulation for wave propagation analysis in periodic structures, several benchmark examples are presented and discussed The proposed SBM results are compared with the analytical solutions, the reference results and the COMSOL software.

  13. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    PubMed Central

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-01-01

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172

  14. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffmann, Florian; VandeVondele, Joost, E-mail: Joost.VandeVondele@mat.ethz.ch

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filteringmore » small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.« less

  15. In Vivo Validation of Volume Flow Measurements of Pulsatile Flow Using a Clinical Ultrasound System and Matrix Array Transducer.

    PubMed

    Hudson, John M; Williams, Ross; Milot, Laurent; Wei, Qifeng; Jago, James; Burns, Peter N

    2017-03-01

    The goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.97 (p < 0.0001) and a mean bias of -4.2%. The combination of 2-D matrix array technology and fast processing gives this Doppler method clinical potential, as many of the user- and system-dependent parameters of previous methods, including explicit vessel angle and diameter measurements, are eliminated. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Synchronized flash photolysis and pulse deposition in matrix isolation experiments

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1978-01-01

    An apparatus is described which permits flash photolysis of a pulse-deposited gas mixture in a matrix isolation experiment. This technique obviates the limitations of in situ photolysis imposed by the cage effect and by secondary photolysis. The matrix is deposited in pulses at 30-s intervals and photolyzed sequentially by four synchronized flashlamps approximately 1 ms before the pulse strikes the cold surface. Pulsed deposition maintains adequate isolation and causes line narrowing, which enhances spectral sensitivity. The efficacy of flash photolysis combined with pulsed deposition for producing and trapping transient species was demonstrated by infrated detection of CF3 (from photolysis of CF3I/Ar mixtures) and of ClCO (from photolysis of Cl2/CO/Ar mixtures). The apparatus was used to study the photolytic decomposition of gaseous tricarbonylironcyclobutadiene, C4H4Fe(CO)3. The results indicate that the primary photolytic step is not elimination of C4H4, as suggested earlier, but rather of CO.

  17. Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix

    NASA Astrophysics Data System (ADS)

    Caldwell, Kathleen L.; Murray, Kermit K.

    1998-05-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained using a water and glycerol matrix with a tunable mid-infrared optical parametric oscillator. The matrix consists of a 1:1 mixture of water and glycerol deposited on a thin layer of nitrocellulose and cooled to -30°C. When exposed to vacuum, most of the water evaporates, leaving a matrix of glycerol with residual water. The peptide bradykinin and the protein bovine insulin were used to test this new matrix. Mass spectra were obtained for bradykinin between 2.76 and 3.1 μm with the maximum analyte signal at 2.8 μm. Mass resolution in excess of 2000 for bradykinin and 500 for insulin was obtained with delayed ion extraction and a linear time of flight mass spectrometer. The addition of nitrocellulose to the matrix resulted in exceptionally durable samples: more than 10,000 laser shots which produced analyte signal could be obtained from a single sample spot.

  18. Analytical quality assurance in veterinary drug residue analysis methods: matrix effects determination and monitoring for sulfonamides analysis.

    PubMed

    Hoff, Rodrigo Barcellos; Rübensam, Gabriel; Jank, Louise; Barreto, Fabiano; Peralba, Maria do Carmo Ruaro; Pizzolato, Tânia Mara; Silvia Díaz-Cruz, M; Barceló, Damià

    2015-01-01

    In residue analysis of veterinary drugs in foodstuff, matrix effects are one of the most critical points. This work present a discuss considering approaches used to estimate, minimize and monitoring matrix effects in bioanalytical methods. Qualitative and quantitative methods for estimation of matrix effects such as post-column infusion, slopes ratios analysis, calibration curves (mathematical and statistical analysis) and control chart monitoring are discussed using real data. Matrix effects varying in a wide range depending of the analyte and the sample preparation method: pressurized liquid extraction for liver samples show matrix effects from 15.5 to 59.2% while a ultrasound-assisted extraction provide values from 21.7 to 64.3%. The matrix influence was also evaluated: for sulfamethazine analysis, losses of signal were varying from -37 to -96% for fish and eggs, respectively. Advantages and drawbacks are also discussed considering a workflow for matrix effects assessment proposed and applied to real data from sulfonamides residues analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fluid sampling apparatus and method

    DOEpatents

    Yeamans, D.R.

    1998-02-03

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  20. A method for the analysis of perfluorinated compounds in environmental and drinking waters and the determination of their lowest concentration minimal reporting levels.

    PubMed

    Boone, J Scott; Guan, Bing; Vigo, Craig; Boone, Tripp; Byrne, Christian; Ferrario, Joseph

    2014-06-06

    A trace analytical method was developed for the determination of seventeen specific perfluorinated chemicals (PFCs) in environmental and drinking waters. The objectives were to optimize an isotope-dilution method to increase the precision and accuracy of the analysis of the PFCs and to eliminate the need for matrix-matched standards. A 250 mL sample of environmental or drinking water was buffered to a pH of 4, spiked with labeled surrogate standards, extracted through solid phase extraction cartridges, and eluted with ammonium hydroxide in methyl tert-butyl ether: methanol solution. The sample eluents were concentrated to volume and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The lowest concentration minimal reporting levels (LCMRLs) for the seventeen PFCs were calculated and ranged from 0.034 to 0.600 ng/L for surface water and from 0.033 to 0.640 ng/L for drinking water. The relative standard deviations (RSDs) for all compounds were <20% for all concentrations above the LCMRL. The method proved effective and cost efficient and addressed the problems with the recovery of perfluorobutanoic acid (PFBA) and other short chain PFCs. Various surface water and drinking water samples were used during method development to optimize this method. The method was used to evaluate samples from the Mississippi River at New Orleans and drinking water samples from a private residence in that same city. The method was also used to determine PFC contamination in well water samples from a fire training area where perfluorinated foams were used in training to extinguish fires. Published by Elsevier B.V.

  1. Isotope Inversion Experiment evaluating the suitability of calibration in surrogate matrix for quantification via LC-MS/MS-Exemplary application for a steroid multi-method.

    PubMed

    Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H

    2016-05-30

    For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays quantifying endogenous analytes. We consider it a valuable and convenient tool to evaluate the correct quantification of authentic matrix samples based on a calibration curve in surrogate matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Simple and Fast Extraction Method for the Determination of Multiclass Antibiotics in Eggs Using LC-MS/MS.

    PubMed

    Wang, Kun; Lin, Kunde; Huang, Xinwen; Chen, Meng

    2017-06-21

    The purpose of this study was to develop and validate a simple, fast, and specific extraction method for the analysis of 64 antibiotics from nine classes (including sulfonamides, quinolones, tetracyclines, macrolides, lincosamide, nitrofurans, β-lactams, nitromidazoles, and cloramphenicols) in chicken eggs. Briefly, egg samples were simply extracted with a mixture of acetonitrile-water (90:10, v/v) and 0.1 mol·L -1 Na 2 EDTA solution assisted with ultrasonic. The extract was centrifuged, condensed, and directly analyzed on a liquid chromatography coupled to tandem mass spectrometry. Compared with conventional cleanup methods (passing through solid phase extract cartridges), the established method demonstrated comparable efficiencies in eliminating matrix effects and higher or equivalent recoveries for most of the target compounds. Typical validation parameters including specificity, linearity, matrix effect, limits of detection (LODs) and quantification (LOQs), the decision limit, detection capability, trueness, and precision were evaluated. The recoveries of target compounds ranged from 70.8% to 116.1% at three spiking levels (5, 20, and 50 μg·kg -1 ), with relative standard deviations less than 14%. LODs and LOQs were in the ranges of 0.005-2.00 μg·kg -1 and 0.015-6.00 μg·kg -1 for all of the antibiotics, respectively. A total of five antibiotics were successfully detected in 22 commercial eggs from local markets. This work suggests that the method is suitable for the analysis of multiclass antibiotics in eggs.

  3. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.

    PubMed

    Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling

    2018-01-15

    A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Detection of tire tread particles using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Prochazka, David; Bilík, Martin; Prochazková, Petra; Klus, Jakub; Pořízka, Pavel; Novotný, Jan; Novotný, Karel; Ticová, Barbora; Bradáč, Albert; Semela, Marek; Kaiser, Jozef

    2015-06-01

    The objective of this paper is a study of the potential of laser induced breakdown spectroscopy (LIBS) for detection of tire tread particles. Tire tread particles may represent pollutants; simultaneously, it is potentially possible to exploit detection of tire tread particles for identification of optically imperceptible braking tracks at locations of road accidents. The paper describes the general composition of tire treads and selection of an element suitable for detection using the LIBS method. Subsequently, the applicable spectral line is selected considering interferences with lines of elements that might be present together with the detected particles, and optimization of measurement parameters such as incident laser energy, gate delay and gate width is performed. In order to eliminate the matrix effect, measurements were performed using 4 types of tires manufactured by 3 different producers. An adhesive tape was used as a sample carrier. The most suitable adhesive tape was selected from 5 commonly available tapes, on the basis of their respective LIBS spectra. Calibration standards, i.e. an adhesive tape with different area content of tire tread particles, were prepared for the selected tire. A calibration line was created on the basis of the aforementioned calibration standards. The linear section of this line was used for determination of the detection limit value applicable to the selected tire. Considering the insignificant influence of matrix of various types of tires, it is possible to make a simple recalculation of the detection limit value on the basis of zinc content in a specific tire.

  5. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2005-02-01

    The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.

  6. MATIN: A Random Network Coding Based Framework for High Quality Peer-to-Peer Live Video Streaming

    PubMed Central

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay. PMID:23940530

  7. Generation of gas-phase ions from charged clusters: an important ionization step causing suppression of matrix and analyte ions in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W

    2016-12-30

    Ionization in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a very complicated process. It has been reported that quaternary ammonium salts show extremely strong matrix and analyte suppression effects which cannot satisfactorily be explained by charge transfer reactions. Further investigation of the reasons causing these effects can be useful to improve our understanding of the MALDI process. The dried-droplet and modified thin-layer methods were used as sample preparation methods. In the dried-droplet method, analytes were co-crystallized with matrix, whereas in the modified thin-layer method analytes were deposited on the surface of matrix crystals. Model compounds, tetrabutylammonium iodide ([N(Bu) 4 ]I), cesium iodide (CsI), trihexylamine (THA) and polyethylene glycol 600 (PEG 600), were selected as the test analytes given their ability to generate exclusively pre-formed ions, protonated ions and metal ion adducts respectively in MALDI. The strong matrix suppression effect (MSE) observed using the dried-droplet method might disappear using the modified thin-layer method, which suggests that the incorporation of analytes in matrix crystals contributes to the MSE. By depositing analytes on the matrix surface instead of incorporating in the matrix crystals, the competition for evaporation/ionization from charged matrix/analyte clusters could be weakened resulting in reduced MSE. Further supporting evidence for this inference was found by studying the analyte suppression effect using the same two sample deposition methods. By comparing differences between the mass spectra obtained via the two sample preparation methods, we present evidence suggesting that the generation of gas-phase ions from charged matrix/analyte clusters may induce significant suppression of matrix and analyte ions. The results suggest that the generation of gas-phase ions from charged matrix/analyte clusters is an important ionization step in MALDI-MS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro.

    PubMed

    Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L

    2006-03-01

    Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human acellularized dermis.

  9. A sensitive method for determination of COL-3, a chemically modified tetracycline, in human plasma using high-performance liquid chromatography and ultraviolet detection.

    PubMed

    Rudek, Michelle A; Hartke, Carol; Zabelina, Yelena; Zhao, Ming; New, Pamela; Baker, Sharyn D

    2005-04-01

    COL-3, 6-deoxy-6-desmethyl-4-desdimethylamino-tetracycline, is a matrix metalloproteinase inhibitor currently in clinical development. A HPLC-UV method to quantitate COL-3 in human plasma was developed. COL-3 was extracted from plasma using solid-phase extraction cartridges. COL-3 is separated on a Waters Symmetry Shield RP8 (3.9 mm x150 mm, 5 microm) column with EDTA (0.001 M) in sodium acetate (0.01 M, pH 3.5)-acetonitrile mobile phase using a gradient profile at a flow rate of 1 ml/min for 22 min. Carryover was eliminated by using an extended needle wash of methanol:acetonitrile:dichloromethane (1:1:1, v/v/v). Detection of COL-3 and the internal standard, chrysin, was observed at 350 nm. COL-3 and chrysin elute at 8.9 and 9.9 min, respectively. The lower limit of quantitation in human plasma of COL-3 was 75 ng/ml, linearity was observed from 75 to 10,000 ng/ml. A 30,000 ng/ml sample that was diluted 1:50 with plasma was accurately quantitated. This method is rapid, widely applicable, and suitable for quantifying COL-3 in patient samples enabling further clinical pharmacology characterization of COL-3.

  10. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  11. On the role of dimensionality and sample size for unstructured and structured covariance matrix estimation

    NASA Technical Reports Server (NTRS)

    Morgera, S. D.; Cooper, D. B.

    1976-01-01

    The experimental observation that a surprisingly small sample size vis-a-vis dimension is needed to achieve good signal-to-interference ratio (SIR) performance with an adaptive predetection filter is explained. The adaptive filter requires estimates as obtained by a recursive stochastic algorithm of the inverse of the filter input data covariance matrix. The SIR performance with sample size is compared for the situations where the covariance matrix estimates are of unstructured (generalized) form and of structured (finite Toeplitz) form; the latter case is consistent with weak stationarity of the input data stochastic process.

  12. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  13. Thermal modelling of normal distributed nanoparticles through thickness in an inorganic material matrix

    NASA Astrophysics Data System (ADS)

    Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.

    2017-10-01

    Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.

  14. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  15. Bioanalytical method development and validation for the determination of glycine in human cerebrospinal fluid by ion-pair reversed-phase liquid chromatography-tandem mass spectrometry.

    PubMed

    Jiang, Jian; James, Christopher A; Wong, Philip

    2016-09-05

    A LC-MS/MS method has been developed and validated for the determination of glycine in human cerebrospinal fluid (CSF). The validated method used artificial cerebrospinal fluid as a surrogate matrix for calibration standards. The calibration curve range for the assay was 100-10,000ng/mL and (13)C2, (15)N-glycine was used as an internal standard (IS). Pre-validation experiments were performed to demonstrate parallelism with surrogate matrix and standard addition methods. The mean endogenous glycine concentration in a pooled human CSF determined on three days by using artificial CSF as a surrogate matrix and the method of standard addition was found to be 748±30.6 and 768±18.1ng/mL, respectively. A percentage difference of -2.6% indicated that artificial CSF could be used as a surrogate calibration matrix for the determination of glycine in human CSF. Quality control (QC) samples, except the lower limit of quantitation (LLOQ) QC and low QC samples, were prepared by spiking glycine into aliquots of pooled human CSF sample. The low QC sample was prepared from a separate pooled human CSF sample containing low endogenous glycine concentrations, while the LLOQ QC sample was prepared in artificial CSF. Standard addition was used extensively to evaluate matrix effects during validation. The validated method was used to determine the endogenous glycine concentrations in human CSF samples. Incurred sample reanalysis demonstrated reproducibility of the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Statistical classification techniques for engineering and climatic data samples

    NASA Technical Reports Server (NTRS)

    Temple, E. C.; Shipman, J. R.

    1981-01-01

    Fisher's sample linear discriminant function is modified through an appropriate alteration of the common sample variance-covariance matrix. The alteration consists of adding nonnegative values to the eigenvalues of the sample variance covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new linear discriminant function over Fisher's function. This study is limited to the two-group discriminant problem.

  17. Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer

    PubMed Central

    Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in several ways, and will likely become reality in the near future. PMID:23953737

  18. [Optimizing histological image data for 3-D reconstruction using an image equalizer].

    PubMed

    Roth, A; Melzer, K; Annacker, K; Lipinski, H G; Wiemann, M; Bingmann, D

    2002-01-01

    Bone cells form a wired network within the extracellular bone matrix. To analyse this complex 3D structure, we employed a confocal fluorescence imaging procedure to visualize live bone cells within their native surrounding. By means of newly developed image processing software, the "Image-Equalizer", we aimed to enhanced the contrast and eliminize artefacts in such a way that cell bodies as well as fine interconnecting processes were visible.

  19. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    DTIC Science & Technology

    2016-12-22

    reflective inverse diffusion, which was a proof-of-concept experiment that used phase modulation to shape the wavefront of a laser causing it to refocus...after reflection from a rough surface. By refocusing the light, reflective inverse diffusion has the potential to eliminate the complex radiometric model...photography. However, the initial reflective inverse diffusion experiments provided no mathematical background and were conducted under the premise that the

  20. Method for the quantification of current use and persistent pesticides in cow milk, human milk and baby formula using gas chromatography tandem mass spectrometry.

    PubMed

    Chen, Xianyu; Panuwet, Parinya; Hunter, Ronald E; Riederer, Anne M; Bernoudy, Geneva C; Barr, Dana Boyd; Ryan, P Barry

    2014-11-01

    The aim of this study was to develop an analytical method for the quantification of organochlorine (OC), organophosphate (OP), carbamate, and pyrethroid insecticide residues in cow milk, human milk, and baby formula. A total of 25 compounds were included in this method. Sample extraction procedures combined liquid-liquid extraction, freezing-lipid filtration, dispersive primary-secondary amine cleanup, and solid-phase extraction together for effective extraction and elimination of matrix interferences. Target compounds were analyzed using gas chromatography with electron impact ionization-tandem mass spectrometry (GC-EI-MS/MS) in the multiple reaction monitoring (MRM) mode. Average extraction recoveries obtained from cow milk samples fortified at two different concentrations (10 ng/mL and 25 ng/mL), ranged from 34% to 102%, with recoveries for the majority of target compounds falling between 60% and 80%. Similar ranges were found for formula fortified at 25 ng/mL. The estimated limits of detection for most target analytes were in the low pg/mL level (range 3-1600 pg/mL). The accuracies and precisions were within the range of 80-120% and less than 15%, respectively. This method was tested for its viability by analyzing 10 human milk samples collected from anonymous donors, 10 cow milk samples and 10 baby formula samples purchased from local grocery stores in the United States. Hexachlorobenzene, p,p-dicofol, o,p-DDE, p,p-DDE, and chlorpyrifos were found in all samples analyzed. We found detectable levels of permethrin, cyfluthrin, and fenvalerate in some of the cow milk samples but not in human milk or baby formula samples. Some of the pesticides, such as azinphos-methyl, heptachlor epoxide, and the pesticide synergist piperonyl butoxide, were detected in some of the cow milk and human milk samples but not in baby formula samples. Copyright © 2014. Published by Elsevier B.V.

  1. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals.

    PubMed

    Maryšková, Milena; Ardao, Inés; García-González, Carlos A; Martinová, Lenka; Rotková, Jana; Ševců, Alena

    2016-07-01

    In recent years, there has been an increase in efforts to improve wastewater treatment as the concentration of dangerous pollutants, such as endocrine disrupting chemicals, in wastewater increases. These compounds, which mimic the effect of hormones, have a negative impact on human health and are not easily removed from water. One way to effectively eliminate these pollutants is to use enzymatically activated materials. In this study, we report on the use of laccase from the white rot fungus Trametes versicolor immobilized onto polyamide 6/chitosan (PA6/CHIT) nanofibers modified using two different spacers (bovine serum albumin and hexamethylenediamine). We then tested the ability of the PA6/CHIT-laccase biocatalysts to eliminate a mixture containing 50μM of two endocrine disrupting chemicals: bisphenol A and 17α-ethinylestradiol. The PA6/CHIT nanofiber matrix used in this study not only proved to be a suitable carrier for immobilized and modified laccase but was also efficient in the removal of a mixture of endocrine disrupting chemicals in three treatment cycles. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Estimating Depolarization with the Jones Matrix Quality Factor

    NASA Astrophysics Data System (ADS)

    Hilfiker, James N.; Hale, Jeffrey S.; Herzinger, Craig M.; Tiwald, Tom; Hong, Nina; Schöche, Stefan; Arwin, Hans

    2017-11-01

    Mueller matrix (MM) measurements offer the ability to quantify the depolarization capability of a sample. Depolarization can be estimated using terms such as the depolarization index or the average degree of polarization. However, these calculations require measurement of the complete MM. We propose an alternate depolarization metric, termed the Jones matrix quality factor, QJM, which does not require the complete MM. This metric provides a measure of how close, in a least-squares sense, a Jones matrix can be found to the measured Mueller matrix. We demonstrate and compare the use of QJM to other traditional calculations of depolarization for both isotropic and anisotropic depolarizing samples; including non-uniform coatings, anisotropic crystal substrates, and beetle cuticles that exhibit both depolarization and circular diattenuation.

  3. Metamorphism and aqueous alteration in low petrographic type ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Xie, T.; Lipschutz, M. E.; Sears, D. W. G.; Guimon, R. K.; Jie, Lu; Benoit, P. H.; O'D. Alexander, C. M.; Wright, Ian; Pillinger, C.; Morse, A. D.; hide

    1995-01-01

    In order to investigate the relative importance of dry metamorphism and aqueous alteration in the history of chondruies, chondruies were hand-picked from the Semarkona (petrographic type 3.0), Bishunpur (3. 1), Chainpur (3.4), Dhajala (3.8) and Allegan (5) chondrites, and matrix samples were extracted from the first three ordinary chondrites. The thermoluminescence (TL) properties of all the samples were measured, and appropriate subsets of the samples were analyzed by electron-microprobe and radiochemical neutron activation and the water and H-isotopic composition determined. The TL data for chondrules from Semarkona and Bishunpur scatter widely showing no unambiguous trends, although group B1 chondrules tend to have lower sensitivities and lower peak temperatures compared with group A5 chondrules. It is argued that these data reflect the variety of processes accompanying chondrule formation. The chondrules show remarkably uniform contents of the highly labile elements, indicating mineralogical control on abundance and volatile loss from silicates and loss and recondensation of mobile chalcophiles and siderophiles in some cases. Very high D/H values (up to approx. 8000% SMOW) are observed in certain Semarkona chondrules, a confirmation of earlier work. With increasing petrographic type, mean TL sensitivities of the chondrules increase, the spread of values within an individual meteorite decreases, and peak temperatures and peak widths show trends indicating that the TL is mainly produced by feldspar and that dry, thermal metamorphism is the dominant secondary process experienced by the chondrules. The TL sensitivities of matrix samples also increase with petrographic type. Chainpur matrix samples show the same spread of peak temperatures and peak widths as Chainpur chondruies, indicating metamorphism-related changes in the feldspar are responsible for the TL of the matrix. The TL data for the Semarkona and Bishunpur matrix samples provide, at best, only weak evidence for aqueous alteration, but the matrix contains H with approximately terrestrial D/H values, even though it contains much water. Secondary processes (probably aqueous alteration) presumably lowered the D/H of the matrix and certain chondrules. While chondrule properties appear to be governed primarily by formation processes and subsequent metamorphism, the matrix of Semarkona has a more complex history involving aqueous alteration as a meteorite-wide process.

  4. Effectiveness of radiation processing in elimination of Aeromonas from food

    NASA Astrophysics Data System (ADS)

    Nagar, Vandan; Bandekar, Jayant R.

    2011-08-01

    Genus Aeromonas has emerged as an important human pathogen because it causes a variety of diseases including gastroenteritis and extra-intestinal infections. Contaminated water, sprouts, vegetables, seafood and food of animal origin have been considered to be the important sources of Aeromonas infection. In the present study, radiation sensitivity of indigenous strains of Aeromonas spp. from different food samples was evaluated. The decimal reduction dose (D10) values of different Aeromonas isolates in saline at 0-4 °C were in the range of 0.031-0.046 kGy. The mixed sprouts, chicken and fish samples were inoculated with a cocktail of five most resistant isolates (A. salmonicida Y567, A. caviae A85, A. jandaei A514A, A. hydrophila CECT 839T and A. veronii Y47) and exposed to γ radiation to study the effectiveness of radiation treatment in elimination of Aeromonas. D10 values of Aeromonas cocktail in mixed sprouts, chicken and fish samples were found to be 0.081±0.001, 0.089±0.003 and 0.091±0.003 kGy, respectively. Radiation treatment with a 1.5 kGy dose resulted in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples. No recovery of Aeromonas was observed in the 1.5 kGy treated samples stored at 4 °C up to 12 (mixed sprouts) and 7 days (chicken and fish samples), even after enrichment and selective plating. This study demonstrates that a 1.5 kGy dose of irradiation treatment could result in complete elimination of 105 CFU/g of Aeromonas spp. from mixed sprouts, chicken and fish samples.

  5. Two-polarity magnetization in the Manson impact breccia

    NASA Technical Reports Server (NTRS)

    Steiner, M. B.; Shoemaker, E. M.

    1993-01-01

    A preliminary paleomagnetic study of the impact breccia matrix and clasts has produced surprising results--nearly antipodal normal and reversed polarity magnetic vectors are observed in different portions of the core. Near-antipodal magnetizations within a segment of matrix and within individual samples rule out core inversion as the explanation of the dual polarity. In both the dense and the sandy matrix breccias, the magnetizations of clasts and matrix within the same core segment are identical; this negative 'conglomerate test' indicates that magnetization originated after impact. Paleomagnetic study of the Manson Impact Structure is an attempt to refine the Ar-40/Ar-39 age (65.7 +/- 1 m.y.) that suggests Manson to be a Cretaceous-Tertiary boundary impact. Refinement is possible because the boundary occurs within a reversed polarity interval (29R) of only 0.5 m.y. duration. The two breccia types in the Manson structure were both examined: one of a very dense matrix and apparently partially melted, and the breccia stratigraphically below it of granular or 'sandy' chloritic matrix. Samples were taken from the matrixes and a wide variety of clast compositions, including granite, diabase, gneiss, amphibolite, and melted granite. Currently, measurements have been made on 22 samples, using 30-35 steps of either alternating field (AF) or thermal demagnetization.

  6. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    DOEpatents

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  7. A simple non-enzymatic method for the preparation of white spot syndrome virus (WSSV) DNA from the haemolymph of Marsupenaeus japonicus using FTA matrix cards.

    PubMed

    Sudhakaran, R; Mekata, T; Kono, T; Supamattaya, K; Linh, N T H; Suzuki, Y; Sakai, M; Itami, T

    2009-07-01

    White spot syndrome virus (WSSV) is an important shrimp pathogen responsible for large economic losses for the shrimp culture industry worldwide. The nucleic acids of the virus must be adequately preserved and transported from the field to the laboratory before molecular diagnostic analysis is performed. Here, we developed a new method to isolate WSSV-DNA using Flinders Technology Associates filter paper (FTA matrix card; Whatman) without centrifugation or hazardous steps involved. FTA technology is a new method allowing the simple collection, shipment and archiving of nucleic acids from haemolymph samples providing DNA protection against nucleases, oxidation, UV damage, microbial and fungal attack. DNA samples prepared from 10-fold dilutions of moribund shrimp haemolymph using FTA matrix cards were analysed using semi-quantitative and quantitative polymerase chain reaction (PCR) and were compared with two commercially available DNA isolation methods, the blood GenomicPrep Mini Spin Kit (GE Healthcare) and the DNAzol (Invitrogen). Sequence analysis was performed for the DNA samples prepared using the various isolation procedures and no differences in the sequence among these methods were identified. Results based on the initial copy number of DNA prepared from the GenomicPrep Mini Spin Kit are a little more sensitive than the DNA prepared from FTA matrix cards, whereas the DNAzol method is not suitable for blood samples. Our data shows the efficiency of retention capacity of WSSV-DNA samples from impregnated FTA matrix cards. Matrix cards were easy to store and ship for long periods of time. They provide ease of handling and are a reliable alternative for sample collection and for molecular detection and characterization of WSSV isolates.

  8. Magnetic phase separation and unusual scenario of its temperature evolution in porous carbon-based nanomaterials doped with Au and Co

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. A.; Lashkul, A. V.; Matveev, V. V.; Molkanov, P. L.; Kurbakov, A. I.; Kiselev, I. A.; Lisunov, K. G.; Galimov, D.; Lähderanta, E.

    2018-01-01

    Two porous glassy carbon-based samples doped with Au and Co were investigated. The magnetization study as well as measurements of the nonlinear longitudinal response to a weak ac field (NLR) and electron magnetic resonance give evidences for a presence of magnetic nanoparticles (MNPs) embedded in paramagnetic/ferromagnetic matrix respectively, both samples being in magnetically phase-separated state at temperatures above 300 K. Matrix, forming by paramagnetic centers located in matrix outside the MNPs, reveals exchange interactions providing its ferromagnetic (FM) ordering below TC ≈ 210 K in Au-doped sample and well above 350 K in Co-doped one. For the former, NLR data suggest a percolation character of the matrix long-range FM order, which is mainly caused by a porous amorphous sample structure. Temperature dependence of the magnetization in the Au-doped sample evidences presence of antiferromagnetic (AF) interactions of MNPs with surrounding matrix centers. At magnetic ordering below TC these interactions promote origination of "domains" involving matrix fragment and surrounding MNPs with near opposite orientation of their moments that decreases the magnetostatic energy. On further cooling, the domains exhibit AF ordering below Tcr ∼ 140 K < TC, resulting in formation of a peculiar "ferrimagnet". The porous amorphous structure leads to absence of translational and other symmetry features through the samples that allows canted ordering of magnetic moments in domains and in whole sample providing "canted ferrimagnetism". At low temperatures Ttr ∼ 3 K, "order-oder" transition, evidencing the non-Heisenberg character of this magnetic material, occurs from ordering like "canted ferrimagnet" to FM alignment, which is stimulated by external magnetic field. The data for Co-doped sample imply the similar evolution of magnetic state but at higher temperatures above 350 K. This state exhibits more homogeneous arrangement of the FM nanoparticles and the FM matrix. Order-order transition occurs in it at higher Ttr ∼ 10-15 K as well and followed by formation of long-range FM ordering found earlier by neutron diffraction. Doping of carbon-based nanomaterials by magnetic metals provides advantages for their possible practical applications as Co-doped sample with higher TC (>350 K) and larger remanent magnetization evidences.

  9. Influence of Thermal Annealing on Free Carrier Concentration in (GaN) 1–x(ZnO) x Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Huafeng; Sklute, Elizabeth C.; Lehuta, Keith A.

    It has been previously demonstrated that the efficiency of (GaN) 1–x(ZnO) x semiconductors for solar water splitting can be improved by thermal annealing, though the origin of this improvement was not resolved. In the present work, it is shown that annealing reduces the free carrier (electron) concentration of (GaN) 1–x(ZnO) x. The time-, temperature-, and atmosphere-dependent changes were followed through two simple techniques: indirect diffuse reflectance measurements from 0.5 to 3.0 eV which show very high sensitivity to the free carrier response at the lowest energies and EPR measurements which directly probe the number of unpaired electrons. For the thermalmore » annealing of investigated compositions, it is found that temperatures of 250 °C and below do not measurably change the free carrier concentration, a gradual reduction of the free carrier concentration occurs over a time period of many hours at 350 °C, and the complete elimination of free carriers happens within an hour at 550 °C. These changes are driven by an oxidative process which is effectively suppressed under actively reducing atmospheres (H 2, NH 3) but which can still occur under nominally inert gases (N 2, Ar). Surprisingly, it is found that the N 2 gas released during thermal oxidation of (GaN) 1–x(ZnO) x samples remains trapped within the solid matrix and is not expelled until temperatures of about 900 °C, a result directly confirmed through neutron pair-distribution fuction (PDF) measurements which show a new peak at the 1.1 Å bond length of molecular nitrogen after annealing. Preliminary comparative photoelectrochemical (PEC) measurements of the influence of free carrier concentration on photoactivity for water oxidation were carried out for a sample with x = 0.64. Samples annealed to eliminate free carriers exhibited no photoactivity for water oxidation, while a complex dependence on carrier concentration was observed for samples with intermediate free carrier concentrations. The methods demonstrated here provide an important approach for quantifying (and controlling) the carrier concentrations of semiconductors which are only available in the form of loose powders, as is commonly the case for oxynitride compounds.« less

  10. Influence of Thermal Annealing on Free Carrier Concentration in (GaN) 1–x(ZnO) x Semiconductors

    DOE PAGES

    Huang, Huafeng; Sklute, Elizabeth C.; Lehuta, Keith A.; ...

    2017-09-13

    It has been previously demonstrated that the efficiency of (GaN) 1–x(ZnO) x semiconductors for solar water splitting can be improved by thermal annealing, though the origin of this improvement was not resolved. In the present work, it is shown that annealing reduces the free carrier (electron) concentration of (GaN) 1–x(ZnO) x. The time-, temperature-, and atmosphere-dependent changes were followed through two simple techniques: indirect diffuse reflectance measurements from 0.5 to 3.0 eV which show very high sensitivity to the free carrier response at the lowest energies and EPR measurements which directly probe the number of unpaired electrons. For the thermalmore » annealing of investigated compositions, it is found that temperatures of 250 °C and below do not measurably change the free carrier concentration, a gradual reduction of the free carrier concentration occurs over a time period of many hours at 350 °C, and the complete elimination of free carriers happens within an hour at 550 °C. These changes are driven by an oxidative process which is effectively suppressed under actively reducing atmospheres (H 2, NH 3) but which can still occur under nominally inert gases (N 2, Ar). Surprisingly, it is found that the N 2 gas released during thermal oxidation of (GaN) 1–x(ZnO) x samples remains trapped within the solid matrix and is not expelled until temperatures of about 900 °C, a result directly confirmed through neutron pair-distribution fuction (PDF) measurements which show a new peak at the 1.1 Å bond length of molecular nitrogen after annealing. Preliminary comparative photoelectrochemical (PEC) measurements of the influence of free carrier concentration on photoactivity for water oxidation were carried out for a sample with x = 0.64. Samples annealed to eliminate free carriers exhibited no photoactivity for water oxidation, while a complex dependence on carrier concentration was observed for samples with intermediate free carrier concentrations. The methods demonstrated here provide an important approach for quantifying (and controlling) the carrier concentrations of semiconductors which are only available in the form of loose powders, as is commonly the case for oxynitride compounds.« less

  11. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, G.T.

    1986-06-10

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.

  12. Gas chromatography/matrix-isolation apparatus

    DOEpatents

    Reedy, Gerald T.

    1986-01-01

    A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.

  13. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  14. Characterization of Organic and Conventional Coffee Using Neutron Activation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. A. De Nadai Fernandes; P. Bode; F. S. Tagliaferro

    2000-11-12

    Countries importing organic coffee are facing the difficulty of assessing the quality of the product to distinguish original organic coffee from other coffees, thereby eliminating possible fraud. Many analytical methods are matrix sensitive and require matrix-matching reference materials for validation, which are currently nonexistent. This work aims to establish the trace element characterization of organic and conventional Brazilian coffees and to establish correlations with the related soil and the type of fertilizer and agrochemicals applied. It was observed that the variability in element concentrations between the various types of coffee is not so large, which emphasizes the need for analyticalmore » methods of high accuracy, reproducibility, and a well-known uncertainty. Moreover, the analyses indicate that sometimes the coffee packages may contain some soil remnants.« less

  15. HIV-1 matrix domain removal ameliorates virus assembly and processing defects incurred by positive nucleocapsid charge elimination.

    PubMed

    Ko, Li-Jung; Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2015-01-01

    Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.

  16. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  17. Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties

    PubMed Central

    Chi, Eric C.; Lange, Kenneth

    2014-01-01

    Estimation of a covariance matrix or its inverse plays a central role in many statistical methods. For these methods to work reliably, estimated matrices must not only be invertible but also well-conditioned. The current paper introduces a novel prior to ensure a well-conditioned maximum a posteriori (MAP) covariance estimate. The prior shrinks the sample covariance estimator towards a stable target and leads to a MAP estimator that is consistent and asymptotically efficient. Thus, the MAP estimator gracefully transitions towards the sample covariance matrix as the number of samples grows relative to the number of covariates. The utility of the MAP estimator is demonstrated in two standard applications – discriminant analysis and EM clustering – in this sampling regime. PMID:25143662

  18. Faecal matrix metalloprotease-9 is a more sensitive marker for diagnosing pouchitis than faecal calprotectin: results from a pilot study.

    PubMed

    Farkas, Klaudia; Bálint, Anita; Bor, Renáta; Földesi, Imre; Szűcs, Mónika; Nagy, Ferenc; Szepes, Zoltán; Annaházi, Anita; Róka, Richárd; Molnár, Tamás

    2015-03-01

    Potential non-invasive markers of pouchitis would have a great deal of significance within clinical practice. This study is aimed at assessing the diagnostic accuracy of fecal calprotectin and matrix metalloprotease-9 as potential markers in patients both with and without pouchitis. Stool and blood samples were collected from 33 ileal pouch-anal anastomosis patients before a follow-up pouchoscopy. Biopsy samples were taken for histological purposes. The presence of cuffitis and stenosis was evaluated with an endoscopy. Calprotectin and matrix metalloprotease-9 were quantified with an enzyme-linked immunosorbent assay. Pouchitis was detected in 30.3% of the patients. The levels of fecal calprotectin and matrix metalloprotease-9 increased significantly in patients with pouchitis. The sensitivity and specificity of matrix metalloprotease-9 was higher than that of fecal calprotectin. Only matrix metalloprotease-9 correlated significantly with the severity of pouchitis. Fecal matrix metalloprotease-9 has a high specificity in the diagnosis of pouchitis.

  19. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples.

    PubMed

    Jiang, Li; Huang, Tengjun; Feng, Shun; Wang, Jide

    2016-07-22

    The widespread use of organophosphate pesticides (OPPs) in agriculture leads to residue accumulation in the environment which is dangerous to human health and disrupts the ecological balance. In this work, one nanocomposite immobilized zirconium (Zr, IV) was prepared and used as the affinity probes to quickly and selectively extract organophosphorus pesticides (OPPs) from water samples. The Fe3O4-ethylenediamine tetraacetic acid (EDTA)@Zr(IV) nanocomposites (NPs) were prepared by simply mixing Zr(IV) ions with Fe3O4-EDTA NPs synthesized by one-pot chemical co-precipitation method. The immobilized Zr(IV) ions were further utilized to capture OPPs based on their high affinity for the phosphate moiety in OPPs. Coupled with GC-MS, four OPPs were used as models to demonstrate the feasibility of this approach. Under the optimum conditions, the limits of detection for target OPPs were in the range of 0.10-10.30ngmL(-1) with relative standard deviations (RSDs) of 0.61-4.40% (n=3), respectively. The linear ranges were over three orders of magnitudes (correlation coefficients, R(2)>0.9995). The Fe3O4-EDTA@Zr(IV) NPs were successfully applied to extract OPPs samples with recoveries of 86.95-112.60% and RSDs of 1.20-10.42% (n=3) from two spiked real water. By the proposed method, the matrix interference could be effectively eliminated. We hope our finding can provide a promising alternative for the fast extraction of OPPs from complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA.

    PubMed

    Giménez-Lirola, Luis G; Mur, Lina; Rivera, Belen; Mogler, Mark; Sun, Yaxuan; Lizano, Sergio; Goodell, Christa; Harris, D L Hank; Rowland, Raymond R R; Gallardo, Carmina; Sánchez-Vizcaíno, José Manuel; Zimmerman, Jeff

    2016-01-01

    In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.

  1. U-Th-Pb systematics. [geochemical analysis on lunar rocks

    NASA Technical Reports Server (NTRS)

    Nunes, P. D.; Tatsumoto, M.

    1974-01-01

    The following boulder samples are analyzed for U, Th, and Pb concentrations and for Pb isotopic compositions: 72275,53/matrix; 72275,73/matrix; 72275,81/dark rind, clast #1; 72275,117/white interior, clast #1; 72255,49/Civet Cat clast; 72255,54/light gray matrix; and 72255,67/dark gray matrix.

  2. Teaching Improvement Model Designed with DEA Method and Management Matrix

    ERIC Educational Resources Information Center

    Montoneri, Bernard

    2014-01-01

    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  3. Reduction of matrix effects in inductively coupled plasma mass spectrometry by flow injection with an unshielded torch.

    PubMed

    Gross, Cory T; McIntyre, Sally M; Houk, R S

    2009-06-15

    Solution samples with matrix concentrations above approximately 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (FI) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (approximately 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only approximately 14% loss of analyte signal. However, barium causes a much worse matrix effect, that is, approximately 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used.

  4. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  5. Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.

    2017-12-01

    The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.

  6. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    PubMed

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  7. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  8. Reducing the orientation influence of Mueller matrix measurements for anisotropic scattering media

    NASA Astrophysics Data System (ADS)

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E.; He, Yonghong; Ma, Hui

    2014-09-01

    Mueller matrix polarimetry techniques contain rich micro-structural information of samples, such as the sizes and refractive indices of scatterers. Recently, Mueller matrix imaging methods have shown great potentials as powerful tools for biomedical diagnosis. However, the orientations of anisotropic fibrous structures in tissues have prominent influence on Mueller matrix measurements, resulting in difficulties for extracting micro-structural information effectively. In this paper, we apply the backscattering Mueller matrix imaging technique to biological samples with different microstructures, such as chicken heart muscle, bovine skeletal muscle, porcine liver and fat tissues. Experimental results show that the directions of the muscle fibers have prominent influence on the Mueller matrix elements. In order to reduce the orientation influence, we adopt the rotation-independent MMT and RLPI parameters, which were proposed in our previous studies, to the tissue samples. Preliminary results in this paper show that the orientation-independent parameters and their statistic features are helpful for analyzing the tissues to obtain their micro-structural properties. Since the micro-structure variations are often related to the pathological changes, the method can be applied to microscope imaging techniques and used to detect abnormal tissues such as cancer and other lesions for diagnosis purposes.

  9. Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui

    2017-03-01

    As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.

  10. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Determination of polycyclic aromatic hydrocarbons (PAHs) in seafood using gas chromatography-mass spectrometry: collaborative study.

    PubMed

    Mastovska, Katerina; Sorenson, Wendy R; Hajslova, Jana

    2015-01-01

    A collaborative study was conducted to determine selected polycyclic aromatic hydrocarbons (PAHs) and their relevant alkyl homologs in seafood matrixes using a fast sample preparation method followed by analysis with GC/MS. The sample preparation method involves addition of (13)C-PAH surrogate mixture to homogenized samples and extraction by shaking with a water-ethyl acetate mixture. After phase separation induced by addition of anhydrous magnesium sulfate-sodium chloride (2 + 1, w/w) and centrifugation, an aliquot of the ethyl acetate layer is evaporated, reconstituted in hexane, and cleaned up using silica gel SPE. The analytes are eluted with hexane-dichloromethane (3 + 1, v/v), the clean extract is carefully evaporated, reconstituted in isooctane, and analyzed by GC/MS. To allow for the use of various GC/MS instruments, GC columns, silica SPE cartridges, and evaporation techniques and equipment, performance-based criteria were developed and implemented in the qualification phase of the collaborative study. These criteria helped laboratories optimize their GC/MS, SPE cleanup, and evaporation conditions; check and eliminate potential PAH contamination in their reagent blanks; and become familiar with the method procedure. Ten laboratories from five countries qualified and completed the collaborative study, which was conducted on three seafood matrixes (mussel, oyster, and shrimp) fortified with 19 selected PAH analytes at five different levels of benzo[a]pyrene (BaP) ranging from 2 to 50 μg/kg. Each matrix had a varying mixture of three different BaP levels. The other studied PAHs were at varying levels from 2 to 250 μg/kg to mimic typical PAH patterns. The fortified analytes in three matrixes were analyzed as blind duplicates at each level of BaP and corresponding other PAH levels. In addition, a blank with no added PAHs for each matrix was analyzed singly. Eight to 10 valid results were obtained for the majority of determinations. Mean recoveries of all tested analytes at the five different concentration levels were all in the range of 70-120%: 83.8-115% in shrimp, 77.3-107% in mussel, and 71.6-94.6% in oyster, except for a slightly lower mean recovery of 68.6% for benzo[ a ]anthracene fortified at 25 μg/kg in oyster (RSDr: 5.84%, RSDR: 21.1%) and lower mean recoveries for anthracene (Ant) and BaP in oyster at all three fortification levels (50.3-56.5% and 48.2-49.7%, respectively). The lower mean recoveries of Ant and BaP were linked to degradation of these analytes in oyster samples stored at -20°C, which also resulted in lower reproducibility (RSDR values in the range of 44.5-64.7% for Ant and 40.6-43.5% for BaP). However, the repeatability was good (RSDr of 8.78-9.96% for Ant and 6.43-11.9% for BaP), and the HorRat values were acceptable (1.56-1.94 for Ant and 1.10-1.45 for BaP). In all other cases, repeatability, reproducibility, and HorRat values were as follows: shrimp: RSDr 1.40-26.9%, RSDR 5.41-29.4%, HorRat: 0.22-1.34; mussel: RSDr 2.52-17.1%, RSDR 4.19-32.5%, HorRat: 0.17-1.13; and oyster: RSDr 3.12-22.7%, RSDR 8.41-31.8%, HorRat: 0.34-1.39. The results demonstrate that the method is fit-for-purpose to determine PAHs and their alkyl homologs in seafood samples. The method was approved by the Expert Review Panel on PAHs as the AOAC Official First Action Method 2014.08.

  12. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications

    PubMed Central

    Chaibub Neto, Elias

    2015-01-01

    In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965

  13. Feature extraction and descriptor calculation methods for automatic georeferencing of Philippines' first microsatellite imagery

    NASA Astrophysics Data System (ADS)

    Tupas, M. E. A.; Dasallas, J. A.; Jiao, B. J. D.; Magallon, B. J. P.; Sempio, J. N. H.; Ramos, M. K. F.; Aranas, R. K. D.; Tamondong, A. M.

    2017-10-01

    The FAST-SIFT corner detector and descriptor extractor combination was used to automatically georeference DIWATA-1 Spaceborne Multispectral Imager images. Features from the Fast Accelerated Segment Test (FAST) algorithm detects corners or keypoints in an image, and these robustly detected keypoints have well-defined positions. Descriptors were computed using Scale-Invariant Feature Transform (SIFT) extractor. FAST-SIFT method effectively SMI same-subscene images detected by the NIR sensor. The method was also tested in stitching NIR images with varying subscene swept by the camera. The slave images were matched to the master image. The keypoints served as the ground control points. Random sample consensus was used to eliminate fall-out matches and ensure accuracy of the feature points from which the transformation parameters were derived. Keypoints are matched based on their descriptor vector. Nearest-neighbor matching is employed based on a metric distance between the descriptors. The metrics include Euclidean and city block, among others. Rough matching outputs not only the correct matches but also the faulty matches. A previous work in automatic georeferencing incorporates a geometric restriction. In this work, we applied a simplified version of the learning method. RANSAC was used to eliminate fall-out matches and ensure accuracy of the feature points. This method identifies if a point fits the transformation function and returns inlier matches. The transformation matrix was solved by Affine, Projective, and Polynomial models. The accuracy of the automatic georeferencing method were determined by calculating the RMSE of interest points, selected randomly, between the master image and transformed slave image.

  14. [Standard addition determination of impurities in Na2CrO4 by ICP-AES].

    PubMed

    Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong

    2015-02-01

    Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.

  15. [The uncertainty evaluation of analytical results of 27 elements in geological samples by X-ray fluorescence spectrometry].

    PubMed

    Wang, Yi-Ya; Zhan, Xiu-Chun

    2014-04-01

    Evaluating uncertainty of analytical results with 165 geological samples by polarized dispersive X-ray fluorescence spectrometry (P-EDXRF) has been reported according to the internationally accepted guidelines. One hundred sixty five pressed pellets of similar matrix geological samples with reliable values were analyzed by P-EDXRF. These samples were divided into several different concentration sections in the concentration ranges of every component. The relative uncertainties caused by precision and accuracy of 27 components were evaluated respectively. For one element in one concentration, the relative uncertainty caused by precision can be calculated according to the average value of relative standard deviation with different concentration level in one concentration section, n = 6 stands for the 6 results of one concentration level. The relative uncertainty caused by accuracy in one concentration section can be evaluated by the relative standard deviation of relative deviation with different concentration level in one concentration section. According to the error propagation theory, combining the precision uncertainty and the accuracy uncertainty into a global uncertainty, this global uncertainty acted as method uncertainty. This model of evaluating uncertainty can solve a series of difficult questions in the process of evaluating uncertainty, such as uncertainties caused by complex matrix of geological samples, calibration procedure, standard samples, unknown samples, matrix correction, overlap correction, sample preparation, instrument condition and mathematics model. The uncertainty of analytical results in this method can act as the uncertainty of the results of the similar matrix unknown sample in one concentration section. This evaluation model is a basic statistical method owning the practical application value, which can provide a strong base for the building of model of the following uncertainty evaluation function. However, this model used a lot of samples which cannot simply be applied to other types of samples with different matrix samples. The number of samples is too large to adapt to other type's samples. We will strive for using this study as a basis to establish a reasonable basis of mathematical statistics function mode to be applied to different types of samples.

  16. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baun, A.; Jensen, S.D.; Bjerg, P.L.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additionalmore » genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.« less

  17. Detection of staphylococcal enterotoxin A (SEA) at picogram level by a capacitive immunosensor.

    PubMed

    Jantra, Jongjit; Kanatharana, Proespichaya; Asawatreratanakul, Punnee; Wongkittisuksa, Booncharoen; Limsakul, Chusak; Thavarungkul, Panote

    2011-01-01

    This work presents the use of a flow injection capacitive immunosensor to detect staphylococcal enterotoxin A (SEA). The study was based on the direct detection of a capacitance change due to the binding between SEA and anti-SEA immobilized on a gold electrode. The optimal regeneration solution, flow rate, sample volume and buffer conditions were studied. Under the optimum conditions, this label-free biosensor provided linearity between 1 × 10(-12) g L(-1) and 1 × 10(-8) g L(-1) of SEA and the limit of detection was 1 × 10(-12) g L(-1) which was much lower than the infectious dose (0.5 × 10(-6) - 1 × 10(-6) g L(-1)). Using the regeneration solution of, 15.0 mM glycine-HCl pH 2.20, to break the binding between SEA and the immobilized anti-SEA enabled the electrode to be reused up to 39 times. This technique was applied to analyze SEA in liquid and solid food samples. Any matrix effect can be eliminated by simple dilution. SEA contamination was found in three samples, iced tea with milk (28 ± 1 ng L(-1)), orange juice (113 ± 6 ng L(-1)) and fried chicken (1.1 ± 0.2 ng g(-1)); however, the concentrations were much lower than the infectious dose. The proposed method would be useful for rapid screening of SEA in various matrices.

  18. Nano-LC/MALDI-MS using a column-integrated spotting probe for analysis of complex biomolecule samples.

    PubMed

    Hioki, Yusaku; Tanimura, Ritsuko; Iwamoto, Shinichi; Tanaka, Koichi

    2014-03-04

    Nanoflow liquid chromatography (nano-LC) is an essential technique for highly sensitive analysis of complex biological samples, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is advantageous for rapid identification of proteins and in-depth analysis of post-translational modifications (PTMs). A combination of nano-LC and MALDI-MS (nano-LC/MALDI-MS) is useful for highly sensitive and detailed analysis in life sciences. However, the existing system does not fully utilize the advantages of each technique, especially in the interface of eluate transfer from nano-LC to a MALDI plate. To effectively combine nano-LC with MALDI-MS, we integrated a nano-LC column and a deposition probe for the first time (column probe) and incorporated it into a nano-LC/MALDI-MS system. Spotting nanoliter eluate droplets directly from the column onto the MALDI plate prevents postcolumn diffusion and preserves the chromatographic resolution. A DHB prespotted plate was prepared to suit the fabricated column probe to concentrate the droplets of nano-LC eluate. The performance of the advanced nano-LC/MALDI-MS system was substantiated by analyzing protein digests. When the system was coupled with multidimensional liquid chromatography (MDLC), trace amounts of glycopeptides that spiked into complex samples were successfully detected. Thus, a nano-LC/MALDI-MS direct-spotting system that eliminates postcolumn diffusion was constructed, and the efficacy of the system was demonstrated through highly sensitive analysis of the protein digests or spiked glycopeptides.

  19. Quantification of 31 illicit and medicinal drugs and metabolites in whole blood by fully automated solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Bjørk, Marie Kjærgaard; Simonsen, Kirsten Wiese; Andersen, David Wederkinck; Dalsgaard, Petur Weihe; Sigurðardóttir, Stella Rögn; Linnet, Kristian; Rasmussen, Brian Schou

    2013-03-01

    An efficient method for analyzing illegal and medicinal drugs in whole blood using fully automated sample preparation and short ultra-high-performance liquid chromatography-tandem mass spectrometry (MS/MS) run time is presented. A selection of 31 drugs, including amphetamines, cocaine, opioids, and benzodiazepines, was used. In order to increase the efficiency of routine analysis, a robotic system based on automated liquid handling and capable of handling all unit operation for sample preparation was built on a Freedom Evo 200 platform with several add-ons from Tecan and third-party vendors. Solid-phase extraction was performed using Strata X-C plates. Extraction time for 96 samples was less than 3 h. Chromatography was performed using an ACQUITY UPLC system (Waters Corporation, Milford, USA). Analytes were separated on a 100 mm × 2.1 mm, 1.7 μm Acquity UPLC CSH C(18) column using a 6.5 min 0.1 % ammonia (25 %) in water/0.1 % ammonia (25 %) in methanol gradient and quantified by MS/MS (Waters Quattro Premier XE) in multiple-reaction monitoring mode. Full validation, including linearity, precision and trueness, matrix effect, ion suppression/enhancement of co-eluting analytes, recovery, and specificity, was performed. The method was employed successfully in the laboratory and used for routine analysis of forensic material. In combination with tetrahydrocannabinol analysis, the method covered 96 % of cases involving driving under the influence of drugs. The manual labor involved in preparing blood samples, solvents, etc., was reduced to a half an hour per batch. The automated sample preparation setup also minimized human exposure to hazardous materials, provided highly improved ergonomics, and eliminated manual pipetting.

  20. Concept for facilitating analyst-mediated interpretation of qualitative chromatographic-mass spectral data: an alternative to manual examination of extracted ion chromatograms.

    PubMed

    Borges, Chad R

    2007-07-01

    A chemometrics-based data analysis concept has been developed as a substitute for manual inspection of extracted ion chromatograms (XICs), which facilitates rapid, analyst-mediated interpretation of GC- and LC/MS(n) data sets from samples undergoing qualitative batchwise screening for prespecified sets of analytes. Automatic preparation of data into two-dimensional row space-derived scatter plots (row space plots) eliminates the need to manually interpret hundreds to thousands of XICs per batch of samples while keeping all interpretation of raw data directly in the hands of the analyst-saving great quantities of human time without loss of integrity in the data analysis process. For a given analyte, two analyte-specific variables are automatically collected by a computer algorithm and placed into a data matrix (i.e., placed into row space): the first variable is the ion abundance corresponding to scan number x and analyte-specific m/z value y, and the second variable is the ion abundance corresponding to scan number x and analyte-specific m/z value z (a second ion). These two variables serve as the two axes of the aforementioned row space plots. In order to collect appropriate scan number (retention time) information, it is necessary to analyze, as part of every batch, a sample containing a mixture of all analytes to be tested. When pure standard materials of tested analytes are unavailable, but representative ion m/z values are known and retention time can be approximated, data are evaluated based on two-dimensional scores plots from principal component analysis of small time range(s) of mass spectral data. The time-saving efficiency of this concept is directly proportional to the percentage of negative samples and to the total number of samples processed simultaneously.

  1. Improved sample preparation of glyphosate and methylphosphonic acid by EPA method 6800A and time-of-flight mass spectrometry using novel solid-phase extraction.

    PubMed

    Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip

    2012-02-01

    The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.

  2. A rapid and high-precision method for sulfur isotope δ(34)S determination with a multiple-collector inductively coupled plasma mass spectrometer: matrix effect correction and applications for water samples without chemical purification.

    PubMed

    Lin, An-Jun; Yang, Tao; Jiang, Shao-Yong

    2014-04-15

    Previous studies have indicated that prior chemical purification of samples, although complex and time-consuming, is essential in obtaining precise and accurate results for sulfur isotope ratios using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this study, we introduce a new, rapid and precise MC-ICP-MS method for sulfur isotope determination from water samples without chemical purification. The analytical work was performed on an MC-ICP-MS instrument with medium mass resolution (m/Δm ~ 3000). Standard-sample bracketing (SSB) was used to correct samples throughout the analytical sessions. Reference materials included an Alfa-S (ammonium sulfate) standard solution, ammonium sulfate provided by the lab of the authors and fresh seawater from the South China Sea. A range of matrix-matched Alfa-S standard solutions and ammonium sulfate solutions was used to investigate the matrix (salinity) effect (matrix was added in the form of NaCl). A seawater sample was used to confirm the reliability of the method. Using matrix-matched (salinity-matched) Alfa-S as the working standard, the measured δ(34)S value of AS (-6.73 ± 0.09‰) was consistent with the reference value (-6.78 ± 0.07‰) within the uncertainty, suggesting that this method could be recommended for the measurement of water samples without prior chemical purification. The δ(34)S value determination for the unpurified seawater also yielded excellent results (21.03 ± 0.18‰) that are consistent with the reference value (20.99‰), thus confirming the feasibility of the technique. The data and the results indicate that it is feasible to use MC-ICP-MS and matrix-matched working standards to measure the sulfur isotopic compositions of water samples directly without chemical purification. In comparison with the existing MC-ICP-MS techniques, the new method is better for directly measuring δ(34)S values in water samples with complex matrices; therefore, it can significantly accelerate analytical turnover. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  4. Estimation of Monocrotophos renal elimination half-life in humans.

    PubMed

    Jose, Arun; Selvakumar, Ratnasamy; Peter, John Victor; Karthik, Gunasekaran; Fleming, Denise Helen; Fleming, Jude Joseph

    2015-01-01

    Monocrotophos, implicated in about 1/4th of organophosphate poisonings in our centre, is associated with the highest mortality (24%). Yet data on its pharmacokinetics in humans is limited. We estimated the renal elimination half-life of monocrotophos. Consecutive patients presenting with monocrotophos overdose over a 2-month period who had normal renal function were recruited. Monocrotophos in plasma and urine were quantitated by high-performance liquid chromatography. Urine was obtained from catheterised samples at 0-2, 2-4, 4-6, 6-8, 8-12 and 12-24 h. Plasma specimens were collected at the time of admission, and at the midpoint of the urine sample collections at 1, 3, 5, 7, 10, 15 and 21 h. Renal elimination half-life was calculated from the cumulative amount excreted in the urine. The cohort of 5 male patients, aged 35.8 ± 2.94 years, presented with typical organophosphate (cholinergic) toxidrome following intentional monocrotophos overdose. All patients required mechanical ventilation; one patient died. Plasma data was available from 5 patients and urine data from 3 patients. The median renal elimination half-life was 3.3 (range: 1.9-5.0 h). Plasma monocrotophos values, as natural log, fell in a linear fashion up to around 10 h after admission. After the 10-hour period, there was a secondary rise in values in all the 3 patients in whom sampling was continued after 10 h. A renal elimination half-life of 3.3 h for monocrotophos is consistent with a water-soluble compound which is rapidly cleared from the plasma. The secondary rise in plasma monocrotophos values suggests possible re-distribution. Determining the elimination profile of this compound will help develop better strategies for treatment.

  5. Communication Efficient Gaussian Elimination with Partial Pivoting using a Shape Morphing Data Layout

    DTIC Science & Technology

    2013-02-21

    support comes from ParLab affiliates National Instruments, Nokia, NVIDIA , Oracle and Samsung, as well as MathWorks. Research is also supported by DOE...affiliates National Instruments, Nokia, NVIDIA , Oracle and Samsung, as well as MathWorks. Research is also supported by DOE grants DE-SC0004938, DE-SC0005136...International Business Machines Company , 1966. [17] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM J. Matrix Anal. Appl., 18

  6. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Projects, Abstracts of Phase 1 Awards from FY 1989 SBIR Solicitation

    DTIC Science & Technology

    1990-04-01

    MISSION REQUIREMENTS. THE MATRIX MATERIALS PROPOSED FOR THIS PHASE I INVESTIGATION ARE POLYETHER ETHER KETON (PEEK) AND POLYBUTELENE TERAPHTHALATE (PBT...NOISE AND RADIATION HARD, PARTICULARLY RADIATION HARD AGAINST NEUTRON IRRADIATION. A PROPOSAL IS MADE FOR THE DEVELOPMENT OF AN INNOVATIVE TECHNOLOGY...AND RADIATION -HARD APPLICATIONS. THE SOI WAFER WILL ELIMINATE LATCH-UP EFFECTS, REDUCE NEUTRON -CAPTURE VOLUME AND PROVIDE ELECTRICAL ISOLATION FOR

  7. Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury.

    PubMed

    Cooper, John G; Jeong, Su Ji; McGuire, Tammy L; Sharma, Sripadh; Wang, Wenxia; Bhattacharyya, Swati; Varga, John; Kessler, John A

    2018-04-27

    Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is an impediment to axonal regeneration. Fibrotic scarring is characterized by the accumulation of fibronectin, collagen, and fibroblasts at the lesion site. The mechanisms regulating fibrotic scarring after SCI and its effects on axonal elongation and functional recovery are not well understood. In this study, we examined the effects of eliminating an isoform of fibronectin containing the Extra Domain A domain (FnEDA) on both fibrosis and on functional recovery after contusion SCI using male and female FnEDA-null mice. Eliminating FnEDA did not reduce the acute fibrotic response but markedly diminished chronic fibrotic scarring after SCI. Glial scarring was unchanged after SCI in FnEDA-null mice. We found that FnEDA was important for the long-term stability of the assembled fibronectin matrix during both the subacute and chronic phases of SCI. Motor functional recovery was significantly improved, and there were increased numbers of axons in the lesion site compared to wildtype mice, suggesting that the chronic fibrotic response is detrimental to recovery. Our data provide insight into the mechanisms of fibrosis after SCI and suggest that disruption of fibronectin matrix stability by targeting FnEDA represents a potential therapeutic strategy for promoting recovery after SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Removal of carbamates and detoxification potential in a biomixture: Fungal bioaugmentation versus traditional use.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Madrigal-León, Karina; Masís-Mora, Mario; Pérez-Villanueva, Marta; Chin-Pampillo, Juan Salvador

    2017-01-01

    The use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d. Then the fungus was employed in the bioaugmentation of an optimized biomixture to remove the aforementioned carbamates plus carbofuran (CFN). Bioaugmented and non-bioaugmented systems removed over 99% ALD and MTM after 8d of treatment, nonetheless a slight initial delay in the removal was observed in the bioaugmented biomixtures (removal after 3d: ALD 87%/97%; MTM 86%/99%, in bioaugmented/non-bioaugmented systems). The elimination of the other carbamates was slower, but independent of the presence of the fungus: >98% for MTM after 35d and >99.5% for CFN after 22d. Though the bioaugmentation did not improve the removal capacity of the biomixture, it favored a lower production of transformation products at the first stages of the treatment, and in both cases, a marked decrease in the toxicity of the matrix was swiftly achieved along the process (from 435 to 448 TU to values <1TU in 16d). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Development and Characterization of SiC)/ MoSi2-Si3N4(p) Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    1998-01-01

    Intermetallic compound MoSi2 has long been known as a high temperature material that has excellent oxidation resistance and electrical/thermal conductivity. Also its low cost, high melting point (2023 C), relatively low density (6.2 g/cu cm versus 9 g/cu cm for current engine materials), and ease of machining, make it an attractive structural material. However, the use of MoSi2 has been hindered due to its poor toughness at low temperatures, poor creep resistance at high temperatures, and accelerated oxidation (also known as 'pest' oxidation) at temperatures between approximately 450 and 550 C. Continuous fiber reinforcing is very effective means of improving both toughness and strength. Unfortunately, MoSi2 has a relatively high coefficient of thermal expansion (CTE) compared to potential reinforcing fibers such as SiC. The large CTE mismatch between the fiber and the matrix resulted in severe matrix cracking during thermal cycling. Addition of about 30 to 50 vol % of Si3N4 particulate to MoSi2 improved resistance to low temperature accelerated oxidation by forming a Si2ON2 protective scale and thereby eliminating catastrophic 'pest failure'. The Si3N4 addition also improved the high temperature creep strength by nearly five orders of magnitude, doubled the room temperature toughness and significantly lowered the CTE of the MoSi2 and eliminated matrix cracking in SCS-6 reinforced composites even after thermal cycling. The SCS-6 fiber reinforcement improved the room temperature fracture toughness by seven times and impact resistance by five times. The composite exhibited excellent strength and toughness improvement up to 1400 C. More recently, tape casting was adopted as the preferred processing of MoSi2-base composites for improved fiber spacing, ability to use small diameter fibers, and for lower cost. Good strength and toughness values were also obtained with fine diameter Hi-Nicalon tow fibers. This hybrid composite remains competitive with ceramic matrix composites as a replacement for Ni-base superalloys in aircraft engine applications.

  10. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits.

    PubMed

    Guo, Qi; Wei, Hai-Zhen; Jiang, Shao-Yong; Hohl, Simon; Lin, Yi-Bo; Wang, Yi-Jing; Li, Yin-Chuan

    2017-12-19

    Except for extensive studies in core formation and volatile-element depletion processes using radiogenic Ag isotopes (i.e., the Pd-Ag chronometer), recent research has revealed that the mass fractionation of silver isotopes is in principle controlled by physicochemical processes (e.g., evaporation, diffusion, chemical exchange, etc.) during magmatic emplacement and hydrothermal alteration. As these geologic processes only produce very minor variations of δ 109 Ag from -0.5 to +1.1‰, more accurate and precise measurements are required. In this work, a robust linear relationship between instrumental mass discrimination of Ag and Pd isotopes was obtained at the Ag/Pd molar ratio of 1:20. In Au-Ag ore deposits, silver minerals have complex paragenetic relationships with other minerals (e.g., chalcopyrite, sphalerite, galena, pyrite, etc.). It is difficult to remove such abundant impurities completely because the other metals are tens to thousands of times richer than silver. Both quantitative evaluation of matrix effects and modification of chemical chromatography were carried out to deal with the problems. Isobaric inferences (e.g., 65 Cu 40 Ar + to 105 Pd, 208 Pb 2+ to 104 Pd, and 67 Zn 40 Ar + to 107 Ag + ) and space charge effects dramatically shift the measured δ 109 Ag values. The selection of alternative Pd isotope pairs is effective in eliminating spectral matrix effects so as to ensure accurate analysis under the largest possible ranges for metal impurities, which are Cu/Ag ≤ 50:1, Fe/Ag ≤ 600:1, Pb/Ag ≤ 10:1, and Zn/Ag ≤ 1:1, respectively. With the modified procedure, we reported silver isotope compositions (δ 109 Ag) in geological standard materials and typical Au-Ag ore deposit samples varying from -0.029 to +0.689 ‰ with external reproducibility of ±0.009-0.084 ‰. A systemic survey of δ 109 Ag (or ε 109 Ag) variations in rocks, ore deposits, and environmental materials in nature is discussed.

  11. What happens with organic micropollutants during UV disinfection in WWTPs? A global perspective from laboratory to full-scale.

    PubMed

    Paredes, L; Omil, F; Lema, J M; Carballa, M

    2018-01-15

    The phototransformation of 18 organic micropollutants (OMPs) commonly detected in wastewater treatment plant (WWTP) effluents was examined attempting to explain their fate during UV disinfection in WWTPs. For this purpose, a lab-scale UV reactor (lamp emitting at 254nm) was used to study the influence of the operational conditions (UV dose, temperature and water matrix) on OMPs abatement and disinfection efficiency. Chemical properties of OMPs and the quality of treated effluent were identified as key factors affecting the phototransformation rate of these compounds. Sampling campaigns were carried out at the inlet and outlet of UV systems of three WWTPs, and the results evidenced that only the most photosensitive compounds, such as sulfamethoxazole and diclofenac, are eliminated. Therefore, despite UV treatment is an effective technology to phototransform OMPs, the UV doses typically applied for disinfection (10-50mJ/cm 2 ) are not sufficient to remove them. Consequently, small modifications (increase of UV dose, use of catalysts) should be applied in WWTPs to enhance the abatement of OMPs in UV systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry

    Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less

  13. Direct analysis of psychoactive tryptamine and harmala alkaloids in the Amazonian botanical medicine ayahuasca by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    McIlhenny, Ethan H; Pipkin, Kelly E; Standish, Leanna J; Wechkin, Hope A; Strassman, Rick; Barker, Steven A

    2009-12-18

    A direct injection/liquid chromatography-electrospray ionization-tandem mass spectrometry procedure has been developed for the simultaneous quantitation of 11 compounds potentially found in the increasingly popular Amazonian botanical medicine and religious sacrament ayahuasca. The method utilizes a deuterated internal standard for quantitation and affords rapid detection of the alkaloids by a simple dilution assay, requiring no extraction procedures. Further, the method demonstrates a high degree of specificity for the compounds in question, as well as low limits of detection and quantitation despite using samples for analysis that had been diluted up to 200:1. This approach also appears to eliminate potential matrix effects. Method bias for each compound, examined over a range of concentrations, was also determined as was inter- and intra-assay variation. Its application to the analysis of three different ayahuasca preparations is also described. This method should prove useful in the study of ayahuasca in clinical and ethnobotanical research as well as in forensic examinations of ayahuasca preparations.

  14. Pharmacokinetics and Tissue Distribution Study of Chlorogenic Acid from Lonicerae Japonicae Flos Following Oral Administrations in Rats

    PubMed Central

    Zhou, Yulu; Zhou, Ting; Pei, Qi; Liu, Shikun; Yuan, Hong

    2014-01-01

    Chlorogenic acid (ChA) is proposed as the major bioactive compounds of Lonicerae Japonicae Flos (LJF). Forty-two Wistar rats were randomly divided into seven groups to investigate the pharmacokinetics and tissue distribution of ChA, via oral administration of LJF extract, using ibuprofen as internal standard, employing a high performance liquid chromatography in conjunction with tandem mass spectrometry. Analytes were extracted from plasma samples and tissue homogenate by liquid–liquid extraction with acetonitrile, separated on a C 18 column by linear gradient elution, and detected by electrospray ionization mass spectrometry in negative selected multiple reaction monitoring mode. Our results successfully demonstrate that the method has satisfactory selectivity, linearity, extraction recovery, matrix effect, precision, accuracy, and stability. Using noncompartment model to study pharmacokinetics, profile revealed that ChA was rapidly absorbed and eliminated. Tissue study indicated that the highest level was observed in liver, followed by kidney, lung, heart, and spleen. In conclusion, this method was suitable for the study on pharmacokinetics and tissue distribution of ChA after oral administration. PMID:25140190

  15. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  16. [Serum glycosaminoglycans in Graves' disease patients].

    PubMed

    Winsz-Szczotka, Katarzyna B; Olczyk, Krystyna Z; Koźma, Ewa M; Komosińska-Vassev, Katarzyna B; Wisowski, Grzegorz R; Marcisz, Czesław

    2006-01-01

    The aim of the study was to determine the blood serum sulfated glycosaminoglycans (GAGs) and hyaluronic acid (HA) concentration of Graves' disease patients before treatment and after attainment of the euthyroid state. The study was carried out on the blood serum obtained from 17 patients with newly recognised Graves' disease and from the same patients after attainment of the euthyroid state. Graves' patients had not any clinical symptoms neither of ophthalmopathy nor pretibial myxedema. GAGs were isolated from the blood serum by the multistage extraction and purification using papaine hydrolysis, alkali elimination, as well as cetylpyridium chloride binding. Total amount of GAGs was quantified by the hexuronic acids assay. HA content in obtained GAGs sample was evaluated by the ELISA method. Increased serum concentration of sulfated GAGs in non-treated Graves' disease patients was found. Similarly, serum HA level in untreated patients was significantly elevated. The attainment of euthyroid state was accompanied by the decreased serum sulfated GAGs level and by normalization of serum HA concentration. In conclusion, the results obtained demonstrate that the alterations of GAGs metabolism connected with Graves' disease can lead to systemic changes of the extracellular matrix properties.

  17. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  18. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  19. A null model for Pearson coexpression networks.

    PubMed

    Gobbi, Andrea; Jurman, Giuseppe

    2015-01-01

    Gene coexpression networks inferred by correlation from high-throughput profiling such as microarray data represent simple but effective structures for discovering and interpreting linear gene relationships. In recent years, several approaches have been proposed to tackle the problem of deciding when the resulting correlation values are statistically significant. This is most crucial when the number of samples is small, yielding a non-negligible chance that even high correlation values are due to random effects. Here we introduce a novel hard thresholding solution based on the assumption that a coexpression network inferred by randomly generated data is expected to be empty. The threshold is theoretically derived by means of an analytic approach and, as a deterministic independent null model, it depends only on the dimensions of the starting data matrix, with assumptions on the skewness of the data distribution compatible with the structure of gene expression levels data. We show, on synthetic and array datasets, that the proposed threshold is effective in eliminating all false positive links, with an offsetting cost in terms of false negative detected edges.

  20. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  1. Fate of ivermectin residues in ewes' milk and derived products.

    PubMed

    Cerkvenik, Vesna; Perko, Bogdan; Rogelj, Irena; Doganoc, Darinka Z; Skubic, Valentin; Beek, Wim M J; Keukens, Henk J

    2004-02-01

    The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0.2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day ripened cheese; and whey, secondary whey and whey proteins obtained after cheese-making (albumin cheese). The concentration of the H2B1a component of IVM was analysed in these dairy products using an HPLC method with fluorescence detection. The mean recovery of the method was, depending on the matrix, between 87 and 100%. Limits of detection in the order of only 0.1 microg H2B1a/kg of product were achieved. Maximum concentrations of IVM were detected mostly at 2 d after drug administration to the ewes. The highest concentration of IVM was found on day 2 in 60-day ripened cheese (96 microg H2B1a/kg cheese). Secondary whey was the matrix with the lowest concentration of IVM (<0.6 microg H2B1a/ kg). Residue levels fell below the limits of detection between day 5 (for secondary whey) and day 25 (for all cheese samples). In the matrices investigated, linear correlations between daily concentrations of IVM, milk fat and solid content were evident. During yoghurt production, fermentation and thermal stability of IVM was observed. During cheese production, approximately 35% of the IVM, present in the raw (bulk) milk samples, was lost. From the results it was concluded that the processing of ewes' milk did not eliminate the drug residues under investigation. The consequences of IVM in the human diet were discussed. Milk from treated animals should be excluded from production of fat products like cheese for longer after treatment with IVM than for lower fat products.

  2. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    USDA-ARS?s Scientific Manuscript database

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  3. Multiple-Matrix Sampling: A Technique for Maximizing the Effectiveness of Lengthy Survey Instruments.

    ERIC Educational Resources Information Center

    Shemick, John M.

    1983-01-01

    In a project to identify and verify professional competencies for beginning industrial education teachers, researchers found a 173-item questionnaire unwieldy. Using multiple-matrix sampling, they distributed subsets of items to respondents, resulting in adequate returns as well as duplication, postage, and time savings. (SK)

  4. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study.

    PubMed

    Huffaker, S Kirk; Safavi, Kamran; Spangberg, Larz S W; Kaufman, Blythe

    2010-08-01

    The present investigation evaluated the ability of a new passive sonic irrigation (sonic group) system (EndoActivator) to eliminate cultivable bacteria from root canals in vivo and compared it with that of standard syringe irrigation (control group). Data were obtained by using bacteriologic sampling of root canals treated by endodontic residents. Sampling results from 1 session of treatment were then compared with results obtained after intervisit calcium hydroxide disinfection and a second session of treatment. There was no significant difference in the ability of sonic group and control group to eliminate cultivable bacteria from root canals (P > .05). A second session and intervisit calcium hydroxide disinfection were able to eliminate cultivable bacteria from significantly more teeth than a single session of treatment (P < .05). These in vivo results strengthen the case for a multi-visit approach to the treatment of apical periodontitis. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Interference by the activated sludge matrix on the analysis of soluble microbial products in wastewater.

    PubMed

    Potvin, Christopher M; Zhou, Hongde

    2011-11-01

    The objective of this study was to demonstrate the effects of complex matrix effects caused by chemical materials on the analysis of key soluble microbial products (SMP) including proteins, humics, carbohydrates, and polysaccharides in activated sludge samples. Emphasis was placed on comparison of the commonly used standard curve technique with standard addition (SA), a technique that differs in that the analytical responses are measured for sample solutions spiked with known quantities of analytes. The results showed that using SA provided a great improvement in compensating for SMP recovery and thus improving measurement accuracy by correcting for matrix effects. Analyte recovery was found to be highly dependent on sample dilution, and changed due to extraction techniques, storage conditions and sample composition. Storage of sample extracts by freezing changed SMP concentrations dramatically, as did storage at 4°C for as little as 1d. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation.

    PubMed

    de Macedo, Cristiana Santos; Anderson, David M; Schey, Kevin L

    2017-11-01

    MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fundamental and Applied Investigations in Atomic Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).

  8. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  9. Carbon based sample supports and matrices for laser desorption/ ionization mass spectrometry.

    PubMed

    Rainer, Matthias; Najam-ul-Haq, Muhammad; Huck, Christian W; Vallant, Rainer M; Heigl, Nico; Hahn, Hans; Bakry, Rania; Bonn, Günther K

    2007-01-01

    Laser desorption/ionization mass spectrometry (LDI-MS) is a widespread and powerful technique for mass analysis allowing the soft ionization of molecules such as peptides, proteins and carbohydrates. In many applications, an energy absorbing matrix has to be added to the analytes in order to protect them from being fragmented by direct laser beam. LDI-MS in conjunction with matrix is commonly referred as matrix-assisted LDI (MALDI). One of the striking disadvantages of this method is the desorption of matrix molecules, which causes interferences originating from matrix background ions in lower mass range (< 1000 Da). This has been led to the development of a variety of different carbon based LDI sample supports, which are capable of absorbing laser light and simultaneously transfering energy to the analytes for desorption. Furthermore carbon containing sample supports are used as carrier materials for the specific binding and preconcentration of molecules out of complex samples. Their subsequent analysis with MALDI mass spectrometry allows performing studies in metabolomics and proteomics. Finally a thin layer of carbon significantly improves sensitivity concerning detection limit. Analytes in low femtomole and attomole range can be detected in this regard. In the present article, these aspects are reviewed from patents where nano-based carbon materials are comprehensively utilized.

  10. Extraction and quantitative analysis of iodine in solid and solution matrixes.

    PubMed

    Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S

    2005-11-01

    129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.

  11. Predicting the required number of training samples. [for remotely sensed image data based on covariance matrix estimate quality criterion of normal distribution

    NASA Technical Reports Server (NTRS)

    Kalayeh, H. M.; Landgrebe, D. A.

    1983-01-01

    A criterion which measures the quality of the estimate of the covariance matrix of a multivariate normal distribution is developed. Based on this criterion, the necessary number of training samples is predicted. Experimental results which are used as a guide for determining the number of training samples are included. Previously announced in STAR as N82-28109

  12. EFFECT OF HEAT TREATMENT ON (Cr, Fe)7C3/γ-Fe COATINGS IN SITU SYNTHESIZED BY VACUUM ELECTRON BEAM IRRADIATION

    NASA Astrophysics Data System (ADS)

    Lu, Binfeng; Chen, Yunxia; Xu, Mengjia

    (Cr, Fe)7C3/γ-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000∘C and 900∘C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800∘C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.

  13. LIBS analysis of artificial calcified tissues matrices.

    PubMed

    Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A

    2013-04-15

    In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Multicollinearity in canonical correlation analysis in maize.

    PubMed

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  15. Study on extrusion process of SiC ceramic matrix

    NASA Astrophysics Data System (ADS)

    Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man

    2017-11-01

    In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.

  16. Device for collecting and analyzing matrix-isolated samples

    DOEpatents

    Reedy, Gerald T.

    1979-01-01

    A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.

  17. Studies on transport phenomena in electrothermal vaporization sample introduction applied to inductively coupled plasma for optical emission and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, T.; Maestre, S.; de Loos-Vollebregt, M. T. C.

    2005-10-01

    In the present work electrothermal vaporization (ETV) was used in both inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (OES) for sample introduction of solution samples. The effect of (Pd + Mg)-nitrate modifier and CaCl 2 matrix/modifier of variable amounts were studied on ETV-ICP-MS signals of Cr, Cu, Fe, Mn and Pb and on ETV-ICP-OES signals of Ag, Cd, Co, Cu, Fe, Ga, Mn and Zn. With the use of matrix-free standard solutions the analytical curves were bent to the signal axes (as expected from earlier studies), which was observed in the 20-800 pg mass range by ICP-MS and in the 1-50 ng mass range by ICP-OES detection. The degree of curvature was, however, different with the use of single element and multi-element standards. When applying the noted chemical modifiers (aerosol carriers) in microgram amounts, linear analytical curves were found in the nearly two orders of magnitude mass ranges. Changes of the CaCl 2 matrix concentration (loaded amount of 2-10 μg Ca) resulted in less than 5% changes in MS signals of 5 elements (each below 1 ng) and OES signals of 22 analytes (each below 15 ng). Exceptions were Pb (ICP-MS) and Cd (ICP-OES), where the sensitivity increase by Pd + Mg modifier was much larger compared to other elements studied. The general conclusions suggest that quantitative analysis with the use of ETV sample introduction requires matrix matching or matrix replacement by appropriate chemical modifier to the specific concentration ranges of analytes. This is a similar requirement to that claimed also by the most commonly used pneumatic nebulization of solutions, if samples with high matrix concentration are concerned.

  18. Quality-control design for surface-water sampling in the National Water-Quality Network

    USGS Publications Warehouse

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  19. Role of fiber-stitching in eliminating transverse fracture in cross-ply ceramic composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, T.J.; Hutchinson, J.W.

    1995-12-31

    A theoretical study of the feasibility of using fiber stitching to prevent transverse matrix cracking in cross-ply ceramic composites is first reported. The prototype problem solved is a curved composite beam subject to pure bending (the C-specimen), which develops a transverse tensile stress Go acting across its circumferential mid-plane. This transverse stress is cause for concern if the beam is unstitched since there is no mechanism to arrest a matrix crack once one becomes critical. Fiber stitches normal to this plane are introduced to bridge a circumferential matrix crack lying along the mid-plane of the specimen. Results are presented formore » the energy release rate of this matrix crack as a function of a nondimensional parameter characterizing the density and fiber sliding stress of the fiber stitches. A parameter is identified which assures the applicability of the classical ACK (Aveston, Cooper and Kelly) limit for a steady-state matrix crack subject to {sigma}{sub 0}. The results obtained can be used to choose the level of stitching such that transverse matrix cracking will be excluded. The second problem we address is thermal delamination in a cross-ply ceramic composite plate due to high temperature gradients applied in the thickness direction. It is shown that a preexistent crack with a size of the order of the plate thickness will propagate unstably when a moderately large through-thickness temperature gradient is enforced. The possibility of using cross-fiber stitches to suppress thermal delamination cracking is discussed.« less

  20. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    PubMed

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  1. Measurement of macrocyclic trichothecene in floor dust of water-damaged buildings using gas chromatography/tandem mass spectrometry—dust matrix effects

    PubMed Central

    Saito, Rena; Park, Ju-Hyeong; LeBouf, Ryan; Green, Brett J.; Park, Yeonmi

    2017-01-01

    Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to detect fungal secondary metabolites. Detection of verrucarol, the hydrolysis product of Stachybotrys chartarum macrocyclic trichothecene (MCT), was confounded by matrix effects associated with heterogeneous indoor environmental samples. In this study, we examined the role of dust matrix effects associated with GC-MS/ MS to better quantify verrucarol in dust as a measure of total MCT. The efficiency of the internal standard (ISTD, 1,12-dodecanediol), and application of a matrix-matched standard correction method in measuring MCT in floor dust of water-damaged buildings was additionally examined. Compared to verrucarol, ISTD had substantially higher matrix effects in the dust extracts. The results of the ISTD evaluation showed that without ISTD adjustment, there was a 280% ion enhancement in the dust extracts compared to neat solvent. The recovery of verrucarol was 94% when the matrix-matched standard curve without the ISTD was used. Using traditional calibration curves with ISTD adjustment, none of the 21 dust samples collected from water damaged buildings were detectable. In contrast, when the matrix-matched calibration curves without ISTD adjustment were used, 38% of samples were detectable. The study results suggest that floor dust of water-damaged buildings may contain MCT. However, the measured levels of MCT in dust using the GC-MS/MS method could be significantly under- or overestimated, depending on the matrix effects, the inappropriate ISTD, or combination of the two. Our study further shows that the routine application of matrix-matched calibration may prove useful in obtaining accurate measurements of MCT in dust derived from damp indoor environments, while no isotopically labeled verrucarol is available. PMID:26853932

  2. Measurement of macrocyclic trichothecene in floor dust of water-damaged buildings using gas chromatography/tandem mass spectrometry-dust matrix effects.

    PubMed

    Saito, Rena; Park, Ju-Hyeong; LeBouf, Ryan; Green, Brett J; Park, Yeonmi

    2016-01-01

    Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to detect fungal secondary metabolites. Detection of verrucarol, the hydrolysis product of Stachybotrys chartarum macrocyclic trichothecene (MCT), was confounded by matrix effects associated with heterogeneous indoor environmental samples. In this study, we examined the role of dust matrix effects associated with GC-MS/MS to better quantify verrucarol in dust as a measure of total MCT. The efficiency of the internal standard (ISTD, 1,12-dodecanediol), and application of a matrix-matched standard correction method in measuring MCT in floor dust of water-damaged buildings was additionally examined. Compared to verrucarol, ISTD had substantially higher matrix effects in the dust extracts. The results of the ISTD evaluation showed that without ISTD adjustment, there was a 280% ion enhancement in the dust extracts compared to neat solvent. The recovery of verrucarol was 94% when the matrix-matched standard curve without the ISTD was used. Using traditional calibration curves with ISTD adjustment, none of the 21 dust samples collected from water damaged buildings were detectable. In contrast, when the matrix-matched calibration curves without ISTD adjustment were used, 38% of samples were detectable. The study results suggest that floor dust of water-damaged buildings may contain MCT. However, the measured levels of MCT in dust using the GC-MS/MS method could be significantly under- or overestimated, depending on the matrix effects, the inappropriate ISTD, or combination of the two. Our study further shows that the routine application of matrix-matched calibration may prove useful in obtaining accurate measurements of MCT in dust derived from damp indoor environments, while no isotopically labeled verrucarol is available.

  3. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  4. Study on microstructure and tensile properties of fly ash AMCs welded by FSW

    NASA Astrophysics Data System (ADS)

    Sachinkumar, Narendranath, S.; Chakradhar, D.

    2018-04-01

    Aluminum matrix composite (AMCs) constitute a new class of light weight and high strength materials which have widespread applications in almost all engineering sectors. But the cost of AMCs is the only barrier to increase their applications still. Hence there is a huge demand for the composites containing low cost reinforcement with less weight, keeping this in mind, in the present work, Friction stir welding (FSW) of AA6061/SiC/fly ash was carried out successfully. Microstructural study on the welded specimens was performed using optical microscopy (OM) and scanning electron microscopy (SEM). Results indicate that fly ash particles were uniformly distributed in the weld nugget area because of the stirring action of the FSW tool also promoted the grain refinement of the matrix material with complete elimination of clusters present in matrix material which resulting in sound welds without any defects for AA6061/SiC/fly ash composites. 82% of joint efficiency is obtained for selected AMCs. Transverse tensile test results showed that all welds fractured in HAZ.

  5. Dielectric properties of proteins from simulations: tools and techniques

    NASA Astrophysics Data System (ADS)

    Simonson, Thomas; Perahia, David

    1995-09-01

    Tools and techniques to analyze the dielectric properties of proteins are described. Microscopic dielectric properties are determined by a susceptibility tensor of order 3 n, where n is the number of protein atoms. For perturbing charges not too close to the protein, the dielectric relaxation free energy is directly related to the dipole-dipole correlation matrix of the unperturbed protein, or equivalently to the covariance matrix of its atomic displacements. These are straightforward to obtain from existing molecular dynamics packages such as CHARMM or X- PLOR. Macroscopic dielectric properties can be derived from the dipolar fluctuations of the protein, by idealizing the protein as one or more spherical media. The dipolar fluctuations are again directly related to the covariance matrix of the atomic displacements. An interesting consequence is that the quasiharmonic approximation, which by definition exactly reproduces this covariance matrix, gives the protein dielectric constant exactly. Finally a technique is reviewed to obtain normal or quasinormal modes of vibration of symmetric protein assemblies. Using elementary group theory, and eliminating the high-frequency modes of vibration of each monomer, the limiting step in terms of memory and computation is finding the normal modes of a single monomer, with the other monomers held fixed. This technique was used to study the dielectric properties of the Tobacco Mosaic Virus protein disk.

  6. Transient Liquid-Phase Diffusion Bonding of Aluminum Metal Matrix Composite Using a Mixed Cu-Ni Powder Interlayer

    NASA Astrophysics Data System (ADS)

    Maity, Joydeep; Pal, Tapan Kumar

    2012-07-01

    In the present study, the transient liquid-phase diffusion bonding of an aluminum metal matrix composite (6061-15 wt.% SiCp) has been investigated for the first time using a mixed Cu-Ni powder interlayer at 560 °C, 0.2 MPa, for different holding times up to 6 h. The microstructure of the isothermally solidified zone contains equilibrium precipitate CuAl2, metastable precipitate Al9Ni2 in the matrix of α-solid solution along with the reinforcement particles (SiC). On the other hand, the microstructure of the central bond zone consists of equilibrium phases such as NiAl3, Al7Cu4Ni and α-solid solution along with SiC particles (without any segregation) and the presence of microporosities. During shear test, the crack originates from microporosities and propagates along the interphase interfaces resulting in poor bond strength for lower holding times. As the bonding time increases, with continual diffusion, the structural heterogeneity is diminished, and the microporosities are eliminated at the central bond zone. Accordingly, after 6-h holding, the microstructure of the central bond zone mainly consists of NiAl3 without any visible microporosity. This provides a joint efficiency of 84% with failure primarily occurring through decohesion at the SiC particle/matrix interface.

  7. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    PubMed

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  8. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  9. Targeting the extracellular matrix of ovarian cancer using functionalized, drug loaded lyophilisomes.

    PubMed

    van der Steen, Sophieke C H A; Raavé, René; Langerak, Sjoerd; van Houdt, Laurens; van Duijnhoven, Sander M J; van Lith, Sanne A M; Massuger, Leon F A G; Daamen, Willeke F; Leenders, William P; van Kuppevelt, Toin H

    2017-04-01

    Epithelial ovarian cancer is characterized by a high mortality rate and is in need for novel therapeutic avenues to improve patient outcome. The tumor's extracellular matrix ("stroma") offers new possibilities for targeted drug-delivery. Recently we identified highly sulfated chondroitin sulfate (CS-E) as a component abundantly present in the ovarian cancer extracellular matrix, and as a novel target for anti-cancer therapy. Here, we report on the functionalization of drug-loaded lyophilisomes (albumin-based biocapsules) to specifically target the stroma of ovarian carcinomas with the potential to eliminate cancer cells. To achieve specific targeting, we conjugated single chain antibodies reactive with CS-E to lyophilisomes using a two-step approach comprising sortase-mediated ligation and bioorthogonal click chemistry. Antibody-functionalized lyophilisomes specifically targeted the ovarian cancer stroma through CS-E. In a CS-E rich micro-environment in vitro lyophilisomes induced cell death by extracellular release of doxorubicin which localized to the nucleus. Immunohistochemistry identified CS-E rich stroma in a variety of solid tumors other than ovarian cancer, including breast, lung and colon cancer indicating the potential versatility of matrix therapy and the use of highly sulfated chondroitin sulfates in cancer stroma as a micro-environmental hook for targeted drug delivery. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Copper-polydopamine composite derived from bioinspired polymer coating

    DOE PAGES

    Zhao, Yao; Wang, Hsin; Qian, Bosen; ...

    2018-04-01

    Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less

  11. Copper-polydopamine composite derived from bioinspired polymer coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yao; Wang, Hsin; Qian, Bosen

    Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities ofmore » the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.« less

  12. Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Shareef, N. H.

    1991-01-01

    An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.

  13. Supercomputing on massively parallel bit-serial architectures

    NASA Technical Reports Server (NTRS)

    Iobst, Ken

    1985-01-01

    Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.

  14. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei

    2017-07-01

    A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.

  15. Outgassing and dimensional changes of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    A thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites is described. Experimental results derived from a 'control' sample are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples.

  16. An Analysis of Variance Framework for Matrix Sampling.

    ERIC Educational Resources Information Center

    Sirotnik, Kenneth

    Significant cost savings can be achieved with the use of matrix sampling in estimating population parameters from psychometric data. The statistical design is intuitively simple, using the framework of the two-way classification analysis of variance technique. For example, the mean and variance are derived from the performance of a certain grade…

  17. Generating Multiple Imputations for Matrix Sampling Data Analyzed with Item Response Models.

    ERIC Educational Resources Information Center

    Thomas, Neal; Gan, Nianci

    1997-01-01

    Describes and assesses missing data methods currently used to analyze data from matrix sampling designs implemented by the National Assessment of Educational Progress. Several improved methods are developed, and these models are evaluated using an EM algorithm to obtain maximum likelihood estimates followed by multiple imputation of complete data…

  18. Laser-induced breakdown spectroscopy for quantitative spectrochemical analysis of geological materials: effects of the matrix and simultaneous determination.

    PubMed

    Anzano, Jesús M; Villoria, Mark A; Ruíz-Medina, Antonio; Lasheras, Roberto J

    2006-08-11

    A microscopic laser-induced breakdown spectrometer was used to evaluate the analytical matrix effect commonly observed in the analysis of geological materials. Samples were analyzed in either the powder or pressed pellet forms. Calibration curves of a number of iron and aluminum compounds showed a linear relationship between the elemental concentration and peak intensity. A direct determination of elemental content can thus be made from extrapolation on these calibration curves. To investigate matrix effects, synthetic model samples were prepared from various iron and aluminum compounds spiked with SiO2 and CaCO3. The addition of these matrices had a pronounced analytical effect on those compounds prepared as pressed pellets. However, results indicated the absence of matrix effects when the samples were presented to the laser as loose powders on tape and results were compared to certified values, indicating the reliability of this approach for accurate analysis, provided the sample particle diameters are greater than approximately 100 microm. Finally, the simultaneous analysis of two different elements was demonstrated using powders on tape.

  19. Quantification of 2D elemental distribution maps of intermediate-thick biological sections by low energy synchrotron μ-X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kump, P.; Vogel-Mikuš, K.

    2018-05-01

    Two fundamental-parameter (FP) based models for quantification of 2D elemental distribution maps of intermediate-thick biological samples by synchrotron low energy μ-X-ray fluorescence spectrometry (SR-μ-XRF) are presented and applied to the elemental analysis in experiments with monochromatic focused photon beam excitation at two low energy X-ray fluorescence beamlines—TwinMic, Elettra Sincrotrone Trieste, Italy, and ID21, ESRF, Grenoble, France. The models assume intermediate-thick biological samples composed of measured elements, the sources of the measurable spectral lines, and by the residual matrix, which affects the measured intensities through absorption. In the first model a fixed residual matrix of the sample is assumed, while in the second model the residual matrix is obtained by the iteration refinement of elemental concentrations and an adjusted residual matrix. The absorption of the incident focused beam in the biological sample at each scanned pixel position, determined from the output of a photodiode or a CCD camera, is applied as a control in the iteration procedure of quantification.

  20. Influence of the porosity on the dispersion of the phase velocity of longitudinal acoustic waves in isotropic metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Karabutov, A. A.; Podymova, N. B.

    2017-05-01

    The influence of the volumetric porosity of isotropic metal-matrix composite materials, which are reinforced with ceramic microparticles, on the dispersion of the phase velocity of longitudinal acoustic waves is investigated. For this purpose, the method of broadband acoustic spectroscopy with a laser source of ultrasound and piezoelectric detection of nanosecond ultrasonic pulses is used. Composite samples based on a silumin matrix with added silicon carbide (SiC) microparticles in different mass concentrations (3.8-15.5%) were investigated. As the concentration of SiC particles in a sample increases, its porosity that is determined using the hydrostatic-weighing method also increases. The simultaneous increase in the filler concentration and porosity leads to the appearance of a dispersion of the phase velocity of longitudinal acoustic waves in the sample within the frequency range of 3-25 MHz. The obtained empirical relationship between the relative change in the phase velocity and the sample porosity can be used to obtain a proximate quantitative estimate of the bulk porosity of the isotropic metal-matrix composite materials.

Top