It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two....)
NASA Astrophysics Data System (ADS)
Rummel, J. D.
2018-04-01
A Mars Sample Return (MSR) will involve analysis of those samples in containment, including their safe receiving, handling, testing, and archiving. With an MSR planned for the end of the next decade, it is time to update the existing MSR protocol.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Bowles, Jeffery V.; Huynh, Loc C.; Faber, Nicholas T.; Race, Margaret S.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This presentation provides an overview of a feasibility study for a MSR mission in which emerging commercial capabilities are used alongside other sources of mission elements. Goal is to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost.. Major elements required for the MSR mission are described. We report the feasibility of a complete and closed MSR mission design
NASA Astrophysics Data System (ADS)
Derz, U.; Joffre, E.; Perkinson, M.-C.; Huesing, J.; Beyer, F.; Sanchez Perez, J. M.
2018-04-01
This paper presents the identified most promising chemical and electric propulsion architecture options of the Mars Sample Return (MSR) orbiter identified during the recent ESA MSR Architecture Assessment Study.
OHB's Exploration Capabilities Overview Relevant to Mars Sample Return Mission
NASA Astrophysics Data System (ADS)
Jaime, A.; Gerth, I.; Rohrbeck, M.; Scheper, M.
2018-04-01
The presentation will give an overview to all the OHB past and current projects that are relevant to the Mars Sample Return (MSR) mission, including some valuable lessons learned applicable to the upcoming MSR mission.
Multiple Smaller Missions as a Direct Pathway to Mars Sample Return
NASA Technical Reports Server (NTRS)
Niles, P. B.; Draper, D. S.; Evans, C. A.; Gibson, E. K.; Graham, L. D.; Jones, J. H.; Lederer, S. M.; Ming, D.; Seaman, C. H.; Archer, P. D.;
2012-01-01
Recent discoveries by the Mars Exploration Rovers, Mars Express, Mars Odyssey, and Mars Reconnaissance Orbiter spacecraft include multiple, tantalizing astrobiological targets representing both past and present environments on Mars. The most desirable path to Mars Sample Return (MSR) would be to collect and return samples from that site which provides the clearest examples of the variety of rock types considered a high priority for sample return (pristine igneous, sedimentary, and hydrothermal). Here we propose an MSR architecture in which the next steps (potentially launched in 2018) would entail a series of smaller missions, including caching, to multiple landing sites to verify the presence of high priority sample return targets through in situ analyses. This alternative architecture to one flagship-class sample caching mission to a single site would preserve a direct path to MSR as stipulated by the Planetary Decadal Survey, while permitting investigation of diverse deposit types and providing comparison of the site of returned samples to other aqueous environments on early Mars
Concepts and Planning for MSR Public Outreach
NASA Astrophysics Data System (ADS)
Heward, A. R.
2018-04-01
The Mars Sample Return (MSR) community now has an opportunity to build support through outreach to policy makers, the media, the public, teachers, and students. This presentation aims to start a dialogue on concepts and planning for MSR outreach.
NASA Astrophysics Data System (ADS)
Calaway, M. J.; Regberg, A. B.; Mitchell, J. L.; Fries, M. D.; Zeigler, R. A.; McCubbin, F. M.; Harrington, A. D.
2018-04-01
Rigorous collection of samples for contamination knowledge, the information gained from the characterization of reference materials and witness plates in concurrence with sample return, is essential for MSR mission success.
Mars Sample Return: Do Australians trust NASA?
NASA Astrophysics Data System (ADS)
Joyce, S.; Tomkins, C. S.; Weinstein, P.
2008-09-01
Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.
Overview of the Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Dillman, Robert; Corliss, James
2008-01-01
NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.
The Mars Sample Return Project
NASA Technical Reports Server (NTRS)
O'Neil, W. J.; Cazaux, C.
2000-01-01
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles. c 2000 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science Ltd.
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
Developing Tools and Technologies to Meet MSR Planetary Protection Requirements
NASA Technical Reports Server (NTRS)
Lin, Ying
2013-01-01
This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.
An Internationally Coordinated Science Management Plan for Samples Returned from Mars
NASA Astrophysics Data System (ADS)
Haltigin, T.; Smith, C. L.
2015-12-01
Mars Sample Return (MSR) remains a high priority of the planetary exploration community. Such an effort will undoubtedly be too large for any individual agency to conduct itself, and thus will require extensive global cooperation. To help prepare for an eventual MSR campaign, the International Mars Exploration Working Group (IMEWG) chartered the international Mars Architecture for the Return of Samples (iMARS) Phase II working group in 2014, consisting of representatives from 17 countries and agencies. The overarching task of the team was to provide recommendations for progressing towards campaign implementation, including a proposed science management plan. Building upon the iMARS Phase I (2008) outcomes, the Phase II team proposed the development of an International MSR Science Institute as part of the campaign governance, centering its deliberations around four themes: Organization: including an organizational structure for the Institute that outlines roles and responsibilities of key members and describes sample return facility requirements; Management: presenting issues surrounding scientific leadership, defining guidelines and assumptions for Institute membership, and proposing a possible funding model; Operations & Data: outlining a science implementation plan that details the preliminary sample examination flow, sample allocation process, and data policies; and Curation: introducing a sample curation plan that comprises sample tracking and routing procedures, sample sterilization considerations, and long-term archiving recommendations. This work presents a summary of the group's activities, findings, and recommendations, highlighting the role of international coordination in managing the returned samples.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
Mars Sample Return in the Context of the Mars Exploration Program
NASA Astrophysics Data System (ADS)
Garvin, J. B.
2002-05-01
The scientific priorities developed for the scientific exploration of Mars by the Mars Exploration Program Assessment Group [MEPAG, 2001] and as part of the Committee on Planetary and Lunar Exploration (COMPLEX) recent assessment of the NASA Mars Exploration Program [COMPLEX, 2001] all involve a campaign of Mars Sample Return (MSR) missions. Such MSR missions are required to address in a definitive manner most of the highest priority investigations within overarching science themes which include: (1) biological potential (past or present); (2) climate (past or present); (3) solid planet (surface and interior, past and present); (4) knowledge necessary to prepare for eventual human exploration of Mars. NASA's current Mars Exploration Program (MEP) contains specific flight mission developments and plans only for the present decade (2002-2010), including a cascade of missions designed to set the stage for an inevitable campaign of MSR missions sometime in the second decade (2011-2020). Studies are presently underway to examine implementation options for a first MSR mission in which at least 500g of martian materials (including lithic fragments) would be returned to Earth from a landing vicinity carefully selected on the basis of the comprehensive orbital and surface-based remote sensing campaign that is ongoing (MGS, ODYSSEY) and planned (MER, MRO, 2009 MSL). Key to the first of several MSR's is attention to risk, cost, and enabling technologies that facilitate access to most scientifically-compelling martian materials at very local scales. The context for MSR's in the upcoming decade remains a vital part of NASA's scientific strategy for Mars exploration.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.
2018-01-01
Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.
The french involvement in Mars sample return program
NASA Astrophysics Data System (ADS)
Counil, J.; Bonneville, R.; Rocard, F.
The French scientific community is involved in planetary exploration for more than thirty years, at the beginning mainly in cooperation with the former USSR (e.g. missions Phobos 1 and 2 in the 80's), then through ESA (Mars - Express). In 97, following the success of the US Pathfinder mission, NASA proposed to CNES to participate to the first Mars Sample Return (MSR) mission. This idea created a tremendous excitation in the French scientific community and CNES took the decision to contribute to the MSR program. Conscious that only the very best laboratories will be selected to analyse Mars samples, the French ministry of Research has created in May 99, the CSEEM (Comité Scientifique pour l'Etude des Echantillons Martiens). This Committee mandated to coordinate the national endeavour, has released late 99 an AO aimed at implementing a national preparatory program to Mars samples analysis. More than 40 proposals have been submitted involving more than 450 scientists from around 60 French labs. Most of these proposals are interdisciplinarity jointly submitted by planetologists, mineralogists, geochemists, astrobiologists and biologists. The first stage of this preparatory program is on going and will last until mid-2003. Amongst the priorities of the preparatory program are development of dedicated instrumentation, capability of analysing as small as possible samples, measurements integration; rock-macromolecule interaction; bacteria behaviour under Martian conditions; sample transportation under quarantine conditions, etc In the late 90's, the French participation to the NASA led 2003-2005 MSR mission was mainly consisting in a sample return orbiter to be launched by an Ariane V rocket. This contribution to MSR was one of the two priorities of the CNES Mars Exploration Program named PREMIER together with the NetLander network. Unfortunately late 99, due the failure of the two NASA missions MPL and MCO, a rearchitecture of the program has been decided and the first MSR mission is now expected not sooner than 2013. In spite of this great deception, France still intents to cooperate to the first MSR mission and the PREMIER program has been rearchitectured to take into account the new schedule. CNES will launch in 2007 the PREMIER-2007 mission that will consist in a Mars orbiter (MO-07) that will carry the NetLander and will test critical technologies for the future MSR missions such Rendezvous and Capture in Mars orbit.
Low Cost Mars Sample Return Utilizing Dragon Lander Project
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2014-01-01
We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.
MSR ESA Earth Return Orbiter Mission Design Trades
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. M.; Varga, G. I.; Huesing, J.; Beyer, F.
2018-04-01
The paper describes the work performed at ESOC in support of the Mars Sample Return ESA Earth Return Orbiter definition studies by exploring the trajectory optimization and mission design trade spaces of Mars return missions using electric and chemical propulsion.
Mars to earth optical communication link for the proposed Mars Sample Return mission roving vehicle
NASA Astrophysics Data System (ADS)
Sipes, Donald L., Jr.
The Mars Sample Return (MSR) mission planed for 1989 will deploy a rover from its landing craft to survey the Martian surface. During traversals of the rover from one site to the next in search of samples, three-dimensional images from a pair of video cameras will be transmitted to earth; the terrestrial operators will then send back high level direction commands to the rover. Attention is presently given to the effects of wind and dust on communications, the architecture of the optical communications package, and the identification of technological areas requiring further development for MSR incorporation.
NASA needs a long-term sample return strategy
NASA Astrophysics Data System (ADS)
Agee, C.
Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element chemistry of soil and rock, (4) charac- terization of very small phases, (5) characterization of complex weathering products, (6) detailed rock mineralogy and petrology.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
Round-Trip Solar Electric Propulsion Missions for Mars Sample Return
NASA Technical Reports Server (NTRS)
Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.
2014-01-01
Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.
Integration of Planetary Protection Activities
NASA Technical Reports Server (NTRS)
Race, Margaret S.
2000-01-01
Research and activities under this grant have focused on a systematic examination and analysis of critical questions likely to impact planetary protection (PP) controls and implementation for Mars sample return missions (MSR). Four areas in the non-scientific and social realms were selected for special attention because of their importance to future mission planning and concern about critical timing or possible economic impacts on MSR mission implementation. These include: (1) questions of legal uncertainty and the decision making process, (2) public perception of risks associated with sample return, (3) risk communication and Education/Public Outreach , and (4) planetary protection implications of alternative mission architectures, for both robotic and human sample return missions. In its entirety, NAG 2-986 has encompassed three categories of activity: (1) research and analysis (Race), (2) subcontracted research (MacGregor/Decision Research), and (3) consulting services.
MOI to TEI : a Mars Sample Return strategy
NASA Technical Reports Server (NTRS)
Smith, Chad W.; Maddock, Robert W.
2006-01-01
This paper describes the issues and challenges related to the design of the rendezvous between the Earth Return Vehicle (ERV) and the Orbiting Sample (OS) for the Mars Sample Return (MSR) mission. In particular, attention will be focused on the strategy for 'optimizing' the intermediate segment of the rendezvous process, during which there are a great number of variables that must be considered and well understood.
Is Mars Sample Return Required Prior to Sending Humans to Mars?
NASA Technical Reports Server (NTRS)
Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles;
2012-01-01
Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent and Landing
NASA Technical Reports Server (NTRS)
Lemke, Lawrence G.; Gonzales, Andrew A.; Huynh, Loc C.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. The objective of the study was to determine whether emerging commercial capabilities can be integrated into to such a mission. The premise of the study is that commercial capabilities can be more efficient than previously described systems, and by using fewer systems and fewer or less extensive launches, overall mission cost can be reduced. This presentation describes an EDL technique using planned upgrades to the Dragon capsule to perform a Supersonic Retropulsion Entry - Red Dragon concept. Landed Payload capability meets mission requirements for a MSR Architecture that reduces complexity.
Advanced Curation Preparation for Mars Sample Return and Cold Curation
NASA Technical Reports Server (NTRS)
Fries, M. D.; Harrington, A. D.; McCubbin, F. M.; Mitchell, J.; Regberg, A. B.; Snead, C.
2017-01-01
NASA Curation is tasked with the care and distribution of NASA's sample collections, such as the Apollo lunar samples and cometary material collected by the Stardust spacecraft. Curation is also mandated to perform Advanced Curation research and development, which includes improving the curation of existing collections as well as preparing for future sample return missions. Advanced Curation has identified a suite of technologies and techniques that will require attention ahead of Mars sample return (MSR) and missions with cold curation (CCur) requirements, perhaps including comet sample return missions.
ESA Sample Fetch Rover: Heritage and Way Forward
NASA Astrophysics Data System (ADS)
Duvet, L.; Beyer, F.; Delfa, J.; Zekri, E.
2018-04-01
The Sample Fetch Rover (SFR) is one of the key elements of the Mars Sample Return (MSR) campaign architecture. We will present the SFR heritage as well as a way forward identified to address this engineering challenge.
NASA Astrophysics Data System (ADS)
Vrublevskis, J.; Berthoud, L.; McCulloch, Y.; Bowman, P.; Holt, J.; Bridges, J.; Bennett, A.; Gaubert, F.; Duvet, L.
2018-04-01
The need for biocontainment from Planetary Protection Policy and the need for cleanliness for scientific investigation requires that the samples returned from Mars by the Mars Sample Return (MSR) mission must be handled in a Double Walled Isolator (DWI).
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
NASA Astrophysics Data System (ADS)
McLennan, S. M.; Sephton, M.; Mepag E2E-Isag
2011-12-01
The National Research Council 2011 Planetary Decadal Survey (2013-2022) placed beginning a Mars sample return campaign (MSR) as the top priority for large Flagship missions in the coming decade. Recent developments in NASA-ESA collaborations and Decadal Survey recommendations indicate MSR likely will be an international effort. A joint ESA-NASA 2018 rover (combining the previously proposed ExoMars and MAX-C missions), designed, in part, to collect and cache samples, would thus represent the first of a 3-mission MSR campaign. The End-to-End International Science Analysis Group (E2E-iSAG) was chartered by MEPAG in August 2010 to develop and prioritize MSR science objectives and investigate implications of these objectives for defining the highest priority sample types, landing site selection criteria (and identification of reference landing sites to support engineering planning), requirements for in situ characterization on Mars to support sample selection, and priorities/strategies for returned sample analyses to determine sample sizes and numbers that would meet the objectives. MEPAG approved the E2E-iSAG report in June 2011. Science objectives, summarized in priority order, are: (1) critically assess any evidence for past life or its chemical precursors, and place constraints on past habitability and potential for preservation of signs of life, (2) quantitatively constrain age, context and processes of accretion, early differentiation and magmatic and magnetic history, (3) reconstruct history of surface and near-surface processes involving water, (4) constrain magnitude, nature, timing, and origin of past climate change, (5) assess potential environmental hazards to future human exploration, (6) assess history and significance of surface modifying processes, (7) constrain origin and evolution of the Martian atmosphere, (8) evaluate potential critical resources for future human explorers. All returned samples also would be fully evaluated for extant life as a fundamental science question and to meet planetary protection needs. Sample types most likely to achieve these objectives are, in priority order: (1A) subaqueous or hydrothermal sediments, (1B) hydrothermally altered rocks or low-T fluid-altered rocks, (2) unaltered igneous rocks, (3) regolith, including air fall dust, (4) present atmosphere and sedimentary-igneous rocks containing ancient trapped atmosphere. Among the 34 separate findings made by E2E-iSAG are (a) ~30-40 rock samples should be collected, each ~15-16g and mostly in suites, along with ≥1 regolith sample, appropriate blanks and standards, all totaling ~500g, (b) an ability to swap-out ≥25% of the samples as the mission proceeds, (c) a high priority for subsurface sample(s) obtained by the ExoMars 2m drill, (d) ≥40% of each sample be preserved for future research, (e) obtain 1-2 atmosphere samples, (f) incorporate appropriate sealing until Earth return, (g) fully characterize geological context of sampling sites with remote sensing and contact instruments, (h) landing sites exist that could achieve top science objectives.
Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions
NASA Technical Reports Server (NTRS)
Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad
2004-01-01
The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.
MSR Fetch Rover Capability Development at the Canadian Space Agency
NASA Astrophysics Data System (ADS)
Picard, M.; Hipkin, V.; Gingras, D.; Allard, P.; Lamarche, T.; Rocheleau, S. G.; Gemme, S.
2018-04-01
Describes Fetch Rover technology testing during CSA's 2016 Mars Sample Return Analogue Deployment which demonstrated autonomous navigation to 'cache depots' of M-2020-like sample tubes, acquisition of six such tubes, and transfer to a MAV mock up.
Continuing Evolution of Mars Sample Return
NASA Technical Reports Server (NTRS)
Mattingly, Richard; Matousek, Steve; Jordan, Frank
2004-01-01
This paper addresses the continued evolution of the Groundbreaking MSR concept over the last year. One of the tenets of the low-cost approach is to use substantial heritage from an earlier mission, Mars Science Laboratory (MSL). Recently, the MSL project developed and switched to a revolutionary landing approach, coined 'sky-crane' where the MSL, which is a rover, is lowered gently to the Martian surface from a hovering vehicle. MSR has adopted this approach, again continuing to capitalize on the heritage for a significant portion of the new lander. In parallel, a MSR Technology Board was formed to reexamine MSR technology needs and participate in a continuing refinement of architectural trades. While the focused technology program continues to be definitized through the remainder of this year, the current assessment of what technology development is required, is discussed in this paper. In addition, the results of new trade studies and considerations will be discussed.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.
2017-01-01
Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.
Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover
NASA Technical Reports Server (NTRS)
Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.;
2017-01-01
The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.
APXS Data from Mars and MSR Samples: How Can They Be Combined and Benefit from Each Other?
NASA Astrophysics Data System (ADS)
Gellert, R.
2018-04-01
The APXS has returned the chemical composition of more than 1000 samples on four rover missions along the combined traverse of >70km. Combining Mars data with terrestrial lab results of martian samples will be important, but it has to be done right.
Performance Characteristics of Lithium Ion Prototype Cells for 2003 Mars Sample Return Athena Rover
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Smart, M. C.; Ewell, R.; Surampudi, S.; Marsh, R. A.
2000-01-01
A viewgraph presentation outlines the mission objectives and power subsystem for the Mars Sample Return (MSR) Athena Rover. The NASA-DOD (depth of discharge) Interagency Li Ion program objectives are discussed. Evaluation tests performed at JPL are listed, and test results are shown for the Li-Ion cell initial capacity, charge/discharge capacity, voltage and ratio, specific energy, watt-hour efficiency, and cell voltage at various temperatures.
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
Planetary Protection, Sample Return Missions and Mars Exploration: History, Status, and Future Needs
NASA Technical Reports Server (NTRS)
DeVincenzi, Donald L.; Race, Margaret S.; Klein, Harold P.
1998-01-01
As the prospect grows for a Mars sample return mission early in the next millennium, it will be important to ensure that appropriate planetary protection (PP) controls are incorporated into the mission design and implementation from the start. The need for these PP controls is firmly based on scientific considerations and backed by a number of national and international agreements and guidelines aimed at preventing harmful cross contamination of planets and extraterrestrial bodies. The historical precedent for the use of PP measures on both unmanned and manned missions traces from post-Sputnik missions to the present, with periodic modifications as new information was obtained. In consideration of the anticipated attention to PP questions by both the scientific/technical community and the public, this paper presents a comprehensive review of the major issues and problems surrounding PP for a Mars Sample Return (MSR) mission, including an analysis of arguments that have been raised for and against the imposition of PP measures. Also discussed are the history and foundations for PP policies and requirements; important research areas needing attention prior to defining detailed PP requirements for a MSR mission; and legal and public awareness issues that must be considered with mission planning.
NASA Astrophysics Data System (ADS)
Haltigin, T.; Hipkin, V.; Picard, M.
2016-12-01
Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration and a variety of navigational techniques. Forward work involves laboratory-based validation of the returned samples to evaluate the efficiency of the in-simulation operational decision-making.
NASA Astrophysics Data System (ADS)
Strippoli, L. S.; Gonzalez-Arjona, D. G.
2018-04-01
GMV extensively worked in many activities aimed at developing, validating, and verifying up to TRL-6 advanced GNC and IP algorithms for Mars Sample Return rendezvous working under different ESA contracts on the development of advanced algorithms for VBN sensor.
NASA Astrophysics Data System (ADS)
Draper, D. S.; Bogard, D. D.; Agee, C. B.; McKay, G. A.; Jones, J. H.
2002-05-01
A major stumbling block to a Mars sample return (MSR) mission is the seemingly prohibitive cost of maximizing sample diversity. The use of rovers, sophisticated on-board instrumentation, and various sample selection techniques are perceived by some to be necessary to maximize the scientific return by making it possible to acquire as diverse a suite of samples as possible. Here, we argue that many key science goals of the Mars Exploration Program may be accomplished by returning only a "locality sample" at a well-chosen landing site. A locality sample would be local regolith consisting of soil, windblown fines, and lithic fragments (plus Martian atmosphere). We argue that even the simplest sample return mission could revolutionize our understanding of the planet, without requiring the large outlays for technology development currently envisioned. By the time a MSR mission could realistically be flown, it is reasonable to expect that information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to make a good choice of landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; understanding the role and history of water and other volatiles; helping to interpret remotely-sensed spectral data; and understanding the planet as a system. The value of such samples has been studied exhaustively for decades and detailed in publications dating back at least to 1974. A locality sample can further the search for life by identifying, among other things, trace quantities of surface organics, biogenic elements and their isotopic compositions, evidence for water in the form of hydrous minerals and/or cements, the nature of the Martian soil oxidant, trace biomarkers, and evidence for clay-forming processes. The role of water will be better understood by revealing, in addition, whether interactions between soil/rocks and the Martian atmosphere have recently occurred, and whether there are currently pathways among cyclic reservoirs (e.g. for carbon). Fundamental information regarding the current atmosphere is certain to be gained as well. Interpreting remotely-sensed data will be greatly strengthened by providing ground truth in the form of mineralogy and lithology of sample materials and by allowing an estimate of the extent of regolith gardening by impacts, the nature and thickness of dust coatings and/or alteration rinds, the nature of Martian layered deposits, and the extent to which materials like the Martian meteorites are present at the surface. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. The much-discussed alternative, a mission built around a very capable rover, has several large drawbacks. First, the mass and expense of making the rover highly autonomous diminishes science return. Second, the rover represents a single-point failure; if the rover is stranded, the samples cannot be returned. Third, there is no demonstrable positive correlation between roving ability/range and sampling diversity. A simple locality-sample MSR mission provides the foundation for later, targeted return missions. Such a mission "follows the water" down into surface minerals and soils, and uniquely provides understanding of the surface environment that will best enable us to target the most promising sites to look for life.
NASA Technical Reports Server (NTRS)
Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)
2002-01-01
Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.
Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils
NASA Technical Reports Server (NTRS)
Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.
2014-01-01
The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].
Accomplishing Mars exploration goals by returning a simple "locality" sample
NASA Astrophysics Data System (ADS)
McKay, G.; Draper, D.; Bogard, D.; Agee, C.; Ming, D.; Jones, J.
A major stumbling block to a Mars sample return (MSR) mission is cost. This problem is greatly exacerbated by using elaborate rovers, sophisticated on-board instruments, and complex sample selection techniques to maximize diversity. We argue that many key science goals of the Mars Exploration Program may be accomplished by returning a simple "locality" sample from a well-chosen landing site. Such a sample , collected by a simple scoop, would consist of local regolith containing soil, windblown fines, and lithic fragments (plus Martian atmosphere). Even the simplest sample return mission could revolutionize our understanding of Mars, without the need for expensive rovers or sophisticated on-board instruments. We expect that by the time a MSR mission could be flown, information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to choose a good landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; the role and history of water and other volatiles; interpreting remotely-sensed spectral data; and understanding the planet as a system. A locality sample can further the search for life by identifying trace organics, biogenic elements and their isotopic compositions, evidence for water such as hydrous minerals or cements, the Martian soil oxidant, and trace biomarkers. Learning the nature and timing of atmosphere-soil-rock interactions will improve understanding of the role and history of water. An atmosphere sample will reveal fundamental information about current atmospheric processes. Information about the mineralogy and lithology of sample materials, the extent of impact gardening, and the nature of dust coatings and alteration rinds will provide much-needed ground truth for interpreting remotely-sensed data, including Mars Pathfinder. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. By bringing a simple locality sample back for analysis in the world's best labs, using the world's most sophisticated state-of-the-art instruments, we can make break-through progress in addressing fundamental questions about Mars.
Evaluating Core Quality for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.
2012-01-01
Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
Development of a Two-Stage Mars Ascent Vehicle Using In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Paxton, Laurel; Vaughan, David
2014-01-01
Mars Sample Return (MSR) and Mars In-Situ Resource Utilization (ISRU) present two main challenges for the advancement of Mars science. MSR would demonstrate Mars lift-off capability, while ISRU would test the ability to produce fuel and oxidizer using Martian resources, a crucial step for future human missions. A two-stage Mars Ascent Vehicle (MAV) concept was developed to support sample return as well as in-situ propellant production. The MAV would be powered by a solid rocket first stage and a LOX-propane second stage. A liquid second-stage provides higher orbit insertion reliability than a solid second stage as well as a degree of complexity eventually required for manned missions. Propane in particular offers comparable performance to methane without requiring cryogenic storage. The total MAV mass would be 119.9 kg to carry an 11 kg payload to orbit. The feasibility of in-situ fuel and oxidizer production was also examined. Two potential schemes were evaluated for production capability, size and power requirements. The schemes examined utilize CO2 and water as starting blocks to produce LOX and a propane blend. The infrastructure required to fuel and launch the MAV was also explored.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.
2013-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft, makes a controlled Earth re-entry preventing any unintended release of pristine Martian materials into the Earth's biosphere. Other capsule type vehicles and associated launchers may be applicable. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX; published analyses from other sources; as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, has been made. And shows no significant stressors. A useful mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report on alternate propellant options for the MAV and options for the ERV, including propulsion systems; crewed versus robotic retrieval mission; as well as direct Earth entry. International Planetary Protection Policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. This work shows that emerging commercial capabilities can be used to effectively integrated into a mission to achieve an important planetary science objective.
NASA Astrophysics Data System (ADS)
Anderson, F. S.; Nowicki, K.; Whitaker, T.
This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.
CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase
NASA Technical Reports Server (NTRS)
Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.
2000-01-01
A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.
Advanced Curation: Solving Current and Future Sample Return Problems
NASA Technical Reports Server (NTRS)
Fries, M.; Calaway, M.; Evans, C.; McCubbin, F.
2015-01-01
Advanced Curation is a wide-ranging and comprehensive research and development effort at NASA Johnson Space Center that identifies and remediates sample related issues. For current collections, Advanced Curation investigates new cleaning, verification, and analytical techniques to assess their suitability for improving curation processes. Specific needs are also assessed for future sample return missions. For each need, a written plan is drawn up to achieve the requirement. The plan draws while upon current Curation practices, input from Curators, the analytical expertise of the Astromaterials Research and Exploration Science (ARES) team, and suitable standards maintained by ISO, IEST, NIST and other institutions. Additionally, new technologies are adopted on the bases of need and availability. Implementation plans are tested using customized trial programs with statistically robust courses of measurement, and are iterated if necessary until an implementable protocol is established. Upcoming and potential NASA missions such as OSIRIS-REx, the Asteroid Retrieval Mission (ARM), sample return missions in the New Frontiers program, and Mars sample return (MSR) all feature new difficulties and specialized sample handling requirements. The Mars 2020 mission in particular poses a suite of challenges since the mission will cache martian samples for possible return to Earth. In anticipation of future MSR, the following problems are among those under investigation: What is the most efficient means to achieve the less than 1.0 ng/sq cm total organic carbon (TOC) cleanliness required for all sample handling hardware? How do we maintain and verify cleanliness at this level? The Mars 2020 Organic Contamination Panel (OCP) predicts that organic carbon, if present, will be present at the "one to tens" of ppb level in martian near-surface samples. The same samples will likely contain wt% perchlorate salts, or approximately 1,000,000x as much perchlorate oxidizer as organic carbon. The chemical kinetics of this reaction are poorly understood at present under the conditions of cached or curated martian samples. Among other parameters, what is the maximum temperature allowed during storage in order to preserve native martian organic compounds for analysis? What is the best means to collect headspace gases from cached martian (and other) samples? This gas will contain not only martian atmosphere but also off-gassed volatiles from the cached solids.
NASA Astrophysics Data System (ADS)
Carta, R.; Filippetto, D.; Lavagna, M.; Mailland, F.; Falkner, P.; Larranaga, J.
2015-12-01
The paper provides recent updates about the ESA study: Sample Canister Capture Mechanism Design and Breadboard developed under the Mars Robotic Exploration Preparation (MREP) program. The study is part of a set of feasibility studies aimed at identifying, analysing and developing technology concepts enabling the future international Mars Sample Return (MSR) mission. The MSR is a challenging mission with the purpose of sending a Lander to Mars, acquire samples from its surface/subsurface and bring them back to Earth for further, more in depth, analyses. In particular, the technology object of the Study is relevant to the Capture Mechanism that, mounted on the Orbiter, is in charge of capturing and securing the Sample Canister, or Orbiting Sample, accommodating the Martian soil samples, previously delivered in Martian orbit by the Mars Ascent Vehicle. An elegant breadboard of such a device was implemented and qualified under an ESA contract primed by OHB-CGS S.p.A. and supported by Politecnico di Milano, Department of Aerospace Science and Technology: in particular, functional tests were conducted at PoliMi-DAST and thermal and mechanical test campaigns occurred at Serms s.r.l. facility. The effectiveness of the breadboard design was demonstrated and the obtained results, together with the design challenges, issues and adopted solutions are critically presented in the paper. The breadboard was also tested on a parabolic flight to raise its Technology Readiness Level to 6; the microgravity experiment design, adopted solutions and results are presented as well in the paper.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Lemke, Lawrence G.; Stoker, Carol R.; Faber, Nicolas T.; Race, Margaret S.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of pristine martian materials into the Earth's biosphere. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX, published analyses from other sources, as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, shows no significant stressors. A useful payload mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report options for the MAV and ERV, including propulsion systems, crewed versus robotic retrieval mission, as well as direct Earth entry. International planetary protection policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. We also describe preliminary compliance measures that will be the subject of future work. This work shows that emerging commercial capabilities as well as new methodologies can be used to efficiently support an important planetary science objective. The work also has applications for human exploration missions that use propulsive EDL techniques
Planetary Sample Caching System Design Options
NASA Technical Reports Server (NTRS)
Collins, Curtis; Younse, Paulo; Backes, Paul
2009-01-01
Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.
An In-Situ Rb-Sr Dating & Organics Characterization Instrument For A MER+ Sized Rover
NASA Astrophysics Data System (ADS)
Anderson, F.; Whitaker, T.; Nowicki, K.; Zacny, K.; Pierce, J.
2012-12-01
We posit that a Mars in-situ geochronology mission that will triage and validate samples for Mars Sample Return (MSR) is technically feasible in the 2018-2022 time frame and addresses the competing scientific, political, and fiscal requirements for flight in this decade.The mission must be responsive to the astrobiological and chronological science goals of the MEPAG, Decadal Survey (DS), and E2E-iSAG, and avoid the MSR appearance of long term political commitment and cost. These requirements can best be accomplished by a rover with a coring drill. JPL has reassessed the MER landing system performance, and determined that the system is capable of significantly higher landed mass (~40-60 kg plus reserve), allowing more sophisticated instruments to be carried. The instrument package is comprised of a time of flight (TOF) mass spectrometer combined with a laser desorption resonance ionization source to sensitively measure isobar free Rb-Sr isotopes for geochronology and organics characterization. The desorption laser is also used with a μRaman/LIBS for mineral characterization, which in combination with the TOF, will additionally provide measurements of K-Ar isotopes for a second form of radiometric dating. The laser desorption resonance ionization mass spectrometry (LDRIMS) technique avoids the interference and mass resolution issues associated with geochronology measurements, and has miniaturization potential. A sample is placed in the TOF mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. We have partially miniaturized the instrument, including Sr lasers, ablation laser, and mass spectrometer, and will soon to start using the instrument for field measurements. Our current prototype can measure the isotope ratio of lab standards with 10 ppm net Sr or Rb to a precision of ±0.1% (1σ), with a sensitivity of 1:10^10 in ~15 minutes. Before working with high value samples, we are validating the technique on terrestrial materials such as the Boulder Creek Granite (BCG). Using LDRIMS, we have succeeded at producing a moderate precision date for BCG of 1.72±0.087 Ga (n=288, MSWD=1; ±0.60 Ga for MSWD=2). Our mission feeds forward into MSR by validating that the collected samples are astrobiologically and geochronologically relevant, and triages those samples by scientific priority for return by MSR. Figure 1: Calibrated repeat isochron of the BCG.
Development of a figure-of-merit for space missions
NASA Technical Reports Server (NTRS)
Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar
1991-01-01
The concept of a quantitative figure-of-merit (FOM) to evaluate different and competing options for space missions is further developed. Over six hundred individual factors are considered. These range from mission orbital mechanics to in-situ resource utilization (ISRU/ISMU) plants. The program utilizes a commercial software package for synthesis and visual display; the details are completely developed in-house. Historical FOM's are derived for successful space missions such as the Surveyor, Voyager, Apollo, etc. A cost FOM is also mentioned. The bulk of this work is devoted to one specific example of Mars Sample Return (MSR). The program is flexible enough to accommodate a variety of evolving technologies. Initial results show that the FOM for sample return is a function of the mass returned to LEO, and that missions utilizing ISRU/ISMU are far more cost effective than those that rely on all earth-transported resources.
NASA Technical Reports Server (NTRS)
Perino, Scott; Bayandor, Javid; Siddens, Aaron
2012-01-01
The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.
Mars Ascent Vehicle Test Requirements and Terrestrial Validation
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Cathey, Henry M.; Smith, David A.
2011-01-01
The Mars robotic sample return mission has been a potential flagship mission for NASA s science mission directorate for decades. The Mars Exploration Program and the planetary science decadal survey have highlighted both the science return of the Mars Sample Return mission, but also the need for risk reduction through technology development. One of the critical elements of the MSR mission is the Mars Ascent Vehicle, which must launch the sample from the surface of Mars and place it into low Mars orbit. The MAV has significant challenges to overcome due to the Martian environments and the Entry Descent and Landing system constraints. Launch vehicles typically have a relatively low success probability for early flights, and a thorough system level validation is warranted. The MAV flight environments are challenging and in some cases impossible to replicate terrestrially. The expected MAV environments have been evaluated and a first look of potential system test options has been explored. The terrestrial flight requirements and potential validation options are presented herein.
Mars Sample Return mission utilizing in-situ propellant production
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Price, Steve
1995-01-01
This report presents the results of a study examining the potential of in-situ propellant production (ISPP) on Mars to aid in achieving a low cost Mars Sample Return (MSR) mission. Two versions of such a mission were examined: a baseline version employing a dual string spacecraft, and a light weight version employing single string architecture with selective redundancy. Both systems employed light weight avionics currently being developed by Lockheed Martin, Jet Propulsion Lab and elsewhere in the aerospace community, both used a new concept for a simple, light weight parachuteless sample return capsule, both used a slightly modified version of the Mars Surveyor lander currently under development at Lockheed Martin for flight in 1998, and both used a combination of the Sabatier-electrolysis and reverse water gas shift ISPP systems to produce methane/oxygen propellant on Mars by combining a small quantity of imported hydrogen with the Martian CO2 atmosphere. It was found that the baseline mission could be launched on a Delta 7925 and return a 0.5 kg sample with 82 percent mission launch margin;over and beyond subsystem allocated contingency masses . The lightweight version could be launched on a Mid-Lite vehicle and return a 0.25 kg sample with 11 percent launch margin, over and above subsystem contingency mass allocations.
Trade Study of Five In-Situ Propellant Production Systems for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Green, S. T.; Deffenbaugh, D. M.; Miller, M. A.
1999-01-01
One of the goals of NASA's HEDS enterprise is to establish a long-term human presence on Mars at a fraction of the cost of employing today's technology. The most direct method of reducing mission cost is to reduce the launch mass of the spacecraft. If the propellants for the return phase of the mission are produced on Mars, the total spacecraft mass could be reduced significantly. An interim goal is a Mars Sample Return (MSR) mission, which is proposed to demonstrate the feasibility of in-situ propellant production (ISPP). Five candidate ISPP systems for producing two fuels and oxygen from the Martian atmosphere are considered in this design trade-off study: 1) Zirconia cell with methanol synthesis, 2) Reverse water gas shift with water electrolysis and methanol synthesis, 3) Sabatier process for methane product ion with water electrolysis, 4) Sabatier process with water electrolysis and partial methane pyrolysis, and 5) Sabatier/RWGS combination with water electrolysis.
Further applications of a Figure-of-Merit in space missions
NASA Technical Reports Server (NTRS)
Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar
1991-01-01
A redesigned figure-of-merit (FoM) approach is described with respect to its applications in projects that employ in situ resource utilization (ISRU) and advanced modular engines. The FoM considers long-term effects, reliability of hardware, and risks inherent to new technologies, as well as significant design parameters. A spreadsheet is utilized to describe the FoM by means of key mission characteristics and combinations of the characteristic inputs in terms of precise governing equations. Results of the FoMs for historical and Mars Sample Return (MSR) missions are given for the conventional mission as well as an ISRU mission for the MSR. A detailed description of the most effective Mars mission is presented, showing how different factors affect the FoM. The results demonstrate that the FoM gives quantitative results based on overall mission design, allowing intercomparisons of similar missions. The FoM can be used as a screening parameter by modifying aspects of the mission by means of the R-factor.
Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.
2016-01-01
The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
Mars Sample Return Landed with Red Dragon
NASA Technical Reports Server (NTRS)
Stoker, Carol R.; Lemke, Lawrence G.
2013-01-01
A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged spacecraft designs capable of meeting mission requirements. Subsystems modeled in this study included structures, power system, propulsion system, nose fairing, thermal insulation, actuation devices, and GN&C. Best practice application of loads and design margins for all resources were used. Both storable and cryogenic propellant systems were examined. The landed mass and lander capsule size provide boundary conditions for the MAV design and packaging. We estimated the maximum mass the Dragon capsule is capable of landing. This and the volume capability to store the MAV was deduced from publically available data from SpaceX as well as our own engineering and aerodynamic estimates. Minimum gross-liftoff mass (GLOM) for the MAV were obtained for configurations that used pump-fed storable bi-propellant rocket engines for both the MAV and the ERV stage. The GLOM required fits within our internal estimate of the mass that Dragon can land at low elevation/optimal seasons on Mars. Based on the analysis, we show that a single Mars launch sample return mission is feasible using current commercial capabilities to deliver the return spacecraft assets.
Development and Test Plans for the MSR EEV
NASA Technical Reports Server (NTRS)
Dillman, Robert; Laub, Bernard; Kellas, Sotiris; Schoenenberger, Mark
2005-01-01
The goal of the proposed Mars Sample Return mission is to bring samples from the surface of Mars back to Earth for thorough examination and analysis. The Earth Entry Vehicle is the passive entry body designed to protect the sample container from entry heating and deceleration loads during descent through the Earth s atmosphere to a recoverable location on the surface. This paper summarizes the entry vehicle design and outlines the subsystem development and testing currently planned in preparation for an entry vehicle flight test in 2010 and mission launch in 2013. Planned efforts are discussed for the areas of the thermal protection system, vehicle trajectory, aerodynamics and aerothermodynamics, impact energy absorption, structure and mechanisms, and the entry vehicle flight test.
NASA Astrophysics Data System (ADS)
Younse, Paulo
Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.
SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph
2015-01-01
This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.
Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities
NASA Technical Reports Server (NTRS)
Sabahi, D.; Graf, J. E.
2000-01-01
A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Beaty, David W.
2010-01-01
Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.
NASA Technical Reports Server (NTRS)
Morris, Richard V.
2008-01-01
The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?
X-Ray Computed Tomography: The First Step in Mars Sample Return Processing
NASA Technical Reports Server (NTRS)
Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.
2017-01-01
The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and characterize the cached samples without altering the materials [1,2]. A recent report [4] indicates that XCT may minimally alter samples for some techniques, and work is needed to quantify these effects, maximizing science return from XCT initial analysis while minimizing effects.
Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return
NASA Technical Reports Server (NTRS)
Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.
2011-01-01
The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.
Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant
NASA Technical Reports Server (NTRS)
George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.
2014-01-01
A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.
Mars Sample Return Using Solar Sail Propulsion
NASA Technical Reports Server (NTRS)
Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom
2012-01-01
Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2
MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2011-01-01
The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by mass of each sample should be preserved to support future scientific investigations. Samples of 15-16 grams are considered optimal. The total mass of returned rocks, soils, blanks and standards should be approximately 500 grams. Atmospheric gas samples should be the equivalent of 50 cubic cm at 20 times Mars ambient atmospheric pressure.
Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young
2017-06-03
Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.
Sample Acquisition and Caching architecture for the Mars Sample Return mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.
This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.
Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen.
Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young
2017-02-26
Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA -/- ). We found that MsrA -/- mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA -/- liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA -/- than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA -/- than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. Copyright © 2017 Elsevier Inc. All rights reserved.
Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahendra Pratap; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab; Kim, Ki Young
Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA{sup −/−}). We found that MsrA{sup −/−} mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA{sup +/+}). The central lobule area of the MsrA{sup −/−} liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA{supmore » −/−} than in MsrA{sup +/+} mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA{sup −/−} than in MsrA{sup +/+} livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA{sup −/−} than in MsrA{sup +/+} livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.« less
Singh, Mahendra Pratap; Kim, Ki Young; Kwak, Geun-Hee; Baek, Suk-Hwan; Kim, Hwa-Young
2017-10-01
Methionine sulfoxide reductase A (MsrA) is a major antioxidant enzyme that specifically catalyzes the reduction of methionine S-sulfoxide. In this study, we used MsrA gene-knockout (MsrA -/- ) mice and bone marrow-derived macrophages (BMDMs) to investigate the role of MsrA in the regulation of inflammatory responses induced by lipopolysaccharide (LPS). MsrA -/- mice were more susceptible to LPS-induced lethal shock than wild-type (MsrA +/+ ) mice. Serum levels of the proinflammatory cytokines IL-6 and TNF-α induced by LPS were higher in MsrA -/- than in MsrA +/+ mice. MsrA deficiency in the BMDMs also increased the LPS-induced cytotoxicity as well as TNF-α level. Basal and LPS-induced reactive oxygen species (ROS) levels were higher in MsrA -/- than in MsrA +/+ BMDMs. Phosphorylation levels of p38, JNK, and ERK were higher in MsrA -/- than in MsrA +/+ BMDMs in response to LPS, suggesting that MsrA deficiency increases MAPK activation. Furthermore, MsrA deficiency increased the expression and nuclear translocation of NF-κB and the expression of inducible nitric oxide synthase, a target gene of NF-κB, in response to LPS. Taken together, our results suggest that MsrA protects against LPS-induced septic shock, and negatively regulates proinflammatory responses via inhibition of the ROS-MAPK-NF-κB signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntley, W.R.; Silverman, M.D.
1976-11-01
Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers,more » salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.« less
Mahovetz, L M; Young, L J; Hopkins, W D
2016-06-01
The mark/rouge test has been used to assess mirror self-recognition (MSR) in many species. Despite consistent evidence of MSR in great apes, genetic or non-genetic factors may account for the individual differences in behavioral responses that have been reported. We examined whether vasopressin receptor gene (AVPR1A) polymorphisms are associated with MSR-related behaviors in chimpanzees since vasopressin has been implicated in the development and evolution of complex social relations and cognition and chimpanzees are polymorphic for the presence of the RS3-containing DupB region. We compared a sample of DupB+/- and DupB-/- chimpanzees on a mark test to assess its role on social behavior toward a mirror. Chimpanzees were administered two, 10-min sessions where frequencies of mirror-guided self-directed behaviors, contingent actions and other social behaviors were recorded. Approximately one-third showed evidence of MSR and these individuals exhibited more mirror-guided self-exploratory behaviors and mouth contingent actions than chimpanzees not classified as passers. Moreover, DupB+/- males exhibited more scratching and agonistic behaviors than other male and female cohorts. Our findings support previous studies demonstrating individual differences in MSR abilities in chimpanzees and suggest that AVPR1A partly explains individual differences in MSR by influencing the behavioral reactions of chimpanzees in front of a mirror. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Ultra-low field MRI food inspection system prototype
NASA Astrophysics Data System (ADS)
Kawagoe, Satoshi; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo
2016-11-01
We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr
Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G{sub 1}/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ERmore » stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation. -- Highlights: •MsrB3 depletion induces HO-1 expression. •MsrB3 deficiency increases cellular ROS and ER stress. •MsrB3 deficiency activates Nrf2 by increasing its expression and nuclear import. •MsrB3 attenuates HO-1 induction by inhibiting ROS production and Nrf2 activation.« less
Alqudah, Safa; Chertoff, Mark; Durham, Dianne; Moskovitz, Jackob; Staecker, Hinrich; Peppi, Marcello
2018-06-21
Methionine sulfoxide reductases (MsrA and MsrB) protect the biological activity of proteins from oxidative modifications to methionine residues and are important for protecting against the pathological effects of neurodegenerative diseases. In the current study, we characterized the auditory phenotype of the MsrA knockout mouse. Young MsrA knockout mice showed small high-frequency threshold elevations for auditory brainstem response and distortion product otoacoustic emission compared to those of wild-type mice, which progressively worsened in older MsrA knockout mice. MsrA knockout mice showed an increased sensitivity to noise at young and older ages, suggesting that MsrA is part of a mechanism that protects the cochlea from acoustic damage. MsrA mRNA in the cochlea was increased following acoustic stimulation. Finally, expression of mRNA MsrB1 was compromised at 6 months old, but not in younger MsrA knockout mice (compared to controls). The identification of MsrA in the cochlea as a protective mediator from both early onset hearing loss and acoustic trauma expands our understanding of the pathways that may induce protection from acoustic trauma and foster further studies on how to prevent the damaging effect of noise exposure through Msr-based therapy. © 2018 S. Karger AG, Basel.
Takayama, Hitoshi; Nonomura, Norio; Nishimura, Kazuo; Oka, Daizo; Shiba, Masahiro; Nakai, Yasutomo; Nakayama, Masashi; Tsujimura, Akira; Aozasa, Katsuyuki; Okuyama, Akihiko
2009-02-01
The aim of this study is to evaluate the expression of the macrophage scavenger receptor (MSR) in prostate needle biopsy specimens as a possible prognostic factor for prostate cancer. As MSR reportedly has a role in recognizing foreign pathogenic substances, MSR-positive inflammatory cells are often detected in solid tumours, and there is a correlation between the relative risk of prostate cancer and polymorphism of the MSR gene. MSR was evaluated by immunostaining in needle biopsies of the prostate from 135 patients who were confirmed to have prostate cancer. Among these men, 70 were treated by radical prostatectomy or by radiotherapy as definitive therapy; the other 65 were treated by hormonal therapy because of advanced disease or age. Needle-biopsy specimens were sectioned at 5 microm and immunostained with a monoclonal antibody against MSR. Six microscopic (x400) fields around the cancer foci were selected in each case for analysis. The median number of MSR-positive cells (MSR count) in each case was 24. There was an inverse correlation between the MSR count and Gleason score and clinical stage. The MSR count was lower in patients with biochemical (prostate-specific antigen, PSA) failure than that in those with no PSA failure (P < 0.001). In all patients, the recurrence-free survival (RFS) rate was significantly higher in those with a high MSR count (> or =24) than that in those with low MSR count (<24, P < 0.001). Moreover, for patients treated by definitive or hormonal therapy, the RFS rates in those with a higher MSR count were higher than in those with a lower MSR count (P < 0.001 and 0.014, respectively). Cox multivariate analysis showed that the MSR count was a prognostic factor for prostate cancer in addition to extraprostatic extension and Gleason score (P = 0.002, 0.038 and 0.011, respectively). The results of immunostaining of MSR in needle-biopsy specimens is a prognostic factor for prostate cancer.
Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.
2010-01-01
Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460
Juillan-Binard, Céline; Picciocchi, Antoine; Andrieu, Jean-Pierre; Petit-Hartlein, Isabelle; Caux-Thang, Christelle; Vivès, Corinne; Nivière, Vincent
2017-01-01
MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli. We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins. PMID:28028176
Trade Study of Five In-Situ Propellant Production System for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Green, S. T.; Deffenbaugh, D. M.; Miller, M. A.
1999-01-01
One of the goals of NASA''s HEDS enterprise is to establish a long-term human presence on Mars at a fraction of the cost of employing today''s technology. The most direct method of reducing mission cost is to reduce the launch mass of the spacecraft. If the propellants for the return phase of the mission are produced on Mars, the total spacecraft mass could be reduced significantly. An interim goal is a Mars Sample Return (MSR) mission, which is proposed to demonstrate the feasibility of in-situ propellant production (ISPP). Five candidate ISPP systems for producing two fuels and oxygen from the Martian atmosphere are considered in this design trade-off study:(1) Zirconia cell with methanol synthesis, (2) Reverse water gas shift (RWGS) with water electrolysis and methanol synthesis, (3) Sabatier process for methane production with water electrolysis, (4) Sabatier process with water electrolysis and partial methane pyrolysis, and (5) Sabatier/RWGS combination with water electrolysis. These systems have been the subject of numerous previous analytical studies and laboratory demonstrations. In this investigation, the systems are objectively compared on the basis of thermochemical performance models using a commonly used chemical plant analysis software package. The realistic effects of incomplete chemical conversion and gas phase separator performance are included in these models. This study focuses on the chemical processing and product separation subsystems. The CO2 compression upstream of the chemical plane and the liquefaction/storage components are not included here.
Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seung Hee; Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr
2011-12-09
Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cellmore » proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.« less
Status of Liquid Oxygen/Liquid Methane Injector Study for a Mars Ascent Engine
NASA Technical Reports Server (NTRS)
Trinh, Huu Ogyic; Cramer, John M.
1998-01-01
Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for non-toxic chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of the return vehicle. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies (2) of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25(MMH/MON-25)]. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale precursor to a future human mission to Mars.
Le Pen, C; Priol, G; Lilliu, H
2003-01-01
The criteria for the registration of new drugs may differ from the criteria for drug reimbursement. In 2000 the French government entrusted the French Medicines Agency with determining the "medical service rendered" (MSR) for each reimbursable drug. The goal was to determine which drugs could be classified with an "insufficient" MSR and therefore should be taken out of the scope of health insurance. We analyze the concepts and methods used for this evaluation and the kind of results that are obtained. We collected data on the result of MSR classification and the criteria used to perform this classification (efficacy-security, severity of the disease,place in the therapeutic strategy, existence of therapeutic alternative, public health value) for a sample of 1453 drugs belonging to five therapeutic areas. We used statistical analysis to determine what were the most influential criteria. Only two criteria - efficacy and disease severity - suffice to very largely explain the MSR classification. The other criteria contribute little added value. Some of these criteria clearly suffer from a lack of clarification, leading to different interpretations according to therapeutic class or even according to drug or drug family. The evaluation procedure differs between therapeutic classes, at least at intermediate MSR levels. Analysis of the French experience with MSR shows that the evaluation procedure has not succeeded in completely breaking away from the traditional logic of the marketing authorization and registration, as witnessed by the importance of the "efficacy/safety" criterion, the absence of an economic criterion, and the vagueness of the "public health value" criterion, which one would have thought would instead be decisive.
Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.
Zhang, Xing-Hai; Weissbach, Herbert
2008-08-01
The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.
MarsVac: Pneumatic Sampling System for Planetary Exploration
NASA Astrophysics Data System (ADS)
Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.
2008-12-01
We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.
Recent concepts in missions to Mars - Extraterrestrial processes
NASA Technical Reports Server (NTRS)
Ramohalli, K. N.; Ash, R. L.; Lawton, E. A.; French, J. R.; Frisbee, R. H.
1986-01-01
This paper presents some recent concepts in Mars Sample Return (MSR) missions that utilize extraterrestrial resources. The concepts examined include the power and energy needs of this mission. It is shown that solar energy is not especially attractive. Radioisotopic power generator and a Rankine cycle use are seen to be viable options. Quantitative estimates, taking into consideration state-of-the-art and projected technologies indicate that the power/energy per se is not critical to the mission - but reliability is. Hence, various modern options for the components of the power generation and utilization are discussed. The dramatic savings in Shuttle (or other) vehicle launches are quantitatively plotted. The basic system that is discussed here is the production of hydrocarbon (methane) fuel and oxygen from Martian atmosphere. For the simplest mission, it is seen that earth-carried methane burned with oxygen produced on site provides the best system.
Interpersonal Problems and Their Relationship to Depression, Self-Esteem, and Malignant Self-Regard.
Huprich, Steven K; Lengu, Ketrin; Evich, Carly
2016-12-01
DSM-5 Section III recommends that level of personality functioning be assessed. This requires an assessment of self and other representations. Malignant self-regard (MSR) is a way of assessing the level of functioning of those with a masochistic, self-defeating, depressive, or vulnerably narcissistic personality. In Study 1, 840 undergraduates were assessed for MSR, depressive symptoms, self-esteem, anaclitic and introjective depression, and interpersonal problems. MSR, self-esteem, depressive symptoms, and anaclitic and introjective depression were correlated with multiple dimensions of interpersonal problems, and MSR predicted the most variance in interpersonal scales measuring social inhibition, nonassertion, over-accommodation, and excessive self-sacrifice. MSR, anaclitic, and introjective depression predicted unique variance in six of the eight domains of interpersonal problems assessed. In Study 2, 68 undergraduates were provided positive or negative feedback. Consistent with theory, MSR predicted unique variance in state anxiety but not state anger. Results support the validity of the MSR construct.
Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study
NASA Technical Reports Server (NTRS)
Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.
1988-01-01
This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.
Fu, Xian; Adams, Zachary; Liu, Rui; ...
2017-09-05
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less
Vitali, Luca Agostino; Di Luca, Maria Chiara; Prenna, Manuela; Petrelli, Dezemona
2016-01-01
We investigated the correlation between the genetic variation within mef(A)-msr(D) determinants of efflux-mediated erythromycin resistance in Streptococcus pyogenes and the level of erythromycin resistance. Twenty-eight mef(A)-positive strains were selected according to erythromycin MIC (4-32 μg/mL), and their mef(A)-msr(D) regions were sequenced. Strains were classified according to the bacteriophage carrying mef(A)-msr(D). A new Φm46.1 genetic variant was found in 8 strains out of 28 and named VP_00501.1. Degree of allelic variation was higher in mef(A) than in msr(D). Hotspots for recombination were mapped within the locus that could have shaped the apparent mosaic structure of the region. There was a general correlation between mef(A)-msr(D) sequence and erythromycin resistance level. However, lysogenic conversion of susceptible strains by mef(A)-msr(D)-carrying Φm46.1 indicated that key determinants may not all reside within the mef(A)-msr(D) locus and that horizontal gene transfer could contribute to changes in the level of antibiotic resistance in S. pyogenes. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xian; Adams, Zachary; Liu, Rui
Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysismore » reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant.« less
Das, Shyama; Idicula, Sumam Mary
2011-01-01
The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes in the submatrix show highly correlated activities across all conditions in the submatrix. A measure called mean squared residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within the submatrix. MSR difference is the incremental increase in MSR when a gene or condition is added to the bicluster. In this chapter, three biclustering algorithms using MSR threshold (MSRT) and MSR difference threshold (MSRDT) are experimented and compared. All these methods use seeds generated from K-Means clustering algorithm. Then these seeds are enlarged by adding more genes and conditions. The first algorithm makes use of MSRT alone. Both the second and third algorithms make use of MSRT and the newly introduced concept of MSRDT. Highly coherent biclusters are obtained using this concept. In the third algorithm, a different method is used to calculate the MSRDT. The results obtained on bench mark datasets prove that these algorithms are better than many of the metaheuristic algorithms.
A Sample Handling System for Mars Sample Return - Design and Status
NASA Astrophysics Data System (ADS)
Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.
2009-04-01
A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture mechanism through a bio-sealing system to the Earth Return Capsule (ERC) and has distinctly different requirements from the surface transfer system. The operations required to transfer the samples to the ERC are clearly defined and make use of mechanisms specifically designed for the job rather than robotic arms. Though it is mechanical rather than robotic, the design of the orbiter transfer system is very complex in comparison to most previous missions to fulfil all the scientific and technological requirements. Further mechanisms will be required to lock the samples into the ERC and to close the door at the rear of the ERC through which the samples have been inserted. Having performed this overall definition study, Astrium is now leading the next step of the development of the MSR sample handling: the Mars Surface Sample Transfer and Manipulation project (MSSTM). Organised in two phases, the project will re-evaluate in phase 1 the output of the previous study in the light of new inputs (e.g. addition of a rover) and investigate further the architectures and systems involved in the sample transfer chain while identifying the critical technologies. The second phase of the project will concentrate on the prototyping of a number of these key technologies with the goal of providing an end-to end validation of the surface sample transfer concept.
Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
Czarnecki, D; Zink, K
2013-04-21
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.
Mission Design Overview for Mars 2003/2005 Sample Return Mission
NASA Technical Reports Server (NTRS)
Lee, Wayne J.; DAmario, Louis A.; Roncoli, Ralph B.; Smith, John C.
2000-01-01
In May 2003, a new and exciting chapter in Mars exploration will begin with the launch of the first of three spacecraft that will collectively contribute toward the goal of delivering samples from the Red Planet to Earth. This mission is called Mars Sample Return (MSR) and will utilize both the 2003 and 2005 launch opportunities with an expected sample return in October 2008. NASA and CNES are major partners in this mission. The baseline mission mode selected for MSR is Mars orbit rendezvous (MOR), analogous in concept to the lunar orbit rendezvous (LOR) mode used for Apollo in the 1960s. Specifically, MSR will employ two NASA-provided landers of nearly identical design and one CNES-provided orbiter carrying a NASA payload of rendezvous sensors, orbital capture mechanisms, and an Earth entry vehicle (EEV). The high-level concept is that the landers will launch surface samples into Mars orbit, and the orbiter will retrieve the samples in orbit and then carry them back to Earth. The first element to depart for Mars will be one of the two landers. Currently, it is proposed that an intermediate class launch vehicle, such as the Boeing Delta 3 or Lockheed Martin Atlas 3A, will launch this 1800-kg lander from Cape Canaveral during the May 2003 opportunity. The lander will utilize a Type-1 transfer trajectory with an arrival at Mars in mid-December 2003. Landing will be aided by precision approach navigation and a guided hypersonic entry to achieve a touchdown accuracy of 10 km or better. Although the exact landing site has not yet been determined, it is estimated that lander resource constraints will limit the site to between 15 degrees north and south latitudes. Following touchdown, the lander will deploy a six-wheeled, 60-kg rover carrying an extensive suite of instruments designed to aid in the analysis of the local terrain and collection of core samples from selected rocks. The surface mission is currently designed around a concept called the surface traverse. Each traverse will involve the rover exploring a selected area of terrain up to 100 meters from the lander, the collection of rock core samples, and the delivery of the samples from the traverse back to a sample canister on the lander. Planning estimates indicate that up to three traverses may be possible during the expected 90-sol lifetime of the lander. The canister that will receive the samples from the rover will be attached to the top stage of a small solid-fueled rocket mounted to the deck of the lander. This rocket is called the Mars Ascent Vehicle (MAV) and consists of three stages weighing a total of about 140 kg. After the conclusion of the surface mission, the MAV will lift-off and insert the sample canister into a near-circular orbit with an altitude of about 600 km and inclination of 45 degrees. The sample canister will wait in this orbit until it is retrieved by the orbiter sometime in early 2007. In August 2005, the second lander and a CNES-provided orbiter weighing 2700 kg will depart for Mars. Currently, it is proposed that a single Ariane 5 provided by CNES will launch both of these two elements onto a Type-2 transfer trajectory. Although the orbiter and lander will be launched together, they will separate shortly after injection and will fly to Mars as two independent spacecraft. However, both spacecraft will perform a maneuver between 10 and 15 days after launch so that their arrival times at Mars differ by between 12 and 24 hours. This scheme will reduce the operational complexity at the encounter date. A set of four 60-kg surface probes will ride piggyback on the orbiter to Mars. These CNES-provided probes are called Netlanders and will serve as surface stations for scientific investigations independent of the Mars Sample Return goals. Starting approximately one month prior to arrival at Mars, the orbiter will begin to release the Netlanders one at a time. Each release cycle will take several days, and will include time for precision navigation to execute one or two maneuvers that will target the Netlanders to their proper landing site. All four deployment cycles will be completed prior to 10 days before arrival. Both the orbiter and lander will arrive in late-July 2006. Upon arrival, the lander will perform a precision landing and surface mission similar in concept to the one that was executed during the 2003 opportunity. Although the landing site for the 2005 opportunity has not been selected, it is expected to be different from the 2003 site to enhance the diversity of the collected samples. The orbiter's arrival at Mars will be highlighted by the first use of aerocapture to insert a spacecraft into a capture orbit around another planet. The choice of aerocapture, as opposed to a propulsive orbit insertion, was considered mission enabling due to a reduction of over 2000 m/s in mission AV. Aerocapture will be targeted to produce a 250 km x 1400 km capture orbit with an inclination of 45 degrees. Current analysis indicates that achieving this goal will require approximately six minutes of flight deep in the atmosphere with a targeted periapsis of approach of about 43 km. After factoring into account the penalty for carrying a heat shield to survive aerocapture, the net savings compared to a propulsive orbital insertion amounts to several hundred kilograms.
A Miniaturized Spectrometer for Optimized Selection of Subsurface Samples for Future MSR Missions
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; Altieri, F.; De Angelis, S.; Ferrari, M.; Frigeri, A.; Biondi, D.; Novi, S.; Antonacci, F.; Gabrieli, R.; Paolinetti, R.; Villa, F.; Ammannito, A.; Mugnuolo, R.; Pirrotta, S.
2018-04-01
We present the concept of a miniaturized spectrometer based on the ExoMars2020/Ma_MISS experiment. Coupled with a drill tool, it will allow an assessment of subsurface composition and optimize the selection of martian samples with a high astrobiological potential.
Rojas, Luis A.; Yáñez, Carolina; González, Myriam; Lobos, Soledad; Smalla, Kornelia; Seeger, Michael
2011-01-01
Background Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. Methodology/Principal Findings To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. Conclusions/Significance A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation. PMID:21423734
A facile approach to enhance antigen response for personalized cancer vaccination
NASA Astrophysics Data System (ADS)
Li, Aileen Weiwei; Sobral, Miguel C.; Badrinath, Soumya; Choi, Youngjin; Graveline, Amanda; Stafford, Alexander G.; Weaver, James C.; Dellacherie, Maxence O.; Shih, Ting-Yu; Ali, Omar A.; Kim, Jaeyun; Wucherpfennig, Kai W.; Mooney, David J.
2018-06-01
Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.
The right whale mandatory ship reporting system: a retrospective
Adams, Jeffrey D.; Asaro, Michael J.; Cole, Timothy V.N.; Moore, Katie S.; Ward-Geiger, Leslie I.; Zoodsma, Barbara J.
2015-01-01
In 1998, the United States sought and received International Maritime Organization-endorsement of two Mandatory Ship Reporting (MSR) systems designed to improve mariner awareness about averting ship collisions with the endangered North Atlantic right whale (Eubalaena glacialis). Vessel collisions are a serious threat to the right whale and the program was among the first formal attempts to reduce this threat. Under the provisions of the MSR, all ships >300 gross tons are required to report their location, speed, and destination to a shore-based station when entering two key right whale habitats: one in waters off New England and one off coastal Georgia and Florida. In return, reporting ships receive an automatically-generated message, delivered directly to the ship’s bridge, that provides information about right whale vulnerability to vessel collisions and actions mariners can take to avoid collisions. The MSR has been in operation continuously from July 1999 to the present. Archived incoming reports provided a 15-plus year history of ship operations in these two locations. We analyzed a total of 26,772 incoming MSR messages logged between July 1999 and December 2013. Most ships that were required to report did so, and compliance rates were generally constant throughout the study period. Self-reported vessel speeds when entering the systems indicated that most ships travelled between 10 and 16 (range = 5–20 +) knots. Ship speeds generally decreased in 2009 to 2013 following implementation of vessel speed restrictions. The number of reports into the southern system remained relatively constant following a steady increase through 2007, but numbers in the northern system decreased annually beginning in 2008. If reporting is indicative of long-term patterns in shipping operations, it reflects noteworthy changes in marine transportation. Observed declines in ship traffic are likely attributable to the 2008–2009 economic recession, the containerized shipping industry making increased use of larger ships that made fewer trips, and diminished oil/gas US imports as previously inaccessible domestic deposits were exploited. Recent declines in shipping activity likely resulted in lowered collision risks for right whales and reduced their exposure to underwater noise from ships. PMID:25861555
The right whale mandatory ship reporting system: a retrospective.
Silber, Gregory K; Adams, Jeffrey D; Asaro, Michael J; Cole, Timothy V N; Moore, Katie S; Ward-Geiger, Leslie I; Zoodsma, Barbara J
2015-01-01
In 1998, the United States sought and received International Maritime Organization-endorsement of two Mandatory Ship Reporting (MSR) systems designed to improve mariner awareness about averting ship collisions with the endangered North Atlantic right whale (Eubalaena glacialis). Vessel collisions are a serious threat to the right whale and the program was among the first formal attempts to reduce this threat. Under the provisions of the MSR, all ships >300 gross tons are required to report their location, speed, and destination to a shore-based station when entering two key right whale habitats: one in waters off New England and one off coastal Georgia and Florida. In return, reporting ships receive an automatically-generated message, delivered directly to the ship's bridge, that provides information about right whale vulnerability to vessel collisions and actions mariners can take to avoid collisions. The MSR has been in operation continuously from July 1999 to the present. Archived incoming reports provided a 15-plus year history of ship operations in these two locations. We analyzed a total of 26,772 incoming MSR messages logged between July 1999 and December 2013. Most ships that were required to report did so, and compliance rates were generally constant throughout the study period. Self-reported vessel speeds when entering the systems indicated that most ships travelled between 10 and 16 (range = 5-20 +) knots. Ship speeds generally decreased in 2009 to 2013 following implementation of vessel speed restrictions. The number of reports into the southern system remained relatively constant following a steady increase through 2007, but numbers in the northern system decreased annually beginning in 2008. If reporting is indicative of long-term patterns in shipping operations, it reflects noteworthy changes in marine transportation. Observed declines in ship traffic are likely attributable to the 2008-2009 economic recession, the containerized shipping industry making increased use of larger ships that made fewer trips, and diminished oil/gas US imports as previously inaccessible domestic deposits were exploited. Recent declines in shipping activity likely resulted in lowered collision risks for right whales and reduced their exposure to underwater noise from ships.
NASA Astrophysics Data System (ADS)
Wang, Chao; Sun, Limin; Lichtenwalter, Ben; Zerkle, Brent; Okada, Yoshio
2016-06-01
A closed-cycle helium recycler was developed for continuous uninterrupted operation for magnetometer-based whole-head magnetoencephalography (MEG) systems. The recycler consists of a two stage 4 K pulse-tube cryocooler and is mounted on the roof of a magnetically shielded room (MSR). A flexible liquid helium (LHe) return line on the recycler is inserted into the fill port of the MEG system in the MSR through a slotted opening in the ceiling. The helium vapor is captured through a line that returns the gas to the top of the recycler assembly. A high-purity helium gas cylinder connected to the recycler assembly supplies the gas, which, after it is liquefied, increases the level of LHe in the MEG system during the start-up phase. No storage tank for evaporated helium gas nor a helium gas purifier is used. The recycler is capable of liquefying helium with a rate of ∼17 L/d after precooling the MEG system. It has provided a fully maintenance-free operation under computer control for 7 months without refill of helium. Although the recycler is used for single-orientation operation at this initial testing site, it is designed to operate at ±20° orientations, allowing the MEG system to be tilted for supine and reclining positions. Vibration of the recycler is dampened to an ultra-low level by using several vibration isolation methods, which enables uninterrupted operation during MEG measurements. Recyclers similar to this system may be quite useful even for MEG systems with 100% magnetometers.
Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation
Kuhns, Lisa G.; Mahawar, Manish; Sharp, Joshua S.; Benoit, Stéphane; Maier, Robert J.
2014-01-01
The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions. PMID:23181726
Mars Orbiter Sample Return Power Design
NASA Technical Reports Server (NTRS)
Mardesich, N.; Dawson, S.
1999-01-01
The NASA/JPL 2003/2005 Mars Sample Return (MSR) Missions will each have a sample return canister that will be filled with samples cored from the surface of MARS. These spherical canisters will be 14.8 cm in diameter and must be powered only by solar cells on the surface and must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the SOAP program developed by JPL. The requirements and geometry for a solar array on a sphere are unique and place special constraints on the design. These requirements include 1) accommodating a lid for sample loading into the canister, surface area was restricted from use on the Northern pole of the spherical canister. 2) minimal cell surface coverage (maximum cell efficiency), less than 40%, for recovery vehicle to locate the canister by optical techniques. 3) a RF transmission during 50% of MARS orbit time on any spin axis, which requires optimum circuit placement of the solar cell onto the spherical canister. The best configuration would have been a 4.5 volt round cell, but in the real world we compromised with six triangular silicon cells connected in series to form a hexagon. These hexagon circuits would be mounted onto a flat facet cut into the spherical canister. The surface flats are required in order to maximize power, the surface of the cells connected in series must be at the same angle relative to the sun. The flat facets intersect each other to allow twelve circuits evenly spaced just North and twelve circuits South of the equator of the spherical canister. Connecting these circuits in parallel allows sufficient power to operate the transmitter at minimum solar exposure, Northern pole of the canister facing the sun. Additional power, as much as 20%, is also generated by the circuits facing MARS due to albedo of MARS.
The Organization of Behavior Over Time: Insights from Mid-Session Reversal
Rayburn-Reeves, Rebecca M.; Cook, Robert G.
2016-01-01
What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action. PMID:27942272
The Organization of Behavior Over Time: Insights from Mid-Session Reversal.
Rayburn-Reeves, Rebecca M; Cook, Robert G
2016-01-01
What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.
Jiang, Guoxiang; Wu, Fuwang; Li, Zhiwei; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming
2018-06-01
Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brot,N.; Collet, J.; Johnson, L.
2006-01-01
The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the {alpha} domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologsmore » are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this framework there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6 {angstrom} crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules including TlpA, CcmG and ResA. Subtle differences are observed in this loop when compared to the N. meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.« less
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (ε r = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications. PMID:26018795
Metasurface Reflector (MSR) Loading for High Performance Small Microstrip Antenna Design.
Ahsan, Md Rezwanul; Islam, Mohammad Tariqul; Ullah, Mohammad Habib; Singh, Mandeep Jit; Ali, Mohd Tarmizi
2015-01-01
A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR) structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15) is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%), 467 to 606 MHz (29%) and 758 MHz to 1062 MHz (40%) for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB) and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz) RFID, WiMAX (3.5/5.5 GHz) and WLAN (5.2/5.8 GHz) applications.
Current and potential sustainable corn stover feedstock for biofuel production in the United States
Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman
2012-01-01
Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.
Landing System Development- Design and Test Prediction of a Lander Leg Using Nonlinear Analysis
NASA Astrophysics Data System (ADS)
Destefanis, Stefano; Buchwald, Robert; Pellegrino, Pasquale; Schroder, Silvio
2014-06-01
Several mission studies have been performed focusing on a soft and precision landing using landing legs. Examples for such missions are Mars Sample Return scenarios (MSR), Lunar landing scenarios (MoonNEXT, Lunar Lander) and small body sample return studies (Marco Polo, MMSR, Phootprint). Such missions foresee a soft landing on the planet surface for delivering payload in a controlled manner and limiting the landing loads.To ensure a successful final landing phase, a landing system is needed, capable of absorbing the residual velocities (vertical, horizontal and angular) at touch- down, and insuring a controlled attitude after landing. Such requirements can be fulfilled by using landing legs with adequate damping.The Landing System Development (LSD) study, currently in its phase 2, foresees the design, analysis, verification, manufacturing and testing of a representative landing leg breadboard based on the Phase B design of the ESA Lunar Lander. Drop tests of a single leg will be performed both on rigid and soft ground, at several impact angles. The activity is covered under ESA contract with TAS-I as Prime Contractor, responsible for analysis and verification, Astrium GmbH for design and test and QinetiQ Space for manufacturing. Drop tests will be performed at the Institute of Space Systems of the German Aerospace Center (DLR-RY) in Bremen.This paper presents an overview of the analytical simulations (test predictions and design verification) performed, comparing the results produced by Astrium made multi body model (rigid bodies, nonlinearities accounted for in mechanical joints and force definitions, based on development tests) and TAS-I made nonlinear explicit model (fully deformable bodies).
Highly durable direct hydrazine hydrate anion exchange membrane fuel cell
NASA Astrophysics Data System (ADS)
Sakamoto, Tomokazu; Serov, Alexey; Masuda, Teruyuki; Kamakura, Masaki; Yoshimoto, Koji; Omata, Takuya; Kishi, Hirofumi; Yamaguchi, Susumu; Hori, Akihiro; Horiuchi, Yousuke; Terada, Tomoaki; Artyushkova, Kateryna; Atanassov, Plamen; Tanaka, Hirohisa
2018-01-01
The factors influenced on degradation of direct hydrazine hydrate fuel cells (DHFCs) under operation conditions are analyzed by in situ soft X-ray radiography. A durability of DHFCs is significantly improved by multi-step reaction DHFCs (MSR-DHFCs) approach designed to decrease the crossover of liquid fuel. An open circuit voltage (OCV) as well as cell voltage at 5 mA cm-2 of MSR-DHFC construct with commercial anion exchange membrane (AEM) maintained for over of 3500 h at 60 °C. Furthermore, the commercial proton exchange membrane (PEM) is integrated into AEM of MSR-DHFCs resulting in stable power output of MSR-DHFCs for over than 2800 h at 80 °C.
Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise
2013-01-01
Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds. PMID:23401556
Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons
Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric
2015-01-01
The reactive species of oxygen (ROS) and chlorine (RCS) damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine (Met) is converted to methionine sulfoxide (Met-O), which can cause a loss of biological activity. To rescue proteins with Met-O residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts 1-3. Here, we report the identification of an enzymatic system, MsrPQ, repairing Met-O containing proteins in the bacterial cell envelope, a compartment particularly exposed to the ROS and RCS generated by the host defense mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a heme-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid (HOCl), a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from Met oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both R- and S- diastereoisomers of Met-O, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting Met residues from oxidation should prompt search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum (ER). PMID:26641313
Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.
Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric
2015-12-17
The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum.
TH-AB-201-09 [Medical Physics, Jun 2016, v. 43(6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzakhanian, L; Benmakhlouf, H; Seuntjens, J
2016-06-15
Purpose: To determine the k-(Q-msr,Q)^(f-msr,f-ref ) factor, introduced in the small field formalism for five common type chambers used in the calibration of Leksell Gamma-Knife Perfexion model over a range of different phantom electron densities. Methods: Five chamber types including Exradin-A16, A14SL, A14, A1SL and IBA-CC04 are modeled in EGSnrc and PENELOPE Monte Carlo codes using the blueprints provided by the manufacturers. The chambers are placed in a previously proposed water-filled phantom and four 16-cm diameter spherical phantoms made of liquid water, Solid Water, ABS and polystyrene. Dose to the cavity of the chambers and a small water volume aremore » calculated using EGSnrc/PENELOPE codes. The calculations are performed over a range of phantom electron densities for two chamber orientations. Using the calculated dose-ratio in reference and machine specific reference field, the k-(Q-msr,Q)^(f-msr,f-ref ) factor can be determined. Results: When chambers are placed along the symmetry axis of the collimator block (z-axis), the CC04 requires the smallest correction followed by A1SL and A16. However, when detectors are placed perpendicular to z-axis, A14SL needs the smallest and A16 the largest correction. Moreover, an increase in the phantom electron density results in a linear increase in the k-(Q-msr,Q)^(f-msr,f-ref ). Depending on the chambers, the agreement between this study and a previous study performed varies between 0.05–0.70% for liquid water, 0.07–0.85% for Solid Water and 0.00–0.60% for ABS phantoms. After applying the EGSnrc-calculated k-(Q-msr,Q)^(f-msr,f-ref ) factors for A16 to the previously measured dose-rates in liquid water, Solid Water and ABS normalized to the dose-rate measured with TG-21 protocol and ABS phantom, the dose-rate ratios are found to be 1.004±0.002, 0.996±0.002 and 0.998±0.002 (3σ) respectively. Conclusion: Knowing the electron density of the phantoms, the calculated k-(Q-msr,Q)^(f-msr,f-ref ) values in this work will enable users to apply the appropriate correction for their own specific phantom material. LM acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria
NASA Astrophysics Data System (ADS)
Smith, D. A.; Johnston, D. T.; Bradley, A. S.
2016-12-01
Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic composition of sulfide. The results from this experiment will inform our understanding of the metabolic controls on the isotopic composition of seawater sulfate.
In-Situ Resource Utilization for Economical Space Missions
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1999-01-01
This paper presents some recent developments in the technologies of ISRU with the specific intention of cost reductions in space missions. Recognizing that a certain level of technology maturation is necessary before the mission designers will seriously consider any technology, the hypothesis is made that the overall cost-index is inversely proportional to the TRL. Also recognizing that the cost is directly proportional to the mass at launch, the cost-index is identified as the ratio of the launch mass to the TRL. Whether this cost-index is the true measure of the overall mission cost is arguable; however, the relative costs of comparable technologies can be readily assessed by applying identical rules of such an evaluation. As one example of this approach, Mars Sample Return (MSR) is studied, and nine competing technologies are evaluated for the key Mars Ascent Vehicle (MAV). It is found that the technology of oxygen production through the dissociation of atmospheric carbon dioxide can be a key technology. In addition to reporting upon this technology briefly, one innovative application that significantly enhances the science capabilities of a rover is discussed.
Celaya, R; Moreno-Gonzalo, J; López López, C; Ferreira, L M M; García, U; Ferre, I; Osoro, K
2016-03-01
Although goat meat production could be an option for diversification in improved upland pastures in northern Spain, precise information on the optimal grazing management to enhance goat performance and maximize production per unit land area is lacking. The objective of this study was to compare the effects of 3 stocking rates, high stocking rate (HSR; 20 goats/ha), medium stocking rate (MSR; 15 goats/ha), and low stocking rate (LSR; 10 goats/ha), on gastrointestinal (GI) nematode infections and productive responses of Cashmere goats grazing such pastures. Treatments were replicated twice on 6 paddocks sown with and and with a high presence of the native grass . The experiment lasted 3 grazing seasons (from spring to autumn). Pastures were sampled for sward height and botanical and proximate composition. Body weight and BCS changes of goats were monitored and GI nematode infections were assessed by fecal egg counts (FEC). The established treatments resulted in lower mean sward height in the HSR than in the MSR and LSR (9.6, 11.5, and 14.4 cm, respectively; < 0.001). Pasture botanical composition and nutritive quality did not differ between treatments. The mean FEC of does across the 3 grazing seasons were greater ( < 0.05) in the HSR than in the LSR. spp., , and were the most prevalent nematode species identified in coprocultures. Does showed more favorable ( < 0.001) BW and BCS changes in the LSR than in the MSR and HSR (-14, -30, and -52 g/d and -0.1, -0.3, and -0.7 BCS units [scale 1 to 5], respectively). Greater ( < 0.001) kids' BW gains were observed in the LSR and MSR (average 94 g/d) compared with the HSR (70 g/d). Inversely, kid output per unit land area was greater in the HSR than in the MSR and LSR (320, 258, and 192 kg∙ha∙yr, respectively; < 0.001), whereas daily kids' BW gains per hectare were greater ( < 0.001) in the HSR and MSR (average 1.37 kg∙d∙ha) compared with the LSR (0.98 kg∙d∙ha). A medium stocking rate of 15 goats/ha could represent the best compromise between animal health, performance, and productivity per unit land area in this type of upland pastures, but stricter controls of parasite levels during the grazing season would be necessary to avoid production losses, unless alternative nutraceuticals are provided.
Ramalingam, Chidambaram
2015-01-01
This study is focused on the possible use of Ceratocystis paradoxa MSR2 native biomass for Cr(VI) biosorption. The influence of experimental parameters such as initial pH, temperature, biomass dosage, initial Cr(VI) concentration and contact time were optimized using batch systems as well as response surface methodology (RSM). Maximum Cr(VI) removal of 68.72% was achieved, at an optimal condition of biomass dosage 2g L−1, initial Cr(VI) concentration of 62.5 mg L−1 and contact time of 60 min. The closeness of the experimental and the predicted values exhibit the success of RSM. The biosorption mechanism of MSR2 biosorbent was well described by Langmuir isotherm and a pseudo second order kinetic model, with a high regression coefficient. The thermodynamic study also revealed the spontaneity and exothermic nature of the process. The surface characterization using FT-IR analysis revealed the involvement of amine, carbonyl and carboxyl groups in the biosorption process. Additionally, desorption efficiency of 92% was found with 0.1 M HNO3. The Cr(VI) removal efficiency, increased with increase in metal ion concentration, biomass concentration, temperature but with a decrease in pH. The size of the MSR2 biosorbent material was found to be 80 μm using particle size analyzer. Atomic force microscopy (AFM) visualizes the distribution of Cr(VI) on the biosorbent binding sites with alterations in the MSR2 surface structure. The SEM-EDAX analysis was also used to evaluate the binding characteristics of MSR2 strain with Cr(VI) metals. The mechanism of Cr(VI) removal of MSR2 biomass has also been proposed. PMID:25822726
Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes.
Zhang, Yan; Tatsuno, Ichiro; Okada, Ryo; Hata, Nanako; Matsumoto, Masakado; Isaka, Masanori; Isobe, Ken-ichi; Hasegawa, Tadao
2016-01-01
In Japan, the number of patients with streptococcal toxic shock syndrome is reported to be increasing. mef(A) gene-positive macrolide-resistant emm1 strains are thought to possibly contribute to the rise in the frequency of STSS. Although analyses of macrolide-resistant mechanisms, including mef(A) resistance, have been performed mainly in Streptococcus pneumoniae, the role of this gene in Streptococcus pyogenes has not been completely investigated. Therefore, to the best of our knowledge, we established the first mef(A)-knockout strain using an emm1-type S. pyogenes strain, and tested its susceptibility to erythromycin, clarithromycin and azithromycin. We found that the antimicrobial susceptibilities were almost identical to those of the parental strain. Hence, we established a knockout strain for another gene, msr(D), that is located immediately downstream of mef(A). The macrolide resistances of the resulting strain significantly decreased, and were further altered when both mef(A) and msr(D) were knocked out. The introduction of the msr(D) gene into a macrolide-sensitive strain conferred more resistance than the introduction of the mef(A) gene. The erythromycin susceptibilities of knockout strains were further dissected using two additional emm4- and emm75-type S. pyogenes strains. We found almost identical results for both strains except for the mef(A) knockout emm4 type, whose susceptibility was altered, although the change was less than that for the msr(D) knockout. These results suggest that both mef(A) and msr(D) are involved in macrolide resistance in S. pyogenes, and that the msr(D) gene plays a more predominant role in macrolide resistance than mef(A).
Oral, Nilufer
2014-10-01
One of the important contributions of the 1982 United Nations Law of the Sea Convention (UNCLOS) is Part XIII on Marine Scientific Research (MSR). UNCLOS recognizes the general rule that all states have the right to conduct MSR subject to rights and duties of other states under the convention and in addition, the obligation to promote and facilitate MSR. Copyright © 2014 Elsevier B.V. All rights reserved.
Self-recognition, theory-of-mind, and self-awareness: what side are you on?
Morin, Alain
2011-05-01
A fashionable view in comparative psychology states that primates possess self-awareness because they exhibit mirror self-recognition (MSR), which in turn makes it possible to infer mental states in others ("theory-of-mind"; ToM). In cognitive neuroscience, an increasingly popular position holds that the right hemisphere represents the centre of self-awareness because MSR and ToM tasks presumably increase activity in that hemisphere. These two claims are critically assessed here as follows: (1) MSR should not be equated with full-blown self-awareness, as it most probably only requires kinaesthetic self-knowledge and does not involve access to one's mental events; (2) ToM and self-awareness are fairly independent and should also not be taken as equivalent notions; (3) MSR and ToM tasks engage medial and left brain areas; (4) other self-awareness tasks besides MSR and ToM tasks (e.g., self-description, autobiography) mostly recruit medial and left brain areas; (5) and recent neuropsychological evidence implies that inner speech (produced by the left hemisphere) plays a significant role in self-referential activity. The main conclusions reached based on this analysis are that (a) organisms that display MSR most probably do not possess introspective self-awareness, and (b) self-related processes most likely engage a distributed network of brain regions situated in both hemispheres.
77 FR 49432 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
...: 240 Block I Javelin Missiles, 60 Command Launch Units (CLU), Missile Simulation Rounds (MSR), Battery... purchase of 240 Block I Javelin Missiles, 60 Command Launch Units (CLU) Missile Simulation Rounds (MSR...
Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions
NASA Technical Reports Server (NTRS)
Briggs, G.; McKay, C.
2000-01-01
The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.
2010-01-01
The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.
Chang, Liangtang; Zhang, Shikun; Poo, Mu-ming; Gong, Neng
2017-01-01
Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal. PMID:28193875
Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng
2017-03-21
Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.
Spatial differences between stars and brown dwarfs: a dynamical origin?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Andersen, Morten
2014-06-01
We use N-body simulations to compare the evolution of spatial distributions of stars and brown dwarfs in young star-forming regions. We use three different diagnostics: the ratio of stars to brown dwarfs as a function of distance from the region's centre, {R}_SSR, the local surface density of stars compared to brown dwarfs, ΣLDR, and we compare the global spatial distributions using the ΛMSR method. From a suite of 20 initially statistically identical simulations, 6/20 attain {R}_SSR ≪ 1 and ΣLDR ≪ 1 and ΛMSR ≪ 1, indicating that dynamical interactions could be responsible for observed differences in the spatial distributions of stars and brown dwarfs in star-forming regions. However, many simulations also display apparently contradictory results - for example, in some cases the brown dwarfs have much lower local densities than stars (ΣLDR ≪ 1), but their global spatial distributions are indistinguishable (ΛMSR = 1) and the relative proportion of stars and brown dwarfs remains constant across the region ({R}_SSR = 1). Our results suggest that extreme caution should be exercised when interpreting any observed difference in the spatial distribution of stars and brown dwarfs, and that a much larger observational sample of regions/clusters (with complete mass functions) is necessary to investigate whether or not brown dwarfs form through similar mechanisms to stars.
NASA Astrophysics Data System (ADS)
Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.
2017-09-01
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes’ frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.
Osusky, Milan; Osuska, Lubica; Kay, William; Misra, Santosh
2005-08-01
Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.
Sensory-Challenge Balance Exercises Improve Multisensory Reweighting in Fall-Prone Older Adults.
Allison, Leslie K; Kiemel, Tim; Jeka, John J
2018-04-01
Multisensory reweighting (MSR) deficits in older adults contribute to fall risk. Sensory-challenge balance exercises may have value for addressing the MSR deficits in fall-prone older adults. The purpose of this study was to examine the effect of sensory-challenge balance exercises on MSR and clinical balance measures in fall-prone older adults. We used a quasi-experimental, repeated-measures, within-subjects design. Older adults with a history of falls underwent an 8-week baseline (control) period. This was followed by an 8-week intervention period that included 16 sensory-challenge balance exercise sessions performed with computerized balance training equipment. Measurements, taken twice before and once after intervention, included laboratory measures of MSR (center of mass gain and phase, position, and velocity variability) and clinical tests (Activities-specific Balance Confidence Scale, Berg Balance Scale, Sensory Organization Test, Limits of Stability test, and lower extremity strength and range of motion). Twenty adults 70 years of age and older with a history of falls completed all 16 sessions. Significant improvements were observed in laboratory-based MSR measures of touch gain (P = 0.006) and phase (P = 0.05), Berg Balance Scale (P = 0.002), Sensory Organization Test (P = 0.002), Limits of Stability Test (P = 0.001), and lower extremity strength scores (P = 0.005). Mean values of vision gain increased more than those for touch gain, but did not reach significance. A balance exercise program specifically targeting multisensory integration mechanisms improved MSR, balance, and lower extremity strength in this mechanistic study. These valuable findings provide the scientific rationale for sensory-challenge balance exercise to improve perception of body position and motion in space and potential reduction in fall risk.
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Al-Areqi, Wadee'ah Mohd; Ruf, Mohd'Izzat Fahmi Mohd; Majid, Amran Ab.
2017-01-01
Interest of fluoride salts have recently revived due to the high temperature application in nuclear reactors. Molten Salt Reactor (MSR) was designed to operate at high temperature in range 700 - 800°C and its fuel is dissolved in a circulating molten fluoride salt mixture. Molten fluoride salts are stable at high temperature, have good heat transfer properties and can dissolve high concentration of actinides and fission product. The aim of this paper was to discuss the physical properties (melting temperature, density and heat capacity) of two systems fluoride salt mixtures i.e; LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) in terms of their application as coolant and fuel solvent in MSR. Both of these salts showed almost same physical properties but different applications in MSR. The advantages and the disadvantages of these fluoride salt systems will be discussed in this paper.
Ribosome protection by antibiotic resistance ATP-binding cassette protein.
Su, Weixin; Kumar, Veerendra; Ding, Yichen; Ero, Rya; Serra, Aida; Lee, Benjamin Sian Teck; Wong, Andrew See Weng; Shi, Jian; Sze, Siu Kwan; Yang, Liang; Gao, Yong-Gui
2018-05-15
The ribosome is one of the richest targets for antibiotics. Unfortunately, antibiotic resistance is an urgent issue in clinical practice. Several ATP-binding cassette family proteins confer resistance to ribosome-targeting antibiotics through a yet unknown mechanism. Among them, MsrE has been implicated in macrolide resistance. Here, we report the cryo-EM structure of ATP form MsrE bound to the ribosome. Unlike previously characterized ribosomal protection proteins, MsrE is shown to bind to ribosomal exit site. Our structure reveals that the domain linker forms a unique needle-like arrangement with two crossed helices connected by an extended loop projecting into the peptidyl-transferase center and the nascent peptide exit tunnel, where numerous antibiotics bind. In combination with biochemical assays, our structure provides insight into how MsrE binding leads to conformational changes, which results in the release of the drug. This mechanism appears to be universal for the ABC-F type ribosome protection proteins. Copyright © 2018 the Author(s). Published by PNAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Flanagan, George F.; Voth, Marcus
Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.
Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris
2015-05-01
Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Precocious development of self-awareness in dolphins.
Morrison, Rachel; Reiss, Diana
2018-01-01
Mirror-self recognition (MSR) is a behavioral indicator of self-awareness in young children and only a few other species, including the great apes, dolphins, elephants and magpies. The emergence of self-awareness in children typically occurs during the second year and has been correlated with sensorimotor development and growing social and self-awareness. Comparative studies of MSR in chimpanzees report that the onset of this ability occurs between 2 years 4 months and 3 years 9 months of age. Studies of wild and captive bottlenose dolphins (Tursiops truncatus) have reported precocious sensorimotor and social awareness during the first weeks of life, but no comparative MSR research has been conducted with this species. We exposed two young bottlenose dolphins to an underwater mirror and analyzed video recordings of their behavioral responses over a 3-year period. Here we report that both dolphins exhibited MSR, indicated by self-directed behavior at the mirror, at ages earlier than generally reported for children and at ages much earlier than reported for chimpanzees. The early onset of MSR in young dolphins occurs in parallel with their advanced sensorimotor development, complex and reciprocal social interactions, and growing social awareness. Both dolphins passed subsequent mark tests at ages comparable with children. Thus, our findings indicate that dolphins exhibit self-awareness at a mirror at a younger age than previously reported for children or other species tested.
Khalifa, Ashraf Y.Z.; Alsyeeh, Abdel-Moneium; Almalki, Mohammed A.; Saleh, Farag A.
2015-01-01
The aim of the present study was to characterize the endophytic bacterial strain designated MSR1 that was isolated from inside the non-nodulating roots of Medicago sativa after surface-sterilization. MSR1 was identified as Enterobacter cloacae using both 16S rDNA gene sequence analysis and API20E biochemical identification system (Biomerieux, France). Furthermore, this bacterium was characterized using API50CH kit (Biomerieux, France) and tested for antibacterial activities against some food borne pathogens. The results showed that E. cloacae consumed certain carbohydrates such as glycerol, d-xylose, d-maltose and esculin melibiose as a sole carbon source and certain amino acids such as arginine, tryptophan ornithine as nitrogen source. Furthermore, MSR1 possessed multiple plant-growth promoting characteristics; phosphate solubility, production of phytohormones acetoin and bioactive compounds. Inoculation of Pisum sativum with MSR1 significantly improved the growth parameters (the length and dry weight) of this economically important grain legume compared to the non-treated plants. To our knowledge, this is the first report addressing E. cloacae which exist in roots of alfalfa growing in Al-Ahsaa region. The results confirmed that E. cloacae exhibited traits for plant growth promoting and could be developed as an eco-friendly biofertilizer for P. sativum and probably for other important plant species in future. PMID:26858542
High-Pressure Lightweight Thrusters
NASA Technical Reports Server (NTRS)
Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander
2013-01-01
Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.
Status of the French Mars Exploration Program
NASA Astrophysics Data System (ADS)
Bonneville, R.; Counil, J.-L.; Rocard, F.
2002-01-01
The French Mars exploration initiative named PREMIER (Programme de Retour d'Echantillons Martiens et Installation d'Expériences en Réseau) is a long term, multiform co- operative program including as its two main components : - the development with a consortium of European partners (Finland, Germany, Belgium) and the deployment of a network of 4 small Mars ground stations for performing geophysical measurements (NetLander project) ; - a participation to the future Mars Sample Return mission (MSR) in cooperation with NASA including the development and the operation of the orbiter vehicle of this mission. Its additional elements are : - instrument contributions to ESA's Mars Express mission ; - payload contributions to the orbiters and landers &rovers of the future missions to Mars, and especially to NASA's "smart lander" mission dedicated to in situ investigations. This program wants to ensure the complementarity between its three poles : (i) global investigations from the orbit, (ii) landed science with both network science (NetLanders) and in situ investigations, and (iii) sample return. A major step in the PREMIER program will be the 2007 orbiter mission ; this precursor vehicle developed by CNES and launched by Ariane 5 in September 2007 will first deliver the 4 NetLanders at Mars and then will be inserted in Mars orbit. This orbiter will perform technological tests aiming at preparing the future Mars Sample Return mission, it will ensure a telecommunication relay function for the NetLanders and it will be used for an additional orbital science mission. While the NetLanders will study the internal structure of Mars and its climate, with the goal to operate a full Martian year, the primary objectives of the orbital science mission will be complementary of those of the NetLanders, with an emphasis on the study of the Martian atmosphere. In a first phase, the orbiter will be on a 500 km x 500 km circular, near polar, Sun-synchronous orbit around 12 am local time, which is optimal for the NetLander relay. In a second phase, the orbit will be lowered around 350 km for the benefit of the orbital science. A very low periapsis phase (170 km x 1000 km) is foreseen for some experiments. The nominal mission will end in September 2011, with the hope of an extended mission beyond this date.
Complete Genome Sequence of Magnetospirillum gryphiswaldense MSR-1
Wang, Xu; Wang, Qing; Zhang, Weijia; Wang, Yinjia; Li, Li; Wen, Tong; Zhang, Tongwei; Zhang, Yang; Xu, Jun; Hu, Junying; Li, Shuqi; Liu, Lingzi; Liu, Jinxin; Jiang, Wei; Tian, Jiesheng; Wang, Lei; Li, Jilun
2014-01-01
We report the complete genomic sequence of Magnetospirillum gryphiswaldense MSR-1 (DSM 6361), a type strain of the genus Magnetospirillum belonging to the Alphaproteobacteria. Compared to the reported draft sequence, extensive rearrangements and differences were found, indicating high genomic flexibility and “domestication” by accelerated evolution of the strain upon repeated passaging. PMID:24625872
NASA Astrophysics Data System (ADS)
Amarasinghe, Chamindu; LANL nEDM Collaboration
2017-09-01
The LANL neutron Electric Dipole Moment (nEDM) experiment is an effort to set a sensitivity limit of 3.2 × 10-27 e cm on the electric dipole moment of the neutron, an order of magnitude smaller than the current upper limit. This measurement uses Ramsey's method of oscillating magnetic fields. The magnetic field and field gradient have to be low enough to avoid the smearing of the Ramsey fringes and to increase the neutron dephasing time respectively. The experiment is enclosed in a two layer Mu-metal magnetically shielded room (MSR) to null any external magnetic fields from the environment. The MSR is degaussed to sufficiently reduce its residual magnetic field and field gradient. The MSR is designed for residual fields as low as 30 nT. The experiment further requires a field gradient of 1 nT/m or smaller. Here we report on the degaussing procedure and the resulting improvement in the shielding prowess of the MSR. Funded by an NSF Grant.
Huprich, Steven K; Nelson, Sharon M
2014-05-01
Several personality disorders (PDs) have been of interest in the clinical literature, yet failed to have been adequately represented in the diagnostic manuals. Some of these are masochistic, self-defeating, depressive, and narcissistic PDs. The theoretical and empirical relationships among these disorders are reviewed. It is proposed that a particular type of self-structure, malignant self-regard (MSR), may account for similarities among all of them and provide a better framework upon which to understand the nature of these personality types and their discrimination from related constructs. Subsequently, a questionnaire to assess MSR was created and evaluated for its psychometric properties. The measure was found to be reliable (Cronbach's alpha=.93) and valid, given its correlations with measures of self-defeating, depressive, and vulnerably narcissistic personalities (rs range from .66 to .76). MSR also can be meaningfully differentiated from a nomological network of related constructs, including neuroticism, extraversion, depression, and grandiose narcissism. The utility of assessing self-structures, such as MSR, in the diagnostic manuals is discussed. Copyright © 2014. Published by Elsevier Inc.
Error analysis on squareness of multi-sensor integrated CMM for the multistep registration method
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Yiwen; Ye, Xiuling; Wang, Zhong; Fu, Luhua
2018-01-01
The multistep registration(MSR) method in [1] is to register two different classes of sensors deployed on z-arm of CMM(coordinate measuring machine): a video camera and a tactile probe sensor. In general, it is difficult to obtain a very precise registration result with a single common standard, instead, this method is achieved by measuring two different standards with a constant distance between them two which are fixed on a steel plate. Although many factors have been considered such as the measuring ability of sensors, the uncertainty of the machine and the number of data pairs, there is no exact analysis on the squareness between the x-axis and the y-axis on the xy plane. For this sake, error analysis on the squareness of multi-sensor integrated CMM for the multistep registration method will be made to examine the validation of the MSR method. Synthetic experiments on the squareness on the xy plane for the simplified MSR with an inclination rotation are simulated, which will lead to a regular result. Experiments have been carried out with the multi-standard device designed also in [1], meanwhile, inspections with the help of a laser interferometer on the xy plane have been carried out. The final results are conformed to the simulations, and the squareness errors of the MSR method are also similar to the results of interferometer. In other word, the MSR can also adopted/utilized to verify the squareness of a CMM.
Sulfur isotopic and proteomic profiles of sulfate reducers grown under differential steady-states
NASA Astrophysics Data System (ADS)
Leavitt, W.; Venceslau, S.; Waldbauer, J.; Smith, D. A.; Boidi, F. J.; Bradley, A. S.
2016-12-01
Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The product sulfide is depleted in the heavier isotopes of sulfur, relative to the reactant sulfate, consistent with a normal kinetic isotope effect. However, the magnitude of the net fractionation during MSR can range over a range of 70 permil, consistent with a multi-step set of reactions. This range in MSR fractionation has been shown to mainly depend on: i) the cell-specific sulfate reduction rate (csSRR), and ii) the ambient sulfate concentration. However, the fractionation under identical conditions differs among strains (Bradley et al. 2016. Geobio), and so must also be mediated by strain-specific processes, such as the nature and quantity of individual proteins involved in sulfate reduction, electron transport, and growth. In recent work we have examined the influence of electron donor, electron acceptor, and co-limitation under controlled steady-state culture conditions in order better inform models of MSR isotope fractionation, and the physiological and isotopic response to differential environmental forcings (e.g. Leavitt et al. (2013) PNAS). Recent models of the fractionation response to MSR rate (c.f. Bradley 2016; Wing & Halevy, 2016) make specific predictions for the responses of the cellular metabolome and proteome. Here we compare the steady-state S-isotopic fractionation and proteome of `fast' versus `slow' grown D. vulgaris, using replicate chemostats under electron donor limitation. We observe clear and statistically robust changes in some key central MSR and C-metabolism enzymes, though a host of the critical energy-transfer enzymes show no statistically discernable change. We discuss these results in light of recent theoretical advances and their relevance to modern and ancient geochemical records.
Extended and refined multi sensor reanalysis of total ozone for the period 1970-2012
NASA Astrophysics Data System (ADS)
van der A, R. J.; Allaart, M. A. F.; Eskes, H. J.
2015-07-01
The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite data sets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6-hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite data sets are collected and then are corrected for biases as a function of solar zenith angle (SZA), viewing zenith angle (VZA), time (trend), and stratospheric temperature using surface observations of the ozone column from Brewer and Dobson spectrophotometers from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Subsequently the de-biased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM. The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43-year period 1970-2012. The chemistry transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. Backscatter ultraviolet (BUV) satellite observations have been included for the period 1970-1977. The total record is extended by 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° × 3° to 1° × 1°. The analysis is driven by 3-hourly meteorology from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1 % with respect to de-biased satellite observations after 1979.
High Flux Microchannel Receiver Development with Adap-tive Flow Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drost, Kevin
This project is focused on the demonstration of a microchannel-based solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost.
Dynamics of polymers: A mean-field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106
2014-02-28
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less
Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.
2011-01-01
This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the environment model calculations, the Bumper-II code calculates a probability of no penetration for the spacecraft.
Mahawar, Manish; Tran, ViLinh; Sharp, Joshua S.; Maier, Robert J.
2011-01-01
Hypochlorous acid (HOCl) produced via the enzyme myeloperoxidase is a major antibacterial oxidant produced by neutrophils, and Met residues are considered primary amino acid targets of HOCl damage via conversion to Met sulfoxide. Met sulfoxide can be repaired back to Met by methionine sulfoxide reductase (Msr). Catalase is an important antioxidant enzyme; we show it constitutes 4–5% of the total Helicobacter pylori protein levels. msr and katA strains were about 14- and 4-fold, respectively, more susceptible than the parent to killing by the neutrophil cell line HL-60 cells. Catalase activity of an msr strain was much more reduced by HOCl exposure than for the parental strain. Treatment of pure catalase with HOCl caused oxidation of specific MS-identified Met residues, as well as structural changes and activity loss depending on the oxidant dose. Treatment of catalase with HOCl at a level to limit structural perturbation (at a catalase/HOCl molar ratio of 1:60) resulted in oxidation of six identified Met residues. Msr repaired these residues in an in vitro reconstituted system, but no enzyme activity could be recovered. However, addition of GroEL to the Msr repair mixture significantly enhanced catalase activity recovery. Neutrophils produce large amounts of HOCl at inflammation sites, and bacterial catalase may be a prime target of the host inflammatory response; at high concentrations of HOCl (1:100), we observed loss of catalase secondary structure, oligomerization, and carbonylation. The same HOCl-sensitive Met residue oxidation targets in catalase were detected using chloramine-T as a milder oxidant. PMID:21460217
Thorium and Molten Salt Reactors: "Essential Questions for Classroom Discussions"
ERIC Educational Resources Information Center
DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard
2018-01-01
A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional…
Yanagisawa, M; Yoshioka, K; Kurihara, T; Saito, K; Seno, N; Suzuki, H; Hosoki, R; Otsuka, M
1992-12-01
A mixture of peptidase inhibitors increased the magnitude of the saphenous nerve-evoked slow depolarization of a lumbar ventral root and prolonged the similarly evoked inhibition of monosynaptic reflex (MSR) in the isolated spinal cord of the newborn rat in the presence of naloxone. The saphenous nerve-evoked MSR inhibition was curtailed by a tachykinin antagonist, GR71251, and after the treatment with GR71251, the peptidase inhibitor mixture no more prolonged the MSR inhibition. The present results suggest that enzymatic degradation plays a role in the termination of action of tachykinins released from primary afferents in the newborn rat spinal cord. The results provide a further support for the notion that tachykinins serve as neurotransmitters in the spinal cord of the newborn rat.
Design of MSR primary circuit with minimum pressure losses
NASA Astrophysics Data System (ADS)
Noga, Tomáš; Žitek, Pavel; Valenta, Václav
This article describes a design of a MSR primary circuit with minimum pressure losses. It includes a brief description of this type of a reactor and its integral layout, properties, purpose, etc. The objective of this paper is to define problems of pressure losses calculation and to design a proper device for a primary circuit of MSR reactor, including its basic dimensions. Thanks to this, it can become an initial project for a construction of a real piece of work. This is the main contribution of the carried out study. Of course, this article is not a detailed solution, but it points out facts and problems, which future designers may have to face. The further step of our work will be a reconstruction of the current experiment for a two-stage flowing.
Technology Development and Design of a Hybrid Mars Ascent Vehicle Concept
NASA Technical Reports Server (NTRS)
Karp, Ashley C.; Redmond, Matt; Nakazono, Barry; Vaughan, David; Shotwell, Robert; Story, George; Jackson, Dale; Young, David
2016-01-01
Hybrid propulsion has been investigated as an enhancing technology for a Mars Ascent Vehicle (MAV) concept as part of potential Mars Sample Return (MSR) because of its high specific impulse, restartability, and the ability to operate and survive at extremely low temperatures. A new wax-based hybrid fuel formulation has been developed that could withstand the harsh and variable Mars environment protected solely by a minimal layer of passive insulation. This formulation could provide substantial energy savings for a notional lander and is critical for rover mobility. Preliminary thermal cycle testing has determined that the formulation can survive the expected temperature extremes and lifetime thermal testing is currently underway. A complete preliminary design using this new fuel formulation combined with a low temperature oxidizer such as Mixed Oxides of Nitrogen (MON30) is presented. Several key features associated with a complete hybrid MAV concept are investigated to determine their mission suitability (e.g. Thrust Vector Control and restartable ignition options). Potential challenges along a path towards developing such a system are outlined and future work is suggested as a means of technology maturation. The hybrid design presented here was the lowest Gross Lift Off Mass (GLOM) result of a 2015 Jet Propulsion Laboratory (JPL) led MAV concept study.
Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Somers, Jeffery T.; Krnavek, Jody; Fisher, Elizibeth; Ford, George; Paloski, William H.
2007-01-01
It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are typical of bed rested subjects. There also appears to be a trend in the treatment group where centrifugation results in peak latencies that are shorter than the control group. This trend is supported by the observation that peak reflex amplitudes are larger (up to 40% in magnitude)than those of the control subjects. Furthermore, centrifugation tends, by day 21 of bed rest, to normalize the peak amplitudes to the amplitudes observed prior to bed rest or centrifugation. From a preliminary point of view, centrifugation appears to have a positive effect on the sensorimotor system, and specifically on those muscles that provide anti-gravity and postural support.
Ohtsuki, Shozo; Takahashi, Yuki; Inoue, Takao; Takakura, Yoshinobu; Nishikawa, Makiya
2017-10-20
We used human Toll-like receptor 9 (hTLR9)-expressing HEK-Blue hTLR9 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon response to CpG DNA, to evaluate the immunological properties of nucleic acid drug candidates. Our preliminary studies showed that phosphodiester CpG DNA hardly induced any SEAP secretion in HEK-Blue hTLR9 cells. In the current study, therefore, we developed HEK-Blue hTLR9 cells transduced with human macrophage scavenger receptor-1 (hMSR1), a cell-surface DNA receptor, and determined whether HEK-Blue hTLR9/hMSR1 cells respond to phosphorothioate (PS) CpG DNA and phosphodiester (PO) CpG DNA. We selected PS CpG2006, a single-stranded PO CpG DNA (ssCpG), and a tetrapod-like structured DNA (tetrapodna) containing ssCpG (tetraCpG) as model TLR9 ligands. Alexa Fluor 488-labeled ligands were used for flow cytometry. Unlike the mock-transfected HEK-Blue hTLR9 cells, the HEK-Blue hTLR9/hMSR1 cells efficiently took up all three CpG DNAs. SEAP release was almost proportional to the uptake. Treatment of HEK-Blue hTLR9/hMSR1 cells with an anti-hMSR1 antibody significantly reduced the uptake of ssCpG and tetraCpG. Collectively, reconstruction of TLR9-mediated responses to CpG DNA in HEK-Blue hTLR9 cells can be used to evaluate the toxicity of nucleic acid drug candidates with diverse physicochemical properties.
Transmutation Scoping Studies for a Chloride Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Feng, Bo; Kim, Taek
2016-01-01
Over the past few years, there has been strong renewed interest from private industry, mostly from start-up enterprises, in molten salt reactor (MSR) technologies because of the unique properties of this class of reactors. These are reactors in which the fuel is homogeneously mixed with the coolant in the form of liquid salts and is circulated continuously into and out of the active core region with on-line fuel management, salt treatment, and salt processing. In response to such wide-spread interest, Argonne National Laboratory is expanding its well-established reactor modelling and simulation expertise and infrastructure to enable detailed analysis and designmore » of MSRs. The tools being developed are able to simulate the continuous fuel flow, the complex on-line fuel management and elemental removal processes (e.g., fission product removal) using depletion steps representative of a real MSR system. Leveraging these capabilities, a parametric study on the transmutation performance of a simplified actinide-burning MSR concept that uses a chloride-based salt was performed. This type of salt has attracted attention over the more commonly discussed fluoride-based salts since no tritium is produced as a result of irradiation and it is compatible with a fast neutron spectrum. The studies discussed in this paper examine the performance of a burner MSR design with a fixed core size and power density over a range of possible fuel salt molar ratios with NaCl-MgCl2 as the carrier salt. The intent is to quantify the impact on the required transuranics content of the make-up fuel, the actinide transmutation rates, and other performance characteristics for typical burner MSR designs.« less
Jingyi, Zhu
2015-01-01
The detecting mechanism of carbon nanotubes gas sensor based on multi-stable stochastic resonance (MSR) model was studied in this paper. A numerically stimulating model based on MSR was established. And gas-ionizing experiment by adding electronic white noise to induce 1.65 MHz periodic component in the carbon nanotubes gas sensor was performed. It was found that the signal-to-noise ratio (SNR) spectrum displayed 2 maximal values, which accorded to the change of the broken-line potential function. The experimental results of gas-ionizing experiment demonstrated that periodic component of 1.65 MHz had multiple MSR phenomena, which was in accordance with the numerical stimulation results. In this way, the numerical stimulation method provides an innovative method for the detecting mechanism research of carbon nanotubes gas sensor.
Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H.; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk
2003-01-01
Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria. PMID:13129949
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Methylene Blue Removal by Biochars from Food Industry By-Products
NASA Astrophysics Data System (ADS)
Orfanos, Alexis; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2016-04-01
Biomass produced by food industries is mainly used as feedstock or in composting. In recent years, considerable research effort has been focused on the production of biochar under oxygen-limited conditions from carbon-rich biomass, such as food industry by-products, as mitigation measure for global warming once it is used as a soil amendment. The present study presents the findings of an experimental work, which investigated the use of different biochars for the removal of methylene blue (MB) from aqueous solutions. Biochars were produced from malt spent rootlets (MSR) from brewering and espresso coffee residue from coffee shops. MSR was pyrolyzed at temperatures of 300, 400, 500, 750, 850, and 900oC and the coffee residue was pyrolyzed at 850oC. The charring process was performed under limited-oxygen conditions using specialized containers. The surface area and the porosity of the materials were determined. Batch experiments were conducted in order to evaluate the sorption capacity of the above materials, and samples were agitated for 24 h at 25oC, at an optimum pH of about 7. Kinetic analysis was conducted over a period of 24 h, and isotherm studies were also constructed. The surface area of biochar produced from MSR and the MB removal were considerably increased at pyrolysis temperatures higher than 500oC. At 850oC, the maximum surface area value (300 m2 g-1) was observed, and the MB sorption capacity was 99 mg g-1. Based on the kinetic experimental data, sorption capacities at 120 min were over 58% of their equilibrium values for the biochars used. The maximum MB sorption capacity, based on the isotherm data, was 130 mg g-1, for the two biochars employed.
Non-destructive hyperspectral imaging of quarantined Mars Returned Samples
NASA Astrophysics Data System (ADS)
Simionovici, Alexandre; Viso, Michel; Beck, Pierre; Lemelle, Laurence; Westphal, Andrew; Vincze, Laszlo; Schoonjans, Tom; Fihman, Francois; Chazalnoel, Pascale; Ferroir, Tristan; Solé, Vicente Armando; Tucoulou, R.
Introduction: In preparation for the upcoming International Mars Sample Return mission (MSR), returning samples containing potential biohazards, we have implemented a hyperspec-tral method of in-situ analysis of grains performed in BSL4 quarantine conditions, by combining several non-destructive imaging diagnostics. This allows sample transportation on optimized experimental setups, while monitoring the sample quarantine conditions. Our hyperspectral methodology was tested during analyses of meteorites [1-2] and cometary and interstellar grains from the recent NASA Stardust mission [3-6]. Synchrotron Radiation protocols: X-ray analysis methods are widely accepted as the least destructive probes of fragile, unique samples. Diffraction, X-ray fluorescence and ab-sorption micro/nano-spectroscopies were performed on chondritic test samples using focused monochromatic beams at the ESRF synchrotron in Grenoble, France. 2D maps of grain com-position down to ppm concentrations and polycrystalline structure have simultaneously been acquired, followed by X-ray absorption performed on elements of Z 26. Ideally, absorption micro-tomography can later be performed in full-beam mode to record the 3D morphology of the grain followed by fluorescence-tomography in focus-beam mode which complements this picture with a 3D elemental image of the grain. Lab-based protocols: Raman and IR-based spectroscopies have been performed in reflection mode for mineralogical imaging of the grains in the laboratory using commercial microscopes. The spatial resolution varied in the 1-10 m range. Laser limited penetration of opaque samples permits only 2D imaging of the few nanometer-thick outer layers of the grains. Mineralogical maps are now routinely acquired using Raman spectroscopy at sub-micron scales through the 3 container walls of the Martian sample holder, followed by IR few-micrometer spot measurements recording C-based and potential aqueous alteration distributions. Sample Holder: A miniaturized sample-holder [7] has been designed and built to allow direct analyses of a set of extraterrestrial grains confined in a sealed triple container and remotely po-sitioned in front of the X-ray or laser beams of the various setups. The grains are held in several thin walls (10 m) ultrapure silica capillaries which are sufficiently resistant for manual/remote-controlled micro-manipulation but semitransparent for the characteristic X-rays, Raman and IR radiations. Miniaturized pressure/temperature sensors located in each container periodically monitor the integrity of the ensemble, ensuring BSL4 condi-tions. References: [1] B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, A. Brunetti, Jrnl. of App. Phys. 94, 145-157, 2003 [2] L. Lemelle, A. Simionovici, R. Truche, Ch. Rau, M. Chukalina, Ph. Gillet, Am. Min. 87 , 547-553, 2004 [3] Michael E. Zolensky et al., Science 314, 1735-1739, 2006 [4] G. J. Flynn et al., Science 314, 1731-1735, 2006 [5] Pierre Bleuet, Alexandre Simionovici, Laurence Lemelle, Tristan Ferroir, Peter Cloetens, Rémi Tu-coulou, Jean Susini, App. Phys. Lett. 92, 213111-1-3, 2008. [6] A. J. Westphal, et al., AIP Proceedings of the ICXOM Congress, (in print) 2010. [8] A. Simionovici and CNES, patent pending.
MSR 2.0: Language Definition and Programming Environment
2011-11-01
this version, was also used in foundational studies for crypto - protocols [14, 19]. An implementation of MSR 2.0 which adheres to the definition...describing non-standard ways to parse oc- currences of this symbol. A unary constant f can be declared either prefixed or postfixed by means of the...Information Technology — MFCSIT’00, pages 1–43, Cork, Ireland, 2000. Elsevier ENTCS 40. [6] Iliano Cervesato. A Specification Language for Crypto
Makiĭ, E A; Mantulo, P M
1984-01-01
The dynamics of strengthening of monosynaptic segmental response (MSR) in white rats has been studied after bilateral sciatic nerves cuts nearer to the spinal cord (high cut) and farther from it (low cut). 24 hours after the operation the irritation of the posterior root on the side of the high cut stimulates anterior root MSR of authentically larger amplitude than on the side of the low cut and much greater than in intact animals. 48 h, 72 h and 120 h after the operation MSR amplitude on both sides is considerably increased in comparison with the intact animals amplitude but authentically does not differ on the side of the low and high cuts. A connection may be suggested between the excitability increase process of partially deafferented motoneurons with the disturbance of axoplasmatic flow in central sections of the cut afferent fibres.
Design Issues Affecting Pipings Associated with a New Moisture Separator Reheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyung-Keun, Kim; Jae-Kyoung, Cho
2006-07-01
This paper summarizes the piping design effects on a New Moisture Separator Reheater (MSR) in Shin-Kori Nuclear Power Plant Units 1 and 2 (SKN 1 and 2) being under the construction in Korea. This SKN 1 and 2 has the same arrangement of a Turbine-Generator set as one of Korea Standard Nuclear Plant Units ( OPR 1000 ) in commercial operation. The Turbine-Generator Supplier has developed a new Moisture Separator Reheater which has first and second stage heating steam supply connections respectively, at both ends of the shell side of the vessel in comparison to MSR of OPR 1000 whichmore » has first and second stage heating steam supply connections at only one end. The different locations of reheaters in MSR cause changes in the associated pipings such as 2. stage reheater heating steam, 2. stage reheater drain, shell drain, drain tank location and tank condensate drainage pipings. (authors)« less
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew
2017-03-01
Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions.« less
Identification of understory invasive exotic plants with remote sensing in urban forests
NASA Astrophysics Data System (ADS)
Shouse, Michael; Liang, Liang; Fei, Songlin
2013-04-01
Invasive exotic plants (IEP) pose a significant threat to many ecosystems. To effectively manage IEP, it is important to efficiently detect their presences and determine their distribution patterns. Remote sensing has been a useful tool to map IEP but its application is limited in urban forests, which are often the sources and sinks for IEP. In this study, we examined the feasibility and tradeoffs of species level IEP mapping using multiple remote sensing techniques in a highly complex urban forest setting. Bush honeysuckle (Lonicera maackii), a pervasive IEP in eastern North America, was used as our modeling species. Both medium spatial resolution (MSR) and high spatial resolution (HSR) imagery were employed in bush honeysuckle mapping. The importance of spatial scale was also examined using an up-scaling simulation from the HSR object based classification. Analysis using both MSR and HSR imagery provided viable results for IEP distribution mapping in urban forests. Overall mapping accuracy ranged from 89.8% to 94.9% for HSR techniques and from 74.6% to 79.7% for MSR techniques. As anticipated, classification accuracy reduces as pixel size increases. HSR based techniques produced the most desirable results, therefore is preferred for precise management of IEP in heterogeneous environment. However, the use of MSR techniques should not be ruled out given their wide availability and moderate accuracy.
Knüppel, Sven; Meidtner, Karina; Arregui, Maria; Holzhütter, Hermann-Georg; Boeing, Heiner
2015-07-01
Analyzing multiple single nucleotide polymorphisms (SNPs) is a promising approach to finding genetic effects beyond single-locus associations. We proposed the use of multilocus stepwise regression (MSR) to screen for allele combinations as a method to model joint effects, and compared the results with the often used genetic risk score (GRS), conventional stepwise selection, and the shrinkage method LASSO. In contrast to MSR, the GRS, conventional stepwise selection, and LASSO model each genotype by the risk allele doses. We reanalyzed 20 unlinked SNPs related to type 2 diabetes (T2D) in the EPIC-Potsdam case-cohort study (760 cases, 2193 noncases). No SNP-SNP interactions and no nonlinear effects were found. Two SNP combinations selected by MSR (Nagelkerke's R² = 0.050 and 0.048) included eight SNPs with mean allele combination frequency of 2%. GRS and stepwise selection selected nearly the same SNP combinations consisting of 12 and 13 SNPs (Nagelkerke's R² ranged from 0.020 to 0.029). LASSO showed similar results. The MSR method showed the best model fit measured by Nagelkerke's R² suggesting that further improvement may render this method a useful tool in genetic research. However, our comparison suggests that the GRS is a simple way to model genetic effects since it does not consider linkage, SNP-SNP interactions, and no non-linear effects. © 2015 John Wiley & Sons Ltd/University College London.
Kelin, Hu; Qin, Chen; Wang, Hongqing
2014-01-01
Coastal wetlands play a unique role in extreme hurricane events. The impact of wetlands on storm surge depends on multiple factors including vegetation, landscape, and storm characteristics. The Delft3D model, in which vegetation effects on flow and turbulence are explicitly incorporated, was applied to the semi-enclosed Breton Sound (BS) estuary in coastal Louisiana to investigate the wetland impact. Guided by extensive field observations, a series of numerical experiments were conducted based on variations of actual vegetation properties and storm parameters from Hurricane Isaac in 2012. Both the vegetation-induced maximum surge reduction (MSR) and maximum surge reduction rate (MSRR) increased with stem height and stem density, and were more sensitive to stem height. The MSR and MSRR decreased significantly with increasing wind intensity. The MSRR was the highest with a fast-moving weak storm. It was also found that the MSRR varied proportionally to the expression involving the maximum bulk velocity and surge over the area of interest, and was more dependent on the maximum bulk surge. Both MSR and MSRR appeared to increase when the area of interest decreased from the whole BS estuary to the upper estuary. Within the range of the numerical experiments, the maximum simulated MSR and MSRR over the upper estuary were 0.7 m and 37%, respectively.
NASA Astrophysics Data System (ADS)
Tampubolon, Togi; Abdullah, Khiruddin bin; San, Lim Hwee
2013-09-01
The spectral characteristics of land cover are basic references in classifying satellite image for geophysics analysis. It can be obtained from the measurements using spectrometer and satellite image processing. The aims of this study to investigate the spectral characteristics of land cover based on the results of measurement using Spectrometer Cropscan MSR 16R and Landsat satellite imagery. The area of study in this research is in Medan, (Deli Serdang, North Sumatera) Indonesia. The scope of this study is the basic survey from the measurements of spectral land cover which is covered several type of land such as a cultivated and managed terrestrial areas, natural and semi-natural, cultivated aquatic or regularly flooded areas, natural and semi-natural aquatic, artificial surfaces and associated areas, bare areas, artificial waterbodies and natural waterbodies. The measurement and verification were conducted using a spectrometer provided their spectral characteristics and Landsat imagery, respectively. The results of the spectral characteristics of land cover shows that each type of land cover have a unique characteristic. The correlation of spectral land cover based on spectrometer Cropscan MSR 16R and Landsat satellite image are above 90 %. However, the land cover of artificial waterbodiese have a correlation under 40 %. That is because the measurement of spectrometer Cropscan MSR 16R and acquisition of Landsat satellite imagery has a time different.
A novel approach to identify genes that determine grain protein deviation in cereals.
Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J
2015-06-01
Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Active 3D camera design for target capture on Mars orbit
NASA Astrophysics Data System (ADS)
Cottin, Pierre; Babin, François; Cantin, Daniel; Deslauriers, Adam; Sylvestre, Bruno
2010-04-01
During the ESA Mars Sample Return (MSR) mission, a sample canister launched from Mars will be autonomously captured by an orbiting satellite. We present the concept and the design of an active 3D camera supporting the orbiter navigation system during the rendezvous and capture phase. This camera aims at providing the range and bearing of a 20 cm diameter canister from 2 m to 5 km within a 20° field-of-view without moving parts (scannerless). The concept exploits the sensitivity and the gating capability of a gated intensified camera. It is supported by a pulsed source based on an array of laser diodes with adjustable amplitude and pulse duration (from nanoseconds to microseconds). The ranging capability is obtained by adequately controlling the timing between the acquisition of 2D images and the emission of the light pulses. Three modes of acquisition are identified to accommodate the different levels of ranging and bearing accuracy and the 3D data refresh rate. To come up with a single 3D image, each mode requires a different number of images to be processed. These modes can be applied to the different approach phases. The entire concept of operation of this camera is detailed with an emphasis on the extreme lighting conditions. Its uses for other space missions and terrestrial applications are also highlighted. This design is implemented in a prototype with shorter ranging capabilities for concept validation. Preliminary results obtained with this prototype are also presented. This work is financed by the Canadian Space Agency.
Moisture separator reheater failure prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilcrest, J.D.; Mollerus, F.J.
1983-01-01
Moisture separator reheaters (MSRs) are used in many nuclear plants between the HP and LP turbines to remove moisture and provide some superheat, thereby improving the plant heat rate. Many of the operating MSRs have experienced problems of the following types: flow induced vibration, condensate subcooling oscillation, excessive U-tube leg ..delta..T, and shroud buckling. Although MSR vendors have made modifications to reduce these problems, the problems have not been completely solved. Further improvements in both MSR design and operation are needed. This paper discusses the necessary improvements.
Recording epileptic activity with MEG in a light-weight magnetic shield.
De Tiège, Xavier; Op de Beeck, Marc; Funke, Michael; Legros, Benjamin; Parkkonen, Lauri; Goldman, Serge; Van Bogaert, Patrick
2008-12-01
Ten patients with focal epilepsy were studied with magnetoencephalography (MEG) to determine if a new light-weight magnetically shielded room (lMSR) provides sufficient attenuation of magnetic interference to detect and localize the magnetic correlates of epileptic activity. Interictal MEG epileptic events co-localizing with the presumed location of the epileptogenic zone were found in all patients. MEG measurements performed in the lMSR provide an adequate signal-to-noise ratio for non-invasive localization of epileptic foci.
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track
2015-11-20
Mining Tasks from the Web Anchor Text Graph: MSR Notebook Paper for the TREC 2015 Tasks Track Paul N. Bennett Microsoft Research Redmond, USA pauben...anchor text graph has proven useful in the general realm of query reformulation [2], we sought to quantify the value of extracting key phrases from...anchor text in the broader setting of the task understanding track. Given a query, our approach considers a simple method for identifying a relevant
Increased Science Instrumentation Funding Strengthens Mars Program
NASA Technical Reports Server (NTRS)
Graham, Lee D.; Graff, T. G.
2012-01-01
As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.
Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.
Liu, Hua-Min; Liu, Yu-Lan
2014-01-01
Cypress liquefaction in sub- and super ethanol was carried out in an autoclave at various temperatures. Milled solid residue (MSR) was isolated from solid residue remaining from the liquefaction process, and its chemical characteristics was comparatively investigated with milled wood lignin (MWL) of cypress by sugar analysis, elemental analysis, FT-IR analysis, gel permeation chromatography, and NMR analysis. Results showed that there were two reactions (de-polymerization and re-polymerization) during the cypress liquefaction in sub- and super ethanol and the re-polymerization reactions were the main reaction at 220-260°C. Considering the stability of side-chain, the stability of lignin side-chain in cypress during liquefaction process in ethanol could be sequenced as follows: β-5>β-β'>β-O-4'. The MSR were mainly from the decomposition and re-polymerization of lignin. This study suggests that characterization of MSR provides a promising method to investigate the mechanisms of cypress liquefaction in ethanol. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Study of whey fermentation by kefir immobilized on low cost supports using 14C-labelled lactose.
Soupioni, Magdalini; Golfinopoulos, Aristidis; Kanellaki, Maria; Koutinas, Athanasios A
2013-10-01
Brewer's Spent Grains (BSG) and Malt Spent Rootlets (MSR) were used as supports for kefir cells immobilization and the role of lactose uptake rate by kefir in the positive activity of produced biocatalysts during whey fermentation was investigated. Lactose uptake rate by the immobilized cells was recorded using (14)C-labelled lactose and the effect of various conditions (pH, temperature and kind of support) on it and consequently on fermentation time and ethanol production was examined. The results showed that lactose uptake rate was correlated to fermentation rate and increased as temperature was increased up to 30°C at pH 5.5. The same results have been recently noticed by using biocatalysts with Delignified Cellulosic Materials (DCM) and Gluten Pellets (GP), but fermentation time of about 7h by kefir immobilized on DCM and BSG resulted to two fold lower than that on GP and MSR. The highest alcohol concentration was observed by MSR. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.G.; Norman, P.I.; Leadbeater, T.W.
Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less
Giant pandas failed to show mirror self-recognition.
Ma, Xiaozan; Jin, Yuan; Luo, Bo; Zhang, Guiquan; Wei, Rongping; Liu, Dingzhen
2015-05-01
Mirror self-recognition (MSR), i.e., the ability to recognize oneself in a mirror, is considered a potential index of self-recognition and the foundation of individual development. A wealth of literature on MSR is available for social animals, such as chimpanzees, Asian elephants and dolphins, yet little is known about MSR in solitary mammalian species. We aimed to evaluate whether the giant panda can recognize itself in the mirror, and whether this capacity varies with age. Thirty-four captive giant pandas (F:M = 18:16; juveniles, sub-adults and adults) were subjected to four mirror tests: covered mirror tests, open mirror tests, water mark control tests, and mark tests. The results showed that, though adult, sub-adult and juvenile pandas exposed to mirrors spent similar amounts of time in social mirror-directed behaviors (χ(2) = 0.719, P = 0.698), none of them used the mirror to touch the mark on their head, a self-directed behavior suggesting MSR. Individuals of all age groups initially displayed attacking, threatening, foot scraping and backwards walking behaviors when exposed to their self-images in the mirror. Our data indicate that, regardless of age, the giant pandas did not recognize their self-image in the mirror, but instead considered the image to be a conspecific. Our results add to the available information on mirror self-recognition in large mammals, provide new information on a solitary species, and will be useful for enclosure design and captive animal management.
NASA Astrophysics Data System (ADS)
Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.
2017-03-01
A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.
Resorption of maxillary incisors after orthodontic treatment--clinical study of risk factors.
Elhaddaoui, Rajae; Benyahia, Hicham; Azeroual, Mohamed-Faouzi; Zaoui, Fatima; Razine, Rachid; Bahije, Loubna
2016-03-01
External apical root resorption (EARR) is one of the major problems associated with orthodontic treatment. Such lesions represent an iatrogenic risk that must be detected as early as possible, with regular radiological follow-up and appropriate therapeutic precautions. The causes and mechanisms leading to susceptibility to root resorption following the application of an orthodontic force are often not clear and are generally said to be of multifactorial origin. The aim of this clinical study was to analyze the factors linked to the occurrence of moderate to severe resorption (MSR) of upper incisors during orthodontic treatment in a group of Moroccan patients treated in the Dento-Facial Orthopedic Department of the Dental Consultation and Treatment Center (Centre de consultation et de traitements dentaires [CCTD]) in Rabat. A total of 82 patients (28% males, 72% females) aged between 12 and 27, with various malocclusions, who had been treated with fixed appliances for at least 1 year and for whom panoramic X-rays at the start, during and at the end of treatment were available, were selected randomly. The reduction in maxillary incisor root length was evaluated using resorption scores. The factors studied in relation to the risk of occurrence of MSR were: age, sex, treatment duration, extraction or non-extraction, type of malocclusion (Class I arch-length discrepancy, Class II, Class III), the vertical diagnosis (normal, supraocclusion, open bite), presence of dysfunction, impacted canines and root morphology. Statistical analysis was performed using SPSS software, version 18.0. Statistical tests used were: Kaplan-Meier analysis and the univariate and multivariate Cox models for the study of factors associated with MSR. The threshold of significance adopted was 0.05. The factors that were significantly associated with the occurrence of MSR at the level of the upper incisors were: tooth type, with a greater risk for the lateral incisor (HR=3.2 95% CI [2.3-4.5] P<0.001), treatments with extraction (HR=1.64 95% CI [1.16-2.33] P<0.05), the presence of supraocclusion (HR=2.17 95% CI [1.33-3.53] P<0.05) or open bite (HR=3.12 95% CI [1.66-5.86] P<0.001) and root malformation (HR=1.5 95% CI [1.09-2.07] P<0.05). Age, sex, type of malocclusion, dysfunction and impaction of canines were not associated at a statistically significant level with the risk of occurrence of MSR of the upper incisors. EARR is difficult to avoid; the orthodontist's role remains crucial in identifying risk factors so as to adopt a treatment strategy taking these factors into account. In our population, the risk of MSR in the upper incisors appeared to increase in treatments with extraction, situations of supraocclusion or open bite, and in the presence of root abnormalities. Finally, clinical recommendations for the prevention of the occurrence of MSR of the maxillary incisors are proposed, taking into account all the risk factors identified. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur
2005-01-01
The purpose of this research was to develop enhancement and multi-sensor fusion algorithms and techniques to make it safer for the pilot to fly in what would normally be considered Instrument Flight Rules (IFR) conditions, where pilot visibility is severely restricted due to fog, haze or other weather phenomenon. We proposed to use the non-linear Multiscale Retinex (MSR) as the basic driver for developing an integrated enhancement and fusion engine. When we started this research, the MSR was being applied primarily to grayscale imagery such as medical images, or to three-band color imagery, such as that produced in consumer photography: it was not, however, being applied to other imagery such as that produced by infrared image sources. However, we felt that it was possible by using the MSR algorithm in conjunction with multiple imaging modalities such as long-wave infrared (LWIR), short-wave infrared (SWIR), and visible spectrum (VIS), we could substantially improve over the then state-of-the-art enhancement algorithms, especially in poor visibility conditions. We proposed the following tasks: 1) Investigate the effects of applying the MSR to LWIR and SWIR images. This consisted of optimizing the algorithm in terms of surround scales, and weights for these spectral bands; 2) Fusing the LWIR and SWIR images with the VIS images using the MSR framework to determine the best possible representation of the desired features; 3) Evaluating different mixes of LWIR, SWIR and VIS bands for maximum fog and haze reduction, and low light level compensation; 4) Modifying the existing algorithms to work with video sequences. Over the course of the 3 year research period, we were able to accomplish these tasks and report on them at various internal presentations at NASA Langley Research Center, and in presentations and publications elsewhere. A description of the work performed under the tasks is provided in Section 2. The complete list of relevant publications during the research periods is provided in Section 5. This research also resulted in the generation of intellectual property.
NASA Astrophysics Data System (ADS)
Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won
2016-02-01
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Analysis of Dynamic Characteristics of the 21st Century Maritime Silk Road
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Zhang, Jie; Fan, Chenqing; Meng, Junmin; Wang, Jing; Wan, Yong
2018-06-01
The 21st century Maritime Silk Road (MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height (SWH), mean wave direction (MWD), and mean wave period (MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m (huge waves) and that of the corresponding wind speed exceeds 13.9 m s-1 (high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor (RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.
2017-11-01
Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.
Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant
2018-07-01
Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Chambers, Diana M.; Jarzembski, Maurice A.; Srivastava, Vandana; Bowdle, David A.; Jones, William D.
1996-01-01
Two continuous-wave(CW)focused C02 Doppler lidars (9.1 and 10.6 micrometers) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic and spectrum analyzer and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is approximately 3 x 10(exp -12)/m/sr at 9.1 micrometers and approximately 9 x 10(exp -12)/m/sr at 10.6 micrometers. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6 micrometer lidar intercomparisons were made. Measurements at 9.1 micrometers, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope C-12 O(2)-18 gas.
NASA Astrophysics Data System (ADS)
Li, Chao; Hu, Chunbo; Zhu, Xiaofei; Hu, Jiaming; Li, Yue; Hu, Xu
2018-06-01
Powdered Mg and CO2 bipropellant engine providing a practical demonstration of in situ resource utilization (ISRU) for Mars Sample Return (MSR) mission seems to be feasible by current investigations. However, essential functions of the engine to satisfy the complicated ballistics requirements such as thrust modulation and multiple pulse have not been established yet. The aim of this experimental study is to evaluate the engine's thrust modulation feasibility and to investigate its thrust modulation characteristics. A powdered Mg and CO2 bipropellant engine construction aiming to achieve thrust modulation ability was proposed. A mass flow rate calibration experiment to evaluate the gas-solid mass flow rate regulating performance was conducted before fire tests. Fire test result shows that the engine achieved successful ignition as well as self-sustaining combustion; Thrust modulation of the engine is feasible, detail thrust estimating result of the test shows that maximum thrust is 135.91 N and the minimum is 5.65 N with a 22.11 thrust modulation ratio, moreover, the transportation period is quick and the thrust modulation ratio is adjustable. At the same time, the powder feed system reaches a two-step flow rate regulating with a modulation ratio of 4.5-5. What' more, caused by the uneven engine working conditions, there is an obvious difference in combustion efficiency value, maximum combustion efficiency of the powdered Mg and CO2 bipropellant engine is 80.20%.
NASA Astrophysics Data System (ADS)
Hamahashi, Mari; Screaton, Elizabeth; Tanikawa, Wataru; Hashimoto, Yoshitaka; Martin, Kylara; Saito, Saneatsu; Kimura, Gaku
2017-07-01
Subduction of the buoyant Cocos Ridge offshore the Osa Peninsula, Costa Rica substantially affects the upper plate structure through a variety of processes, including outer forearc uplift, erosion, and focused fluid flow. To investigate the nature of a major seismic reflector (MSR) developed between slope sediments (late Pliocene-late Pleistocene silty clay) and underlying higher velocity upper plate materials (late Pliocene-early Pleistocene clayey siltstone), we infer possible mechanisms of sediment removal by examining the consolidation state, microstructure, and zeolite assemblages of sediments recovered from Integrated Ocean Drilling Program Expedition 344 Site U1380. Formation of Ca-type zeolites, laumontite and heulandite, inferred to form in the presence of Ca-rich fluids, has caused porosity reduction. We adjust measured porosity values for these pore-filling zeolites and evaluated the new porosity profile to estimate how much material was removed at the MSR. Based on the composite porosity-depth curve, we infer the past burial depth of the sediments directly below the MSR. The corrected and uncorrected porosity-depth curves yield values of 800 ± 70 m and 900 ± 70 m, respectively. We argue that deposition and removal of this entire estimated thickness in 0.49 Ma would require unrealistically large sedimentation rates and suggest that normal faulting at the MSR must contribute. The porosity offset could be explained with maximum 250 ± 70 m of normal fault throw, or 350 ± 70 m if the porosity were not corrected. The porosity correction significantly reduces the amount of sediment removal needed for the combination of mass movement and normal faulting that characterize the slope in this margin.
Wang, Shanshan; Guo, Yinjuan; Lv, Jingnan; Qi, Xiuqin; Li, Dan; Chen, Zengqiang; Zhang, Xueqing; Wang, Liangxing; Yu, Fangyou
2016-10-21
Quinupristin/dalfopristin (Q/D) is a valuable alternative antibiotic to vancomycin for the treatment of multi-drug resistant Enterococcus faecium infections. However, resistance to Q/D in E. faecium clinical isolates and nosocomial dissemination of Q/D-resistant E. faecium have been reported in several countries and should be of concern. From January 2012 to December 2015, 911 E. faecium clinical isolates were isolated from various specimens of inpatients at the first Affiliated Hospital of Wenzhou Medical University located in Wenzhou, east China. Of 911 E. faecium clinical isolates, 9 (1.0 %, 9/911) were resistant to Q/D, with the Q/D MIC values of 64 mg/L(1), 32 mg/L(1), 16 mg/L(3), 8 mg/L(1) and 4 mg/L(3) determined by broth microdilution. All Q/D-resistant isolates were susceptible to vancomycin, tigecycline and teicoplanin but resistant to penicillin, ampicillin and erythromycin. vatE was only found in one Q/D-resistant E. faecium isolate while vatD was not detected in any of the isolates tested. 8 of 9 Q/D-resistant E. faecium isolates were found be positive for both ermB and msrC. The combinations of Q/D resistance determinants were ermB-msrC (7 isolates) and ermB-msrC-vatE (one isolate). ST78, ST761, ST94, ST21 and ST323 accounted for 4, 2, 1, 1 and 1 isolate, respectively, among which ST78 was the prevalent ST. Q/D-resistant E. faecium clinical isolates were first described in China. Carriage of vatE, ermB and msrC was responsible for Q/D resistance.
Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T
2007-07-01
Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.
Reconstruction of secular variation in seawater sulfate concentrations
NASA Astrophysics Data System (ADS)
Algeo, T. J.; Luo, G. M.; Song, H. Y.; Lyons, T. W.; Canfield, D. E.
2015-04-01
Long-term secular variation in seawater sulfate concentrations ([SO42-]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by &partial; δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42-]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42-]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42-]SW was low during the late Neoproterozoic (<5 mM), rose sharply across the Ediacaran-Cambrian boundary (~5-10 mM), and rose again during the Permian (~10-30 mM) to levels that have varied only slightly since 250 Ma. However, Phanerozoic seawater sulfate concentrations may have been drawn down to much lower levels (~1-4 mM) during short (<~2 Myr) intervals of the Cambrian, Early Triassic, Early Jurassic, and Cretaceous as a consequence of widespread ocean anoxia, intense MSR, and pyrite burial. The procedures developed in this study offer potential for future high-resolution quantitative analyses of paleo-seawater sulfate concentrations.
Le, Dung Tien; Nguyen, Kim-Lien; Chu, Ha Duc; Vu, Nam Tuan; Pham, Thu Thi Ly; Tran, Lam-Son Phan
2018-05-28
In plants, two types of methionine sulfoxide reductase (MSR) exist, namely methionine-S-sulfoxide reductase (MSRA) and methionine-R-sulfoxide reductase (MSRB). These enzymes catalyze the reduction of methionine sulfoxides (MetO) back to methionine (Met) by a catalytic cysteine (Cys) and one or two resolving Cys residues. Interestingly, a group of MSRA encoded by plant genomes does not have a catalytic residue. We asked that if this group of MSRA did not have any function (as fitness), why it was not lost during the evolutionary process. To challenge this question, we analyzed the gene family encoding MSRA in soybean (GmMSRAs). We found seven genes encoding GmMSRAs, which included three segmental duplicated pairs. Among them, a pair of duplicated genes, namely GmMSRA1 and GmMSRA6, was without a catalytic Cys residue. Pseudogenes were ruled out as their transcripts were detected in various tissues and their Ka/Ks ratio indicated a negative selection pressure. In vivo analysis in Δ3MSR yeast strain indicated that the GmMSRA6 did not have activity toward MetO, contrasting to GmMSRA3 which had catalytic Cys and had activity. When exposed to H 2 O 2 -induced oxidative stress, GmMSRA6 did not confer any protection to the Δ3MSR yeast strain. Overexpression of GmMSRA6 in Arabidopsis thaliana did not alter the plant's phenotype under physiological conditions. However, the transgenic plants exhibited slightly higher sensitivity toward salinity-induced stress. Taken together, this data suggested that the plant MSRAs without the catalytic Cys are not enzymatically active and their existence may be explained by a role in regulating plant MSR activity via dominant-negative substrate competition mechanism.
Solution of heat removal from nuclear reactors by natural convection
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav
2014-03-01
This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R; Mays, Gary T
2016-01-01
A workshop on Molten Salt Reactor (MSR) technologies commemorating the 50th anniversary of the Molten Salt Reactor Experiment (MSRE) was held at Oak Ridge National Laboratory on October 15 16, 2015. The MSRE represented a pioneering experiment that demonstrated an advanced reactor technology: the molten salt eutectic-fueled reactor. A multinational group of more than 130 individuals representing a diverse set of stakeholders gathered to discuss the historical, current, and future technical challenges and paths to deployment of MSR technology. This paper provides a summary of the key messages from this workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferng, Y.M.; Liao, L.Y.
1996-01-01
During the operating history of the Maanshan nuclear power plant (MNPP), five reactor trips have occurred as a result of the moisture separator reheater (MSR) high-level signal. These MSR high-level reactor trips have been a very serious concern, especially during the startup period of MNPP. Consequently, studying the physical phenomena of this particular event is worthwhile, and analytical work is performed using the RELAP5/MOD3 code to investigate the thermal-hydraulic phenomena of two-phase behaviors occurring within the MSR high-level reactor trips. The analytical model is first assessed against the experimental data obtained from several test loops. The same model can thenmore » be applied with confidence to the study of this topic. According to the present calculated results, the phenomena of liquid droplet accumulation ad residual liquid blowing in the horizontal section of cross-under-lines can be modeled. In addition, the present model can also predict the different increasing rates of inlet steam flow rate affecting the liquid accumulation within the cross-under-lines. The calculated conclusion is confirmed by the revised startup procedure of MNPP.« less
On the spatial distributions of dense cores in Orion B
NASA Astrophysics Data System (ADS)
Parker, Richard J.
2018-05-01
We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we measure the amount of spatial substructure using the Q-parameter and find all three regions to be spatially substructured (Q < 0.8). We quantify the amount of mass segregation using ΛMSR and find that the most massive cores are mildly mass segregated in NGC 2068/NGC 2071 (ΛMSR ˜ 2), and very mass segregated in NGC 2023/NGC 2024 (Λ _MSR = 28^{+13}_{-10} for the four most massive cores). Whereas the most massive cores in L1622 are not in areas of relatively high surface density, or deeper gravitational potentials, the massive cores in NGC 2068/NGC 2071 and NGC 2023/NGC 2024 are significantly so. Given the low density (10 cores pc-2) and spatial substructure of cores in Orion B, the mass segregation cannot be dynamical. Our results are also inconsistent with simulations in which the most massive stars form via competitive accretion, and instead hint that magnetic fields may be important in influencing the primordial spatial distributions of gas and stars in star-forming regions.
Birth centres and the national maternity services review: response to consumer demand or compromise?
Dahlen, H; Jackson, M; Schmied, V; Tracy, S; Priddis, H
2011-12-01
In February 2009 the Improving Maternity Services in Australia - The Report of the Maternity Services Review (MSR) was released and recommended improving women's access to and availability of birth centres. It was unclear if this was in response to an overwhelming request for birth centres in the submissions received by the commonwealth or a compromise for excluding homebirth from the maternity service reforms. The aim of this paper was to examine what was said in the submissions to the MSR about birth centres. Data for this study comprised 832 submissions to the MSR that are publicly available on the Commonwealth of Australia Department of Health and Ageing website. All 832 submissions were downloaded, and read for any mention of the words 'birth centre', 'birth center'. Content analysis was used to categorise and report the data. Of the 832 submissions to the MSR 197 (24%) mentioned birth centres while 470 (60%) of the submissions mentioned homebirth. Only 31 (4%) of the submissions to the Maternity Review mentioned birth centres without mentioning home birth also. Most of the submissions emphasised that 'everything should be on the menu' when it came to place of birth and care provider. Reasons for choosing a birth centre were identified as: 'the best compromise available, 'the right and natural way' and 'the birth centre as safe'. Women had certain requirements of a birth centre that included: 'continuity of carer', 'midwife led', 'a sanctum from medicalised care', 'resources to cope with demand', 'close to home', and 'flexible guidelines and admission criteria'. Women weighed up a series of requirements when deciding whether to give birth in a birth centre. The recommendation by the MSR to expand birth centres and ignore home birth is at odds with the strong view expressed that 'everything should be on the menu'. The requirements women described of birth centre care are also at odds with current trends. If there is to be an expansion of birth centres, service providers need to make sure that women's views are central to the design. Women will not cease having homebirths due to expanded birth centre options. Copyright © 2010 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies
NASA Technical Reports Server (NTRS)
Franzen, M. A.; Preble, J.; Schoenoff, M.; Halona, K.; Long, T. E.; Park, T.; Sears, D. W. G.
2004-01-01
The return of samples from solar system bodies is becoming an essential element of solar system exploration. The recent National Research Council Solar System Exploration Decadal Survey identified six sample return missions as high priority missions: South-Aitken Basin Sample Return, Comet Surface Sample Return, Comet Surface Sample Return-sample from selected surface sites, Asteroid Lander/Rover/Sample Return, Comet Nucleus Sample Return-cold samples from depth, and Mars Sample Return [1] and the NASA Roadmap also includes sample return missions [2] . Sample collection methods that have been flown on robotic spacecraft to date return subgram quantities, but many scientific issues (like bulk composition, particle size distributions, petrology, chronology) require tens to hundreds of grams of sample. Many complex sample collection devices have been proposed, however, small robotic missions require simplicity. We present here the results of experiments done with a simple but innovative collection system for sample return from small solar system bodies.
Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo
2018-02-01
Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Zhang, Weiying; Lou, Inchio; Ung, Wai Kin; Kong, Yijun; Mok, Kai Meng
2014-06-01
Freshwater algal blooms have become a growing concern world-wide. They are caused by a high level of cyanobacteria, predominantly Microcystis spp. and Cylindrospermopsis raciborskii, which can produce microcystin and cylindrospermopsin, respectively. Longtime exposure to these cyanotoxins may affect public health, thus reliable detection, quantification, and enumeration of these harmful algae species has become a priority in water quality management. Traditional manual enumeration of algal bloom cells primarily involves microscopic identification which limited by inaccuracy and time-consumption.With the development of molecular techniques and an increasing number of microbial sequences available in the Genbank database, the use of molecular methods can be used for more rapid, reliable, and accurate detection and quantification. In this study, multiplex polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) techniques were developed and applied for monitoring cyanobacteria Microcystis spp. and C. raciborskii in the Macau Storage Reservoir (MSR). The results showed that the techniques were successful for identifying and quantifying the species in pure cultures and mixed cultures, and proved to be a potential application for water sampling in MSR. When the target species were above 1 million cells/L, similar cell numbers estimated by microscopic enumeration and qPCR were obtained. Further quantification in water samples indicated that the ratio of the estimated number of cell by microscopy and qPCR was 0.4-12.9 for cyanobacteria and 0.2-3.9 for C. raciborskii. However, Microcystis spp. was not observed by manual enumeration, while it was detected at low levels by qPCR, suggesting that qPCR is more sensitive and accurate. Thus the molecular approaches provide an additional reliable monitoring option to traditional microscopic enumeration for the ecosystems monitoring program.
Top Quark Mass Calibration for Monte Carlo Event Generators
NASA Astrophysics Data System (ADS)
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W.
2016-12-01
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mtMC. Because of hadronization and parton-shower dynamics, relating mtMC to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e+e- 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, mtMC differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, mtMC≃mt,1 GeV MSR .
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-06-27
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.
Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc
2012-01-01
Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.
Deshpande, S B; Singh, J N; Das Gupta, S
2003-12-10
The involvement of frequency-dependent depression (FDD) of synaptic transmission for the depressant action of the Ptychodiscus brevis toxin (PbTx) was investigated in neonatal rat spinal cord in vitro. The stimulation of a dorsal root by train of pulses (five stimuli) at different frequencies evoked potentials in the ventral root (monosynaptic reflex, MSR). Amplitude of the fifth response as percent of first response at 0.1, 0.2, 0.5, 1.0 and 2.0 Hz were 90, 80, 75, 70 and 50%, respectively. In Mg2+-free medium, PbTx depressed the MSR and also enhanced the FDD in a concentration-dependent manner. Further, the PbTx-induced depression can well be correlated with the enhancement of FDD (r=0.98). In the presence of Mg2+ (1.3 mM), the FDD was greater than that in the absence of Mg2+. But in the presence of Mg2+ PbTx did not alter FDD, even though there was 25% depression at 28 microM (significantly lesser than in Mg2+-free medium). The results indicate that the Mg2+-sensitive component of PbTx-induced depression of MSR is mediated via the neuronal systems involving FDD.
Isotopic evidence for oxygenated Mesoarchaean shallow oceans
NASA Astrophysics Data System (ADS)
Eickmann, Benjamin; Hofmann, Axel; Wille, Martin; Bui, Thi Hao; Wing, Boswell A.; Schoenberg, Ronny
2018-02-01
Mass-independent fractionation of sulfur isotopes (MIF-S) in Archaean sediments results from photochemical processing of atmospheric sulfur species in an oxygen-depleted atmosphere. Geological preservation of MIF-S provides evidence for microbial sulfate reduction (MSR) in low-sulfate Paleoarchaean (3.8-3.2 billion years ago (Ga)) and Neoarchaean (2.8-2.5 Ga) oceans, but the significance of MSR in Mesoarchaean (3.2-2.8 Ga) oceans is less clear. Here we present multiple sulfur and iron isotope data of early diagenetic pyrites from 2.97-Gyr-old stromatolitic dolomites deposited in a tidal flat environment of the Nsuze Group, Pongola Supergroup, South Africa. We identified consistently negative Δ33S values in pyrite, which indicates photochemical reactions under anoxic atmospheric conditions, but large mass-dependent sulfur isotope fractionations of 30‰ in δ34S, identifying active MSR. Negative pyrite δ56Fe values (-1.31 to -0.88‰) record Fe oxidation in oxygen-bearing shallow oceans coupled with biogenic Fe reduction during diagenesis, consistent with the onset of local Fe cycling in oxygen oases 3.0 Ga. We therefore suggest the presence of oxygenated near-shore shallow-marine environments with ≥5 μM sulfate at this time, in spite of the clear presence of an overall reduced Mesoarchaean atmosphere.
Guerrero, Jimena; Andrello, Marco; Burgarella, Concetta; Manel, Stephanie
2018-07-01
Spatial differences in environmental selective pressures interact with the genomes of organisms, ultimately leading to local adaptation. Landscape genomics is an emergent research area that uncovers genome-environment associations, thus allowing researchers to identify candidate loci for adaptation to specific environmental variables. In the present study, we used latent factor mixed models (LFMMs) and Moran spectral outlier detection/randomization (MSOD-MSR) to identify candidate loci for adaptation to 10 environmental variables (climatic, soil and atmospheric) among 43 515 single nucleotide polymorphisms (SNPs) from 202 accessions of the model legume Medicago truncatula. Soil variables were associated with a large number of candidate loci identified through both LFMMs and MSOD-MSR. Genes tagged by candidate loci associated with drought and salinity are involved in the response to biotic and abiotic stresses, while those tagged by candidates associated with soil nitrogen and atmospheric nitrogen, participate in the legume-rhizobia symbiosis. Candidate SNPs identified through both LFMMs and MSOD-MSR explained up to 56% of variance in flowering traits. Our findings highlight the importance of soil in driving adaptation in the system and elucidate the basis of evolutionary potential of M. truncatula to respond to global climate change and anthropogenic disruption of the nitrogen cycle. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions
NASA Astrophysics Data System (ADS)
DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard
2018-04-01
A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.
Zand, Pouria; Dilo, Arta; Havinga, Paul
2013-01-01
Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687
Liquid fuel molten salt reactors for thorium utilization
Gehin, Jess C.; Powers, Jeffrey J.
2016-04-08
Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing thorium-based MSRs.« less
Olteanu, Horatiu; Munson, Troy; Banerjee, Ruma
2002-11-12
Methionine synthase reductase (MSR) catalyzes the conversion of the inactive form of human methionine synthase to the active state of the enzyme. This reaction is of paramount physiological importance since methionine synthase is an essential enzyme that plays a key role in the methionine and folate cycles. A common polymorphism in human MSR has been identified (66A --> G) that leads to replacement of isoleucine with methionine at residue 22 and has an allele frequency of 0.5. Another polymorphism is 524C --> T, which leads to the substitution of serine 175 with leucine, but its allele frequency is not known. The I22M polymorphism is a genetic determinant for mild hyperhomocysteinemia, a risk factor for cardiovascular disease. In this study, we have examined the kinetic properties of the M22/S175 and I22/S175 and the I22/L175 and I22/S175 pairs of variants. EPR spectra of the semiquinone forms of variants I22/S175 and M22/S175 are indistinguishable and exhibit an isotropic signal at g = 2.00. In addition, the electronic absorption and reduction stoichiometries with NADPH are identical in these variants. Significantly, the variants activate methionine synthase with the same V(max); however, a 3-4-fold higher ratio of MSR to methionine synthase is required to elicit maximal activity with the M22/S175 and I22/L175 variant versus the I22/S175 enzyme. Differences are also observed between the variants in the efficacies of reduction of the artificial electron acceptors: ferricyanide, 2,6-dichloroindophenol, 3-acetylpyridine adenine dinucleotide phosphate, menadione, and the anticancer drug doxorubicin. These results reveal differences in the interactions between the natural and artificial electron acceptors and MSR variants in vitro, which are predicted to result in less efficient reductive repair of methionine synthase in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehin, Jess C.; Powers, Jeffrey J.
Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing thorium-based MSRs.« less
Improving Night Time Driving Safety Using Vision-Based Classification Techniques.
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-09-24
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver's attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes' movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver's eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver's vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper.
Improving Night Time Driving Safety Using Vision-Based Classification Techniques
Chien, Jong-Chih; Chen, Yong-Sheng; Lee, Jiann-Der
2017-01-01
The risks involved in nighttime driving include drowsy drivers and dangerous vehicles. Prominent among the more dangerous vehicles around at night are the larger vehicles which are usually moving faster at night on a highway. In addition, the risk level of driving around larger vehicles rises significantly when the driver’s attention becomes distracted, even for a short period of time. For the purpose of alerting the driver and elevating his or her safety, in this paper we propose two components for any modern vision-based Advanced Drivers Assistance System (ADAS). These two components work separately for the single purpose of alerting the driver in dangerous situations. The purpose of the first component is to ascertain that the driver would be in a sufficiently wakeful state to receive and process warnings; this is the driver drowsiness detection component. The driver drowsiness detection component uses infrared images of the driver to analyze his eyes’ movements using a MSR plus a simple heuristic. This component issues alerts to the driver when the driver’s eyes show distraction and are closed for a longer than usual duration. Experimental results show that this component can detect closed eyes with an accuracy of 94.26% on average, which is comparable to previous results using more sophisticated methods. The purpose of the second component is to alert the driver when the driver’s vehicle is moving around larger vehicles at dusk or night time. The large vehicle detection component accepts images from a regular video driving recorder as input. A bi-level system of classifiers, which included a novel MSR-enhanced KAZE-base Bag-of-Features classifier, is proposed to avoid false negatives. In both components, we propose an improved version of the Multi-Scale Retinex (MSR) algorithm to augment the contrast of the input. Several experiments were performed to test the effects of the MSR and each classifier, and the results are presented in experimental results section of this paper. PMID:28946643
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-06-01
The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Descriptive laboratory study. Research laboratory. A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; Lognonne, Ph.
2003-01-01
The investigations of the interior and atmosphere of Mars have been identified as high scientific priorities in most planetary exploration strategy document since the time of Viking. Most recently, the National Academy of Sciences has recommended a long-lived Mars network mission as its second highest scientific priority for Mars (after sample return) for the purpose of performing seismological investigations of the interior and studying the activity and composition of the atmosphere. Despite consistent recommendations by advisory groups, Mars network missions (MESUR, Marsnet, InterMarsnet, NetLander/MSR 05, NetLander/Premier 07, NetLander/?? 09) have undergone a strikingly consistent 'Phoenix' cycle of death and rebirth over the past 15 years, and there are still no confirmed plans to address the interior and atmosphere of Mars. The latest attempt is the NetLander mission. The objective of NetLander is to place a network of four landers on Mars to perform detailed measurements of the seismicity and atmospheric pressure, temperature, wind, humidity, and opacity (as well as provide images, subsurface radar sounding profiles, and electric/magnetic field measurements). However, this mission has recently encountered major programmatic difficulties within CNES and NASA. NASA has already cancelled its participation and the mission itself is facing imminent cancellation if CNES cannot solve programmatic issues associated with launching the mission in 2009. In this presentation we will describe an approach that could move us closer to realizing the goals of a Mars network mission and will secure at least one geophysical and meteorological observatory in 2009.
McCarthy, B; Delaby, L; Pierce, K M; McCarthy, J; Fleming, C; Brennan, A; Horan, B
2016-05-01
The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait) utilization per hectare increased significantly with increasing SR (+0.026 and +0.081 for MSR and HSR, respectively). These results quantify the significant effect of grazing management practices on the feed production capability of modern perennial ryegrass pastures for intensive grazing dairy production systems. Furthermore, these results highlight the importance of consistently imposing grazing treatments over multiple years, and within integrated whole farm systems, to accurately assess the longer term effects of alternate grazing management practices on pasture productivity. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kashlinsky, A.; Mather, J. C.; Odenwald, S.
1999-01-01
The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust in the Solar system and the Galaxy. There the upper limits on the CIB fluctuations are below 1 nW/sq m.sr and are lowest (< equal 0.5 nW/sq m.sr) at 25 microns.
Top Quark Mass Calibration for Monte Carlo Event Generators.
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W
2016-12-02
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator m_{t}^{MC}. Because of hadronization and parton-shower dynamics, relating m_{t}^{MC} to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e^{+}e^{-} 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, m_{t}^{MC} differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m_{t}^{MC}≃m_{t,1 GeV}^{MSR}.
Nondestructive testing of moisture separator reheater tubing system using Hall sensor array
NASA Astrophysics Data System (ADS)
Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi
2018-01-01
This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.
Paradis, Normand; Auty, David; Carter, Peter; Achim, Alexis
2013-01-01
This study investigates how the use of a Hitman ST300 acoustic sensor can help identify the best forest stands to be used as supply sources for the production of Machine Stress-Rated (MSR) lumber. Using two piezoelectric sensors, the ST300 measures the velocity of a mechanical wave induced in a standing tree. Measurements were made on 333 black spruce (Picea mariana (Mill.) BSP) trees from the North Shore region, Quebec (Canada) selected across a range of locations and along a chronosequence of elapsed time since the last fire (TSF). Logs were cut from a subsample of 39 trees, and sawn into 77 pieces of 38 mm × 89 mm cross-section before undergoing mechanical testing according to ASTM standard D-4761. A linear regression model was developed to predict the static modulus of elasticity of lumber using tree acoustic velocity and stem diameter at 1.3 m above ground level (R2 = 0.41). Results suggest that, at a regional level, 92% of the black spruce trees meet the requirements of MSR grade 1650Fb-1.5E, whilst 64% and 34% meet the 2100Fb-1.8E and 2400Fb-2.0E, respectively. Mature stands with a TSF < 150 years had 11 and 18% more boards in the latter two categories, respectively, and therefore represented the best supply source for MSR lumber. PMID:23482089
Theoretical Analysis of Thermodynamic Measurements near a Liquid-Gas Critical Point
NASA Technical Reports Server (NTRS)
Barmatz, M.; Zhong, Fang; Hahn, Inseob
2003-01-01
Over the years, many ground-based studies have been performed near liquid-gas critical points to elucidate the expected divergences in thermodynamic quantities. The unambiguous interpretation of these studies very near the critical point is hindered by a gravity-induced density stratification. However, these ground-based measurements can give insight into the crossover behavior between the asymptotic critical region near the transition and the mean field region farther away. We have completed a detailed analysis of heat capacity, susceptibility and coexistence curve measurements near the He-3 liquid-gas critical point using the minimal-subtraction renormalization (MSR) scheme within the phi(exp 4) model. This MSR scheme, using only two adjustable parameters, provides a reasonable global fit to all of these experimental measurements in the gravity-free region out to a reduced temperature of |t| approx. 2x10(exp -2). Recently this approach has also been applied to the earlier microgravity measurements of Haupt and Straub in SF(sub 6) with surprising results. The conclusions drawn from the MSR analyses will be presented. Measurements in the gravity-affected region closer to the He-3 critical point have also been analyzed using the recent crossover parametric model (CPM) of the equation-of-state. The results of fitting heat capacity measurements to the CPM model along the He-3 critical isochore in the gravity-affected region will also be presented.
Automated, on-board terrain analysis for precision landings
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.
2006-01-01
Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.
Paradis, Normand; Auty, David; Carter, Peter; Achim, Alexis
2013-03-12
This study investigates how the use of a Hitman ST300 acoustic sensor can help identify the best forest stands to be used as supply sources for the production of Machine Stress-Rated (MSR) lumber. Using two piezoelectric sensors, the ST300 measures the velocity of a mechanical wave induced in a standing tree. Measurements were made on 333 black spruce (Picea mariana (Mill.) BSP) trees from the North Shore region, Quebec (Canada) selected across a range of locations and along a chronosequence of elapsed time since the last fire (TSF). Logs were cut from a subsample of 39 trees, and sawn into 77 pieces of 38 mm × 89 mm cross-section before undergoing mechanical testing according to ASTM standard D-4761. A linear regression model was developed to predict the static modulus of elasticity of lumber using tree acoustic velocity and stem diameter at 1.3 m above ground level (R2 = 0.41). Results suggest that, at a regional level, 92% of the black spruce trees meet the requirements of MSR grade 1650Fb-1.5E, whilst 64% and 34% meet the 2100Fb-1.8E and 2400Fb-2.0E, respectively. Mature stands with a TSF < 150 years had 11 and 18% more boards in the latter two categories, respectively, and therefore represented the best supply source for MSR lumber.
Dynamical histories of the IC 348 and NGC 1333 star-forming regions in Perseus
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Alves de Oliveira, Catarina
2017-07-01
We present analyses of the spatial distributions of stars in the young (1-3 Myr) star-forming regions IC 348 and NGC 1333 in the Perseus giant molecular cloud. We quantify the spatial structure using the Q-parameter and find that both IC 348 and NGC 1333 are smooth and centrally concentrated with Q-parameters of 0.98 and 0.89, respectively. Neither region exhibits mass segregation (Λ _MSR = 1.1^{+0.2}_{-0.3} for IC 348 and Λ _MSR = 1.2^{+0.4}_{-0.3} for NGC 1333, where ΛMSR ˜ 1 corresponds to no mass segregation) nor do the most massive stars reside in areas of enhanced stellar surface density compared to the average surface density, according to the ΣLDR method. We then constrain the dynamical histories and hence initial conditions of both regions by comparing the observed values to N-body simulations at appropriate ages. Stars in both regions likely formed with subvirial velocities that contributed to merging of substructure and the formation of smooth clusters. The initial stellar densities were no higher than ρ ˜ 100-500 M⊙ pc-3 for IC 348 and ρ ˜ 500-2000 M⊙ pc-3 for NGC 1333. These initial densities, in particular that of NGC 1333, are high enough to facilitate dynamical interactions that would likely affect ˜10 per cent of protoplanetary discs and binary stars.
Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI
NASA Astrophysics Data System (ADS)
Aji, Indarta Kuncoro; Waris, A.
2014-09-01
Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF4 composition. The 235U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF4 with 235U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF4 with 235U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.
Top Quark Mass Calibration for Monte Carlo Event Generators
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; ...
2016-11-29
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mmore » $$MC\\atop{t}$$. Because of hadronization and parton-shower dynamics, relating m$$MC\\atop{t}$$ to a field theory mass is difficult. Here, we present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e +e −2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to PYTHIA 8.205, m$$MC\\atop{t}$$ differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m$$MC\\atop{t}$$ ≃ m$$MSR\\atop{t,1 GeV}$$.« less
Minimizing magnetic fields for precision experiments
NASA Astrophysics Data System (ADS)
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Methods of Scientific Research: Teaching Scientific Creativity at Scale
NASA Astrophysics Data System (ADS)
Robbins, Dennis; Ford, K. E. Saavik
2016-01-01
We present a scaling-up plan for AstroComNYC's Methods of Scientific Research (MSR), a course designed to improve undergraduate students' understanding of science practices. The course format and goals, notably the open-ended, hands-on, investigative nature of the curriculum are reviewed. We discuss how the course's interactive pedagogical techniques empower students to learn creativity within the context of experimental design and control of variables thinking. To date the course has been offered to a limited numbers of students in specific programs. The goals of broadly implementing MSR is to reach more students and early in their education—with the specific purpose of supporting and improving retention of students pursuing STEM careers. However, we also discuss challenges in preserving the effectiveness of the teaching and learning experience at scale.
Sulphur cycling in a Neoarchaean microbial mat.
Meyer, N R; Zerkle, A L; Fike, D A
2017-05-01
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ 34 S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ 34 S and Δ 33 S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ 34 S and Δ 33 S = -0.21 ± 0.65‰ (±1σ). These large variations in δ 34 S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ 34 S = 8.36 ± 1.16‰ and Δ 33 S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.
Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units
NASA Astrophysics Data System (ADS)
Legkostupova, V. V.; Sudakov, A. V.
2015-03-01
The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the separator; separated layout of the of the separator and steam reheater; and use of transversely finned tube bundles for organizing cross flow of steam over the tubes.
Goss, Donald L.; Lewek, Michael; Yu, Bing; Ware, William B.; Teyhen, Deydre S.; Gross, Michael T.
2015-01-01
Context The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior–foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear–foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior–foot-strike pattern remains unclear. Objective To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design Descriptive laboratory study. Setting Research laboratory. Patients or Other Participants A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior–foot-strike pattern after transitioning to minimalist running shoes. PMID:26098391
Goss, Donald L; Lewek, Michael; Yu, Bing; Ware, William B; Teyhen, Deydre S; Gross, Michael T
2015-02-19
Context : The injury incidence rate among runners is approximately 50%. Some individuals have advocated using an anterior-foot-strike pattern to reduce ground reaction forces and injury rates that they attribute to a rear-foot-strike pattern. The proportion of minimalist shoe wearers who adopt an anterior-foot-strike pattern remains unclear. Objective : To evaluate the accuracy of self-reported foot-strike patterns, compare negative ankle- and knee-joint angular work among runners using different foot-strike patterns and wearing traditional or minimalist shoes, and describe average vertical-loading rates. Design : Descriptive laboratory study. Setting : Research laboratory. Patients or Other Participants : A total of 60 healthy volunteers (37 men, 23 women; age = 34.9 ± 8.9 years, height = 1.74 ± 0.08 m, mass = 70.9 ± 13.4 kg) with more than 6 months of experience wearing traditional or minimalist shoes were instructed to classify their foot-strike patterns. Intervention(s) : Participants ran in their preferred shoes on an instrumented treadmill with 3-dimensional motion capture. Main Outcome Measure(s) : Self-reported foot-strike patterns were compared with 2-dimensional video assessments. Runners were classified into 3 groups based on video assessment: traditional-shoe rear-foot strikers (TSR; n = 22), minimalist-shoe anterior-foot strikers (MSA; n = 21), and minimalist-shoe rear-foot strikers (MSR; n = 17). Ankle and knee negative angular work and average vertical-loading rates during stance phase were compared among groups. Results : Only 41 (68.3%) runners reported foot-strike patterns that agreed with the video assessment (κ = 0.42, P < .001). The TSR runners demonstrated greater ankle-dorsiflexion and knee-extension negative work than MSA and MSR runners (P < .05). The MSA (P < .001) and MSR (P = .01) runners demonstrated greater ankle plantar-flexion negative work than TSR runners. The MSR runners demonstrated a greater average vertical-loading rate than MSA and TSR runners (P < .001). Conclusions : Runners often cannot report their foot-strike patterns accurately and may not automatically adopt an anterior-foot-strike pattern after transitioning to minimalist running shoes.
Mars-NEXT - A future step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-Next - a Future Step in the European Exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A. F.
2008-09-01
The Mars-NEXT concept represents a new mission to Mars within the Aurora Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2016 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars- NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2013 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Mars-NEXT - A future major step in the European exploration of Mars
NASA Astrophysics Data System (ADS)
Chicarro, A.
2009-04-01
The Mars-NEXT concept represents a new mission to Mars within the Exploration Programme of the European Space Agency (ESA). Mars-NEXT is planned after ExoMars and before the Mars Sample Return (MSR) and includes a number of landers to establish a network on the surface of Mars, to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. The mission would be launched in 2018 onboard a Russian Soyuz rocket from Kourou. The Mars-NEXT mission includes a spacecraft carrying three (or four) lander probes to be released from an hyperbolic arrival trajectory to establish a Network of stations on the surface of Mars. The carrier spacecraft would be placed into orbit and carry a few instruments to complement the Network. Such network-orbiter combination represents a unique tool to perform new investigations of Mars which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. Characterization of the landing site area from a geosciences point of view requires a degree of mobility (instrument deployment device or robotic sampling arm). To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns and opacity; ii) accurate mapping of the planet's gravity field with a sub-satellite; iii) following Mars Global Surveyor's initial mapping of the crustal magnetic anomalies, a complete and detailed map from lower orbit (150 km) needs to be gathered; iv) also, these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics and meteorology). The concept of a Network Mission on Mars is not new, and indeed previous studies support the great maturity of such a mission. A purely meteorological network would include as many stations as possible. For seismology, however, the number of stations (one to four) has a direct bearing on the scientific return achieved, four being the ultimate goal of the mission. The Geophysical Package (GEP) onboard ExoMars will allow to determine the level and frequency band of martian seismicity in order to calibrate the Mars-NEXT seismometers. Given the multiplicity of elements in the mission (landers, orbiter, science payload), numerous opportunities exist to share the efforts in an equitable way between ESA and other partners. The Mars-NEXT Mission is not only complementary to previous missions to Mars, including ExoMars, but is to be seen within the context of future astrobiological investigations of Mars, as we do not know which parameters did inhibit or favour the development of life on Earth. For instance, is plate tectonics a necessity, as well as an intrinsic magnetic field, a large orbiting moon, a thick atmosphere and a permanent ocean (to name a few) to preserve lifeforms on a terrestrial planet. Therefore, Mars-NEXT represents the logical step for Europe to undertake in the exploration of Mars, between ExoMars (2016 launch) and MSR (2020+ launch), providing unique science unavailable by other means.
Sample Returns Missions in the Coming Decade
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
2000-01-01
In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly give clues to how life began on Earth. A description of five sample return missions is presented (Stardust, Genesis, Muses-C. Mars Sample Return, and Comet Nucleus Sample Return). An overview of each sample return mission is given, concentrating particularly on the technical challenges posed during the Earth entry, descent, and landing phase of the missions. Each mission faces unique challenges in the design of an Earth entry capsule. The design of the entry capsule must address the aerodynamic, heating, deceleration, landing, and recovery requirements for the safe return of samples to Earth.
Mars Sample Return Architecture Overview
NASA Astrophysics Data System (ADS)
Edwards, C. D.; Vijendran, S.
2018-04-01
NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.
Liu, Huimin; Li, Songli; Meng, Lu; Dong, Lei; Zhao, Shengguo; Lan, Xinyi; Wang, Jiaqi; Zheng, Nan
2017-11-01
Staphylococcus aureus is one of the main pathogens involved in dairy cow mastitis. Monitoring of antibiotic use would prove useful to assess the risk of Staph. aureus in raw milk. The objective of this work was to investigate the prevalence of Staph. aureus strais isolated from raw milk in northern China, and to characterize antimicrobial susceptibility of these strains and their key virulence genes. In total, 195 raw milk samples were collected from 195 dairy farms located in 4 cities of northern China from May to September 2015. Out of 195 samples, 54 (27.7%) were positive for Staph. aureus. Among these 54 samples, 54 strains of Staph. aureus were isolated, and 16 strains were identified as methicillin-resistant Staph. aureus. The strains exhibited high percentages of resistance to penicillin G (85.2%), ampicillin (79.6%), and erythromycin (46.3%). Moreover, 72% of the strains showed resistance to more than one antimicrobial agent. Overall, 63% of penicillin-resistant strains possessed the blaZ gene, and 60% of the erythromycin-resistant strains possessed erm(A), erm(B), erm(C), msr(A), or msr(B) genes with 8 different gene patterns. All isolates resistant to gentamicin, kanamycin, and oxacillin carried the aac6'-aph2", ant(4')-Ia, and mecA genes, respectively. Two tet(M)-positive isolates carried specific genes of the Tn916-Tn1545 transposon. The most predominant virulence genes were sec, sea, and pvl, which encode staphylococcal enterotoxins (sec and sea) and Panton-Valentine leukocidin, respectively. Thirty-two isolates (59.2%) harbored one or more virulence genes. The majority of Staph. aureus strains were multidrug resistant and carried multiple virulence genes, which may pose a risk to public health. Our data indicated that antimicrobial resistance of Staph. aureus was prevalent in dairy herds in northern China, and that antibiotics, especially penicillin G and ampicillin, to treat mastitis caused by Staph. aureus should be used with caution in northern China. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, Indarta Kuncoro; Waris, A., E-mail: awaris@fi.itb.ac.id
Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4}more » with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.« less
Tribological properties of the babbit B83-based composite materials fabricated by powder metallurgy
NASA Astrophysics Data System (ADS)
Kalashnikov, I. E.; Bolotova, L. K.; Bykov, P. A.; Kobeleva, L. I.; Katin, I. V.; Mikheev, R. S.; Kobernik, N. V.
2016-07-01
Technological processes are developed to fabricate composite materials based on B83 babbit using hot pressing of a mixture of powders in the presence of a liquid phase. As a result, the structure of the matrix B83 alloy is dispersed, the morphology of intermetallic phases is changed, and reinforcing micro- and nanosized fillers are introduced and uniformly distributed in the matrix. The tribological properties of the synthesized materials are studied. The friction of the B83 babbit + 0.5 wt % MSR + 3 wt % SiC (MSR is modified schungite rock) composite material at high loads is characterized by an increase in the stability coefficient, and the wear resistance of the material increases by a factor of 1.8 as compared to the as-cast alloy at comparable friction coefficients.
Comparisons between different techniques for measuring mass segregation
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Goodwin, Simon P.
2015-06-01
We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.
Rose, Simon; Desmolaize, Benoit; Jaju, Puneet; Wilhelm, Cornelia; Warrass, Ralf
2012-01-01
The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLSB (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing. PMID:22564832
Solubilization of pyrene by anionic-nonionic mixed surfactants.
Zhou, Wenjun; Zhu, Lizhong
2004-06-18
Surfactant-enhanced remediation (SER) is an effective approach for the removal of sorbed hydrophobic organic compounds from contaminated soils. The solubilization of pyrene by four anionic-nonionic mixed surfactants, sodium dodecyl sulfate (SDS) with Triton X-405 (TX405), Brij35, Brij58, and Triton X-100 (TX100), has been studied from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (Kmc), and the critical micelle concentration (CMC). The MSRs of pyrene in mixed surfactants are found to be larger than those predicted according to an ideal mixing rule. The mixing effect of anionic and nonionic surfactants on MSR for pyrene follows the order of SDS-TX405 > SDS-Brij35 > SDS-Brij58 > SDS-TX100 and increases with an increase in the hydrophile-lipophile balance (HLB) value of nonionic surfactant in mixed systems. In addition, the mixture of anionic and nonionic surfactants cause the Kmc value for pyrene to be greater than the ideal value in SDS-TX405 mixed system, but to be smaller than the ideal value in SDS-Brij35, SDS-Brij58, and SDS-TX100 mixed systems. Meanwhile, in the four mixed systems, the experimental CMCs are lower than the ideal CMCs at almost all mixed surfactant solution compositions. The mixing effect of anionic and nonionic surfactants on MSR for pyrene can be attributed to the conjunct or the net result of the negative deviation of the CMCs from ideal mixture and the increasing or decreasing Kmc.
Heiduschka, Gregor; Virk, Sohaib A; Palme, Carsten E; Ch'ng, Sydney; Elliot, Michael; Gupta, Ruta; Clark, Jonathan
2016-04-01
To assess whether small oral squamous cell carcinomas (OSCC) require the same margin clearance as large tumors. We evaluated the association between the ratio of the closest margin to tumor size (MSR) and tumor thickness (MTR) with local control and survival. The clinicopathologic and follow up data were obtained for 501 OSCC patients who had surgical resection with curative intent at our institution. MTR and MSR were computed and their associations with local control and survival were assessed using multivariable Cox-regression model. Survival curves were generated using the Kaplan-Meier method. MTR was a better predictor of disease control than MSR. MTR was a predictor of local failure (p=0.033) and disease specific death (p=0.038) after adjusting for perineural invasion, lymphovascular involvement, nodal status, and radiotherapy. A threshold MTR value of 0.3 was identified, above which the risk of local recurrence was low. The ratio of margin to tumor thickness was an independent predictor for local recurrence and disease specific death in this cohort. A MTR>0.3 can serve as a useful tool for adjuvant therapy planning as it combines tumor thickness and margin clearance, two well established prognostic factors. The minimum safe margin can be calculated by multiplying the tumor thickness by 0.3. Further prospective studies in other institutions are warranted to confirm the prognostic utility of MTR and assess the generalizability of our threshold values. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Innovative Concept for Testing Rutting Susceptibility of Asphalt Mixture
NASA Astrophysics Data System (ADS)
Mohseni, Alaeddin; Azari, Haleh
Currently, flow number (FN) is being used for measuring permanent deformation resistance of asphalt mixtures. The provisional AASHTO TP 79-10 test method specifies the requirements of the FN test; however, there are undefined levels of test variables, such as temperature, axial stress, and confinement. Therefore, agreeable FN criteria that can reliably discriminate between various mixtures have not been established yet. As the asphalt industry continues to develop more sophisticated mixtures (Warm Mix, RAP and RAS), the FN value has failed to capture the true complexity of the asphalt mixtures. These shortcomings and the unpredictable testing time of the FN test have affected its usefulness for evaluating high temperature performance of asphalt mixtures. A new test procedure for evaluation of rutting susceptibility of asphalt mixtures is being proposed. The new procedure is conducted at one temperature and multiple stresses on the same replicate in three increments of 500 cycles, which only takes 33 minutes to complete. The property of the test is the permanent strain due to the last cycle of each test increment (Minimum Strain Rate, or MSR). A master curve is developed by plotting the MSR values versus parameter TP, which is a product of Temperature and Pressure. The MSR master curve represents the unit rutting damage (rut per axle) of asphalt mixtures at any stress and temperature and can be used in laboratory for material characterization, mix design verification, ranking of the mixtures, or for pavement design applications to predict rut depth for project climate and design traffic.
Mars Sample Return without Landing on the Surface
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.
2000-01-01
Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
77 FR 70835 - Centennial Challenges 2013 Sample Return Robot Challenge
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Centennial Challenges 2013 Sample Return Robot...). SUMMARY: This notice is issued in accordance with 51 U.S.C. 20144(c). The 2013 Sample Return Robot.... The 2013 Sample Return Robot Challenge is a prize competition designed to encourage development of new...
NASA Astrophysics Data System (ADS)
Sandford, S. A.; Chabot, N. L.; Dello Russo, N.; Leary, J. C.; Reynolds, E. L.; Weaver, H. A.; Wooden, D. H.
2017-07-01
CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return) is a mission concept submitted in response to NASA's New Frontiers 4 call. CORSAIR's proposed mission is to return comet nucleus samples to Earth for detailed analysis.
Moisture separator reheater upgrade at Surry nuclear power station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bankley, A.
1985-01-01
Surry station moisture separator reheaters (MSRs) have experienced numerous problems typical of those found in MSRs of large nuclear power plants. The reliability of MSRs has been of concern to users for several years, primarily in regard to their structural integrity, operational characteristics and performance. Gross MSR internal problems such as reheater tube failures, inadequate moisture separation, buckling, and distortion of internal components occasionally necessitate forced outages or nonscheduled repairs or removal of a particular MSR from operation until repairs can be performed during a scheduled outage. It was obvious that the financial consequences of forced outages or reduced performancemore » were grave and their elimination was an important betterment goal. The objective of this paper is to present past failures of MSRs and modifications that were made to the vessel internals, and to compare their performance prior to and after the improved design was implemented.« less
Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code
NASA Astrophysics Data System (ADS)
Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian
2017-07-01
FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.
NASA Astrophysics Data System (ADS)
Liu, Changjiang; Cheng, Irene; Zhang, Yi; Basu, Anup
2017-06-01
This paper presents an improved multi-scale Retinex (MSR) based enhancement for ariel images under low visibility. For traditional multi-scale Retinex, three scales are commonly employed, which limits its application scenarios. We extend our research to a general purpose enhanced method, and design an MSR with more than three scales. Based on the mathematical analysis and deductions, an explicit multi-scale representation is proposed that balances image contrast and color consistency. In addition, a histogram truncation technique is introduced as a post-processing strategy to remap the multi-scale Retinex output to the dynamic range of the display. Analysis of experimental results and comparisons with existing algorithms demonstrate the effectiveness and generality of the proposed method. Results on image quality assessment proves the accuracy of the proposed method with respect to both objective and subjective criteria.
Moisture Separator Reheater for NPP Turbines
NASA Astrophysics Data System (ADS)
Manabe, Jun; Kasahara, Jiro
This paper introduces the development of the current model Moisture Separator Reheater (MSR) for nuclear power plant (NPP) turbines, commercially placed in service in the period 1984-1997, focusing on the mist separation performance of the MSR along with drainage from heat exchanger tubes. A method of predicting the mist separation performance was devised first based on the observation of mist separation behaviors under an air-water test. Then the method was developed for the application to predict under the steam conditions, followed by the verification in comparison with the actual results of a steam condition test. The instability of tube drainage associated with both sub-cooling and temperature oscillation might adversely affect the seal welding of tubes to tube sheet due to thermal fatigue. The instability was measured on an existing unit to clarify behaviors and the development of a method to suppress them. Both methods were applied to newly constructed units and the effectiveness of the methods was demonstrated.
A short-orbit spectrometer for low-energy pion detection in electroproduction experiments at MAMI
NASA Astrophysics Data System (ADS)
Baumann, D.; Ding, M.; Friščić, I.; Böhm, R.; Bosnar, D.; Distler, M. O.; Merkel, H.; Müller, U.; Walcher, Th.; Wendel, M.
2017-12-01
A new Short-Orbit Spectrometer (SOS) has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron (MAMI), with the goal to detect low-energy pions. It is equipped with a Browne-Buechner magnet and a detector system consisting of two helium-ethane based drift chambers and a scintillator telescope made of five layers. The detector system allows detection of pions in the momentum range of 50-147 MeV/c, which corresponds to 8.7-63 MeV kinetic energy. The spectrometer can be placed at a distance range of 54-66 cm from the target center. Two collimators are available for the measurements, one having 1.8 msr aperture and the other having 7 msr aperture. The Short-Orbit Spectrometer has been successfully calibrated and used in coincidence measurements together with the standard magnetic spectrometers of the A1 collaboration.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy
2017-01-01
The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.
Habitation Module Technology for Mars Sample Preservation and Return
NASA Astrophysics Data System (ADS)
Humphries., Peter.; Barez., Fred.; Brant., Tom.; Gutti Shashidhar Gowda., Aishwarya.
2018-04-01
Lunar-Mars sample return is of interest to the space community such as NASA, ESA, and private industry. Collected samples of Mars need to be preserved and properly treated in returnable cache, packed to stop back-contamination prior to the return mission.
Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO
NASA Astrophysics Data System (ADS)
Mateu, Vicent; Ortega, Pablo G.
2018-01-01
The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.
Awan, Muaaz Gul; Saeed, Fahad
2017-08-01
Modern high resolution Mass Spectrometry instruments can generate millions of spectra in a single systems biology experiment. Each spectrum consists of thousands of peaks but only a small number of peaks actively contribute to deduction of peptides. Therefore, pre-processing of MS data to detect noisy and non-useful peaks are an active area of research. Most of the sequential noise reducing algorithms are impractical to use as a pre-processing step due to high time-complexity. In this paper, we present a GPU based dimensionality-reduction algorithm, called G-MSR, for MS2 spectra. Our proposed algorithm uses novel data structures which optimize the memory and computational operations inside GPU. These novel data structures include Binary Spectra and Quantized Indexed Spectra (QIS) . The former helps in communicating essential information between CPU and GPU using minimum amount of data while latter enables us to store and process complex 3-D data structure into a 1-D array structure while maintaining the integrity of MS data. Our proposed algorithm also takes into account the limited memory of GPUs and switches between in-core and out-of-core modes based upon the size of input data. G-MSR achieves a peak speed-up of 386x over its sequential counterpart and is shown to process over a million spectra in just 32 seconds. The code for this algorithm is available as a GPL open-source at GitHub at the following link: https://github.com/pcdslab/G-MSR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less
MOD: An In-Situ Organic Detector for the MSR 2003 Mission
NASA Technical Reports Server (NTRS)
Kminek, G.; Bada, J. L.; Botta, O.; Glavin, D. P.; Grunthaner, F. J.; LaBaw, C. C.; Serviss, O. E.
2000-01-01
Looking for organic compounds that are essential for biochemistry or indicative of extraterrestrial organic influx is the primary goal of MOD (Mars Organic Detector). MOD can also quantify adsorbed and chemisorbed water and evolved carbon dioxide.
NASA Astrophysics Data System (ADS)
Lárraga-Gutiérrez, José Manuel
2015-08-01
Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%—with the exception of the IBA-PFD—for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated k{{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}} is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.
Sample Curation at a Lunar Outpost
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Lofgren, Gary E.; Treiman, A. H.; Lindstrom, Marilyn L.
2007-01-01
The six Apollo surface missions returned 2,196 individual rock and soil samples, with a total mass of 381.6 kg. Samples were collected based on visual examination by the astronauts and consultation with geologists in the science back room in Houston. The samples were photographed during collection, packaged in uniquely-identified containers, and transported to the Lunar Module. All samples collected on the Moon were returned to Earth. NASA's upcoming return to the Moon will be different. Astronauts will have extended stays at an out-post and will collect more samples than they will return. They will need curation and analysis facilities on the Moon in order to carefully select samples for return to Earth.
78 FR 49296 - Centennial Challenges 2014 Sample Return Robot Challenge
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... Return Robot Challenge AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Centennial Challenges 2014 Sample Return Robot Challenge. SUMMARY: This notice is issued in accordance with 51 U.S.C. 20144(c). The 2014 Sample Return Robot Challenge is scheduled and teams that wish to...
76 FR 56819 - Centennial Challenges 2012 Sample Return Robot Challenge
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Return Robot Challenge AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice. SUMMARY: This notice is issued in accordance with 42 U.S.C. 2451(314)(d). The 2012 Sample Return Robot.... The 2012 Sample Return Robot Challenge is a prize competition designed to encourage development of new...
An efficient approach for Mars Sample Return using emerging commercial capabilities
NASA Astrophysics Data System (ADS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as ;Red Dragon;, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit-an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.
Gonzales, Andrew A; Stoker, Carol R
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth’s biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022. PMID:27642199
STARDUST and HAYABUSA: Sample Return Missions to Small Bodies in the Solar System
NASA Technical Reports Server (NTRS)
Sandford, S. A.
2005-01-01
There are currently two active spacecraft missions designed to return samples to Earth from small bodies in our Solar System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.
Concept Study For A Near-term Mars Surface Sample Return Mission
NASA Astrophysics Data System (ADS)
Smith, M. F.; Thatcher, J.; Sallaberger, C.; Reedman, T.; Pillinger, C. T.; Sims, M. R.
The return of samples from the surface of Mars is a challenging problem. Present mission planning is for complex missions to return large, focused samples sometime in the next decade. There is, however, much scientific merit in returning a small sample of Martian regolith before the end of this decade at a fraction of the cost of the more ambitious missions. This paper sets out the key elements of this concept that builds on the work of the Beagle 2 project and space robotics work in Canada. The paper will expand the science case for returning a regolith sample that is only in the range of 50-250g but would nevertheless include plenty of interesting mate- rial as the regolith comprises soil grains from a wide variety of locations i.e. nearby rocks, sedimentary formations and materials moved by fluids, winds and impacts. It is possible that a fine core sample could also be extracted and returned. The mission concept is to send a lander sized at around 130kg on the 2007 or 2009 opportunity, immediately collect the sample from the surface, launch it to Mars orbit, collect it by the lander parent craft and make an immediate Earth return. Return to Earth orbit is envisaged rather than direct Earth re-entry. The lander concept is essen- tially a twice-size Beagle 2 carrying the sample collection and return capsule loading equipment plus the ascent vehicle. The return capsule is envisaged as no more than 1kg. An overall description of the mission along with methods for sample acquisition, or- bital rendezvous and capsule return will be outlined and the overall systems budgets presented. To demonstrate the near term feasibility of the mission, the use of existing Canadian and European technologies will be highlighted.
Sample Handling Considerations for a Europa Sample Return Mission: An Overview
NASA Technical Reports Server (NTRS)
Fries, M. D.; Calaway, M. L.; Evans, C. A.; McCubbin, F. M.
2015-01-01
The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately.
Design, Development, and Preliminary Validation for a BioContainment System for MSR
NASA Astrophysics Data System (ADS)
Fumagalli, A.; Spagnoli, B.; Terribile, A.; Indrigo, D.; Romstedt, J.; Vjendran, S.; Kminek, G.
2018-04-01
A bio-containment system was conceived, designed, and tested by Leonardo S.p.A. and partners under ESA development contract. Results achieved so far are presented, including reports of the several tests performed on development hardware.
Consideration of sample return and the exploration strategy for Mars
NASA Technical Reports Server (NTRS)
Bogard, D. C.; Duke, M. B.; Gibson, E. K.; Minear, J. W.; Nyquist, L. E.; Phinney, W. C.
1979-01-01
The scientific rationale and requirements for a Mars surface sample return were examined and the experience gained from the analysis and study of the returned lunar samples were incorporated into the science requirements and engineering design for the Mars sample return mission. The necessary data sets for characterizing Mars are presented. If further analyses of surface samples are to be made, the best available method is for the analysis to be conducted in terrestrial laboratories.
Zivicova, Veronika; Gal, Peter; Mifkova, Alzbeta; Novak, Stepan; Kaltner, Herbert; Kolar, Michal; Strnad, Hynek; Sachova, Jana; Hradilova, Miluse; Chovanec, Martin; Gabius, Hans-Joachim; Smetana, Karel; Fik, Zdenek
2018-03-01
Having previously initiated genome-wide expression profiling in head and neck squamous cell carcinoma (HNSCC) for regions of the tumor, the margin of surgical resecate (MSR) and normal mucosa (NM), we here proceed with respective analysis of cases after stratification according to the expression status of tenascin (Ten). Tissue specimens of each anatomical site were analyzed by immunofluorescent detection of Ten, fibronectin (Fn) and galectin-1 (Gal-1) as well as by microarrays. Histopathological examination demonstrated that Ten + Fn + Gal-1 + co-expression occurs more frequently in samples of HNSCC (55%) than in NM (9%; p<0.01). Contrary, the Ten - Fn + Gal-1 - (45%) and Ten - Fn - Gal-1 - (39%) status occurred with significantly (p<0.01) higher frequency than in HNSCC (3% and 4%, respectively). In MSRs, different immunophenotypes were distributed rather equally (Ten + Fn + Gal-1 + =24%; Ten - Fn + Gal-1 - =36%; Ten - Fn - Gal-1 - =33%), differing to the results in tumors (p<0.05). Absence/presence of Ten was used for stratification of patients into cohorts without a difference in prognosis, to comparatively examine gene-activity signatures. Microarray analysis revealed i) expression of several tumor progression-associated genes in Ten + HNSCC tumors and ii) a strong up-regulation of gene expression assigned to lipid metabolism in MSRs of Ten - tumors, while NM profiles remained similar. The presented data reveal marked and specific changes in tumors and MSR specimens of HNSCC without a separation based on prognosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Intimate Partner Violence Exposure, Salivary Cortisol, and Childhood Asthma
ERIC Educational Resources Information Center
Bair-Merritt, Megan H.; Johnson, Sara B.; Okelo, Sande; Page, Gayle
2012-01-01
Parents were given supplies to collect 3 child salivary cortisol samples (awakening, 30-min after awakening, bedtime) at home on a typical day, and return them via mail. Medical records also were abstracted. Results: Fifty-three percent (n = 29) returned child salivary samples. Families who returned samples typically returned them within 2 weeks,…
Integrating Public Perspectives in Sample Return Planning
NASA Technical Reports Server (NTRS)
Race, Margaret S.; MacGregor, G.
2001-01-01
Planning for extraterrestrial sample returns, whether from Mars or other solar system bodies, must be done in a way that integrates planetary protection concerns with the usual mission technical and scientific considerations. Understanding and addressing legitimate societal concerns about the possible risks of sample return will be a critical part of the public decision making process ahead. This paper presents the results of two studies, one with lay audiences, the other with expert microbiologists, designed to gather information, on attitudes and concerns about sample return risks and planetary protection. Focus group interviews with lay subjects, using generic information about Mars sample return and a preliminary environmental impact assessment, were designed to obtain an indication of how the factual content is perceived and understood by the public. A research survey of microbiologists gathered information on experts' views and attitudes about sample return, risk management approaches and space exploration risks. These findings, combined with earlier research results on risk perception, will be useful in identifying levels of concern and potential conflicts in understanding between experts and the public about sample return risks. The information will be helpful in guiding development of the environmental impact statement and also has applicability to proposals for sample return from other solar system bodies where scientific uncertainty about extraterrestrial life may persist at the time of mission planning.
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted: to identify those experiments that could and should be done on a returned Martian sample in order to characterize its inorganic properties; to evaluate, insofar as can be done, the effects of potential biological sterilization of the sample by heating prior to its return; to identify particular analytical techniques needing further improvement in order to make optimum use of a returned sample; and to identify experiments to be done on simulants, with and without sterilization, that better define the limits of information available about the planet from analyses of returned samples.
NASA Sample Return Missions: Recovery Operations
NASA Technical Reports Server (NTRS)
Pace, L. F.; Cannon, R. E.
2017-01-01
The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.
NASA Astrophysics Data System (ADS)
Lehmeier, C.; Min, K.; Song, C.; Ballantyne, F.; Billings, S. A.
2012-12-01
Recent work attempts to incorporate requirements of soil microorganisms for carbon and other resources, and how these requirements may respond to temperature, into theoretical concepts of soil organic matter decomposition and climate change. Because of the difficulties of measuring resource fluxes in natural soils, empirical data to guide these concepts remain scarce. Here, we present an experimental system that combines continuous culture techniques with CO2 measurements to study carbon fluxes through microbes in a reductionist, controlled environment amenable to experimental manipulation. In this pilot study, we quantified mass specific respiration rates (MSR) and δ13C of respired CO2 of Pseudomonas fluorescens, a Gram-negative bacterium common to soils, grown at 15°C and 25°C with otherwise identical environmental conditions. The microbes were grown in a 1.9 L bioreactor, in 0.9 L of nutrient medium with C:N:P atomic ratios of 100:10:3, and with 10 mM cellobiose as the carbon source. A peristaltic pump continuously supplied the bioreactor with sterile medium, and removed medium from the bioreactor, at a rate of 63 mL h-1. Both vessels were contained within a temperature incubator, and stir bars provided continuously well mixed volumes. CO2-free air was continuously bubbled through the reactor medium so to provide the microbes with O2; a cavity ring down spectrometer withdrew reactor headspace air and measured concentration and δ13C of the CO2. Air supply was regulated with a pressure/mass flow controller to approx. 27 mL min-1. In both temperature regimes, the pH of the bioreactor as well as concentration and δ13C of the CO2 in the head space air were constant over the course of 1 d, such that any imbalances in the CO2-H2CO3 equilibrium were considered negligible in the assessment of microbial respiration rates and the δ13C of respired CO2. After this time period, reactor medium was passed through a 0.22 μm filter and the filtrate dried for 24 h to obtain the dry weight of microbial biomass. δ13C of respired CO2 was about -40‰ in both treatments, 14‰ lower than the δ13C of the supplied cellobiose. Microbial necromass may have been recycled and served besides cellobiose as substrate, but the isotope data suggest similar degrees of recycling, if any, between temperatures. Extracellular enzyme assays will assist in the determination of the degree of necromass recycling. At 25°C, microbial dry weight was 25% lower than at 15°C (66 mg L-1 vs. 88 mg L-1), but MSR was about 43% higher (30 vs. 21 mg C g-1 d.wt. h-1). These MSR estimates assume the same proportions of living and dead biomass at both temperatures, which will be tested via flow cytometry. Higher MSR suggests higher metabolic costs of the microbes at 25°C consistent with metabolic theory and countering data from real soils suggesting lowered MSR with increasing temperature.
Geology of Potential Landing Sites for Martian Sample Returns
NASA Technical Reports Server (NTRS)
Greeley, Ronald
2003-01-01
This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.
Sample Return: What Happens to the Samples on Earth?
NASA Technical Reports Server (NTRS)
McNamara, Karen
2010-01-01
As space agencies throughout the world turn their attention toward human exploration of the Moon, Mars, and the solar system beyond, there has been an increase in the number of robotic sample return missions proposed as precursors to these human endeavors. In reality, however, we, as a global community, have very little experience with robotic sample return missions: 3 of the Russian Luna Missions successfully returned lunar material in the 1970s; 28 years later, in 2004, NASA s Genesis Mission returned material from the solar wind; and in 2006, NASA s Stardust Mission returned material from the Comet Wild2. [Note: The Japanese Hyabusa mission continues in space with the hope of returning material from the asteroid 25143 Itokawa.] We launch many spacecraft to LEO and return them to Earth. We also launch spacecraft beyond LEO to explore the planets, our solar system, and beyond. Some even land on these bodies. But these do not return. So as we begin to contemplate the sample return missions of the future, some common questions arise: "What really happens when the capsule returns?" "Where does it land?" "Who retrieves it and just how do they do that?" "Where does it go after that?" "How do the scientists get the samples?" "Do they keep them?" "Who is in charge?" The questions are nearly endless. The goal of this paper/presentation is to uncover many of the mysteries of the post-return phase of a mission - from the time the return body enters the atmosphere until the mission ends and the samples become part of a long term collection. The discussion will be based largely on the author s own experience with both the Genesis and Stardust missions. Of course, these two missions have a great deal in common, being funded by the same NASA Program (Discovery) and having similar team composition. The intent, however, is to use these missions as examples in order to highlight the general requirements and the challenges in defining and meeting those requirements for the final phase of sample return missions. The choices made by the Genesis and Stardust teams regarding recovery and sample handling will be discussed. These will be compared with the handling of returned lunar samples and the proposed handling of the Hyabusa samples as well. Finally, though none of these recent missions have been restricted within NASA s Planetary Protection Protocol, this is likely to change as missions venture farther from Earth. The implementation of Planetary Protection requirements will vary significantly based on mission scenario, however some of the potential implications of restricted Earth return will be considered.
Parametric study of natural circulation flow in molten salt fuel in molten salt reactor
NASA Astrophysics Data System (ADS)
Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector
2015-04-01
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.
NASA Astrophysics Data System (ADS)
Kesavan, Sathees Kumar
The Proton Exchange Membrane Fuel Cells (PEMFCs) are the most preferred and efficient energy conversion devices for automotive applications but demand high purity hydrogen which comes at a premium price. The currently pursued hydrogen generation methods suffer from issues such as, low efficiency, high cost, environmental non-benignity, and, in some cases, commercial non-viability. Many of these drawbacks including the CO contamination and, storage and delivery can be overcome by resorting to metal-steam reforming (MSR) using iron from steel industry's mill-scale waste. A novel solution-based room temperature technique using sodium borohydride (NaBH4) as the reducing agent has been developed that produces highly active nanoscale (30-40 nm) iron particles. A slightly modified version of this technique using a surfactant and water oil microemulsion resulted in the formation of 5 nm Fe particles. By using hydrazine (N2H4) as an inexpensive and more stable (compared to NaBH4) reductant, body centered cubic iron particles with edge dimensions ˜5 nm were obtained under mild solvothermal conditions in ethanol. The nanoscale zero valent iron (nZVI) powder showed improved kinetics and greater propensity for hydrogen generation than the coarser microscale iron obtained through traditional reduction techniques. To initiate and sustain the somewhat endothermic MSR process, a solar concentrator consisting of a convex polyacrylic sheet with aluminum reflective coating was fabricated. This unique combination of mill-scale waste as iron source, hydrazine as the reductant, mild process conditions for nZVI generation and solar energy as the impetus for actuating MSR, obviates several drawbacks plaguing the grand scheme of producing, storing and delivering pure and humidified H2 to a PEMFC stack.
Goyal, Ravinder K.; Hancock, Robert E. W.; Mattoo, Autar K.; Misra, Santosh
2013-01-01
Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield. PMID:24147012
Neurospora discreta as a model to assess adaptation of soil fungi to warming.
Romero-Olivares, Adriana L; Taylor, John W; Treseder, Kathleen K
2015-09-16
Short-term experiments have indicated that warmer temperatures can alter fungal biomass production and CO2 respiration, with potential consequences for soil C storage. However, we know little about the capacity of fungi to adapt to warming in ways that may alter C dynamics. Thus, we exposed Neurospora discreta to moderately warm (16 °C) and warm (28 °C) selective temperatures for 1500 mitotic generations, and then examined changes in mycelial growth rate, biomass, spore production, and CO2 respiration. We tested the hypothesis that strains will adapt to its selective temperature. Specifically, we expected that adapted strains would grow faster, and produce more spores per unit biomass (i.e., relative spore production). In contrast, they should generate less CO2 per unit biomass due to higher efficiency in carbon use metabolism (i.e., lower mass specific respiration, MSR). Indeed, N. discreta adapted to warm temperatures, based on patterns of relative spore production. Adapted strains produced more spores per unit biomass than parental strains in the selective temperature. Contrary to our expectations, this increase in relative spore production was accompanied by an increase in MSR and a reduction in mycelial growth rate and biomass, compared to parental strains. Adaptation of N. discreta to warm temperatures may have elicited a tradeoff between biomass production and relative spore production, possibly because relative spore production required higher MSR rates. Therefore, our results do not support the idea that adaptation to warm temperatures will lead to a more efficient carbon use metabolism. Our data might help improve climate change model simulations and provide more concise predictions of decomposition processes and carbon feedbacks to the atmosphere.
NASA Astrophysics Data System (ADS)
Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.
2014-12-01
Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.
Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel
2012-08-01
Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Desmolaize, Benoit; Rose, Simon; Wilhelm, Cornelia; Warrass, Ralf; Douthwaite, Stephen
2011-01-01
Respiratory tract infections in cattle are commonly associated with the bacterial pathogens Mannheimia haemolytica and Pasteurella multocida. These infections can generally be successfully treated in the field with one of several groups of antibiotics, including macrolides. A few recent isolates of these species exhibit resistance to veterinary macrolides with phenotypes that fall into three distinct classes. The first class has type I macrolide, lincosamide, and streptogramin B antibiotic resistance and, consistent with this, the 23S rRNA nucleotide A2058 is monomethylated by the enzyme product of the erm(42) gene. The second class shows no lincosamide resistance and lacks erm(42) and concomitant 23S rRNA methylation. Sequencing of the genome of a representative strain from this class, P. multocida 3361, revealed macrolide efflux and phosphotransferase genes [respectively termed msr(E) and mph(E)] that are arranged in tandem and presumably expressed from the same promoter. The third class exhibits the most marked drug phenotype, with high resistance to all of the macrolides tested, and possesses all three resistance determinants. The combinations of erm(42), msr(E), and mph(E) are chromosomally encoded and intermingled with other exogenous genes, many of which appear to have been transferred from other members of the Pasteurellaceae. The presence of some of the exogenous genes explains recent reports of resistance to additional drug classes. We have expressed recombinant versions of the erm(42), msr(E), and mph(E) genes within an isogenic Escherichia coli background to assess their individually contributions to resistance. Our findings indicate what types of compounds might have driven the selection for these resistance determinants. PMID:21709086
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Technical Reports Server (NTRS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-01-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Astrophysics Data System (ADS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-07-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
Curating NASA's Astromaterials Collections: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Zeigler, Ryan
2015-01-01
Planning for the curation of samples from future sample return missions must begin during the initial planning stages of a mission. Waiting until the samples have been returned to Earth, or even when you begin to physically build the spacecraft is too late. A lack of proper planning could lead to irreversible contamination of the samples, which in turn would compromise the scientific integrity of the mission. For example, even though the Apollo missions first returned samples in 1969, planning for the curation facility began in the early 1960s, and construction of the Lunar Receiving Laboratory was completed in 1967. In addition to designing the receiving facility and laboratory that the samples will be characterized and stored in, there are many aspects of contamination that must be addressed during the planning and building of the spacecraft: planetary protection (both outbound and inbound); cataloging, documenting, and preserving the materials used to build spacecraft (also known as coupons); near real-time monitoring of the environment in which the spacecraft is being built using witness plates for critical aspects of contamination (known as contamination control); and long term monitoring and preservation of the environment in which the spacecraft is being built for most aspects of potential contamination through the use of witness plates (known as contamination knowledge). The OSIRIS REx asteroid sample return mission, currently being built, is dealing with all of these aspects of contamination in order to ensure they return the best preserved sample possible. Coupons and witness plates from OSIRIS REx are currently being studied and stored (for future studies) at the Johnson Space Center. Similarly, planning for the clean room facility at Johnson Space Center to house the OSIRIS-REx samples is well advanced, and construction of the facility should begin in early 2017 (despite a nominal 2023 return date for OSIRIS-REx samples). Similar development is being done, in concert with JAXA, for the return of Hayabusa 2 samples (nominally in 2020). We are also actively developing advanced techniques like cold curation and organically clean curation in anticipation of future sample return missions such as comet nucleus sample return and Mars sample return.
U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf systematics of returned Mars samples
NASA Technical Reports Server (NTRS)
Tatsumoto, M.; Premo, W. R.
1988-01-01
The advantage of studying returned planetary samples cannot be overstated. A wider range of analytical techniques with higher sensitivities and accuracies can be applied to returned samples. Measurement of U-Th-Pb, Sm-Nd, Rb-Sr, and Lu-Hf isotopic systematics for chronology and isotopic tracer studies of planetary specimens cannot be done in situ with desirable precision. Returned Mars samples will be examined using all the physical, chemical, and geologic methods necessary to gain information on the origin and evolution of Mars. A returned Martian sample would provide ample information regarding the accretionary and evolutionary history of the Martian planetary body and possibly other planets of our solar system.
Integrating public perspectives in sample return planning.
Race, M S; MacGregor, D G
2000-01-01
Planning for extraterrestrial sample returns--whether from Mars or other solar system bodies--must be done in a way that integrates planetary protection concerns with the usual mission technical and scientific considerations. Understanding and addressing legitimate societal concerns about the possible risks of sample return will be a critical part of the public decision making process ahead. This paper presents the results of two studies, one with lay audiences, the other with expert microbiologists designed to gather information on attitudes and concerns about sample return risks and planetary protection. Focus group interviews with lay subjects, using generic information about Mars sample return and a preliminary environmental impact assessment, were designed to obtain an indication of how the factual content is perceived and understood by the public. A research survey of microbiologists gathered information on experts' views and attitudes about sample return, risk management approaches and space exploration risks. These findings, combined with earlier research results on risk perception, will be useful in identifying levels of concern and potential conflicts in understanding between experts and the public about sample return risks. The information will be helpful in guiding development of the environmental impact statement and also has applicability to proposals for sample return from other solar system bodies where scientific uncertainty about extraterrestrial life may persist at the time of mission planning. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.
1992-01-01
During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.
Advanced Instrumentation for Molten Salt Flow Measurements at NEXT
NASA Astrophysics Data System (ADS)
Tuyishimire, Olive
2017-09-01
The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.
On the Parameterized Complexity of Some Optimization Problems Related to Multiple-Interval Graphs
NASA Astrophysics Data System (ADS)
Jiang, Minghui
We show that for any constant t ≥ 2, K -Independent Set and K-Dominating Set in t-track interval graphs are W[1]-hard. This settles an open question recently raised by Fellows, Hermelin, Rosamond, and Vialette. We also give an FPT algorithm for K-Clique in t-interval graphs, parameterized by both k and t, with running time max { t O(k), 2 O(klogk) } ·poly(n), where n is the number of vertices in the graph. This slightly improves the previous FPT algorithm by Fellows, Hermelin, Rosamond, and Vialette. Finally, we use the W[1]-hardness of K-Independent Set in t-track interval graphs to obtain the first parameterized intractability result for a recent bioinformatics problem called Maximal Strip Recovery (MSR). We show that MSR-d is W[1]-hard for any constant d ≥ 4 when the parameter is either the total length of the strips, or the total number of adjacencies in the strips, or the number of strips in the optimal solution.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro
2016-06-01
Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.
On Orbit Receiver Performance Assessment of the Geoscience Laser Altimeter System (GLAS) on ICESAT
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Spinhirne, James D.; McGarry, Jan; Jester, Peggy L.; Yi, Donghui; Palm, Stephen P.; Lancaster, Redgie S.
2006-01-01
The GLAS instrument on the NASA's ICESat mission has provided over a billion measurements of the Earth surface elevation and atmosphere backscattering at both 532 and 1064-nm wavelengths. The receiver performance has stayed nearly unchanged since ICESat launch in January 2003. The altimeter receiver has achieved a less than 3-cm ranging accuracy when excluding the effects of the laser beam pointing angle determination uncertainties. The receiver can also detect surface echoes through clouds of one-way transmission as low as 5%. The 532-nm atmosphere backscattering receiver can measure aerosol and clouds with cross section as low as 1e-7/m.sr with a 1 second integration time and molecular backscattering from upper atmosphere with a 60 second integration time. The 1064-nm atmosphere backscattering receiver can measure aerosol and clouds with a cross section as low as 4e-6/m.sr. This paper gives a detailed assessment of the GLAS receiver performance based on the in-orbit calibration tests.
Mars Earth Return Vehicle (MERV) Propulsion Options
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike;
2010-01-01
The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.
Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.
2018-02-01
The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.
NASA Astrophysics Data System (ADS)
DiGregorio, B. E.
2018-04-01
The only 100% guarantee of protecting Earth's biosphere from a hazardous back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.
NASA Astrophysics Data System (ADS)
DiGregorio, B. E.
2018-02-01
The only 100% guarantee of protecting our planet's biosphere from a back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.
Mars Rover Sample Return mission study
NASA Technical Reports Server (NTRS)
Bourke, Roger D.
1989-01-01
The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.
Mars Sample Handling Protocol Workshop Series: Workshop 2
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample hazard testing and the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened an additional series of workshops beginning in March 2000. The overall objective of these workshops was to develop comprehensive protocols to assess whether the returned materials contain any biological hazards, and to safeguard the purity of the samples from possible terrestrial contamination. This document is the report of the second Workshop in the Series. The information herein will ultimately be integrated into a final document reporting the proceedings of the entire Workshop Series along with additional information and recommendations.
Benefits of in situ propellant utilization for a Mars sample return mission
NASA Technical Reports Server (NTRS)
Wadel, Mary F.
1993-01-01
Previous Mars rover sample return mission studies have shown a requirement for Titan 4 or STS Space Shuttle launch vehicles to complete a sample return from a single Mars site. These studies have either used terrestrial propellants or considered in situ production of methane and oxygen for the return portion of the mission. Using in situ propellants for the return vehicles reduces the Earth launch mass and allows for a smaller Earth launch vehicle, since the return propellant is not carried from Earth. Carbon monoxide and oxygen (CO/O2) and methane and oxygen (CH4/O2) were investigated as in situ propellants for a Mars sample return mission and the results were compared to a baseline study performed by the Jet Propulsion Laboratory using terrestrial propellants. Capability for increased sample return mass, use of an alternate launch vehicle, and an additional mini-rover as payload were included. CO/O2 and CH4/O2 were found to decrease the baseline Earth launch mass by 13.6 and 9.2 percent, respectively. This resulted in higher payload mass margins for the baseline Atlas 2AS launch vehicle. CO/O2 had the highest mass margin. And because of this, it was not only possible to increase the sample return mass and carry an additional mini-rover, but was also possible to use the smaller Atlas 2A launch vehicle.
Control of noisy quantum systems: Field-theory approach to error mitigation
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Goldbart, Paul M.
2016-04-01
We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model system consisting of a single spin-s freedom (with s arbitrary), focusing on the case of 1 /f noise in the weak-noise limit. We discover that optimal error mitigation is accomplished via a universal control field protocol that is valid for all s , from the qubit (i.e., s =1 /2 ) case to the classical (i.e., s →∞ ) limit. In principle, this MSR-SK approach provides a transparent framework for addressing quantum control in the presence of noise for systems of arbitrary complexity.
Returns to Education in Bangladesh
ERIC Educational Resources Information Center
Asadullah, Mohammad Niaz
2006-01-01
This paper reports labour market returns to education in Bangladesh using data from recent nationwide household survey. Returns are estimated separately for rural and urban samples, males, females and private-sector employees. Substantial heterogeneity in returns is observed; for example, estimates are higher for urban (than rural sample) and…
GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.
2011-01-01
In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.
COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2009-01-01
In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.
NEA Multi-Chamber Sample Return Container with Hermetic Sealing
NASA Technical Reports Server (NTRS)
Rafeek, Shaheed; Kong, Kin Yuen; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers such as the 'Touch and Go' Surface Sampler (TGSS), and then hermetically seal the samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the rotation axis of the TGSS sampler for interfacing, transferring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses multiple isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The TGSS based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. This sample return container is being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program. A breadboard system of the sample return container has been recently completed and tested. Additional information is contained in the original extended abstract.
The Costs and Benefits of Increasing the Minimum Service Requirement for NROTC Graduates
2008-12-01
3. Cost Analysis ......................................................................................14 B. WOMEN AND MINORITIES IN THE NAVY...16 1. Motivations for Women and Minorities ..........................................16 2. The Present and...Another adverse effect of the MSR extension might be to change the propensity for women and minorities to accept NROTC scholarships. The history
Sample Return from Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.
With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies
Comet Odyssey: Comet Surface Sample Return
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.
2010-10-01
Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Haltigin, T.; Lange, C.; Mugnuolo, R.; Smith, C.
2018-04-01
This paper summarizes the findings and recommendations of the International Mars Architecture for the Return of Samples (iMARS) Phase II Working Group, an international team comprising 38 members from 16 countries and agencies.
Sample Return Robot Centennial Challenge
2012-06-16
A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Strategies for Investigating Early Mars Using Returned Samples
NASA Technical Reports Server (NTRS)
Carrier, B. L.; Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E. M.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.;
2017-01-01
The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.
Laboratory Studies of Cometary Materials - Continuity Between Asteroid and Comet
NASA Technical Reports Server (NTRS)
Messenger, Scott; Walker, Robert M.
2015-01-01
Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild-2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRIS-REx and Hayabusa II as well as future comet nucleus sample returns.
A Sample Return Container with Hermetic Seal
NASA Technical Reports Server (NTRS)
Kong, Kin Yuen; Rafeek, Shaheed; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.
NASA Technical Reports Server (NTRS)
Pugel, Betsy
2017-01-01
This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).
NASA Astrophysics Data System (ADS)
Stevens, A. H.; Gentry, D.; Amador, E.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Cullen, T.; Duca, Z.; Jacobsen, M.; Kirby, J.; McCaig, H.; Murukesan, G.; Rader, E.; Rennie, V.; Schwieterman, E.; Sutton, S.; Tan, G.; Yin, C.; Cullen, D.; Geppert, W.; Stockton, A.
2018-04-01
We detail multi-year field investigations in Icelandic Mars analogue environments that have yielded results that can help inform strategies for sample selection and downselection for Mars Sample Return.
Deciphering Martian climatic history using returned samples
NASA Technical Reports Server (NTRS)
Paige, D. A.; Krieger, D. B.; Brigham, C. A.
1988-01-01
By necessity, a Mars sample return mission must sample the upper few meters of the Martian surface. This material was subjected to a wide variety of physical processes. Presently, the most important processes are believed to be wind-driven erosion and deposition, and water ice accumulation at higher latitudes. A sample return mission represents an opportunity to better understand and quantify these important geological processes. By obtaining sample cores at key locations, it may be possible to interpret much of recent Martian climatic history.
Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming
ERIC Educational Resources Information Center
Azad, Abdul-Majeed; Kesavan, Sathees
2006-01-01
An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…
POST-LAUNCH - APOLLO XVI - MSC
1972-04-19
S72-35460 (18 April 1972) --- Dr. J.F. Zieglschmid, M.D., Missions Operations Control Room (MOCR) White Team Surgeon, is seated in the Medical Support Room (MSR) in the Mission Control Center (MCC). He monitors crew biomedical data being received from the Apollo 16 spacecraft on the third day of the lunar landing mission.
1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2
Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander
2011-01-01
A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904
Preliminary Study on LiF4-ThF4-PuF4 Utilization as Fuel Salt of miniFUJI Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Waris, Abdul; Aji, Indarta K.; Pramuditya, Syeilendra; Widayani; Irwanto, Dwi
2016-08-01
miniFUJI reactor is molten salt reactor (MSR) which is one type of the Generation IV nuclear energy systems. The original miniFUJI reactor design uses LiF-BeF2-ThF4-233UF4 as a fuel salt. In the present study, the use of LiF4-ThF4-PuF4 as fuel salt instead of LiF-BeF2-ThF4-UF4 will be discussed. The neutronics cell calculation has been performed by using PIJ (collision probability method code) routine of SRAC 2006 code, with the nuclear data library is JENDL-4.0. The results reveal that the reactor can attain the criticality condition with the plutonium concentration in the fuel salt is equal to 9.16% or more. The conversion ratio diminishes with the enlarging of plutonium concentration in the fuel. The neutron spectrum of miniFUJI MSR with plutonium fuel becomes harder compared to that of the 233U fuel.
Exploring 3D Human Action Recognition: from Offline to Online.
Liu, Zhenyu; Li, Rui; Tan, Jianrong
2018-02-20
With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems-including real-time performance and sequence segmentation-are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset.
Exploring 3D Human Action Recognition: from Offline to Online
Li, Rui; Liu, Zhenyu; Tan, Jianrong
2018-01-01
With the introduction of cost-effective depth sensors, a tremendous amount of research has been devoted to studying human action recognition using 3D motion data. However, most existing methods work in an offline fashion, i.e., they operate on a segmented sequence. There are a few methods specifically designed for online action recognition, which continually predicts action labels as a stream sequence proceeds. In view of this fact, we propose a question: can we draw inspirations and borrow techniques or descriptors from existing offline methods, and then apply these to online action recognition? Note that extending offline techniques or descriptors to online applications is not straightforward, since at least two problems—including real-time performance and sequence segmentation—are usually not considered in offline action recognition. In this paper, we give a positive answer to the question. To develop applicable online action recognition methods, we carefully explore feature extraction, sequence segmentation, computational costs, and classifier selection. The effectiveness of the developed methods is validated on the MSR 3D Online Action dataset and the MSR Daily Activity 3D dataset. PMID:29461502
Syal, Poonam; Gupta, Rani
2015-05-01
A novel lipase gene, ylip9, of Yarrowia lipolytica MSR80 was cloned and expressed in pEZZ18-HB101 system and was 99% identical to YLIP9 of Y. lipolytica CLIB122. It was purified using IgG-Sepharose as ZZ fused YLIP9 and had specific activity of 0.8 U/mg. ZZ-YLIP9 was most active at pH 8.0 and 70 °C. It was stable over a wide pH range of 3.0-11.0 and 100 % active at 70 °C up to 2 h and had t1/2 of 286.42 min at 80 °C. It showed high specificity toward p-nitrophenyldecanoate with kcat and catalytic efficiency of 30.17 s(-1) and 16.67 mM(-1) s(-1), respectively. It was non-regioselective, but an S-enantioselective lipase and the percentage conversion were enhanced in presence of hexane. ZZ-YLIP9 was stable in all of the organic solvents used, and its activity was enhanced by solvents having logP value less than 2.
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
Synchronized Lunar Pole Impact Plume Sample Return Trajectory Design
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Foster, Cyrus; Colaprete, Tony
2016-01-01
The presented trajectory design enables two maneuverable spacecraft launched onto the same trans-lunar injection trajectory to coordinate a steep impact of a lunar pole and subsequent sample return of the ejecta plume to Earth. To demonstrate this concept, the impactor is assumed to use the LCROSS missions trajectory and spacecraft architecture, thus the permanently-shadowed Cabeus crater on the lunar south pole is assumed as the impact site. The sample-return spacecraft is assumed to be a CubeSat that requires a complimentary trajectory design that avoids lunar impact after passing through the ejecta plume to enable sample-return to Earth via atmospheric entry.
NASA Technical Reports Server (NTRS)
McConnell, Joshua B.
2000-01-01
The scientific exploration of Mars will require the collection and return of subterranean samples to Earth for examination. This necessitates the use of some type of device or devices that possesses the ability to effectively penetrate the Martian surface, collect suitable samples and return them to the surface in a manner consistent with imposed scientific constraints. The first opportunity for such a device will occur on the 2003 and 2005 Mars Sample Return missions, being performed by NASA. This paper reviews the work completed on the compilation of a database containing viable penetrating and sampling devices, the performance of a system level trade study comparing selected devices to a set of prescribed parameters and the employment of a metric for the evaluation and ranking of the traded penetration and sampling devices, with respect to possible usage on the 03 and 05 sample return missions. The trade study performed is based on a select set of scientific, engineering, programmatic and socio-political criterion. The use of a metric for the various penetration and sampling devices will act to expedite current and future device selection.
Reassessment of Planetary Protection Requirements for Mars Sample Return Missions
NASA Astrophysics Data System (ADS)
Smith, David; Race, Margaret; Farmer, Jack
In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.
Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?
NASA Astrophysics Data System (ADS)
McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan
2016-07-01
Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return, Lunar South Pole-Aitken Basin Sample Return, and Comet Surface Sample Return, all of which were named in the NRC Planetary Science Decadal Survey 2013-2022. We are fully committed to pushing the boundaries of curation protocol as humans continue to push the boundaries of space exploration and sample return. However, to improve our ability to curate astromaterials collections of the future and to provide maximum protection to any returned samples, it is imperative that curation involvement commences at the time of mission conception. When curation involvement is at the ground floor of mission planning, it provides a mechanism by which the samples can be protected against project-level decisions that could undermine the scientific value of the re-turned samples. A notable example of one of the bene-fits of early curation involvement in mission planning is in the acquisition of contamination knowledge (CK). CK capture strategies are designed during the initial planning stages of a sample return mission, and they are to be implemented during all phases of the mission from assembly, test, and launch operations (ATLO), through cruise and mission operations, to the point of preliminary examination after Earth return. CK is captured by witness materials and coupons exposed to the contamination environment in the assembly labs and on the space craft during launch, cruise, and operations. These materials, along with any procedural blanks and returned flight-hardware, represent our CK capture for the returned samples and serves as a baseline from which analytical results can be vetted. Collection of CK is a critical part of being able to conduct and interpret data from organic geochemistry and biochemistry investigations of returned samples. The CK samples from a given mission are treated as part of the sample collection of that mission, hence they are part of the permanent archive that is maintained by the NASA curation Office. We are in the midst of collecting witness plates and coupons for the OSIRIS-REx mission, and we are in the planning stages for similar activities for the Mars 2020 rover mission, which is going to be the first step in a multi-stage campaign to return martian samples to Earth. Concluding Remarks: The return of every extraterrestrial sample is a scientific investment, and the CK samples and any procedural blanks represent an insurance policy against imperfections in the sample-collection and sample-return process. The curation facilities and personnel are the primary managers of that investment, and the scientific community, at large, is the beneficiary. The NASA Curation Office at JSC has the assigned task of maintaining the long-term integrity of all of NASA's astromaterials and ensuring that the samples are distributed for scientific study in a fair, timely, and responsible manner. It is only through this openness and global collaboration in the study of astromaterials that the return on our scientific investments can be maximized. For information on requesting samples and becoming part of the global study of astromaterials, please visit curator.jsc.nasa.gov References: [1] Mangus, S. & Larsen, W. (2004) NASA/CR-2004-208938, NASA, Washington, DC. [2] Allen, C. et al., (2011) Chemie Der Erde-Geochemistry, 71, 1-20. [3] McCubbin, F.M. et al., (2016) 47th LPSC #2668. [4] Zeigler, R.A. et al., (2014) 45th LPSC #2665.
Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Jaradat, Safwan Qasim Mohammad
Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.
Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest
Tan, Zhengxi; Liu, Shu-Guang
2015-01-01
Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.
1989-01-01
A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein.
Technology for return of planetary samples
NASA Technical Reports Server (NTRS)
1975-01-01
Technological requirements of a planetary return sample mission were studied. The state-of-the-art for problems unique to this class of missions was assessed and technological gaps were identified. The problem areas where significant advancement of the state-of-the-art is required are: life support for the exobiota during the return trip and within the Planetary Receiving Laboratory (PRL); biohazard assessment and control technology; and quarantine qualified handling and experimentation methods and equipment for studying the returned sample in the PRL. Concepts for solving these problems are discussed.
Planetary protection issues for sample return missions.
DeVincenzi, D L; Klein, H P
1989-01-01
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.
Orbiting Sample Capture and Orientation Technologies for Potential Mars Sample Return
NASA Astrophysics Data System (ADS)
Younse, P.; Adajian, R.; Dolci, M.; Ohta, P.; Olds, E.; Lalla, K.; Strahle, J. W.
2018-04-01
Technologies applicable to a potential Mars Sample Return Orbiter for orbiting sample container capture and orientation are presented, as well as an integrated MArs CApture and ReOrientation for a potential NExt Mars Orbiter (MACARONE) concept.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
1992-01-01
Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.
Study of sample drilling techniques for Mars sample return missions
NASA Technical Reports Server (NTRS)
Mitchell, D. C.; Harris, P. T.
1980-01-01
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.
A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.
2002-01-01
In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its personnel.
Coffey, E L; Delaby, L; Fleming, C; Pierce, K M; Horan, B
2018-03-01
The objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013-2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (-37 d), and produced more milk (+561 kg/ha) but less fat plus protein (-57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus protein per kg of BW/ha (0.90 kg) compared with HF cows (0.84 kg). The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based production systems. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A preliminary study of Mars rover/sample return missions
NASA Technical Reports Server (NTRS)
1987-01-01
The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not been studied in as much detail as the sample return functions of the mission.
Mars Rover Sample Return mission
NASA Technical Reports Server (NTRS)
Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan
1989-01-01
To gain a detailed understanding of the character of the planet Mars, it is necessary to send vehicle to the surface and return selected samples for intensive study in earth laboratories. Toward that end, studies have been underway for several years to determine the technically feasible means for exploring the surface and returning selected samples. This paper describes several MRSR mission concepts that have emerged from the most recent studies.
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.
Planetary sample rapid recovery and handling
NASA Technical Reports Server (NTRS)
1985-01-01
Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.
Mars Sample Handling Functionality
NASA Astrophysics Data System (ADS)
Meyer, M. A.; Mattingly, R. L.
2018-04-01
The final leg of a Mars Sample Return campaign would be an entity that we have referred to as Mars Returned Sample Handling (MRSH.) This talk will address our current view of the functional requirements on MRSH, focused on the Sample Receiving Facility (SRF).
NASA Technical Reports Server (NTRS)
Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.
2015-01-01
Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.
Paleomagnetic Studies of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y.; Carrier, B. L.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.
2018-04-01
Magnetic measurements of returned samples could transform our understanding of the martian dynamo and its connection to climatic and planetary thermal evolution and provide powerful constraints on the preservation state of sample biosignatures.
The Development of Mirror Self-Recognition in Different Sociocultural Contexts
ERIC Educational Resources Information Center
Kartner, Joscha; Keller, Heidi; Chaudhary, Nandita; Yovsi, Relindis D.
2012-01-01
The overarching goal of the present study was to trace the development of mirror self-recognition (MSR), as an index of toddlers' sense of themselves and others as autonomous intentional agents, in different sociocultural environments. A total of 276 toddlers participated in the present study. Toddlers were either 16, 17, 18, 19, 20, or 21 months…
1983-01-01
to perinnt items" kIcluded In the 4-silswmlre ops scales constucoted from respose to certain ltemr, and a measure id actua coninuance. Hypo#eized...commitment, and continuance will be positively associated with self -reports of performance (fitness reports) during the pre- MSR period. Performance, in turn
ERIC Educational Resources Information Center
Souvignier, Elmar; Mokhlesgerami, Judith
2006-01-01
Research on the implementation of reading strategies suggests that self-regulated learning might be a powerful framework to optimize effects on reading comprehension. Models of self-regulation emphasize that the teaching of strategy knowledge (Strat) has to be complemented by offering skills of cognitive (CSR) and motivational (MSR) aspects of…
Mars Sample Return Spacecraft Before Arrival Artist Concept
2011-06-20
This artist concept of a proposed Mars sample return mission portrays an aeroshell-encased spacecraft approaching Mars. This spacecraft would put a sample-retrieving rover and an ascent vehicle onto the surface of Mars.
Sample Return Robot Centennial Challenge
2012-06-16
"Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-14
A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Lunar far side sample return missions using the Soviet Luna system
NASA Technical Reports Server (NTRS)
Roberts, P. H., Jr.
1977-01-01
The paper assesses the feasibility of using the Soviet Lunar Sample Return vehicle in cooperation with the United States to return a sample of lunar soil from the far side of the moon. Analysis of the orbital mechanics of the Luna system shows how landing sites are restricted on the moon. The trajectory model is used to duplicate the 3 Luna missions flown to date and the results compared to actual Soviet data. The existence of suitable trajectories for the earth return trip is assessed, including landing dispersions at earth. Several possible areas of technical difficulty are identified.
It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).
Rummel, John D; Kminek, Gerhard
2018-04-01
The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.
Laser remote sensing of backscattered light from a target sample
Sweatt, William C [Albuquerque, NM; Williams, John D [Albuquerque, NM
2008-02-26
A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.
2011-01-01
NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.
Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Project Hyreus: Mars sample return mission utilizing in situ propellant production
NASA Technical Reports Server (NTRS)
Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Low encounter speed comet COMA sample return missions
NASA Technical Reports Server (NTRS)
Tsou, P.; Yen, C. W.; Albee, A. L.
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return trajectories opens new possibilities in science. A systematic search of trajectories for the first decade of the twenty-first century will be made. The target encounter speed is for less than 7 km/s to short period comets.
Organic and inorganic geochemistry of samples returned from Mars
NASA Technical Reports Server (NTRS)
Kotra, R. K.; Johnson, R. G.
1988-01-01
Although a tremendous amount of knowledge can be obtained by in situ experiments on Mars, greater benefits will be realized with the sample return mission from the perspective of exobiology. Sampling techniques are briefly discussed.
NASA Astrophysics Data System (ADS)
Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter
The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return science, and deep space engineering must meet to enable this game-changing opportunity of Outer Solar System exploration.
NASA Technical Reports Server (NTRS)
Rummel, John D.
2001-01-01
Before martian soil and rock samples can be distributed to the research community, the returned materials will initially be quarantined and examined in a proposed BSL-4 containment facility to assure that no putative martian microorganisms or attendant potential biohazards exist. During the initial quarantine, state-of-the-art life detection and biohazard testing of the returned martian samples will be conducted. Life detection, as defined here in regard to Mars sample return missions, is the detection of living organisms and/or materials that have been derived from living organisms that may be present in the sample.
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)
Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24
SOCCER: Comet Coma Sample Return Mission
NASA Technical Reports Server (NTRS)
Albee, A. L.; Uesugi, K. T.; Tsou, Peter
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.
Sampling Mars: Analytical requirements and work to do in advance
NASA Technical Reports Server (NTRS)
Koeberl, Christian
1988-01-01
Sending a mission to Mars to collect samples and return them to the Earth for analysis is without doubt one of the most exciting and important tasks for planetary science in the near future. Many scientifically important questions are associated with the knowledge of the composition and structure of Martian samples. Amongst the most exciting questions is the clarification of the SNC problem- to prove or disprove a possible Martian origin of these meteorites. Since SNC meteorites have been used to infer the chemistry of the planet Mars, and its evolution (including the accretion history), it would be important to know if the whole story is true. But before addressing possible scientific results, we have to deal with the analytical requirements, and with possible pre-return work. It is unlikely to expect that a possible Mars sample return mission will bring back anything close to the amount returned by the Apollo missions. It will be more like the amount returned by the Luna missions, or at least in that order of magnitude. This requires very careful sample selection, and very precise analytical techniques. These techniques should be able to use minimal sample sizes and on the other hand optimize the scientific output. The possibility to work with extremely small samples should not obstruct another problem: possible sampling errors. As we know from terrestrial geochemical studies, sampling procedures are quite complicated and elaborate to ensure avoiding sampling errors. The significance of analyzing a milligram or submilligram sized sample and putting that in relationship with the genesis of whole planetary crusts has to be viewed with care. This leaves a dilemma on one hand, to minimize the sample size as far as possible in order to have the possibility of returning as many different samples as possible, and on the other hand to take a sample large enough to be representative. Whole rock samples are very useful, but should not exceed the 20 to 50 g range, except in cases of extreme inhomogeneity, because for larger samples the information tends to become redundant. Soil samples should be in the 2 to 10 g range, permitting the splitting of the returned samples for studies in different laboratories with variety of techniques.
Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return
NASA Astrophysics Data System (ADS)
iMOST Team; Mangold, N.; McLennan, S. M.; Czaja, A. D.; Ori, G. G.; Tosca, N. J.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
Sedimentary, and especially lacustrine, depositional environments are high-priority geological/astrobiological settings for Mars Sample Return. We review the detailed investigations, measurements, and sample types required to evaluate such settings.
The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples
NASA Technical Reports Server (NTRS)
Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.
1983-01-01
A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Spatial Mapping of Organic Carbon in Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Siljeström, S.; Fornaro, T.; Greenwalt, D.; Steele, A.
2018-04-01
To map organic material spatially to minerals present in the sample will be essential for the understanding of the origin of any organics in returned samples from Mars. It will be shown how ToF-SIMS may be used to map organics in samples from Mars.
NASA Technical Reports Server (NTRS)
Welzenbach, L. C.; McCoy, T. J.; Glavin, D. P.; Dworkin, J. P.; Abell, P. A.
2012-01-01
While much of the scientific community s current attention is drawn to sample return missions, it is the existing meteorite and cosmic dust collections that both provide the paradigms to be tested by these missions and the context for interpreting the results. Recent sample returns from the Stardust and Hayabusa missions provided us with new materials and insights about our Solar System history and processes. As an example, Stardust sampled CAIs among the population of cometary grains, requiring extensive and unexpected radial mixing in the early solar nebula. This finding would not have been possible, however, without extensive studies of meteoritic CAIs that established their high-temperature, inner Solar System formation. Samples returned by Stardust also revealed the first evidence of a cometary amino acid, a discovery that would not have been possible with current in situ flight instrument technology. The Hayabusa mission provided the final evidence linking ordinary chondrites and S asteroids, a hypothesis that developed from centuries of collection and laboratory and ground-based telescopic studies. In addition to these scientific findings, studies of existing meteorite collections have defined and refined the analytical techniques essential to studying returned samples. As an example, the fortuitous fall of the Allende CV3 and Murchison CM2 chondrites within months before the return of Apollo samples allowed testing of new state-of-the-art analytical facilities. The results of those studies not only prepared us to better study lunar materials, but unanticipated discoveries changed many of our concepts about the earliest history and processes of the solar nebula. This synergy between existing collections and future space exploration is certainly not limited to sample return missions. Laboratory studies confirmed the existence of meteorites from Mars and raised the provocative possibility of preservation of ancient microbial life. The laboratory studies in turn led to a new wave of Mars exploration that ultimately could lead to sample return focused on evidence for past or present life. This partnership between collections and missions will be increasingly important in the coming decades as we discover new questions to be addressed and identify targets for for both robotic and human exploration . Nowhere is this more true than in the ultimate search for the abiotic and biotic processes that produced life. Existing collections also provide the essential materials for developing and testing new analytical schemes to detect the rare markers of life and distinguish them from abiotic processes. Large collections of meteorites and the new types being identified within these collections, which come to us at a fraction of the cost of a sample return mission, will continue to shape the objectives of future missions and provide new ways of interpreting returned samples.
Mars rover sample return mission utilizing in situ production of the return propellants
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Nill, L.; Schubert, H.; Thill, B.; Warwick, R.
1993-01-01
This paper presents an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return trip. A key goal of the mission is to demonstrate the considerable benefits that can be realized through the use of indigenous resources and to test the viability of this approach as a precursor to manned missions to Mars. Two in situ propellant combinations, methane/oxygen and carbon monoxide/oxygen, are compared to imported terrestrial hydrogen/oxygen within a single mission architecture, using a single Earth launch vehicle. The mission is assumed to be launched from Earth in 2003. Upon reaching Mars, the landing vehicle aerobrakes, deploys a small satellite, and lands on the Martian surface. Once on the ground, the propellant production unit is activated, and the product gases are liquefied and stored in the empty tanks of the Earth Return Vehicle (ERV). Power for these activities is provided by a dynamic isotope power system. A semiautonomous rover, powered by the indigenous propellants, gathers between 25 and 30 kg of soil and rock samples which are loaded aboard the ERV for return to Earth. After a surface stay time of approximately 1.5 years, the ERV leaves Mars for the return voyage to Earth. When the vehicle reaches the vicinity of Earth, the sample return capsule detaches, and is captured and circularized in LEO via aerobraking maneuvers.
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Conley, C. A.
2013-12-01
The 2013-2022 NRC Decadal Survey named its #1 Flagship priority as a large, capable Mars rover that would be the first of a three-mission, multi-decadal effort to return samples from Mars. More recently, NASA's Mars Program has stated that a Mars rover mission known as 'Mars 2020' would be flown to Mars (in 2020) to accomplish a subset of the goals specified by the NRC, and the recent report of the Mars 2020 Science Definition Team (SDT) has recommended that the mission accomplish broad and rigorous in situ science, including seeking biosignatures, acquiring a diverse set of samples intended to address a range of Mars science questions and storing them in a cache for potential return to Earth at a later time, and other engineering goals to constrain costs and support future human exploration. In some ways Mars 2020 will share planetary protection requirements with the Mars Science Laboratory mission that landed in 2012, which included landing site constraints based on the presence of a perennial heat source (the MMRTG) aboard the lander/rover. In a very significant way, however, the presence of a sample-cache and the potential that Mars 2020 will be the first mission in the chain that will return a sample from Mars to Earth. Thus Mars 2020 will face more stringent requirements aimed at keeping the mission from returning Earth contamination with the samples from Mars. Mars 2020 will be looking for biosignatures of ancient life, on Mars, but will also need to be concerned with the potential to detect extant biosignatures or life itself within the sample that is eventually returned. If returned samples are able to unlock wide-ranging questions about the geology, surface processes, and habitability of Mars that cannot be answered by study of meteorites or current mission data, then either the returned samples must be free enough of Earth organisms to be releasable from a quarantine facility or the planned work of sample scientists, including high- and low-T geochemistry, igneous and sedimentary petrology, mineral spectroscopy, and astrobiology, will have to be accomplished within a containment facility. The returned samples also need to be clean of Earth organisms to avoid the potential that Earth contamination will mask the potential for martian life to be detected, allowing only non-conclusive or false-negative results. The requirements placed on the Mars 2020 mission to address contamination control in a life-detection framework will be one of the many challenges faced in this potential first step in Mars sample return.
Sample Return Robot Centennial Challenge
2012-06-16
Visitors, some with their dogs, line up to make their photo inside a space suit exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
The bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" is seen wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC
NASA Technical Reports Server (NTRS)
Righter, Kevin; Pace, Lisa F.; Messenger, Keiko
2018-01-01
Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.
NASA Technical Reports Server (NTRS)
Ross, A. J.; Herrin, J. S.; Alexander, L.; Downes, H.; Smith, C. L.; Jenniskens, P.
2011-01-01
Analysis of samples returned to terrestrial laboratories enables more precise measurements and a wider range of techniques to be utilized than can be achieved with either remote sensing or rover instruments. Furthermore, returning samples to Earth allows them to be stored and re-examined with future technology. Following the success of the Hayabusa mission, returning samples from asteroids should be a high priority for understanding of early solar system evolution, planetary formation and differentiation. Meteorite falls provide us with materials and insight into asteroidal compositions. Almahata Sitta (AS) was the first meteorite fall from a tracked asteroid (2008 TC3) [1] providing a rare opportunity to compare direct geochemical observations with remote sensing data. Although AS is predominantly ureilitic, multiple chondritic fragments have been associated with this fall [2,3]. This is not unique, with chondritic fragments being found in many howardite samples (as described in a companion abstract [4]) and in brecciated ureilites, some of which are known to represent ureilitic regolith [5-7]. The heterogeneity of ureilite samples, which are thought to all originate from a single asteroidal ureilite parent body (UPB) [5], gives us information about both internal and external asteroidal variations. This has implications both for the planning of potential sample return missions and the interpretation of material returned to Earth. This abstract focuses on multiple fragments of two meteorites: Almahata Sitta (AS); and Dar al Gani (DaG) 1047 (a highly brecciated ureilite, likely representative of ureilite asteroidal regolith).
Planetary Protection for LIFE-Sample Return from Enceladus
NASA Astrophysics Data System (ADS)
Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.
Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012]. Current Plan: At the 1st flyby of Enceladus at high plume altitude (~150 km), we would survey the status of the plume and jets by making in situ measurements of the gas and dust densities, compositions, and velocities. We would also collect solid ice/volatile samples based upon prior ground planning. The 2nd and final flyby (determined via optimal trajectory from the 1st flyby) will be conducted at low altitude (~20 km), and would perform in situ measurements and collect solid ice and volatile samples. During the 5 year return cruise, we would maintain the samples in their captured state (frozen) under desiccating conditions of low temperature and pressure. After a direct Earth reentry, we would transport the frozen samples from the sample return capsule into a sealed sample transport container, which would then be transported to a higher Biosafety Level (BSL) facility from JAMSTEC (Japan Agency for Marine-Earth Science and Technology) for sample return capsule de-integration and sample distribution. Planetary Protection: Several options for sample return have been conceived and some even demonstrated on previous flight missions (STARDUST, Genesis and Hayabusa). To date, a flight qualified sample containment system does not exist in the US, and it would be cost prohibitive to flight-qualify such a system for use by LIFE under a Discovery Program. Harsh sterilization of the samples would destroy valuable molecular information, defeating the very purpose of returning samples to assess the habitability of Enceladus. The LIFE team has found a viable approach by teaming with JAXA/ISAS. Their Hayabusa II sample containment is a third generation device that can be further improved to meet these NASA and COSPAR planetary protection requirements in an Integrated Sample Subsystem for LIFE. Another aspect of LIFE is the initial de-integration and certification of the returned samples in a higher BSL facility. JAMSTEC is the world’s leading oceanography organization. They are heading the International Marine Research Program in the world's oceans, seeking life and investigating life signatures and ongoing molecular evolution. Therefore, JAMSTEC is deeply interested in participating in a search for life in an ocean from another world via LIFE. Their experience in searching for and handling life in the oceans will be a great asset for LIFE. They are developing a higher BSL facility on their research ship Chikyu [Takano et al., 2014: cf. Sekine et al., 2014] for their marine research which can also accommodate LIFE's sample initial processing and possible preliminary examination period. References: McKay et al. Astrobiology submitted 2014. Tsou et al., Astrobiology 2012; Takano et al., Advances in Space Research, 2014; Sekine et al., Aerospace Technology Japan, 2014.
Comet coma sample return instrument
NASA Technical Reports Server (NTRS)
Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.
1994-01-01
The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.
New design for CSP plant with direct-steam solar receiver and molten-salt storage
NASA Astrophysics Data System (ADS)
Ganany, Alon; Hadad, Itay
2016-05-01
This paper presents the evolution of BrightSource's Concentrated Solar Power (CSP) technology - from a solar steam generator (SRSG) with no Thermal Energy Storage (TES) to SRSG with TES to Extended-cycle TES. The paper discusses SRSG with TES technology, and the capabilities of this solution are compared with those of an MSR plant.
NASA Astrophysics Data System (ADS)
Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei
2018-06-01
In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.
Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor
NASA Astrophysics Data System (ADS)
Capelli, E.; Beneš, O.; Konings, R. J. M.
2018-04-01
The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all the common-ion binary and ternary sub-systems of the LiF-ThF4-CsF-LiI-ThI4-CsI system has been performed and the optimized parameters are presented in this work. New equilibrium data have been measured using Differential Scanning Calorimetry and were used to assess the reciprocal ternary systems and confirm the extrapolated phase diagrams. The developed database significantly contributes to the understanding of the behaviour of cesium and iodine in the MSR, which strongly depends on their concentration and chemical form. Cesium bonded with fluorine is well retained in the fuel mixture while in the form of CsI the solubility of these elements is very limited. Finally, the influence of CsI and CsF on the physico-chemical properties of the fuel mixture was calculated as function of composition.
Fernández-Castané, Alfred; Li, Hong; Thomas, Owen R T; Overton, Tim W
2018-06-01
The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L -1 ) and 33.1 mg iron·g -1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
A neuroanatomical predictor of mirror self-recognition in chimpanzees.
Hecht, E E; Mahovetz, L M; Preuss, T M; Hopkins, W D
2017-01-01
The ability to recognize one's own reflection is shared by humans and only a few other species, including chimpanzees. However, this ability is highly variable across individual chimpanzees. In humans, self-recognition involves a distributed, right-lateralized network including frontal and parietal regions involved in the production and perception of action. The superior longitudinal fasciculus (SLF) is a system of white matter tracts linking these frontal and parietal regions. The current study measured mirror self-recognition (MSR) and SLF anatomy in 60 chimpanzees using diffusion tensor imaging. Successful self-recognition was associated with greater rightward asymmetry in the white matter of SLFII and SLFIII, and in SLFIII's gray matter terminations in Broca's area. We observed a visible progression of SLFIII's prefrontal extension in apes that show negative, ambiguous, and compelling evidence of MSR. Notably, SLFIII's terminations in Broca's area are not right-lateralized or particularly pronounced at the population level in chimpanzees, as they are in humans. Thus, chimpanzees with more human-like behavior show more human-like SLFIII connectivity. These results suggest that self-recognition may have co-emerged with adaptations to frontoparietal circuitry. © The Author (2016). Published by Oxford University Press.
Salient object detection based on discriminative boundary and multiple cues integration
NASA Astrophysics Data System (ADS)
Jiang, Qingzhu; Wu, Zemin; Tian, Chang; Liu, Tao; Zeng, Mingyong; Hu, Lei
2016-01-01
In recent years, many saliency models have achieved good performance by taking the image boundary as the background prior. However, if all boundaries of an image are equally and artificially selected as background, misjudgment may happen when the object touches the boundary. We propose an algorithm called weighted contrast optimization based on discriminative boundary (wCODB). First, a background estimation model is reliably constructed through discriminating each boundary via Hausdorff distance. Second, the background-only weighted contrast is improved by fore-background weighted contrast, which is optimized through weight-adjustable optimization framework. Then to objectively estimate the quality of a saliency map, a simple but effective metric called spatial distribution of saliency map and mean saliency in covered window ratio (MSR) is designed. Finally, in order to further promote the detection result using MSR as the weight, we propose a saliency fusion framework to integrate three other cues-uniqueness, distribution, and coherence from three representative methods into our wCODB model. Extensive experiments on six public datasets demonstrate that our wCODB performs favorably against most of the methods based on boundary, and the integrated result outperforms all state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Qiu, Yang; Li, Hua; Zhang, Shu-Lin; Wang, Yong-Liang; Kong, Xiang-Yan; Zhang, Chao-Xiang; Zhang, Yong-Sheng; Xu, Xiao-Feng; Yang, Kang; Xie, Xiao-Ming
2015-07-01
We constructed a 36-channel magnetocardiography (MCG) system based on low-Tc direct current (DC) superconducting quantum interference device (SQUID) magnetometers operated inside a magnetically shielded room (MSR). Weakly damped SQUID magnetometers with large Steward-McCumber parameter βc (βc ≈ 5), which could directly connect to the operational amplifier without any additional feedback circuit, were used to simplify the readout electronics. With a flux-to-voltage transfer coefficient ∂ V/∂ Φ larger than 420 μV/Φ 0, the SQUID magnetometers had a white noise level of about 5.5 fT·Hz-1/2 when operated in MSR. 36 sensing magnetometers and 15 reference magnetometers were employed to realize software gradiometer configurations. The coverage area of the 36 sensing magnetometers is 210×210 mm2. MCG measurements with a high signal-to-noise ratio of 40 dB were done successfully using the developed system. Project supported by “One Hundred Persons Project” of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04020200).
Magnetocardiogram measured by fundamental mode orthogonal fluxgate array
NASA Astrophysics Data System (ADS)
Karo, Hikaru; Sasada, Ichiro
2015-05-01
Magnetocardiography (MCG) of healthy volunteers has been measured by using a fundamental mode orthogonal fluxgate magnetometer array of 32 channels in a magnetic shielded room (MSR). Sensor heads, which are employed, consist of a 45 mm long U-shaped amorphous wire core and a 1000-turn solenoid pick-up coil of 30 mm in length and 3 mm in outer diameter. The excitation current of 100 kHz with large dc bias current is fed directly into wire cores, which are connected in series, whereas the signal detection circuit is provided to each of the sensor heads. A special technique to avoid mutual interaction between sensor heads is implemented, where all the sensor heads are excited synchronously by using a single ac source. A 2-D array having 32 sensors with 4 cm grid spacing was used to measure MCG signals inside an MSR. Measured data from each channel were first filtered (0.16-100 Hz pass band), then averaged for 2 min synchronously with electrocardiogram's peaks taken from both hands. Noise remaining after the average is about 1.8 pTrms for the band-width of 0.16-100 Hz. The QRS complex and the T-wave are clearly detected.
A neuroanatomical predictor of mirror self-recognition in chimpanzees
Mahovetz, L. M.; Preuss, T. M.; Hopkins, W. D.
2017-01-01
Abstract The ability to recognize one’s own reflection is shared by humans and only a few other species, including chimpanzees. However, this ability is highly variable across individual chimpanzees. In humans, self-recognition involves a distributed, right-lateralized network including frontal and parietal regions involved in the production and perception of action. The superior longitudinal fasciculus (SLF) is a system of white matter tracts linking these frontal and parietal regions. The current study measured mirror self-recognition (MSR) and SLF anatomy in 60 chimpanzees using diffusion tensor imaging. Successful self-recognition was associated with greater rightward asymmetry in the white matter of SLFII and SLFIII, and in SLFIII’s gray matter terminations in Broca’s area. We observed a visible progression of SLFIII’s prefrontal extension in apes that show negative, ambiguous, and compelling evidence of MSR. Notably, SLFIII’s terminations in Broca’s area are not right-lateralized or particularly pronounced at the population level in chimpanzees, as they are in humans. Thus, chimpanzees with more human-like behavior show more human-like SLFIII connectivity. These results suggest that self-recognition may have co-emerged with adaptations to frontoparietal circuitry. PMID:27803287
Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.
Kurachi, M; Aihara, H
1984-09-01
The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station
NASA Technical Reports Server (NTRS)
James, John T.
2011-01-01
Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.
Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)
Cipriano, R.C.
2009-01-01
Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.
NASA Astrophysics Data System (ADS)
Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.
2018-04-01
We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.
OSIRIS-REx Flight Dynamics and Navigation Design
NASA Astrophysics Data System (ADS)
Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.
2018-06-01
OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).
OSIRIS-REx, Returning the Asteroid Sample
NASA Technical Reports Server (NTRS)
Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua
2015-01-01
This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful rendezvous with Bennu characterization of Bennus properties delivery of the sampler to the surface, and return of the spacecraft to the vicinity of the Earth sample collection, performed by the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), to acquire a regolith sample from the surface Earth re-entry and SRC recovery. Following sample collection, OSIRIS-REx drifts away from Bennu until the Asteroid Departure Maneuver is commanded on March 4, 2021, sending OSIRIS-REx on a ballistic return cruise to Earth. No additional large deterministic maneuvers are required to return the SRC to Earth. During the cruise, tracking and trajectory correction maneuvers (TCMs) are performed as necessary to precisely target the entry corridor. As OSIRIS-REx approaches Earth, the reentry plans are reviewed starting about a year before arrival, and preparations begin. The spacecraft is targeted away from the Earth until 7 days before entry. The final two trajectory correction maneuvers bring the spacecraft on target toward the Utah Test and Training Range (UTTR), with sufficient time for contingency resolution. The SRC releases 4 hours prior to atmospheric entry interface and, using the Stardust capsule heritage design, employs a traditional drogue and main parachute descent system for a soft touchdown.
The record of Martian climatic history in cores and its preservation
NASA Technical Reports Server (NTRS)
Zent, A. P.
1988-01-01
Among the questions to be addressed by a Mars Sample Return Mission are the history of the Martian climate and the mechanisms that control the volatile cycles. Unfortunately, the evidence that bears most strongly on those issues lies in the volatile distribution in, and physical configuration of, a very delicate and volatile system: the uppermost Martian regolith. Some useful measurements to be made on returned samples of the regolith are identified, along with the many critical considerations in ensuring the usefulness of returned samples.
Sample Return Robot Centennial Challenge
2012-06-16
A visitor to the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event helps demonstrate how a NASA rover design enables the rover to climb over obstacles higher than it's own body on Saturday, June 16, 2012 at WPI in Worcester, Mass. The event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie
2009-01-01
NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).
NASA Astrophysics Data System (ADS)
Tait, A. W.; Schröder, C.; Ashley, J. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Bland, P. A.
2018-04-01
We summarize insights about Mars gained from investigating meteorites found on Mars. Certain types of meteorites can be considered standard probes inserted into the martian environment. Should they be considered for Mars Sample Return?
Low-Latency Telerobotic Sample Return and Biomolecular Sequencing for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Lupisella, M.; Bleacher, J.; Lewis, R.; Dworkin, J.; Wright, M.; Burton, A.; Rubins, K.; Wallace, S.; Stahl, S.; John, K.; Archer, D.; Niles, P.; Regberg, A.; Smith, D.; Race, M.; Chiu, C.; Russell, J.; Rampe, E.; Bywaters, K.
2018-02-01
Low-latency telerobotics, crew-assisted sample return, and biomolecular sequencing can be used to acquire and analyze lunar farside and/or Apollo landing site samples. Sequencing can also be used to monitor and study Deep Space Gateway environment and crew health.
Mars Sample Return: The Value of Depth Profiles
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.;
2008-01-01
Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.
The Importance of Contamination Knowledge in Curation - Insights into Mars Sample Return
NASA Technical Reports Server (NTRS)
Harrington, A. D.; Calaway, M. J.; Regberg, A. B.; Mitchell, J. L.; Fries, M. D.; Zeigler, R. A.; McCubbin, F. M.
2018-01-01
The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates flight and non-flight reference materials and other materials from spacecraft assembly (e.g., lubricants, paints and gases) of sample return missions that would have the potential to cross-contaminate a present or future NASA astromaterials collection.
What Can You Do with a Returned Sample of Martian Dust?
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.; Nakamura-Messenger, K.
2007-01-01
A major issue that we managed to successfully address for the Stardust Mission was the magnitude and manner of preliminary examination (PET) of the returned samples, which totaled much less than 1 mg. Not since Apollo and Luna days had anyone faced this issue, and the lessons of Apollo PET were not extremely useful because of the very different sample masses in this case, and the incredible advances in analytical capabilities since the 1960s. This paper reviews some of the techniques for examination of small very rare samples that would be returned from Mars missions.
Development and Testing of Harpoon-Based Approaches for Collecting Comet Samples
NASA Technical Reports Server (NTRS)
Purves, Lloyd (Compiler); Nuth, Joseph (Compiler); Amatucci, Edward (Compiler); Wegel, Donald; Smith, Walter; Church, Joseph; Leary, James; Kee, Lake; Hill, Stuart; Grebenstein, Markus;
2017-01-01
Comets, having bright tails visible to the unassisted human eye, are considered to have been known about since pre-historic times. In fact 3,000-year old written records of comet sightings have been identified. In comparison, asteroids, being so dim that telescopes are required for observation, were not discovered until 1801. Yet, despite their later discovery, a space mission returned the first samples of an asteroid in 2010 and two more asteroid sample return missions have already been launched. By contrast no comet sample return mission has ever been funded, despite the fact that comets in certain ways are far more scientifically interesting than asteroids. Why is this? The basic answer is the greater difficulty, and consequently higher cost, of a comet sample return mission. Comets typically are in highly elliptical heliocentric orbits which require much more time and propulsion for Space Craft (SC) to reach from Earth and then return to Earth as compared to many asteroids which are in Earth-like orbits. It is also harder for a SC to maneuver safely near a comet given the generally longer communications distances and the challenge of navigating in the comet's, when the comet is close to perihelion, which turns out to be one of the most interesting times for a SC to get close to the comet surface. Due to the science value of better understanding the sublimation of volatiles near the comet surface, other contributions to higher cost as desire to get sample material from both the comet surface and a little below, to preserve the stratigraphy of the sample, and to return the sample in a storage state where it does not undergo undesirable alterations, such as aqueous. In response to these challenges of comet sample return missions, the NASA Goddard Space Flight Center (GFSC) has worked for about a decade (2006 to this time) to develop and test approaches for comet sample return that would enable such a mission to be scientifically valuable, while having acceptably low risk and an affordable cost. A harpoon-based approach for gathering comet samples appears to offer the most effective way of accomplishing this goal. As described below, with a decade of development, analysis, testing and refinement, the harpoon approach has evolved from a promising concept to a practical element of a realistic comet sample return mission. Note that the following material includes references to videos, all of which are contained in different sections of the video supplement identified in the references. Each video will be identified as "SS##", where "SS" means the supplement section and "##" will be the number of the section.
SPLAT: The Sample Probe for Landing And Testing
NASA Astrophysics Data System (ADS)
Gonyea, K.; Dendinger, T.; Fernandez, J.; Jaunzemis, A.
2014-06-01
A sample return mission from the ISS or low Earth orbit is developed. Vehicle can safely return small biological payloads with consideration of heating, aerodynamics and structural integrity of the vehicle.
NASA Technical Reports Server (NTRS)
Zolensky, Michael E.
2011-01-01
I describe lessons learned from my participation on the Hayabusa Mission, which returned regolith grains from asteroid Itokawa in 2010 [1], comparing this with the recently returned Stardust Spacecraft, which sampled the Jupiter Family comet Wild 2. Spacecraft Recovery Operations: The mission Science and Curation teams must actively participate in planning, testing and implementing spacecraft recovery operations. The crash of the Genesis spacecraft underscored the importance of thinking through multiple contingency scenarios and practicing field recovery for these potential circumstances. Having the contingency supplies on-hand was critical, and at least one full year of planning for Stardust and Hayabusa recovery operations was necessary. Care must be taken to coordinate recovery operations with local organizations and inform relevant government bodies well in advance. Recovery plans for both Stardust and Hayabusa had to be adjusted for unexpectedly wet landing site conditions. Documentation of every step of spacecraft recovery and deintegration was necessary, and collection and analysis of launch and landing site soils was critical. We found the operation of the Woomera Text Range (South Australia) to be excellent in the case of Hayabusa, and in many respects this site is superior to the Utah Test and Training Range (used for Stardust) in the USA. Recovery operations for all recovered spacecraft suffered from the lack of a hermetic seal for the samples. Mission engineers should be pushed to provide hermetic seals for returned samples. Sample Curation Issues: More than two full years were required to prepare curation facilities for Stardust and Hayabusa. Despite this seemingly adequate lead time, major changes to curation procedures were required once the actual state of the returned samples became apparent. Sample databases must be fully implemented before sample return for Stardust we did not adequately think through all of the possible sub sampling and analytical activities before settling on a database design - Hayabusa has done a better job of this. Also, analysis teams must not be permitted to devise their own sample naming schemes. The sample handling and storage facilities for Hayabusa are the finest that exist, and we are now modifying Stardust curation to take advantage of the Hayabusa facilities. Remote storage of a sample subset is desirable. Preliminary Examination (PE) of Samples: There must be some determination of the state and quantity of the returned samples, to provide a necessary guide to persons requesting samples and oversight committees tasked with sample curation oversight. Hayabusa s sample PE, which is called HASPET, was designed so that late additions to the analysis protocols were possible, as new analytical techniques became available. A small but representative number of recovered grains are being subjected to in-depth characterization. The bulk of the recovered samples are being left untouched, to limit contamination. The HASPET plan takes maximum advantage of the unique strengths of sample return missions
NASA Technical Reports Server (NTRS)
Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.
2002-01-01
The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.
Mars Sample Handling Protocol Workshop Series: Workshop 2a (Sterilization)
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Brunch, Carl W. (Editor); Setlow, Richard B. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
The Space Studies Board of the National Research Council provided a series of recommendations to NASA on planetary protection requirements for future Mars sample return missions. One of the Board's key findings suggested, although current evidence of the martian surface suggests that life as we know it would not tolerate the planet's harsh environment, there remain 'plausible scenarios for extant microbial life on Mars.' Based on this conclusion, all samples returned from Mars should be considered potentially hazardous until it has been demonstrated that they are not. In response to the National Research Council's findings and recommendations, NASA has undertaken a series of workshops to address issues regarding NASA's proposed sample return missions. Work was previously undertaken at the Mars Sample Handling and Protocol Workshop 1 (March 2000) to formulate recommendations on effective methods for life detection and/or biohazard testing on returned samples. The NASA Planetary Protection Officer convened the Mars Sample Sterilization Workshop, the third in the Mars Sample Handling Protocol Workshop Series, on November 28-30, 2000 at the Holiday Inn Rosslyn Westpark, Arlington, Virginia. Because of the short timeframe between this Workshop and the second Workshop in the Series, which was convened in October 2000 in Bethesda, Maryland, they were developed in parallel, so the Sterilization Workshop and its report have therefore been designated as '2a'). The focus of Workshop 2a was to make recommendations for effective sterilization procedures for all phases of Mars sample return missions, and to answer the question of whether we can sterilize samples in such a way that the geological characteristics of the samples are not significantly altered.
NASA Astrophysics Data System (ADS)
Brucato, John Robert
2016-07-01
A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.
NASA Astrophysics Data System (ADS)
iMOST Team; Harrington, A. D.; Carrier, B. L.; Fernandez-Remolar, D. C.; Fogarty, J.; McCoy, J. T.; Rucker, M. A.; Spry, J. A.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
Thorough characterization and evaluation of returned martian regolith and airfall samples are critical to understanding the potential health and engineering system hazards during future human exploration.
Potential High Priority Subaerial Environments for Mars Sample Return
NASA Astrophysics Data System (ADS)
iMOST Team; Bishop, J. L.; Horgan, B.; Benning, L. G.; Carrier, B. L.; Hausrath, E. M.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Czaja, A. D.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Herd, C. D. K.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mangold, N.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; Mccoy, J. T.; McLennan, S. M.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Ori, G. G.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Tosca, N. J.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.
2018-04-01
The highest priority subaerial environments for Mars Sample Return include subaerial weathering (paleosols, periglacial/glacial, and rock coatings/rinds), wetlands (mineral precipitates, redox environments, and salt ponds), or cold spring settings.
OSIRIS-REx Asteroid Sample-Return Mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Lauretta, D. S.
2016-12-01
Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.
The Federal Budget: Current and Upcoming Issues
2009-11-25
90 Milton Friedman , Capitalism and Freedom (Chicago: Univ. of Chicago Press, 1962), pp. 75-84. The Federal Budget...deficit, according to some budget experts, gives an incomplete view of the government’s fiscal condition because it includes Social Security surpluses...MSR/; “A New Era of Responsibility : Renewing America’s Promise,” February 26, 2009. A detailed discussion of how the FY2009 deficit has changed since
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombari, C.
2005-09-01
The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.
Steve P. Verrill; Frank C. Owens; David E. Kretschmann; Rubin Shmulsky
2017-01-01
It is common practice to assume that a two-parameter Weibull probability distribution is suitable for modeling lumber properties. Verrill and co-workers demonstrated theoretically and empirically that the modulus of rupture (MOR) distribution of visually graded or machine stress rated (MSR) lumber is not distributed as a Weibull. Instead, the tails of the MOR...
Advanced Curation of Current and Future Extraterrestrial Samples
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2013-01-01
Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. Curation includes documentation, preservation, preparation, and distribution of samples. The current collections of extraterrestrial samples include: Lunar rocks / soils collected by the Apollo astronauts Meteorites, including samples of asteroids, the Moon, and Mars "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet particles collected by the Stardust spacecraft Interstellar dust collected by the Stardust spacecraft Asteroid particles collected by the Hayabusa spacecraft These samples were formed in environments strikingly different from that on Earth. Terrestrial contamination can destroy much of the scientific significance of many extraterrestrial materials. In order to preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition the samples must be preserved - as far as possible - from physical and chemical alteration. In 2011 NASA selected the OSIRIS-REx mission, designed to return samples from the primitive asteroid 1999 RQ36 (Bennu). JAXA will sample C-class asteroid 1999 JU3 with the Hayabusa-2 mission. ESA is considering the near-Earth asteroid sample return mission Marco Polo-R. The Decadal Survey listed the first lander in a Mars sample return campaign as its highest priority flagship-class mission, with sample return from the South Pole-Aitken basin and the surface of a comet among additional top priorities. The latest NASA budget proposal includes a mission to capture a 5-10 m asteroid and return it to the vicinity of the Moon as a target for future sampling. Samples, tools, containers, and contamination witness materials from any of these missions carry unique requirements for acquisition and curation. Some of these requirements represent significant advances over methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Sawant, A; Ruan, D
2016-06-15
Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyang; Cheung, Yam; Sawant, Amit
2016-05-15
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less
Sulfur Isotope Effects of Dissimilatory Sulfite Reductase
Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.
2015-01-01
The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S = 17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S = 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments. PMID:26733949
Birth of an intense pulsed muon source, J-PARC MUSE
NASA Astrophysics Data System (ADS)
Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Strasser, Patrick; Makimura, Shunsuke; Koda, Akihiro; Fujimori, Hiroshi; Nakahara, Kazutaka; Kadono, Ryosuke; Kato, Mineo; Takeshita, Soshi; Nishiyama, Kusuo; Higemoto, Wataru; Ishida, Katsuhiko; Matsuzaki, Teiichiro; Matsuda, Yasuyuki; Nagamine, Kanetada
2009-04-01
The muon science facility (MUSE), along with neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC (Japan Proton Accelerator Research Complex) project, which was approved for construction between 2001 and 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008. For Phase 1, we are planning to install one superconducting decay/surface channel with a modest-acceptance (about 40 mSr) pion injector, with an estimated surface muon (μ+) rate of 3×107/s and a beam size of 25 mm diameter, and a corresponding decay muon (μ+/μ-) rate of 106/s for 60 MeV/ c (up to 107/s for 120 MeV/ c) with a beam size of 50 mm diameter. These intensities correspond to more than 10-times what is available at the RIKEN/RAL muon facility, which currently possess the most intense pulsed muon beams in the world. In addition to Phase 1, we are planning to install, a surface muon channel with a modest-acceptance (about 50 mSr), mainly for experiments related to material sciences, and a super-omega muon channel with a large acceptance of 400 mSr. In the case of the super-omega muon channel, the goal is to extract 4×108 surface muons/s for the generation of ultra-slow muons and 1×107 negative cloud muons/s with a momentum of 30-60 MeV/ c. One of the important goals for this beamline is to generate intense ultra-slow muons at MUSE, utilizing an intense pulsed VUV laser system. 104-106 ultra-slow muons/s are expected, which will allow for an extension of μSR into the area of thin film and surface science. At this symposium, the current status of J-PARC MUSE will be reported.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-05-01
To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-01-01
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347
NASA Astrophysics Data System (ADS)
Wiesendanger, R.; Wurz, P.; Tulej, M.; Wacey, D.; Neubeck, A.; Grimaudo, V.; Riedo, A.; Moreno, P.; Cedeño-López, A.; Ivarsson, M.
2018-04-01
The University of Bern developed instrument prototypes that allow analysis of samples on Mars prior to bringing them back to Earth, allowing to maximize the scientific outcome of the returned samples. We will present the systems and first results.
NASA Astrophysics Data System (ADS)
Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team
2018-04-01
SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.
MRSR: Rationale for a Mars Rover/Sample Return mission
NASA Technical Reports Server (NTRS)
Carr, Michael H.
1992-01-01
The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.
Contemporary Impact Analysis Methodology for Planetary Sample Return Missions
NASA Technical Reports Server (NTRS)
Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.
2015-01-01
Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.
Mars Sample Return Architecture Assessment Study
NASA Astrophysics Data System (ADS)
Centuori, S.; Hermosín, P.; Martín, J.; De Zaiacomo, G.; Colin, S.; Godfrey, A.; Myles, J.; Johnson, H.; Sachdev, T.; Ahmed, R.
2018-04-01
Current paper presents the results of ESA funded activity "Mars Sample Return Architecture Assessment Study" carried-out by DEIMOS Space, Lockheed Martin UK Ampthill, and MDA Corporation, where more than 500 mission design options have been studied.
Cleaning and Cleanliness Verification Techniques for Mars Returned Sample Handling
NASA Technical Reports Server (NTRS)
Mickelson, E. T.; Lindstrom, D. J.; Allton, J. H.; Hittle, J. D.
2002-01-01
Precision cleaning and cleanliness verification techniques are examined as a subset of a comprehensive contamination control strategy for a Mars sample return mission. Additional information is contained in the original extended abstract.
Asteroid (Flora and Eros) sample-return missions via solar electric propulsion
NASA Technical Reports Server (NTRS)
Friedlander, A. L.
1971-01-01
The characteristics and capabilities of solar electric propulsion for performing sample-return missions to the asteroids Flora and Eros are considered. Trajectory/payload analysis and mission design tradeoff options are emphasized.
Sample Return Robot Centennial Challenge
2012-06-16
NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
In situ propellant production - A new potential for round-trip spacecraft
NASA Technical Reports Server (NTRS)
Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Ash, R. L.
1979-01-01
In situ propellant production (ISPP) greatly reduces the Earth escape requirements for some roundtrip missions, particularly Mars Sample Return. ISPP systems are described which produce oxygen or oxygen and methane from available atmospheric and surface materials. With ISPP, a 1 kg sample can be returned direct from Mars using a single Shuttle launch. Mars entry can be either direct or from orbit. Comet and asteroid sample return is also accomplished within a single Shuttle launch. Launch requirements for round-trip missions to Ganymede and Callisto are reduced by 15 to 40%.
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck stop to look at the bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" that is wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.
2009-01-01
NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).
Future Lunar Sampling Missions: Big Returns on Small Samples
NASA Astrophysics Data System (ADS)
Shearer, C. K.; Borg, L.
2002-01-01
The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.
Sustainable Mars Sample Return
NASA Technical Reports Server (NTRS)
Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert
2011-01-01
The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.
Comet nucleus sample return mission
NASA Technical Reports Server (NTRS)
1983-01-01
A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.
Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques
NASA Astrophysics Data System (ADS)
Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.
2018-04-01
Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Norton, H. N.; Darnell, W. L.
1975-01-01
Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.
NASA Technical Reports Server (NTRS)
Allton, J. H.
2017-01-01
There is widespread agreement among planetary scientists that much of what we know about the workings of the solar system comes from accurate, high precision measurements on returned samples. Precision is a function of the number of atoms the instrumentation is able to count. Accuracy depends on the calibration or standardization technique. For Genesis, the solar wind sample return mission, acquiring enough atoms to ensure precise SW measurements and then accurately quantifying those measurements were steps known to be non-trivial pre-flight. The difficulty of precise and accurate measurements on returned samples, and why they cannot be made remotely, is not communicated well to the public. In part, this is be-cause "high precision" is abstract and error bars are not very exciting topics. This paper explores ideas for collecting and compiling compelling metaphors and colorful examples as a resource for planetary science public speakers.
The elephant graveyard - A planet-wide Mars sample return
NASA Astrophysics Data System (ADS)
Heinsheimer, T. F.; Corn, Barbara
1991-10-01
A method is presented for collecting documented Martian samples from the surface of the entire planet based partly on research done for a 1994 Mars balloon mission. Smart balloons are employed to collect samples from difficult terrains, fly 100-200 km with the sample to more manageable terrains, and are retrieved by a rover mission for return to earth. Elements of the sample-return method are described in detail with attention given to the projected rates of success for each portion of the technology. The SNAKE, Canniballoon, and 'Brilliant Ants' concepts are described in terms of level of development, function within the mission, and technological requirements. Substantial research presently exists in the areas of deployment, on-site sample assessment, pick-up, and designs for the ballons and ground-traversing guideropes.
Mars sample return: Site selection and sample acquisition study
NASA Technical Reports Server (NTRS)
Nickle, N. (Editor)
1980-01-01
Various vehicle and mission options were investigated for the continued exploration of Mars; the cost of a minimum sample return mission was estimated; options and concepts were synthesized into program possibilities; and recommendations for the next Mars mission were made to the Planetary Program office. Specific sites and all relevant spacecraft and ground-based data were studied in order to determine: (1) the adequacy of presently available data for identifying landing sities for a sample return mission that would assure the acquisition of material from the most important geologic provinces of Mars; (2) the degree of surface mobility required to assure sample acquisition for these sites; (3) techniques to be used in the selection and drilling of rock a samples; and (4) the degree of mobility required at the two Viking sites to acquire these samples.
Hayabusa: Navigation Challenges for Earth Return
NASA Technical Reports Server (NTRS)
Haw, Robert J.; Bhaskaran, S.; Strauss, W.; Sklyanskiy, E.; Graat, E. J.; Smith, J. J.; Menom, P.; Ardalan, S.; Ballard, C.; Williams, P.;
2011-01-01
Hayabusa was a JAXA sample-return mission to Itokawa navigated, in part, by JPL personnel. Hayabusa survived several near mission-ending failures at Itokawa yet returned to Earth with an asteroid regolith sample on June 13, 2010. This paper describes NASA/JPL's participation in the Hayabusa mission during the last 100 days of its mission, wherein JPL provided tracking data and orbit determination, plus verification of maneuver design and entry, descent and landing.
NASA Technical Reports Server (NTRS)
1972-01-01
The scientific objectives were considered for a Phobos/Deimos mission. The payloads for a minimum useful instrument complement were developed. The rationale for a sample return mission is discussed, along with the scientific constraints and requirements for the acquisition of samples.
Art Concepts - Mars Sample (Robot)
1987-06-09
S87-35313 (15 May 1987)--- This artist's rendering illustrates a Mars Sample Return mission under study at Jet Propulsion Laboratory (JPL) and the NASA Johnson Space Center (JSC). As currently envisioned, the spacecraft would be launched in the mid to late 1990's into Earth-orbit by a space shuttle, released from the shuttle's cargo bay and propelled toward Mars by an upper-stage engine. A lander (left background) would separate from an orbiting vehicle (upper right) and descend to the planet's surface. The lander's payload would include a robotic rover (foreground), which would spend a year moving about the Martian terrain collecting scientifically significant rock and soil samples. The rover would then return to the lander and transfer its samples to a small rocket that would carry them into orbit and rendezvous with the orbiter for a return to Earth. As depicted here the rover consists of three two-wheeled cabs, and is fitted with a stereo camera vision system and tool-equipped arms for sample collection. The Mars Sample Return studies are funded by NASA's Office of Space Science and Applications.
NASA Technical Reports Server (NTRS)
Zeigler, Ryan A.
2014-01-01
An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.
NASA Astrophysics Data System (ADS)
Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken
2014-04-01
Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.
Phobos Sample Return: Next Approach
NASA Astrophysics Data System (ADS)
Zelenyi, Lev; Martynov, Maxim; Zakharov, Alexander; Korablev, Oleg; Ivanov, Alexey; Karabadzak, George
The Martian moons still remain a mystery after numerous studies by Mars orbiting spacecraft. Their study cover three major topics related to (1) Solar system in general (formation and evolution, origin of planetary satellites, origin and evolution of life); (2) small bodies (captured asteroid, or remnants of Mars formation, or reaccreted Mars ejecta); (3) Mars (formation and evolution of Mars; Mars ejecta at the satellites). As reviewed by Galimov [2010] most of the above questions require the sample return from the Martian moon, while some (e.g. the characterization of the organic matter) could be also answered by in situ experiments. There is the possibility to obtain the sample of Mars material by sampling Phobos: following to Chappaz et al. [2012] a 200-g sample could contain 10-7 g of Mars surface material launched during the past 1 mln years, or 5*10-5 g of Mars material launched during the past 10 mln years, or 5*1010 individual particles from Mars, quantities suitable for accurate laboratory analyses. The studies of Phobos have been of high priority in the Russian program on planetary research for many years. Phobos-88 mission consisted of two spacecraft (Phobos-1, Phobos-2) and aimed the approach to Phobos at 50 m and remote studies, and also the release of small landers (long-living stations DAS). This mission implemented the program incompletely. It was returned information about the Martian environment and atmosphere. The next profect Phobos Sample Return (Phobos-Grunt) initially planned in early 2000 has been delayed several times owing to budget difficulties; the spacecraft failed to leave NEO in 2011. The recovery of the science goals of this mission and the delivery of the samples of Phobos to Earth remain of highest priority for Russian scientific community. The next Phobos SR mission named Boomerang was postponed following the ExoMars cooperation, but is considered the next in the line of planetary exploration, suitable for launch around 2022. A possible scenario of the Boomerang mission includes the approach to Deimos prior to the landing of Phobos. The needed excess ΔV w.r.t. simple scenario (elliptical orbit à near-Phobos orbit) amounts to 0.67 km s-1 (1.6 vs 0.93 km s-1). The Boomerang mission basically repeats the Phobos-SR (2011) architecture, where the transfer-orbiting spacecraft lands on the Phobos surface and a small return vehicle launches the return capsule to Earth. We consider the Boomerang mission as an important step in Mars exploration and a direct precursor of Mars Sample Return. The following elements of the Boomerang mission might be directly employed, or serve as the prototypes for the Mars Sample return in future: Return vehicle, Earth descent module, Transfer-orbital spacecraft. We urge the development of this project for its high science value and recognize its elements as potential national contribution to an international Mars Sample Return project. Galimov E.M., Phobos sample return mission: scientific substantiation, Solar System Res., v.44, No.1, pp5-14, 2010. Chappaz L., H.J. Melosh, M. Vaguero, and K.C. Howell, Material transfer from the surface of Mars to Phobos and Deimos, 43rd Lunar and planetary Science Conference, paper 1422, 2012.
Landing Sites for a Mars Sample Return Mission in Arabia Terra
NASA Astrophysics Data System (ADS)
Salese, F.; Pondrelli, M.; Schmidt, G. W.; Mitri, G.; Pacifici, A.; Cavalazzi, B.; Ori, G. G.; Glamoclija, M.; Hauber, E.; Le Deit, L.; Marinangeli, L.; Rossi, A. P.
2018-04-01
We are characterizing the geology of several areas in Arabia Terra as possible Mars Sample Return mission landing sites. Arabia Terra presents several interesting sites regarding the search for past traces of life on Mars.
NASA Technical Reports Server (NTRS)
1976-01-01
Major strategies for exploring the solar system focus on the return of information and the return of matter. Both the planetary exploration facility, and an orbiting automated space station, and the sample return and exploration facility have similar requirements. The single most essential need to enable intensive study of the outer solar system is nuclear propulsion and power capability. New initiatives in 1978 related to the reactor, data and sample acquisition and return, navigation, and environmental protection are examined.
Sealing nuclear graphite with pyrolytic carbon
NASA Astrophysics Data System (ADS)
Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai
2013-10-01
Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).
Tanaka, Yuhei; Gotoh, Kenji; Teramachi, Mariko; Ishimoto, Kazuhisa; Tsumura, Naoki; Shindou, Shizuo; Yamashita, Yushiro
2016-11-01
Here we report the molecular epidemiology of macrolide-resistant Streptococcus pyogenes (group A streptococci, GAS) isolated from children with pharyngotonsillitis between 2011 and 2013 in Japan. In 299 isolates, 124 (41.5%) isolates were macrolide-resistant. We characterized the isolates by emm typing, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Of 299 isolates, 124 (41.5%) were macrolide-resistant isolates, 76 (61.3%) possessed mefA and 46 (37.1%) possessed ermB. All 76 isolates with mefA possessed msrD. There were no isolates possessed ermTR in this study. Eight emm/MLST types were observed. The predominant type was emm1/ST28 (57 isolates, 46.0%), which possessed the mefA/msrD complex, presenting as the M phenotype. The second most predominant type was emm12/ST467, which possessed ermB, presenting as the cMLS B phenotype. Of the cMLS B phenotype isolates, types emm28/ST52 and emm12/ST36 had multiple genetic backgrounds. We found high proportions of macrolide-resistant GAS in the southwestern areas of Japan. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
German, Ernst D.; Sheintuch, Moshe
2017-02-01
Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.
Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.
Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong
2016-03-01
Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.
Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling
Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien
2012-01-01
The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-11-13
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-01-01
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622
A combined joint diagonalization-MUSIC algorithm for subsurface targets localization
NASA Astrophysics Data System (ADS)
Wang, Yinlin; Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon
2014-06-01
This paper presents a combined joint diagonalization (JD) and multiple signal classification (MUSIC) algorithm for estimating subsurface objects locations from electromagnetic induction (EMI) sensor data, without solving ill-posed inverse-scattering problems. JD is a numerical technique that finds the common eigenvectors that diagonalize a set of multistatic response (MSR) matrices measured by a time-domain EMI sensor. Eigenvalues from targets of interest (TOI) can be then distinguished automatically from noise-related eigenvalues. Filtering is also carried out in JD to improve the signal-to-noise ratio (SNR) of the data. The MUSIC algorithm utilizes the orthogonality between the signal and noise subspaces in the MSR matrix, which can be separated with information provided by JD. An array of theoreticallycalculated Green's functions are then projected onto the noise subspace, and the location of the target is estimated by the minimum of the projection owing to the orthogonality. This combined method is applied to data from the Time-Domain Electromagnetic Multisensor Towed Array Detection System (TEMTADS). Examples of TEMTADS test stand data and field data collected at Spencer Range, Tennessee are analyzed and presented. Results indicate that due to its noniterative mechanism, the method can be executed fast enough to provide real-time estimation of objects' locations in the field.
Efficiency of biochar produced from malt spent rootlets to remove mercury and dyes
NASA Astrophysics Data System (ADS)
Kamenidou, Charoula; Manariotis, Ioannis; Karapanagioti, Hrissi
2017-04-01
Considerable research effort has been focused on the production of biochar from carbon-rich biomass under oxygen-limited conditions as a mitigation measure for global warming once it is used as a soil amendment. Furthermore, the use of biochar as an added value product, such as sorbent or catalyst, is desirable and could be more profitable. Biochar is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Various organic-rich wastes including wood chips, animal manure, and crop residues have been used for biochar production. The present study presents the findings of an experimental work, which investigated the use of biochar produced from malt spent rootlets (MSR), which is a beer production by-product, to remove Hg(II) and methylene blue (MB) from aqueous solutions. MSR was pyrolyzed at temperatures of 300, 400, 500, 600, 750, 850, and 900oC, under limited oxygen conditions. The increase of temperature resulted in significantly increased BET surface areas. The mercury sorption capacity was affected by pyrolysis temperature, and was increased by increasing the pyrolysis temperature. The maximum sorption capacity was 100-110 mg Hg(II)/g biochar at a temperature range of 750-850oC. The MB sorption capacity of biochar was also affected by pyrolysis temperature.
A survey of rapid sample return needs from Space Station Freedom and potential return systems
NASA Technical Reports Server (NTRS)
Mccandless, Ronald S.; Siegel, Bette; Charlton, Kevin
1991-01-01
Results are presented of a survey conducted among potential users of the life sciences and material sciences facilities at the Space Station Freedom (SSF) to determine the need for a special rapid sample return (RSR) mission to bring the experimental samples from the Space Station Freedom (SSF) to earth between the Space Shuttle visits. The results of the survey show that, while some experimental objectives would benefit from the RSR capability, other available cost- and mission-effective means could be used instead of the RSR proposed. Potential vehicles for transporting samples from the SSF to earth are examined in the context of the survey results.
NASA Technical Reports Server (NTRS)
Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.
1989-01-01
An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.
Impact Craters and Impactites as Important Targets for Mars Sample Return Missions
NASA Astrophysics Data System (ADS)
Osinski, G. R.; Cockell, C. S.; Pontefract, A.; Sapers, H. M.; Tornabene, L. L.
2018-04-01
Research conducted over the past few years reveals that meteorite impact craters provide substrates and habitats for life. We propose that craters and their products should be reconsidered as high priority targets for Mars Sample Return missions.
Poor Man's Asteroid Sample Return Missions
NASA Astrophysics Data System (ADS)
Landis, R. R.; Graham, L. D.
2018-02-01
A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.
Planning Related to the Curation and Processing of Returned Martian Samples
NASA Astrophysics Data System (ADS)
McCubbin, F. M.; Harrington, A. D.
2018-04-01
Many of the planning activities in the NASA Astromaterials Acquisition and Curation Office at JSC are centered around Mars Sample Return. The importance of contamination knowledge and the benefits of a mobile/modular receiving facility are discussed.
Rockballer Sample Acquisition Tool
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Cook, Brant T.
2013-01-01
It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation.
Plume Collection Strategies for Icy World Sample Return
NASA Technical Reports Server (NTRS)
Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.
2015-01-01
Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.