Sample records for sample structure functions

  1. Social cognition in schizophrenia: factor structure, clinical and functional correlates.

    PubMed

    Buck, Benjamin E; Healey, Kristin M; Gagen, Emily C; Roberts, David L; Penn, David L

    2016-08-01

    Social cognition is consistently impaired in people with schizophrenia, separable from general neurocognition, predictive of real-world functioning and amenable to psychosocial treatment. Few studies have empirically examined its underlying factor structure. This study (1) examines the factor structure of social cognition in both a sample of individuals with schizophrenia-spectrum disorders and non-clinical controls and (2) explores relationships of factors to neurocognition, symptoms and functioning. A factor analysis was conducted on social cognition measures in a sample of 65 individuals with schizophrenia or schizoaffective disorder, and 50 control participants. The resulting factors were examined for their relationships to symptoms and functioning. Results suggested a two-factor structure in the schizophrenia sample (social cognition skill and hostile attributional style) and a three-factor structure in the non-clinical sample (hostile attributional style, higher-level inferential processing and lower-level cue detection). In the schizophrenia sample, the social cognition skill factor was significantly related to negative symptoms and social functioning, whereas hostile attributional style predicted positive and general psychopathology symptoms. The factor structure of social cognition in schizophrenia separates hostile attributional style and social cognition skill, and each show differential relationships to relevant clinical variables in schizophrenia.

  2. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  3. Social cognition in schizophrenia: Factor structure, clinical and functional correlates

    PubMed Central

    Buck, Benjamin E.; Healey, Kristin M.; Gagen, Emily C.; Roberts, David L.; Penn, David L.

    2016-01-01

    Background Social cognition is consistently impaired in people with schizophrenia, separable from general neurocognition, predictive of real-world functioning, and amenable to psychosocial treatment. Few studies have empirically examined its underlying factor structure. Aims The present study (1) examines the factor structure of social cognition in both a sample of individuals with schizophrenia-spectrum disorders and non-clinical controls, and (2) explores relationships of factors to neurocognition, symptoms and functioning. Method A factor analysis was conducted on social cognition measures in a sample of sixty-five individuals with schizophrenia or schizoaffective disorder, and fifty control participants. The resulting factors were examined for their relationships to symptoms and functioning. Results Results suggested a two-factor structure in the schizophrenia sample (social cognition skill and hostile attributional style) and a three-factor structure in the non-clinical sample (hostile attributional style, higher-level inferential processing, and lower-level cue detection). In the schizophrenia sample, the social cognition skill factor was significantly related to negative symptoms and social functioning, while hostile attributional style predicted positive and general psychopathology symptoms. Conclusions The factor structure of social cognition in schizophrenia separates hostile attributional style and social cognition skill, and each show differential relationships to relevant clinical variables in schizophrenia. PMID:26747063

  4. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    NASA Astrophysics Data System (ADS)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  5. GalaxyGPCRloop: Template-Based and Ab Initio Structure Sampling of the Extracellular Loops of G-Protein-Coupled Receptors.

    PubMed

    Won, Jonghun; Lee, Gyu Rie; Park, Hahnbeom; Seok, Chaok

    2018-06-07

    The second extracellular loops (ECL2s) of G-protein-coupled receptors (GPCRs) are often involved in GPCR functions, and their structures have important implications in drug discovery. However, structure prediction of ECL2 is difficult because of its long length and the structural diversity among different GPCRs. In this study, a new ECL2 conformational sampling method involving both template-based and ab initio sampling was developed. Inspired by the observation of similar ECL2 structures of closely related GPCRs, a template-based sampling method employing loop structure templates selected from the structure database was developed. A new metric for evaluating similarity of the target loop to templates was introduced for template selection. An ab initio loop sampling method was also developed to treat cases without highly similar templates. The ab initio method is based on the previously developed fragment assembly and loop closure method. A new sampling component that takes advantage of secondary structure prediction was added. In addition, a conserved disulfide bridge restraining ECL2 conformation was predicted and analytically incorporated into sampling, reducing the effective dimension of the conformational search space. The sampling method was combined with an existing energy function for comparison with previously reported loop structure prediction methods, and the benchmark test demonstrated outstanding performance.

  6. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529

  7. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Sixteenth quarterly report, February 16, 1983-May 15, 1983.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, B. C.; Olson, H. H.; Schuit, G. C.A.

    1983-08-22

    A new method of structural analysis is applied to a group of hydroliquefied coal samples. The method uses elemental analysis and NMR data to estimate the concentrations of functional groups in the samples. The samples include oil and asphaltene fractions obtained in a series of hydroliquefaction experiments, and a set of 9 fractions separated from a coal-derived oil. The structural characterization of these samples demonstrates that estimates of functional group concentrations can be used to provide detailed structural profiles of complex mixtures and to obtain limited information about reaction pathways. 11 references, 1 figure, 7 tables.

  8. A sampling-based method for ranking protein structural models by integrating multiple scores and features.

    PubMed

    Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong

    2011-09-01

    One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.

  9. Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.

    PubMed

    Maximova, Tatiana; Plaku, Erion; Shehu, Amarda

    2016-07-07

    Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.

  10. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    ERIC Educational Resources Information Center

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  11. Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    PubMed Central

    Acar, Evrim; Plopper, George E.; Yener, Bülent

    2012-01-01

    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315

  12. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2013-01-01

    Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.

  13. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    PubMed

    Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong

    2014-01-01

    Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  14. nextPARS: parallel probing of RNA structures in Illumina

    PubMed Central

    Saus, Ester; Willis, Jesse R.; Pryszcz, Leszek P.; Hafez, Ahmed; Llorens, Carlos; Himmelbauer, Heinz

    2018-01-01

    RNA molecules play important roles in virtually every cellular process. These functions are often mediated through the adoption of specific structures that enable RNAs to interact with other molecules. Thus, determining the secondary structures of RNAs is central to understanding their function and evolution. In recent years several sequencing-based approaches have been developed that allow probing structural features of thousands of RNA molecules present in a sample. Here, we describe nextPARS, a novel Illumina-based implementation of in vitro parallel probing of RNA structures. Our approach achieves comparable accuracy to previous implementations, while enabling higher throughput and sample multiplexing. PMID:29358234

  15. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    PubMed Central

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696

  16. Conformational sampling in template-free protein loop structure modeling: an overview.

    PubMed

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  17. Structure guided GANs

    NASA Astrophysics Data System (ADS)

    Cao, Feidao; Zhao, Huaici; Liu, Pengfei

    2017-11-01

    Generative adversarial networks (GANs) has achieved success in many fields. However, there are some samples generated by many GAN-based works, whose structure is ambiguous. In this work, we propose Structure Guided GANs that introduce structural similar into GANs to overcome the problem. In order to achieve our goal, we introduce an encoder and a decoder into a generator to design a new generator and take real samples as part of the input of a generator. And we modify the loss function of the generator accordingly. By comparison with WGAN, experimental results show that our proposed method overcomes largely sample structure ambiguous and can generate higher quality samples.

  18. Development of a Self-Report Physical Function Instrument for Disability Assessment: Item Pool Construction and Factor Analysis

    PubMed Central

    McDonough, Christine M.; Jette, Alan M.; Ni, Pengsheng; Bogusz, Kara; Marfeo, Elizabeth E; Brandt, Diane E; Chan, Leighton; Meterko, Mark; Haley, Stephen M.; Rasch, Elizabeth K.

    2014-01-01

    Objectives To build a comprehensive item pool representing work-relevant physical functioning and to test the factor structure of the item pool. These developmental steps represent initial outcomes of a broader project to develop instruments for the assessment of function within the context of Social Security Administration (SSA) disability programs. Design Comprehensive literature review; gap analysis; item generation with expert panel input; stakeholder interviews; cognitive interviews; cross-sectional survey administration; and exploratory and confirmatory factor analyses to assess item pool structure. Setting In-person and semi-structured interviews; internet and telephone surveys. Participants A sample of 1,017 SSA claimants, and a normative sample of 999 adults from the US general population. Interventions Not Applicable. Main Outcome Measure Model fit statistics Results The final item pool consisted of 139 items. Within the claimant sample 58.7% were white; 31.8% were black; 46.6% were female; and the mean age was 49.7 years. Initial factor analyses revealed a 4-factor solution which included more items and allowed separate characterization of: 1) Changing and Maintaining Body Position, 2) Whole Body Mobility, 3) Upper Body Function and 4) Upper Extremity Fine Motor. The final 4-factor model included 91 items. Confirmatory factor analyses for the 4-factor models for the claimant and the normative samples demonstrated very good fit. Fit statistics for claimant and normative samples respectively were: Comparative Fit Index = 0.93 and 0.98; Tucker-Lewis Index = 0.92 and 0.98; Root Mean Square Error Approximation = 0.05 and 0.04. Conclusions The factor structure of the Physical Function item pool closely resembled the hypothesized content model. The four scales relevant to work activities offer promise for providing reliable information about claimant physical functioning relevant to work disability. PMID:23542402

  19. Microbial community structure in fermentation process of Shaoxing rice wine by Illumina-based metagenomic sequencing.

    PubMed

    Xie, Guangfa; Wang, Lan; Gao, Qikang; Yu, Wenjing; Hong, Xutao; Zhao, Lingyun; Zou, Huijun

    2013-09-01

    To understand the role of the community structure of microbes in the environment in the fermentation of Shaoxing rice wine, samples collected from a wine factory were subjected to Illumina-based metagenomic sequencing. De novo assembly of the sequencing reads allowed the characterisation of more than 23 thousand microbial genes derived from 1.7 and 1.88 Gbp of sequences from two samples fermented for 5 and 30 days respectively. The microbial community structure at different fermentation times of Shaoxing rice wine was revealed, showing the different roles of the microbiota in the fermentation process of Shaoxing rice wine. The gene function of both samples was also studied in the COG database, with most genes belonging to category S (function unknown), category E (amino acid transport and metabolism) and unclassified group. The results show that both the microbial community structure and gene function composition change greatly at different time points of Shaoxing rice wine fermentation. © 2013 Society of Chemical Industry.

  20. The Work Role Functioning Questionnaire v2.0 Showed Consistent Factor Structure Across Six Working Samples.

    PubMed

    Abma, Femke I; Bültmann, Ute; Amick Iii, Benjamin C; Arends, Iris; Dorland, Heleen F; Flach, Peter A; van der Klink, Jac J L; van de Ven, Hardy A; Bjørner, Jakob Bue

    2017-09-09

    Objective The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons' health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with mixed clinical conditions and job types to evaluate the comparability of the scale structure. Methods Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling demands, output demands, physical demands, mental and social demands, and flexibility demands). Model fit indices were calculated based on RMSEA ≤ 0.08 and CFI ≥ 0.95. After fitting the five-factor model, the multidimensional structure of the instrument was evaluated across samples using a second order factor model. Results The factor structure was robust across samples and a multi-group model had adequate fit (RMSEA = 0.63, CFI = 0.972). In sample specific analyses, minor modifications were necessary in three samples (final RMSEA 0.055-0.080, final CFI between 0.955 and 0.989). Applying the previous first order specifications, a second order factor model had adequate fit in all samples. Conclusion A five-factor model of the WRFQ showed consistent structural validity across samples. A second order factor model showed adequate fit, but the second order factor loadings varied across samples. Therefore subscale scores are recommended to compare across different clinical and working samples.

  1. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  2. Bessel beam CARS of axially structured samples.

    PubMed

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-05

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  3. On a useful functional representation of control system structure

    NASA Technical Reports Server (NTRS)

    Malchow, Harvey L.

    1988-01-01

    An alternative structure for control systems is proposed. The structure is represented by a three-element block diagram and three functional definitions. It is argued that the three functional elements form a canonical set. The set includes the functions description, estimation and control. General overlay of the structure on parallel state and nested-state control systems is discussed. Breakdown of two real nested-state control systems into the proposed functional format is displayed. Application of the process to the mapping of complex control systems R and D efforts is explained with the Mars Rover Sample and Return mission as an example. A previous application of this basic functional structure to Space Station performance requirements organization is discussed.

  4. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method

    PubMed Central

    2013-01-01

    Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158

  5. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  6. Void statistics of the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-11-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  7. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    PubMed Central

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups. PMID:25822150

  8. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  9. Different Characteristics of the Female Sexual Function Index in a Sample of Sexually Active and Inactive Women.

    PubMed

    Hevesi, Krisztina; Mészáros, Veronika; Kövi, Zsuzsanna; Márki, Gabriella; Szabó, Marianna

    2017-09-01

    The Female Sexual Function Index (FSFI) is a widely used measurement tool to assess female sexual function along the six dimensions of desire, arousal, lubrication, orgasm, satisfaction, and pain. However, the structure of the questionnaire is not clear, and several studies have found high correlations among the dimensions, indicating that a common underlying "sexual function" factor might be present. To investigate whether female sexual function is best understood as a multidimensional construct or, alternatively, whether a common underlying factor explains most of the variance in FSFI scores, and to investigate the possible effect of the common practice of including sexually inactive women in studies using the FSFI. The sample consisted of 508 women: 202 university students, 177 patients with endometriosis, and 129 patients with polycystic ovary syndrome. Participants completed the FSFI, and confirmatory factor analyses were used to test the underlying structure of this instrument in the total sample and in samples including sexually active women only. The FSFI is a multidimensional self-report questionnaire composed of 19 items. Strong positive correlations were found among five of the six original factors on the FSFI. Confirmatory factor analyses showed that in the total sample items loaded mainly on the general sexual function factor and very little variance was explained by the specific factors. However, when only sexually active women were included in the analyses, a clear factor structure emerged, with items loading on their six specific factors, and most of the variance in FSFI scores was explained by the specific factors, rather than the general factor. University students reported higher scores, indicating better functioning compared with the patient samples. The reliable and valid assessment of female sexual function can contribute to better understanding, prevention, and treatment of different sexual difficulties and dysfunctions. This study provides a rigorous statistical test of the structure of the FSFI and an explicit decision rule for categorizing sexually inactive women. Limitations include a lack of control over the circumstances of data collection. This study supports the use of the FSFI as a multidimensional measurement of female sexual function but highlights the need to establish clear decision rules for the inclusion or exclusion of sexually active and inactive respondents. Hevesi K, Mészáros V, Kövi Z, et al. Different Characteristics of the Female Sexual Function Index in a Sample of Sexually Active and Inactive Women. J Sex Med 2017;14:1133-1141. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  10. Adaptable structural synthesis using advanced analysis and optimization coupled by a computer operating system

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Bhat, R. B.

    1979-01-01

    A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.

  11. Progress in Developing Transfer Functions for Surface Scanning Eddy Current Inspections

    NASA Astrophysics Data System (ADS)

    Shearer, J.; Heebl, J.; Brausch, J.; Lindgren, E.

    2009-03-01

    As US Air Force (USAF) aircraft continue to age, additional inspections are required for structural components. The validation of new inspections typically requires a capability demonstration of the method using representative structure with representative damage. To minimize the time and cost required to prepare such samples, Electric Discharge machined (EDM) notches are commonly used to represent fatigue cracks in validation studies. However, the sensitivity to damage typically changes as a function of damage type. This requires a mathematical relationship to be developed between the responses from the two different flaw types to enable the use of EDM notched samples to validate new inspections. This paper reviews progress to develop transfer functions for surface scanning eddy current inspections of aluminum and titanium alloys found in structural aircraft components. Multiple samples with well characterized grown fatigue cracks and master gages with EDM notches, both with a range of flaw sizes, were used to collect flaw signals with USAF field inspection equipment. Analysis of this empirical data was used to develop a transfer function between the response from the EDM notches and grown fatigue cracks.

  12. Method for analyzing soil structure according to the size of structural elements

    NASA Astrophysics Data System (ADS)

    Wieland, Ralf; Rogasik, Helmut

    2015-02-01

    The soil structure in situ is the result of cropping history and soil development over time. It can be assessed by the size distribution of soil structural elements such as air-filled macro-pores, aggregates and stones, which are responsible for important water and solute transport processes, gas exchange, and the stability of the soil against compacting and shearing forces exerted by agricultural machinery. A method was developed to detect structural elements of the soil in selected horizontal slices of soil core samples with different soil structures in order for them to be implemented accordingly. In the second step, a fitting tool (Eureqa) based on artificial programming was used to find a general function to describe ordered sets of detected structural elements. It was shown that all the samples obey a hyperbolic function: Y(k) = A /(B + k) , k ∈ { 0 , 1 , 2 , … }. This general behavior can be used to develop a classification method based on parameters {A and B}. An open source software program in Python was developed, which can be downloaded together with a selection of soil samples.

  13. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations

    PubMed Central

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775

  14. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    PubMed

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  15. High energy ball milling study of Fe{sub 2}MnSn Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Lakshmi, N.; Jain, Vishal

    The structural and magnetic properties of as-melted and high energy ball milled alloy samples have been studied by X-ray diffraction, DC magnetization and electronic structure calculations by means of density functional theory. The observed properties are compared to that of the bulk sample. There is a very good enhancement of saturation magnetization and coercivity in the nano-sized samples as compared to bulk which is explained in terms of structural disordering and size effect.

  16. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    USGS Publications Warehouse

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  17. The Role of Family Functioning in the Stress Process of Dementia Caregivers: A Structural Family Framework

    ERIC Educational Resources Information Center

    Mitrani, Victoria B.; Lewis, John E.; Feaster, Daniel J.; Czaja, Sara J.; Eisdorfer, Carl; Schulz, Richard; Szapocznik, Jose

    2006-01-01

    Purpose: The purpose of the study was to evaluate the role of family functioning in the stress process in a sample of caregivers of dementia patients by using a structural family framework. The stress-process model of caregiver distress included family functioning as an intervening variable in the relationship between objective burden and…

  18. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater.

    PubMed

    Li, Ping; Jiang, Zhou; Wang, Yanhong; Deng, Ye; Van Nostrand, Joy D; Yuan, Tong; Liu, Han; Wei, Dazhun; Zhou, Jizhong

    2017-10-15

    Microbial functional potential in high arsenic (As) groundwater ecosystems remains largely unknown. In this study, the microbial community functional composition of nineteen groundwater samples was investigated using a functional gene array (GeoChip 5.0). Samples were divided into low and high As groups based on the clustering analysis of geochemical parameters and microbial functional structures. The results showed that As related genes (arsC, arrA), sulfate related genes (dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, SO 4 2- , NH 4 + or CH 4 concentrations, respectively. Canonical correspondence analysis (CCA) results indicated that some geochemical parameters including As, total organic content, SO 4 2- , NH 4 + , oxidation-reduction potential (ORP) and pH were important factors shaping the functional microbial community structures. Alkaline and reducing conditions with relatively low SO 4 2- , ORP, and high NH 4 + , as well as SO 4 2- and Fe reduction and ammonification involved in microbially-mediated geochemical processes could be associated with As enrichment in groundwater. This study provides an overall picture of functional microbial communities in high As groundwater aquifers, and also provides insights into the critical role of microorganisms in As biogeochemical cycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of a self-report physical function instrument for disability assessment: item pool construction and factor analysis.

    PubMed

    McDonough, Christine M; Jette, Alan M; Ni, Pengsheng; Bogusz, Kara; Marfeo, Elizabeth E; Brandt, Diane E; Chan, Leighton; Meterko, Mark; Haley, Stephen M; Rasch, Elizabeth K

    2013-09-01

    To build a comprehensive item pool representing work-relevant physical functioning and to test the factor structure of the item pool. These developmental steps represent initial outcomes of a broader project to develop instruments for the assessment of function within the context of Social Security Administration (SSA) disability programs. Comprehensive literature review; gap analysis; item generation with expert panel input; stakeholder interviews; cognitive interviews; cross-sectional survey administration; and exploratory and confirmatory factor analyses to assess item pool structure. In-person and semistructured interviews and Internet and telephone surveys. Sample of SSA claimants (n=1017) and a normative sample of adults from the U.S. general population (n=999). Not applicable. Model fit statistics. The final item pool consisted of 139 items. Within the claimant sample, 58.7% were white; 31.8% were black; 46.6% were women; and the mean age was 49.7 years. Initial factor analyses revealed a 4-factor solution, which included more items and allowed separate characterization of: (1) changing and maintaining body position, (2) whole body mobility, (3) upper body function, and (4) upper extremity fine motor. The final 4-factor model included 91 items. Confirmatory factor analyses for the 4-factor models for the claimant and the normative samples demonstrated very good fit. Fit statistics for claimant and normative samples, respectively, were: Comparative Fit Index=.93 and .98; Tucker-Lewis Index=.92 and .98; and root mean square error approximation=.05 and .04. The factor structure of the physical function item pool closely resembled the hypothesized content model. The 4 scales relevant to work activities offer promise for providing reliable information about claimant physical functioning relevant to work disability. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Functional Assays for Ricin Detection

    NASA Astrophysics Data System (ADS)

    Ezan, Eric; Duriez, Elodie; Fenaille, François; Becher, François

    In this review, we provide background information on ricin structure, present available functional assays for other toxins that are potential biothreat agents, and finish by describing the functional assay of ricin itself. Using appropriate sample preparation and optimized detection based on N-glycosidase activity, we demonstrate that specific detection of whole ricin at a level of around 0.1 ng/mL is possible and applicable to environmental samples.

  1. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant

    PubMed Central

    Kim, Hak Jun; Lee, Jun Hyuck; Hur, Young Baek; Lee, Chang Woo; Park, Sun-Ha; Koo, Bon-Won

    2017-01-01

    Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type. PMID:28134801

  2. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.

    PubMed

    Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung

    2011-08-01

    Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.

  3. Mapping urban forest structure and function using hyperspectral imagery and lidar data

    Treesearch

    Michael Alonzo; Joseph P. McFadden; David J. Nowak; Dar A. Roberts

    2016-01-01

    Cities measure the structure and function of their urban forest resource to optimize forest managementand the provision of ecosystem services. Measurements made using plot sampling methods yield useful results including citywide or land-use level estimates of species counts, leaf area, biomass, and air pollution reduction. However, these quantities are statistical...

  4. Structural system reliability calculation using a probabilistic fault tree analysis method

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  5. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.

    PubMed

    Atzori, Alessio; Bruce, Neil J; Burusco, Kepa K; Wroblowski, Berthold; Bonnet, Pascal; Bryce, Richard A

    2014-10-27

    Protein plasticity, while often linked to biological function, also provides opportunities for rational design of selective and potent inhibitors of their function. The application of computational methods to the prediction of concealed protein concavities is challenging, as the motions involved can be significant and occur over long time scales. Here we introduce the swarm-enhanced sampling molecular dynamics (sesMD) method as a tool to improve sampling of conformational landscapes. In this approach, a swarm of replica simulations interact cooperatively via a set of pairwise potentials incorporating attractive and repulsive components. We apply the sesMD approach to explore the conformations of the DFG motif in the protein p38α mitogen-activated protein kinase. In contrast to multiple MD simulations, sesMD trajectories sample a range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between the DFG-in and DFG-out conformations are predicted to have druggable pockets of interest for structure-based ligand design.

  6. Validating a Coarse-Grained Potential Energy Function through Protein Loop Modelling

    PubMed Central

    MacDonald, James T.; Kelley, Lawrence A.; Freemont, Paul S.

    2013-01-01

    Coarse-grained (CG) methods for sampling protein conformational space have the potential to increase computational efficiency by reducing the degrees of freedom. The gain in computational efficiency of CG methods often comes at the expense of non-protein like local conformational features. This could cause problems when transitioning to full atom models in a hierarchical framework. Here, a CG potential energy function was validated by applying it to the problem of loop prediction. A novel method to sample the conformational space of backbone atoms was benchmarked using a standard test set consisting of 351 distinct loops. This method used a sequence-independent CG potential energy function representing the protein using -carbon positions only and sampling conformations with a Monte Carlo simulated annealing based protocol. Backbone atoms were added using a method previously described and then gradient minimised in the Rosetta force field. Despite the CG potential energy function being sequence-independent, the method performed similarly to methods that explicitly use either fragments of known protein backbones with similar sequences or residue-specific /-maps to restrict the search space. The method was also able to predict with sub-Angstrom accuracy two out of seven loops from recently solved crystal structures of proteins with low sequence and structure similarity to previously deposited structures in the PDB. The ability to sample realistic loop conformations directly from a potential energy function enables the incorporation of additional geometric restraints and the use of more advanced sampling methods in a way that is not possible to do easily with fragment replacement methods and also enable multi-scale simulations for protein design and protein structure prediction. These restraints could be derived from experimental data or could be design restraints in the case of computational protein design. C++ source code is available for download from http://www.sbg.bio.ic.ac.uk/phyre2/PD2/. PMID:23824634

  7. Computer Aided Synthesis or Measurement Schemes for Telemetry applications

    DTIC Science & Technology

    1997-09-02

    5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable

  8. Structured Illumination Microscopy for the Investigation of Synaptic Structure and Function.

    PubMed

    Hong, Soyon; Wilton, Daniel K; Stevens, Beth; Richardson, Douglas S

    2017-01-01

    The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.

  9. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    PubMed Central

    Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.

    2018-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences. PMID:29354106

  10. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function.

    PubMed

    Singh, Baneshwar; Minick, Kevan J; Strickland, Michael S; Wickings, Kyle G; Crippen, Tawni L; Tarone, Aaron M; Benbow, M Eric; Sufrin, Ness; Tomberlin, Jeffery K; Pechal, Jennifer L

    2017-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3-732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences.

  11. Structure refinement of membrane proteins via molecular dynamics simulations.

    PubMed

    Dutagaci, Bercem; Heo, Lim; Feig, Michael

    2018-07-01

    A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.

  12. Interactions between Snow Chemistry, Mercury Inputs and Microbial Population Dynamics in an Arctic Snowpack

    PubMed Central

    Larose, Catherine; Prestat, Emmanuel; Cecillon, Sébastien; Berger, Sibel; Malandain, Cédric; Lyon, Delina; Ferrari, Christophe; Schneider, Dominique; Dommergue, Aurélien; Vogel, Timothy M.

    2013-01-01

    We investigated the interactions between snowpack chemistry, mercury (Hg) contamination and microbial community structure and function in Arctic snow. Snowpack chemistry (inorganic and organic ions) including mercury (Hg) speciation was studied in samples collected during a two-month field study in a high Arctic site, Svalbard, Norway (79°N). Shifts in microbial community structure were determined by using a 16S rRNA gene phylogenetic microarray. We linked snowpack and meltwater chemistry to changes in microbial community structure by using co-inertia analyses (CIA) and explored changes in community function due to Hg contamination by q-PCR quantification of Hg-resistance genes in metagenomic samples. Based on the CIA, chemical and microbial data were linked (p = 0.006) with bioavailable Hg (BioHg) and methylmercury (MeHg) contributing significantly to the ordination of samples. Mercury was shown to influence community function with increases in merA gene copy numbers at low BioHg levels. Our results show that snowpacks can be considered as dynamic habitats with microbial and chemical components responding rapidly to environmental changes. PMID:24282515

  13. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  14. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  15. Gaussian windows: A tool for exploring multivariate data

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1990-01-01

    Presented here is a method for interactively exploring a large set of quantitative multivariate data, in order to estimate the shape of the underlying density function. It is assumed that the density function is more or less smooth, but no other specific assumptions are made concerning its structure. The local structure of the data in a given region may be examined by viewing the data through a Gaussian window, whose location and shape are chosen by the user. A Gaussian window is defined by giving each data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample covariance matrix are then computed, using the weights attached to the data points. These quantities are used to compute an estimate of the shape of the density function in the window region. The local structure of the data is described by a method similar to the method of principal components. By taking many such local views of the data, we can form an idea of the structure of the data set. The method is applicable in any number of dimensions. The method can be used to find and describe simple structural features such as peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions. With some practice, we can apply our geometrical intuition to these structural features in any number of dimensions, so that we can think about and describe the structure of the data. Since the computations involved are relatively simple, the method can easily be implemented on a small computer.

  16. Nonparametric Transfer Function Models

    PubMed Central

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  17. A real-space approach to the X-ray phase problem

    NASA Astrophysics Data System (ADS)

    Liu, Xiangan

    Over the past few decades, the phase problem of X-ray crystallography has been explored in reciprocal space in the so called direct methods . Here we investigate the problem using a real-space approach that bypasses the laborious procedure of frequent Fourier synthesis and peak picking. Starting from a completely random structure, we move the atoms around in real space to minimize a cost function. A Monte Carlo method named simulated annealing (SA) is employed to search the global minimum of the cost function which could be constructed in either real space or reciprocal space. In the hybrid minimal principle, we combine the dual space costs together. One part of the cost function monitors the probability distribution of the phase triplets, while the other is a real space cost function which represents the discrepancy between measured and calculated intensities. Compared to the single space cost functions, the dual space cost function has a greatly improved landscape and therefore could prevent the system from being trapped in metastable states. Thus, the structures of large molecules such as virginiamycin (C43H 49N7O10 · 3CH0OH), isoleucinomycin (C60H102N 6O18) and hexadecaisoleucinomycin (HEXIL) (C80H136 N8O24) can now be solved, whereas it would not be possible using the single cost function. When a molecule gets larger, the configurational space becomes larger, and the requirement of CPU time increases exponentially. The method of improved Monte Carlo sampling has demonstrated its capability to solve large molecular structures. The atoms are encouraged to sample the high density regions in space determined by an approximate density map which in turn is updated and modified by averaging and Fourier synthesis. This type of biased sampling has led to considerable reduction of the configurational space. It greatly improves the algorithm compared to the previous uniform sampling. Hence, for instance, 90% of computer run time could be cut in solving the complex structure of isoleucinomycin. Successful trial calculations include larger molecular structures such as HEXIL and a collagen-like peptide (PPG). Moving chemical fragment is proposed to reduce the degrees of freedom. Furthermore, stereochemical parameters are considered for geometric constraints and for a cost function related to chemical energy.

  18. Factor Structure, Stability, and Congruence in the Functional Movement Screen

    ERIC Educational Resources Information Center

    Kelleher, Leila K.; Beach, Tyson A. C.; Frost, David M.; Johnson, Andrew M.; Dickey, James P.

    2018-01-01

    The scoring scheme for the functional movement screen implicitly assumes that the factor structure is consistent, stable, and congruent across different populations. To determine if this is the case, we compared principal components analyses of three samples: a healthy, general population (n = 100), a group of varsity athletes (n = 101), and a…

  19. Optimizing physical energy functions for protein folding.

    PubMed

    Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G

    2004-01-01

    We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.

  20. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  1. Significance tests for functional data with complex dependence structure.

    PubMed

    Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J

    2015-01-01

    We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  2. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shengmu; Xue, Kai; He, Zhili

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less

  3. Reminiscence functions and the health of Israeli Holocaust survivors as compared to other older Israelis and older Canadians.

    PubMed

    O'Rourke, Norm; Bachner, Yaacov G; Cappeliez, Philippe; Chaudhury, Habib; Carmel, Sara

    2015-01-01

    Existing research with English-speaking samples indicates that various ways in which older adults recall their past affect both their physical and mental health. Self-positive reminiscence functions (i.e. identity, problem-solving, death preparation) correlate and predict mental health in later life whereas self-negative functions (i.e. bitterness revival, boredom reduction, intimacy maintenance) correlate and predict the physical health of older adults. For this study, we recruited 295 Israeli Holocaust survivors to ascertain if early life trauma affects these associations between reminiscence and health. In order to distinguish cross-national differences from survivor-specific effects, we also recruited two comparative samples of other older Israelis (not Holocaust survivors; n = 205) and a second comparative sample of 335 older Canadians. Three separate structural equation models were computed to replicate this tripartite reminiscence and health model. Coefficients for self-negative functions significantly differed between survivors and both Canadians and other older Israelis, and between Canadians and both Israeli samples. However, no differences were found between prosocial and self-positive functions. Moreover, the higher order structure of reminiscence and health appears largely indistinguishable across these three groups. Early life trauma does not appear to fundamentally affect associations between reminiscence and health. These findings underscore the resilience of Holocaust survivors.

  4. Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Nakasako, Masayoshi; RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148

    2012-05-15

    Coherent x-ray diffraction microscopy (CXDM) has the potential to visualize the structures of micro- to sub-micrometer-sized biological particles, such as cells and organelles, at high resolution. Toward advancing structural studies on the functional states of such particles, here, we developed a system for the preparation of frozen-hydrated biological samples for cryogenic CXDM experiments. The system, which comprised a moist air generator, microscope, micro-injector mounted on a micromanipulator, custom-made sample preparation chamber, and flash-cooling device, allowed for the manipulation of sample particles in the relative humidity range of 20%-94%rh at 293 K to maintain their hydrated and functional states. Here, wemore » report the details of the system and the operation procedure, including its application to the preparation of a frozen-hydrated chloroplast sample. Sample quality was evaluated through a cryogenic CXDM experiment conducted at BL29XUL of SPring-8. Taking the performance of the system and the quality of the sample, the system was suitable to prepare frozen-hydrated biological samples for cryogenic CXDM experiments.« less

  5. Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study.

    PubMed

    Schulte, Tilman; Müller-Oehring, Eva M; Chanraud, Sandra; Rosenbloom, Margaret J; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-11-01

    Aging has readily observable effects on the ability to resolve conflict between competing stimulus attributes that are likely related to selective structural and functional brain changes. To identify age-related differences in neural circuits subserving conflict processing, we combined structural and functional MRI and a Stroop Match-to-Sample task involving perceptual cueing and repetition to modulate resources in healthy young and older adults. In our Stroop Match-to-Sample task, older adults handled conflict by activating a frontoparietal attention system more than young adults and engaged a visuomotor network more than young adults when processing repetitive conflict and when processing conflict following valid perceptual cueing. By contrast, young adults activated frontal regions more than older adults when processing conflict with perceptual cueing. These differential activation patterns were not correlated with regional gray matter volume despite smaller volumes in older than young adults. Given comparable performance in speed and accuracy of responding between both groups, these data suggest that successful aging is associated with functional reorganization of neural systems to accommodate functionally increasing task demands on perceptual and attentional operations. Copyright © 2009 Elsevier Inc. All rights reserved.

  6. Statistical scaling of geometric characteristics in stochastically generated pore microstructures

    DOE PAGES

    Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee

    2015-05-21

    In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less

  7. Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain.

    PubMed

    Zhang, Jia-Shu; Qu, Ling; Wang, Qun; Jin, Wei; Hou, Yuan-Zheng; Sun, Guo-Chen; Li, Fang-Ye; Yu, Xin-Guang; Xu, Ban-Nan; Chen, Xiao-Lei

    2017-12-20

    For stereotactic brain biopsy involving motor eloquent regions, the surgical objective is to enhance diagnostic yield and preserve neurological function. To achieve this aim, we implemented functional neuro-navigation and intraoperative magnetic resonance imaging (iMRI) into the biopsy procedure. The impact of this integrated technique on the surgical outcome and postoperative neurological function was investigated and evaluated. Thirty nine patients with lesions involving motor eloquent structures underwent frameless stereotactic biopsy assisted by functional neuro-navigation and iMRI. Intraoperative visualisation was realised by integrating anatomical and functional information into a navigation framework to improve biopsy trajectories and preserve eloquent structures. iMRI was conducted to guarantee the biopsy accuracy and detect intraoperative complications. The perioperative change of motor function and biopsy error before and after iMRI were recorded, and the role of functional information in trajectory selection and the relationship between the distance from sampling site to nearby eloquent structures and the neurological deterioration were further analyzed. Functional neuro-navigation helped modify the original trajectories and sampling sites in 35.90% (16/39) of cases to avoid the damage of eloquent structures. Even though all the lesions were high-risk of causing neurological deficits, no significant difference was found between preoperative and postoperative muscle strength. After data analysis, 3mm was supposed to be the safe distance for avoiding transient neurological deterioration. During surgery, the use of iMRI significantly reduced the biopsy errors (p = 0.042) and potentially increased the diagnostic yield from 84.62% (33/39) to 94.87% (37/39). Moreover, iMRI detected intraoperative haemorrhage in 5.13% (2/39) of patients, all of them benefited from the intraoperative strategies based on iMRI findings. Intraoperative visualisation of functional structures could be a feasible, safe and effective technique. Combined with intraoperative high-field MRI, it contributed to enhance the biopsy accuracy and lower neurological complications in stereotactic brain biopsy involving motor eloquent areas.

  8. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample.

    PubMed

    Taylor, Jason R; Williams, Nitin; Cusack, Rhodri; Auer, Tibor; Shafto, Meredith A; Dixon, Marie; Tyler, Lorraine K; Cam-Can; Henson, Richard N

    2017-01-01

    This paper describes the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) initial study cohort. The Cam-CAN Stage 2 repository contains multi-modal (MRI, MEG, and cognitive-behavioural) data from a large (approximately N=700), cross-sectional adult lifespan (18-87years old) population-based sample. The study is designed to characterise age-related changes in cognition and brain structure and function, and to uncover the neurocognitive mechanisms that support healthy cognitive ageing. The database contains raw and preprocessed structural MRI, functional MRI (active tasks and resting state), and MEG data (active tasks and resting state), as well as derived scores from cognitive behavioural experiments spanning five broad domains (attention, emotion, action, language, and memory), and demographic and neuropsychological data. The dataset thus provides a depth of neurocognitive phenotyping that is currently unparalleled, enabling integrative analyses of age-related changes in brain structure, brain function, and cognition, and providing a testbed for novel analyses of multi-modal neuroimaging data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    PubMed

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available. Copyright © 2016 Du et al.

  10. Detection of image structures using the Fisher information and the Rao metric.

    PubMed

    Maybank, Stephen J

    2004-12-01

    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines.

  11. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are suitable for implementation in a large individual laboratory or by a small group of collaborating investigators for structural biology, functional proteomics, ligand screening and structural genomics research. PMID:21371586

  12. Understanding the structure

    Treesearch

    David J. Nowak

    1994-01-01

    Urban forests are complex ecosystems created by the interaction of anthropogenic and natural processes. One key to better management of these systems is to understand urban forest structure and its relationship to forest functions. Through sampling and inventories, urban foresters often obtain structural information (e.g., numbers, location, size, and condition) on...

  13. Calibrated work function mapping by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  14. Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem.

    PubMed

    Xu, Guangjian; Yang, Eun Jin; Xu, Henglong

    2017-08-15

    Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  15. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.

    PubMed

    Peña, Juan A; Corral, Victoria; Martínez, Miguel A; Peña, Estefanía

    2018-01-01

    In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be dependent on arterial location. To demonstrate any possible position-related difference, our study analyzed and compared the biaxial mechanical properties of the ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta stemming from the same porcine subjects, and reported values of constitutive parameters for well-known strain energy functions, showing how these mechanical properties are affected by location along the aorta. When comparing ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta, abdominal tissues were found to be stiffer and highly anisotropic. We found that the aorta changed from a more isotropic to a more anisotropic tissue and became progressively less compliant and stiffer with the distance to the heart. We observed substantial differences in the anisotropy parameter between aortic samples where abdominal samples were more anisotropic and nonlinear than the thoracic samples. The phenomenological model was not able to capture the passive biaxial properties of each specific porcine aorta over a wide range of biaxial deformations, showing the best prediction root mean square error ε=0.2621 for ascending thoracic samples and, especially, the worst for the infrarenal abdominal samples ε=0.3780. The micro-structured model with Bingham orientation density function was able to better predict biaxial deformations (ε=0.1372 for ascending thoracic aorta samples). The root mean square error of the micro-structural model and the micro-structured model with von Mises orientation density function were similar for all positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Correlative Techniques in Microscopy

    USDA-ARS?s Scientific Manuscript database

    Imaging is an important component in basic research, product development and understanding structure/function relationships in agricultural commodities and products. An array of microscopes and techniques can be used illustrate the structure and microchemistry of diverse samples. Examples of the var...

  17. Relations between Brain Structure and Attentional Function in Spina Bifida: Utilization of Robust Statistical Approaches

    PubMed Central

    Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.

    2015-01-01

    Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830

  18. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches.

    PubMed

    Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J

    2015-03-01

    Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  19. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  20. Finite element model updating using the shadow hybrid Monte Carlo technique

    NASA Astrophysics Data System (ADS)

    Boulkaibet, I.; Mthembu, L.; Marwala, T.; Friswell, M. I.; Adhikari, S.

    2015-02-01

    Recent research in the field of finite element model updating (FEM) advocates the adoption of Bayesian analysis techniques to dealing with the uncertainties associated with these models. However, Bayesian formulations require the evaluation of the Posterior Distribution Function which may not be available in analytical form. This is the case in FEM updating. In such cases sampling methods can provide good approximations of the Posterior distribution when implemented in the Bayesian context. Markov Chain Monte Carlo (MCMC) algorithms are the most popular sampling tools used to sample probability distributions. However, the efficiency of these algorithms is affected by the complexity of the systems (the size of the parameter space). The Hybrid Monte Carlo (HMC) offers a very important MCMC approach to dealing with higher-dimensional complex problems. The HMC uses the molecular dynamics (MD) steps as the global Monte Carlo (MC) moves to reach areas of high probability where the gradient of the log-density of the Posterior acts as a guide during the search process. However, the acceptance rate of HMC is sensitive to the system size as well as the time step used to evaluate the MD trajectory. To overcome this limitation we propose the use of the Shadow Hybrid Monte Carlo (SHMC) algorithm. The SHMC algorithm is a modified version of the Hybrid Monte Carlo (HMC) and designed to improve sampling for large-system sizes and time steps. This is done by sampling from a modified Hamiltonian function instead of the normal Hamiltonian function. In this paper, the efficiency and accuracy of the SHMC method is tested on the updating of two real structures; an unsymmetrical H-shaped beam structure and a GARTEUR SM-AG19 structure and is compared to the application of the HMC algorithm on the same structures.

  1. Role of the H-containing groups on the structural dynamics of Ti3C2Tx MXene

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Zhang, Xitian; Gao, Hong

    2018-05-01

    It is a confused problem in the literature that the c-axis value of Ti3C2 MXene changes with the synthesis procedure, but the part of the surface structures that plays the role of pillar to support the Ti3C2 layers and their variation rules remain controversial. In this work, we develop the structure models and formation mechanisms of Ti3C2Tx based on the density functional theory calculations and experimental results. While the c-axis values of the samples vary from about 1.9 to 2.9 nm, the corresponding pillars are determined by different distributions and proportions of the H-containing groups. The proportions of the H-containing groups that determine the c-axis value are formulated as the functions of the interlayer space, which can be used to quantitatively clarify the changes of the surface functional groups after the samples experiencing different treatments. The results can facilitate the in situ detections of the surface structures of MXenes during different treatments or electrochemical processes.

  2. A guide to large-scale RNA sample preparation.

    PubMed

    Baronti, Lorenzo; Karlsson, Hampus; Marušič, Maja; Petzold, Katja

    2018-05-01

    RNA is becoming more important as an increasing number of functions, both regulatory and enzymatic, are being discovered on a daily basis. As the RNA boom has just begun, most techniques are still in development and changes occur frequently. To understand RNA functions, revealing the structure of RNA is of utmost importance, which requires sample preparation. We review the latest methods to produce and purify a variation of RNA molecules for different purposes with the main focus on structural biology and biophysics. We present a guide aimed at identifying the most suitable method for your RNA and your biological question and highlighting the advantages of different methods. Graphical abstract In this review we present different methods for large-scale production and purification of RNAs for structural and biophysical studies.

  3. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery.

    PubMed

    Chu, Derrick M; Ma, Jun; Prince, Amanda L; Antony, Kathleen M; Seferovic, Maxim D; Aagaard, Kjersti M

    2017-03-01

    Human microbial communities are characterized by their taxonomic, metagenomic and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to determine the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites and assess the effect of the mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early third trimester (n = 81) were prospectively enrolled for longitudinal sampling through 6 weeks after delivery, and a second matched cross-sectional cohort (n = 81) was additionally recruited for sampling once at the time of delivery. Samples across multiple body sites, including stool, oral gingiva, nares, skin and vagina were collected for each maternal-infant dyad. Whole-genome shotgun sequencing and sequencing analysis of the gene encoding the 16S rRNA were performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogeneous across all body sites at delivery, with the notable exception of the neonatal meconium. However, by 6 weeks after delivery, the infant microbiota structure and function had substantially expanded and diversified, with the body site serving as the primary determinant of the composition of the bacterial community and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with the cesarean mode of delivery in some body sites (oral gingiva, nares and skin; R 2 = 0.038), this was not true for neonatal stool (meconium; Mann-Whitney P > 0.05), and there was no observable difference in community function regardless of delivery mode. For infants at 6 weeks of age, the microbiota structure and function had expanded and diversified with demonstrable body site specificity (P < 0.001, R 2 = 0.189) but without discernable differences in community structure or function between infants delivered vaginally or by cesarean surgery (P = 0.057, R 2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes substantial reorganization, which is primarily driven by body site and not by mode of delivery.

  4. Maturation of the Infant Microbiome Community Structure and Function Across Multiple Body Sites and in Relation to Mode of Delivery

    PubMed Central

    Chu, Derrick M.; Ma, Jun; Prince, Amanda L.; Antony, Kathleen M.; Seferovic, Maxim D.; Aagaard, Kjersti M.

    2017-01-01

    Human microbial communities are characterized by their taxonomic, metagenomic, and metabolic diversity, which varies by distinct body sites and influences human physiology. However, when and how microbial communities within each body niche acquire unique taxonomical and functional signatures in early life remains underexplored. We thus sought to assess the taxonomic composition and potential metabolic function of the neonatal and early infant microbiota across multiple body sites, and assess the impact of mode of delivery and its potential confounders or modifiers. A cohort of pregnant women in their early 3rd trimester (n=81) were prospectively enrolled for longitudinal sampling through 6 weeks post-delivery, and a second matched cross-sectional cohort (n=81) was additionally recruited for sampling once at delivery. Samples were collected for each maternal-infant dyad across multiple body sites, including stool, oral gingiva, nares, skin and vagina. 16S rRNA gene sequencing analysis and whole genome shotgun sequencing was performed to interrogate the composition and function of the neonatal and maternal microbiota. We found that the neonatal microbiota and its associated functional pathways were relatively homogenous across all body sites at delivery, with the notable exception of neonatal meconium. However, by 6 weeks, the infant microbiota structure and function had significantly expanded and diversified, with body site serving as the primary determinant of the bacterial community composition and its functional capacity. Although minor variations in the neonatal (immediately at birth) microbiota community structure were associated with Cesarean delivery in some body sites (oral, nares, and skin; R2 = 0.038), this was not true in neonatal stool (meconium, Mann-Whitney p>0.05) and there was no observable difference in community function regardless of delivery mode. By 6 weeks of age, the infant microbiota structure and function had expanded and diversified with demonstrable body site specificity (p<0.001, R2 = 0.189), and no discernable differences in neither community structure nor function by Cesarean delivery were identifiable (p=0.057, R2 = 0.007). We conclude that within the first 6 weeks of life, the infant microbiota undergoes significant reorganization that is primarily driven by body site and not by mode of delivery. PMID:28112736

  5. The social psychological costs of racial segmentation in the workplace: a study of African Americans' well-being.

    PubMed

    Forman, Tyrone A

    2003-09-01

    Although several studies have documented how social-structural constraints impair psychological functioning, few have considered how race-related structural constraints impair African Americans' psychological functioning. This study focuses on an under-studied form of race-related structural constraints: racial segmentation in the workplace. Specifically, I examine the association between perceived workplace racial segmentation, conceived and assessed from a social psychological perspective, and African Americans' psychological well-being. The magnitude and consistency of the relationship is evaluated across both a national sample and a local probability sample of African Americans. Findings across the two samples indicate a modest but consistent negative relationship between perceived racial segmentation and psychological well-being. In addition, this association remains significant after controlling for perceived discrimination as well as sociodemographic and occupational characteristics. Consistent with prior research on relative deprivation, the adverse influence of perceived racial segmentation on well-being was stronger among higher socioeconomic status African Americans than lower socioeconomic African Americans.

  6. Deep Illumina-Based Shotgun Sequencing Reveals Dietary Effects on the Structure and Function of the Fecal Microbiome of Growing Kittens

    PubMed Central

    Deusch, Oliver; O’Flynn, Ciaran; Colyer, Alison; Morris, Penelope; Allaway, David; Jones, Paul G.; Swanson, Kelly S.

    2014-01-01

    Background Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome. Methodology & Principal Findings Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome. Conclusions These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life. PMID:25010839

  7. Optimization of the time series NDVI-rainfall relationship using linear mixed-effects modeling for the anti-desertification area in the Beijing and Tianjin sandstorm source region

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie

    2018-05-01

    Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.

  8. Effectiveness of human spermatozoa biomarkers as indicators of structural damage during cryopreservation.

    PubMed

    Gómez-Torres, María José; Medrano, Llanos; Romero, Alejandro; Fernández-Colom, Pedro José; Aizpurúa, Jon

    2017-10-01

    Human spermatozoa cryopreservation techniques are used to maintain and protect male fertility in cases such as infertility and malignancy treatments. However, during cryopreservation, the spermatozoa's metabolic rate is reduced and they undergo dramatic functional and structural changes owing to exposure to cryoprotectants and freezing-thawing procedures. While the effects of cryopreservation on cells are documented, to date the induced cryodamage on structural and/or functional sperm biomarkers is not well established at multivariate scale. To address this question, we performed basic sperm analysis, sperm DNA fragmentation assessment, spontaneous acrosome reaction measurement, and cytoskeleton evaluation after thawing samples from subjects with normal and low-quality semen. A cryodamage rate was used to determine the effects of the freeze-thaw process on spermatozoa. In addition, a Principal Component Analysis (PCA) was used for data reduction and to evaluate sperm-specific patterns during the cryopreservation process. We found that the vitality, progressive motility and sperm count from low-quality samples after cryopreservation show higher damage rates (≥40%) than in normal sperm samples. However, cytoskeleton, DNA, tail and mid-piece and acrosome display the highest cryodamage rates (∼50-99%) and are equally susceptible to cryopreservation-induced damage in both low- and normal-quality semen samples. Overall, the evaluation of these parameters provides meaningful information about different aspects of sperm functionality after cryopreservation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice.

    PubMed

    Reisman, Matthew D; Markow, Zachary E; Bauer, Adam Q; Culver, Joseph P

    2017-04-01

    Optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to superficial cortical tissues. Diffuse optical tomography (DOT) techniques provide noninvasive imaging, but previous DOT systems for rodent neuroimaging have been limited either by sparse spatial sampling or by slow speed. Here, we develop a DOT system with asymmetric source-detector sampling that combines the high-density spatial sampling (0.4 mm) detection of a scientific complementary metal-oxide-semiconductor camera with the rapid (2 Hz) imaging of a few ([Formula: see text]) structured illumination (SI) patterns. Analysis techniques are developed to take advantage of the system's flexibility and optimize trade-offs among spatial sampling, imaging speed, and signal-to-noise ratio. An effective source-detector separation for the SI patterns was developed and compared with light intensity for a quantitative assessment of data quality. The light fall-off versus effective distance was also used for in situ empirical optimization of our light model. We demonstrated the feasibility of this technique by noninvasively mapping the functional response in the somatosensory cortex of the mouse following electrical stimulation of the forepaw.

  10. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults.

    PubMed

    Li, Weiwei; Li, Yadan; Yang, Wenjing; Zhang, Qinglin; Wei, Dongtao; Li, Wenfu; Hitchman, Glenn; Qiu, Jiang

    2015-04-01

    Internet addiction (IA) incurs significant social and financial costs in the form of physical side-effects, academic and occupational impairment, and serious relationship problems. The majority of previous studies on Internet addiction disorders (IAD) have focused on structural and functional abnormalities, while few studies have simultaneously investigated the structural and functional brain alterations underlying individual differences in IA tendencies measured by questionnaires in a healthy sample. Here we combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity, rsFC) information to explore the neural mechanisms underlying IAT in a large sample of 260 healthy young adults. The results showed that IAT scores were significantly and positively correlated with rGMV in the right dorsolateral prefrontal cortex (DLPFC, one key node of the cognitive control network, CCN), which might reflect reduced functioning of inhibitory control. More interestingly, decreased anticorrelations between the right DLPFC and the medial prefrontal cortex/rostral anterior cingulate cortex (mPFC/rACC, one key node of the default mode network, DMN) were associated with higher IAT scores, which might be associated with reduced efficiency of the CCN and DMN (e.g., diminished cognitive control and self-monitoring). Furthermore, the Stroop interference effect was positively associated with the volume of the DLPFC and with the IA scores, as well as with the connectivity between DLPFC and mPFC, which further indicated that rGMV variations in the DLPFC and decreased anticonnections between the DLPFC and mPFC may reflect addiction-related reduced inhibitory control and cognitive efficiency. These findings suggest the combination of structural and functional information can provide a valuable basis for further understanding of the mechanisms and pathogenesis of IA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  12. RNAdualPF: software to compute the dual partition function with sample applications in molecular evolution theory.

    PubMed

    Garcia-Martin, Juan Antonio; Bayegan, Amir H; Dotu, Ivan; Clote, Peter

    2016-10-19

    RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0 , i.e. whose minimum free energy secondary structure is identical to the target s 0 . Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0 . We introduce the program RNAdualPF, which computes the dual partition function Z ∗ , defined as the sum of Boltzmann factors exp(-E(a,s 0 )/RT) of all RNA nucleotide sequences a compatible with target structure s 0 . Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0 , where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗ (k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗ , we compute the dual expected energy 〈E ∗ 〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC-content. Using different inverse folding software, another group had earlier shown that pre-miRNA is mutationally robust, even controlling for compositional bias. Our opposite conclusion suggests a cautionary note that computationally based insights into molecular evolution may heavily depend on the software used. C/C++-software for RNAdualPF is available at http://bioinformatics.bc.edu/clotelab/RNAdualPF .

  13. Estimating Eulerian spectra from pairs of drifters

    NASA Astrophysics Data System (ADS)

    LaCasce, Joe

    2017-04-01

    GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.

  14. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  15. Identifying a Probabilistic Boolean Threshold Network From Samples.

    PubMed

    Melkman, Avraham A; Cheng, Xiaoqing; Ching, Wai-Ki; Akutsu, Tatsuya

    2018-04-01

    This paper studies the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from a given set of samples, where PBNs are probabilistic extensions of Boolean networks. Cheng et al. studied the problem while focusing on PBNs consisting of pairs of AND/OR functions. This paper considers PBNs consisting of Boolean threshold functions while focusing on those threshold functions that have unit coefficients. The treatment of Boolean threshold functions, and triplets and -tuplets of such functions, necessitates a deepening of the theoretical analyses. It is shown that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable constraints, which include: 1) PBNs in which any number of threshold functions can be assigned provided that all have the same number of input variables and 2) PBNs consisting of pairs of threshold functions with different numbers of input variables. It is also shown that the problem of deciding the equivalence of two Boolean threshold functions is solvable in pseudopolynomial time but remains co-NP complete.

  16. Understanding the Structure of High-K Gate Oxides - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Andre

    2015-08-25

    Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less

  17. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Andre

    2015-08-27

    Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less

  18. Using Rasch Analysis to Examine the Dimensionality Structure and Differential Item Functioning of the Arabic Version of the Perceived Physical Ability Scale for Children

    ERIC Educational Resources Information Center

    Abd-El-Fattah, Sabry M.; AL-Sinani, Yousra; El Shourbagi, Sahar; Fakhroo, Hessa A.

    2014-01-01

    This study uses the Rasch model technique to examine the dimensionality structure and differential item functioning of the Arabic version of the Perceived Physical Ability Scale for Children (PPASC). A sample of 220 Omani fourth graders (120 males and 100 females) responded to an Arabic translated version of the PPASC. Data on students'…

  19. Plasma asymmetric dimethylarginine, L-arginine and left ventricular structure and function in a community-based sample.

    PubMed

    Lieb, Wolfgang; Benndorf, Ralf A; Benjamin, Emelia J; Sullivan, Lisa M; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H; Vasan, Ramachandran S

    2009-05-01

    Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. We related plasma ADMA and L-arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1919 Framingham Offspring Study participants (mean age 57 years, 58% women). Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. In our large community-based sample, plasma ADMA and l-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation.

  20. Sample-based synthesis of two-scale structures with anisotropy

    DOE PAGES

    Liu, Xingchen; Shapiro, Vadim

    2017-05-19

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  1. Sample-based synthesis of two-scale structures with anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingchen; Shapiro, Vadim

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  2. Single Wall Nanotube Type-Specific Functionalization and Separation

    NASA Technical Reports Server (NTRS)

    Boul, Peter; Nikolaev, Pavel; Sosa, Edward; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Metallic single-wall carbon nanotubes were selectively solubilized in THF and separated from semiconducting nanotubes. Once separated, the functionalized metallic tubes were de-functionalized to restore their metallic band structure. Absorption and Raman spectroscopy of the enriched samples support conclusions of the enrichment of nanotube samples by metallic type. A scalable method for enriching nanotube conductive type has been developed. Raman and UV-Vis data indicate SWCNT reaction with dodecylbenzenediazonium results in metallic enrichment. It is expected that further refinement of this techniques will lead to more dramatic separations of types and diameters.

  3. Small differences in amylopectin fine structure may explain large functional differences of starch.

    PubMed

    Bertoft, Eric; Annor, George A; Shen, Xinyu; Rumpagaporn, Pinthip; Seetharaman, Koushik; Hamaker, Bruce R

    2016-04-20

    Four amylose-free waxy rice starches were found to give rise to gels with clearly different morphology after storage for seven days at 4°C. The thermal and rheological properties of these gels were also different. This was remarkable in light of the subtle differences in the molecular structure of the amylopectin in the samples. Addition of iodine to the amylopectin samples suggested that not only external chains, but also the internal chains of amylopectin, could form helical inclusion complexes. It is suggested that these internal helical segments participate in the retrogradation of amylopectin, thereby stabilising the gels through double helical structures with external chains of adjacent molecules. Albeit few in number, such interactions appear to have important influences on starch functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ocean plankton. Structure and function of the global ocean microbiome.

    PubMed

    Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer

    2015-05-22

    Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  5. Toward a standardized structural-functional group connectome in MNI space.

    PubMed

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain in stereotactic space. The standardized group connectome might thus be a promising new resource to better understand and further analyze the anatomical architecture of the human brain on a population level. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Conformational Sampling of a Biomolecular Rugged Energy Landscape.

    PubMed

    Rydzewski, Jakub; Jakubowski, Rafal; Nicosia, Giuseppe; Nowak, Wieslaw

    2018-01-01

    The protein structure refinement using conformational sampling is important in hitherto protein studies. In this paper, we examined the protein structure refinement by means of potential energy minimization using immune computing as a method of sampling conformations. The method was tested on the x-ray structure and 30 decoys of the mutant of [Leu]Enkephalin, a paradigmatic example of the biomolecular multiple-minima problem. In order to score the refined conformations, we used a standard potential energy function with the OPLSAA force field. The effectiveness of the search was assessed using a variety of methods. The robustness of sampling was checked by the energy yield function which measures quantitatively the number of the peptide decoys residing in an energetic funnel. Furthermore, the potential energy-dependent Pareto fronts were calculated to elucidate dissimilarities between peptide conformations and the native state as observed by x-ray crystallography. Our results showed that the probed potential energy landscape of [Leu]Enkephalin is self-similar on different metric scales and that the local potential energy minima of the peptide decoys are metastable, thus they can be refined to conformations whose potential energy is decreased by approximately 250 kJ/mol.

  7. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation

    NASA Astrophysics Data System (ADS)

    Bustamante, María; Tajadura, Javier; Gorostiaga, José María; Saiz-Salinas, José Ignacio

    2014-06-01

    Macroalgae comprise a prominent part of the rocky benthos where many invertebrates develop, and are believed to be undergoing severe declines worldwide. In order to investigate how the vegetation structure (crustose, basal and canopy layers) contributes to the diversity, structure and function of benthic invertebrates, a total of 31 subtidal transects were sampled along the northeast Atlantic coast of Spain. Significant positive relationships were found between the canopy layer and faunal abundance, taxonomic diversity and functional group diversity. Canopy forming algae were also related to epiphytic invertebrates, medium size forms, colonial strategy and suspensivores. By contrast, basal algae showed negative relationships with all variables tested except for detritivores. Multivariate multiple regression analyses (DISTLM) point to crustose as well as canopy layers as the best link between seaweeds and invertebrate assemblage structure. A close relationship was found between taxonomic and functional diversities. In general, low levels of taxonomic redundancy were detected for functional groups correlated with vegetation structure. A conceptual model based on the results is proposed, describing distinct stages of invertebrate assemblages in relation to the vertical structure of vegetation.

  8. An Investigation of the Sample Performance of Two Nonnormality Corrections for RMSEA

    ERIC Educational Resources Information Center

    Brosseau-Liard, Patricia E.; Savalei, Victoria; Li, Libo

    2012-01-01

    The root mean square error of approximation (RMSEA) is a popular fit index in structural equation modeling (SEM). Typically, RMSEA is computed using the normal theory maximum likelihood (ML) fit function. Under nonnormality, the uncorrected sample estimate of the ML RMSEA tends to be inflated. Two robust corrections to the sample ML RMSEA have…

  9. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  10. Network structure shapes spontaneous functional connectivity dynamics.

    PubMed

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  11. Polymorphism in magic-sized Au144(SR)60 clusters

    NASA Astrophysics Data System (ADS)

    Jensen, Kirsten M. Ø.; Juhas, Pavol; Tofanelli, Marcus A.; Heinecke, Christine L.; Vaughan, Gavin; Ackerson, Christopher J.; Billinge, Simon J. L.

    2016-06-01

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. Here we present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. The study reveals structural polymorphism in these archetypal nanoclusters. In addition to confirming the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. The discovery of polymorphism may open up a new dimension in nanoscale engineering.

  12. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  13. Physical, mental, and cognitive function in a convenience sample of centenarians in Australia.

    PubMed

    Richmond, Robyn L; Law, Jenaleen; Kay-Lambkin, Frances

    2011-06-01

    To examine the physical, mental, and cognitive function of centenarians. Descriptive study using a structured questionnaire and convenience sampling. Residential care facilities and private dwellings in Australia. A convenience sample of 188 centenarians. The Hospital Anxiety and Depression Scale (HADS) screened for anxiety and depression. The Katz Index of Independence in Activities of Daily Living (Katz ADL) was used to assess functional status. The Quality of Life Scale was used to assess quality of life. The Mini-Mental State Examination (MMSE) was used to screen for dementia. Structured responses were obtained for living arrangement, marital status, social relationships, and supports. Centenarians had regular contact with friends (59%), neighbors (62%), and families (72%); 54% were religious and 43.5% had received social supports. Average MMSE and Katz ADL scores were 21.5 and 3.7, respectively; 45% had scores on the MMSE indicative of dementia, 10% indicated anxiety and 14% depression on the HADS. Participants with poor ratings of health experienced higher rates of anxiety and depression than their healthier counterparts. In this convenience sample of Australian centenarians, anxiety and depression was relatively nonexistent, and most reported a high quality of life. This was despite objective deterioration in functional status, paralleling the aging process, and high dependence on others for everyday tasks. Potentially, this is suggestive of a unique ability within the sample to adapt to aging and its limitations. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  14. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  15. Adaptive optical microscope for brain imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  16. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.

    PubMed

    Boudard, Mélanie; Bernauer, Julie; Barth, Dominique; Cohen, Johanne; Denise, Alain

    2015-01-01

    Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.

  17. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review.

    PubMed

    Eng, Goi Khia; Sim, Kang; Chen, Shen-Hsing Annabel

    2015-05-01

    Obsessive-compulsive disorder (OCD) is a debilitating disorder. However, existing neuroimaging findings involving executive function and structural abnormalities in OCD have been mixed. Here we conducted meta-analyses to investigate differences in OCD samples and controls in: Study 1 - grey matter structure; Study 2 - executive function task-related activations during (i) response inhibition, (ii) interference, and (iii) switching tasks; and Study 3 - white matter diffusivity. Results showed grey matter differences in the frontal, striatal, thalamus, parietal and cerebellar regions; task domain-specific neural differences in similar regions; and abnormal diffusivity in major white matter regions in OCD samples compared to controls. Our results reported concurrence of abnormal white matter diffusivity with corresponding abnormalities in grey matter and task-related functional activations. Our findings suggested the involvement of other brain regions not included in the cortico-striato-thalamo-cortical network, such as the cerebellum and parietal cortex, and questioned the involvement of the orbitofrontal region in OCD pathophysiology. Future research is needed to clarify the roles of these brain regions in the disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China.

    PubMed

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-03-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites.

  19. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-01-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites. PMID:20861922

  20. Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: application in the refinement of de novo models.

    PubMed

    Fan, Hao; Periole, Xavier; Mark, Alan E

    2012-07-01

    The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH-REMD approach sampled structures in which the root-mean-square deviation (RMSD) of secondary structure elements (SSE-RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near-native conformations was also examined. Little correlation between the SSE-RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE-RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced-sampling techniques such as CH-REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near-native structures are still needed. Copyright © 2012 Wiley Periodicals, Inc.

  1. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Social cognition in schizophrenia: Factor structure of emotion processing and theory of mind.

    PubMed

    Browne, Julia; Penn, David L; Raykov, Tenko; Pinkham, Amy E; Kelsven, Skylar; Buck, Benjamin; Harvey, Philip D

    2016-08-30

    Factor analytic studies examining social cognition in schizophrenia have yielded inconsistent results most likely due to the varying number and quality of measures. With the recent conclusion of Phase 3 of the Social Cognition Psychometric Evaluation (SCOPE) Study, the most psychometrically sound measures of social cognition have been identified. Therefore, the aims of the present study were to: 1) examine the factor structure of social cognition in schizophrenia through the utilization of psychometrically sound measures, 2) examine the stability of the factor structure across two study visits, 3) compare the factor structure of social cognition in schizophrenia to that in healthy controls, and 4) examine the relationship between the factors and relevant outcome measures including social functioning and symptoms. Results supported a one-factor model for the patient and healthy control samples at both visits. This single factor was significantly associated with negative symptoms in the schizophrenia sample and with social functioning in both groups at both study visits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Social cognition in schizophrenia: Factor structure of emotion processing and theory of mind

    PubMed Central

    Browne, Julia; Penn, David L.; Raykov, Tenko; Pinkham, Amy E.; Kelsven, Skylar; Buck, Benjamin; Harvey, Philip D.

    2018-01-01

    Factor analytic studies examining social cognition in schizophrenia have yielded inconsistent results most likely due to the varying number and quality of measures. With the recent conclusion of Phase 3 of the Social Cognition Psychometric Evaluation (SCOPE) Study, the most psychometrically sound measures of social cognition have been identified. Therefore, the aims of the present study were to: 1) examine the factor structure of social cognition in schizophrenia through the utilization of psychometrically sound measures, 2) examine the stability of the factor structure across two study visits, 3) compare the factor structure of social cognition in schizophrenia to that in healthy controls, and 4) examine the relationship between the factors and relevant outcome measures including social functioning and symptoms. Results supported a one-factor model for the patient and healthy control samples at both visits. This single factor was significantly associated with negative symptoms in the schizophrenia sample and with social functioning in both groups at both study visits. PMID:27280525

  4. The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats.

    PubMed

    Aubé, Johanne; Senin, Pavel; Pringault, Olivier; Bonin, Patricia; Deflandre, Bruno; Bouchez, Olivier; Bru, Noëlle; Biritxinaga-Etchart, Edurne; Klopp, Christophe; Guyoneaud, Rémy; Goñi-Urriza, Marisol

    2016-10-15

    Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The development of an annotated library of neutral human milk oligosaccharides

    PubMed Central

    Wu, Shuai; Tao, Nannan; German, J. Bruce; Grimm, Rudolf; Lebrilla, Carlito B.

    2010-01-01

    Human milk oligosaccharides (HMOs)a perform a number of functions including serving as prebiotics to stimulate the growth of beneficial intestinal bacteria, as receptor analogs to inhibit binding of pathogens, and as substances that promote postnatal brain development. There is further evidence that HMOs participate in modulating the human immune system. Because the absorption, catabolism and biological function of oligosaccharides (OS) have strong correlations with their structures, structure elucidation is key to advancing this research. Oligosaccharides are produced by competing enzymes that provide the large structural diversity and heterogeneity that characterizes this class of compounds. Unlike the proteome, there is no template for oligosaccharides making it difficult to rapidly identify oligosaccharide structures. In this research, the annotation of the neutral free oligosaccharides in milk is performed to develop a database for the rapid identification of oligosaccharide structures. Our strategy incorporates high performance nanoflow liquid chromatography and mass spectrometry for characterizing HMO structures. HPLC-Chip/TOF MS provides a sensitive and quantitative method for sample profiling. The reproducible retention time and accurate mass can be used to rapidly identify the OS structures in HMO samples. A library with 45 neutral OS structures has been constructed. The structures include information regarding the epitopes such as Lewis type as well as information regarding the secretor status. PMID:20578730

  6. Use of PFU protozoan community structural and functional characteristics in assessment of water quality in a large, highly polluted freshwater lake in China.

    PubMed

    Xu, Muqi; Cao, Hong; Xie, Ping; Deng, Daogui; Feng, Weisong; Xu, Jian

    2005-07-01

    Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S(eq), G and T90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.

  7. Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy

    PubMed Central

    Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.

    2012-01-01

    Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746

  8. Thermoluminescence property of nano scale Al{sub 2}O{sub 3}: C by combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharthasaradhi, R.; Nehru, L. C.

    In this study, thermoluminescence dosimetry material of carbon doped aluminium oxide by combustion method using Aluminium nitrate and Glycine. The Structure of the prepared Sample was carried out by XRD. The sample was nano crystalline in nature. Having hexagonal structure with unit cell parameters a=4.75Å, C=12.99Å. The surface morphology of the prepared nanopowder was carried out through (SEM). The morphology of the prepared sample is platelet structure and functional group analysis carried out through FT-IR Spectrum. The prepared sample was irradiated through γ-ray CO{sup 60} (100 Gy) was used as γ-ray source. The thermoluminescence glow curve of the irradiated samplemore » showed an isolated peak at around 200°C. The result suggest the prepared nanopowder is suitable for medical radiation dosimetry.« less

  9. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  10. Estimation of the characteristic parameters of the multilayered film model using the patterson differential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: webmaster@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    The possibility of estimating the layered film structural parameters by constructing the autocorrelation function P{sub F}(z) (referred to as the Patterson differential function) for the derivative d{rho}/dz of electron density along the normal to the sample surface has been considered. An analytical expression P{sub F}(z) is presented for a multilayered film within the box model of the electron density profile. The possibilities of selecting structural information about layered films by analyzing the features of this function are demonstrated by model and real examples, in particular, by applying the method of shifted systems of peaks for the function P{sub F}(z).

  11. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data

    PubMed Central

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880

  12. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.

    PubMed

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.

  13. Exploring the functional side of the Ocean Sampling Day metagenomes

    NASA Astrophysics Data System (ADS)

    Antonio, F. G.; Kottmann, R.; Wallom, D.; Glöckner, F. O.

    2016-02-01

    The Ocean Sampling Day (OSD) is a simultaneous, collaborative, standardized, and global mega-sequencing campaign to analyze marine microbial community composition and functional traits. 150 metagenomes were sequenced from the first OSD in June 2014 including a rich set of environmental and oceanographic measurements. Unlike other ocean mega-surveys such as Global Ocean Sampling (GOS) or the TARA expedition that mostly sampled open ocean waters most of the OSD samples are from coastal sampling sites, an area not previously well studied in this regard. The result is that OSD adds more than three million new genes to the recently published Ocean Microbial-Reference Gene Catalog (Sunawaga et al., 2015). This allows us to significantly increase our knowledge of the ocean microbiome, identify hot-spots of novelty in terms of function and investigate the impact of human activities on oceans coastal areas where there is the largest interaction between dense human populations and the marine world. Additionally, these cumulative samples, related in time, space and environmental parameters, are providing insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel ocean-derived biotechnologies. References: Sunagawa, Coelho, Chaffron, et al. (2015, May). Structure and function of the global ocean microbiome. Science, 348(6237), 126135.

  14. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness

    PubMed Central

    Esposito Corcione, Carola; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-01-01

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness. PMID:28788215

  15. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness.

    PubMed

    Corcione, Carola Esposito; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-09-22

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness.

  16. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area.

    PubMed

    Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui

    2018-06-01

    Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. White Matter Connectivity of the Thalamus Delineates the Functional Architecture of Competing Thalamocortical Systems

    PubMed Central

    O'Muircheartaigh, Jonathan; Keller, Simon S.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    There is an increasing awareness of the involvement of thalamic connectivity on higher level cortical functioning in the human brain. This is reflected by the influence of thalamic stimulation on cortical activity and behavior as well as apparently cortical lesion syndromes occurring as a function of small thalamic insults. Here, we attempt to noninvasively test the correspondence of structural and functional connectivity of the human thalamus using diffusion-weighted and resting-state functional MRI. Using a large sample of 102 adults, we apply tensor independent component analysis to diffusion MRI tractography data to blindly parcellate bilateral thalamus according to diffusion tractography-defined structural connectivity. Using resting-state functional MRI collected in the same subjects, we show that the resulting structurally defined thalamic regions map to spatially distinct, and anatomically predictable, whole-brain functional networks in the same subjects. Although there was significant variability in the functional connectivity patterns, the resulting 51 structural and functional patterns could broadly be reduced to a subset of 7 similar core network types. These networks were distinct from typical cortical resting-state networks. Importantly, these networks were distributed across the brain and, in a subset, map extremely well to known thalamocortico-basal-ganglial loops. PMID:25899706

  18. An Evaluation of the Texas Functional Living Scale's Latent Structure and Subscales.

    PubMed

    González, David Andrés; Soble, Jason R; Marceaux, Janice C; McCoy, Karin J M

    2017-02-01

    Performance-based functional assessment is a critical component of neuropsychological practice. The Texas Functional Living Scale (TFLS) has promise given its brevity, nationally representative norms, and co-norming with Wechsler scales. However, its subscale structure has not been evaluated. The purpose of this study was to evaluate the TFLS in a mixed clinical sample (n = 197). Reliability and convergent and discriminant validity coefficients were calculated with neurocognitive testing and collateral reports and factor analysis was performed. The Money and Calculation subscale had the best psychometric properties of the subscales. The evidence did not support solitary interpretation of the Time subscale. A three-factor latent structure emerged representing memory and semantic retrieval, performance and visual scanning, and financial calculation. This study added psychometric support for interpretation of the TFLS total score and some of its subscales. Study limitations included sample characteristics (e.g., gender ratio) and low power for collateral report analyses. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Organization Structure and Administrative Control: A Question of Dimensionality.

    ERIC Educational Resources Information Center

    Montanari, John R.; Freedman, Sara M.

    1981-01-01

    Used a sample of national firms (N=836) to investigate the relationship between specialization, formalization, and centralization in the functional work unit. Data indicated that the three variables compose a single dimension of organizational structure. Another finding was that, within this dimension, specialization, formalization, and…

  20. Effective dimension reduction for sparse functional data

    PubMed Central

    YAO, F.; LEI, E.; WU, Y.

    2015-01-01

    Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293

  1. Plasma asymmetric dimethylarginine, L-arginine and Left Ventricular Structure and Function in a Community-based Sample

    PubMed Central

    Lieb, Wolfgang; Benndorf, Ralf A.; Benjamin, Emelia J.; Sullivan, Lisa M.; Maas, Renke; Xanthakis, Vanessa; Schwedhelm, Edzard; Aragam, Jayashri; Schulze, Friedrich; Böger, Rainer H.; Vasan, Ramachandran S.

    2009-01-01

    Objective Increasing evidence indicates that cardiac structure and function are modulated by the nitric oxide (NO) system. Elevated plasma concentrations of asymmetric dimethylarginine (ADMA; a competitive inhibitor of NO synthase) have been reported in patients with end-stage renal disease. It is unclear if circulating ADMA and L-arginine levels are related to cardiac structure and function in the general population. Methods We related plasma ADMA and L-Arginine (the amino acid precursor of NO) to echocardiographic left ventricular (LV) mass, left atrial (LA) size and fractional shortening (FS) using multivariable linear regression analyses in 1,919 Framingham Offspring Study participants (mean age 57 years, 58 % women). Results Overall, neither ADMA or L-arginine, nor their ratio was associated with LV mass, LA size and FS in multivariable models (p>0.10 for all). However, we observed effect modification by obesity of the relations of ADMA and LA size (p for interaction p=0.04): ADMA was positively related to LA size in obese individuals (adjusted-p=0.0004 for trend across ADMA quartiles) but not in non-obese people. Conclusion In our large community-based sample, plasma ADMA and L-arginine concentrations were not related to cardiac structure or function. The observation of positive relations of LA size and ADMA in obese individuals warrants confirmation. PMID:18829028

  2. Effect of breed and sperm concentration on the changes in structural, functional and motility parameters of ram-lamb spermatozoa during storage at 4 degrees C.

    PubMed

    Kasimanickam, Ramanathan; Kasimanickam, Vanmathy; Pelzer, Kevin D; Dascanio, John J

    2007-09-01

    The objectives of this study were (1) to determine the changes in structural, functional and motility parameters of ram-lamb semen stored at two different concentrations at 4 degrees C for 8 days in egg-yolk based extender and (2) to determine the effect of breed of ram-lambs on the changes in structural, functional and motility parameters of ram-lamb semen from different breeds stored at two different concentrations at 4 degrees C for 8 days in egg-yolk based extender. Two different concentrations suitable for laparoscopic and cervical insemination were employed in this experiment. A total of 14 ram-lambs (Polled Dorset-5, Suffolk-5, Katahdin-4) with satisfactory breeding potential were selected. Semen samples were collected by electro-ejaculation. Semen samples were extended to 50 and 200 million sperm per ml with a commercial egg yolk based extender (Triladyl, Minitube of America, Verona, WI, USA) at room temperature and were stored at 4 degrees C. The sperm DNA fragmentation index (DFI), percentages of high mitochondrial membrane potential (hMMP) and plasma membrane integrity (PMI) were assessed using flow cytometry as part of structural and functional parameters on Days 0, 1, 4, 6, and 8. A computer assisted sperm analyser (HTM-IVOS, Version 10.8, Hamilton Thorne Research, Beverly, MA, USA) was used to assess the sperm motility parameters on Days 0, 1, 4, 6, and 8. PROC MIXED procedure was used to determine the effect of days of storage, concentration and breed. The concentration and days of storage significantly affected the sperm structural, functional and motility parameters (P<0.0001). Significant concentration x days of storage interaction was found for all structural and functional parameters. There was a significant concentration x days of storage interaction for average path velocity, curvilinear velocity, straightness and linearity. Overall changes in the sperm structural, functional and sperm motility parameters over the storage period were less dramatic in the 200 x 10(6) ml(-1) concentration when compared to 50 x 10(6) ml(-1) concentration. The hMMP and total progressive motility were influenced by breed. In conclusion, the quality of structural, functional and motility parameters declined as days of storage were increased and the magnitude of changes in the parameters was less dramatic at the higher concentration.

  3. SIZE, STRUCTURE AND FUNCTIONALITY IN SHALLOW COVE COMMUNITIES IN RI

    EPA Science Inventory

    We are using an ecosystem approach to examine the ecological integrity and important habitats in small estuarine coves. We sampled the small undeveloped Coggeshall Cove during the sununer of 1999. The cove was sampled at high tide at every 15 cm of substrate elevation along trans...

  4. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.

    PubMed

    Olson, Mark A; Feig, Michael; Brooks, Charles L

    2008-04-15

    This article examines ab initio methods for the prediction of protein loops by a computational strategy of multiscale conformational sampling and physical energy scoring functions. Our approach consists of initial sampling of loop conformations from lattice-based low-resolution models followed by refinement using all-atom simulations. To allow enhanced conformational sampling, the replica exchange method was implemented. Physical energy functions based on CHARMM19 and CHARMM22 parameterizations with generalized Born (GB) solvent models were applied in scoring loop conformations extracted from the lattice simulations and, in the case of all-atom simulations, the ensemble of conformations were generated and scored with these models. Predictions are reported for 25 loop segments, each eight residues long and taken from a diverse set of 22 protein structures. We find that the simulations generally sampled conformations with low global root-mean-square-deviation (RMSD) for loop backbone coordinates from the known structures, whereas clustering conformations in RMSD space and scoring detected less favorable loop structures. Specifically, the lattice simulations sampled basins that exhibited an average global RMSD of 2.21 +/- 1.42 A, whereas clustering and scoring the loop conformations determined an RMSD of 3.72 +/- 1.91 A. Using CHARMM19/GB to refine the lattice conformations improved the sampling RMSD to 1.57 +/- 0.98 A and detection to 2.58 +/- 1.48 A. We found that further improvement could be gained from extending the upper temperature in the all-atom refinement from 400 to 800 K, where the results typically yield a reduction of approximately 1 A or greater in the RMSD of the detected loop. Overall, CHARMM19 with a simple pairwise GB solvent model is more efficient at sampling low-RMSD loop basins than CHARMM22 with a higher-resolution modified analytical GB model; however, the latter simulation method provides a more accurate description of the all-atom energy surface, yet demands a much greater computational cost. (c) 2007 Wiley Periodicals, Inc.

  5. Structural and functional perspectives on classification and seriation in psychotic and normal children.

    PubMed

    Breslow, L; Cowan, P A

    1984-02-01

    This study describes a strategy for examining cognitive functioning in psychotic and normal children without the usual confounding effects of marked differences in cognitive structure that occur when children of the same age are compared. Participants were 14 psychotic children, 12 males and 2 females, mean age 9-2, matched with normal children at preoperational and concrete operational stage levels on a set of Piagetian classification tasks. The mean age of the normal children was 6-4, replicating the usually found developmental delay in psychotic samples. Participants were then compared on both structural level and functional abilities on a set of tasks involving seriation of sticks; the higher-level children were also administered a seriation drawing task. Analysis of children's processes of seriating and seriation drawings indicated that over and above the structural retardation, psychotic children at all levels showed functional deficits, especially in the use of anticipatory imagery. The implications for general developmental theory are that progress in structural development is not sufficient for imaginal development, and that structural development of logical concepts is relatively independent of the development of imagery. It was suggested that "thought disorder" may not be a disordered structure of thinking or a retardation in psychotic populations but rather a mismatch between higher-level logical structures and lower-level functions.

  6. Polymorphism in magic-sized Au144(SR)60 clusters

    DOE PAGES

    Jensen, Kirsten M. O.; Juhas, Pavol; Tofanelli, Marcus A.; ...

    2016-06-14

    Ultra-small, magic-sized metal nanoclusters represent an important new class of materials with properties between molecules and particles. However, their small size challenges the conventional methods for structure characterization. We present the structure of ultra-stable Au144(SR)60 magic-sized nanoclusters obtained from atomic pair distribution function analysis of X-ray powder diffraction data. Our study reveals structural polymorphism in these archetypal nanoclusters. Additionally, in order to confirm the theoretically predicted icosahedral-cored cluster, we also find samples with a truncated decahedral core structure, with some samples exhibiting a coexistence of both cluster structures. Although the clusters are monodisperse in size, structural diversity is apparent. Finally,more » the discovery of polymorphism may open up a new dimension in nanoscale engineering.« less

  7. Application of Functional Use Predictions to Aid in Structure ...

    EPA Pesticide Factsheets

    Humans are potentially exposed to thousands of anthropogenic chemicals in commerce. Recent work has shown that the bulk of this exposure may occur in near-field indoor environments (e.g., home, school, work, etc.). Advances in suspect screening analyses (SSA) now allow an improved understanding of the chemicals present in these environments. However, due to the nature of suspect screening techniques, investigators are often left with chemical formula predictions, with the possibility of many chemical structures matching to each formula. Here, newly developed quantitative structure-use relationship (QSUR) models are used to identify potential exposure sources for candidate structures. Previously, a suspect screening workflow was introduced and applied to house dust samples collected from the U.S. Department of Housing and Urban Development’s American Healthy Homes Survey (AHHS) [Rager, et al., Env. Int. 88 (2016)]. This workflow utilized the US EPA’s Distributed Structure-Searchable Toxicity (DSSTox) Database to link identified molecular features to molecular formulas, and ultimately chemical structures. Multiple QSUR models were applied to support the evaluation of candidate structures. These QSURs predict the likelihood of a chemical having a functional use commonly associated with consumer products having near-field use. For 3,228 structures identified as possible chemicals in AHHS house dust samples, we were able to obtain the required descriptors to appl

  8. Structural and magnetic properties of pure and Ca-doped LaCoO3 nanopowders obtained by a sol-gel route.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Maragno, Cinzia; Tondello, Eugenio; Caneschi, Andrea; Sangregorio, Claudio; Gialanella, Stefano

    2006-04-01

    Pure and Ca-doped LaCoO3 nanopowders were prepared by a non-alkoxidic sol-gel route using cobalt(II) acetate, lanthanum(III) nitrate and calcium(II) acetate as oxide precursors. The structural evolution and magnetic properties of the samples were studied as a function of thermal treatments in air up to 1273 K. In particular, the microstructure and composition of the systems were analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Both pure and calcium-doped samples annealing at 973 K resulted in the formation of cubic LaCoO3 (average crystallite size <30 nm). This phase was fully retained in the calcium-doped materials even after annealing at higher temperatures, whereas a transition to the rhomboedral polymorph was detected in the pure samples at 1073 K. The magnetic behavior of the nanopowders was investigated as a function of temperature and applied field using both dynamic and static susceptibility measurements. Pure lanthanum cobaltite samples underwent a transition to an ordered state at 88 K, and their magnetic properties changed as a function of thermal treatments. As concerns calcium-doped samples, they ordered ferromagnetically at 171 and 185 K depending on the annealing temperature and displayed open hysteresis loops with coercive fields as large as 1.75 T at low temperatures.

  9. Options in Extraterrestrial Sample Handling and Study

    NASA Technical Reports Server (NTRS)

    Papanastassiou, Dimitri A.

    2000-01-01

    This presentation mentions important service functions such as: sample preservation, hazard assessment, and handling. It also discuss how preliminary examination of samples is necessary for sample hazard assessment and for sample allocations. Clean facilities and clean sample handling are required. Conflicts, cross contamination issues will be present and need to be resolved. Extensive experience is available for extraterrestrial samples and must be sought and applied. Extensive experience is available in studies of pathogenicity and must be sought and applied as necessary. Advisory and oversight structures must also be in place

  10. Studying the Microanatomy of the Heart in Three Dimensions: A Practical Update

    PubMed Central

    Jarvis, Jonathan C.; Stephenson, Robert

    2013-01-01

    The structure and function of the heart needs to be understood in three dimensions. We give a brief historical summary of the methods by which such an understanding has been sought, and some practical details of the relatively new technique of micro-CT with iodine contrast enhancement in samples from rat and rabbit. We discuss how the improved anatomical detail available in fixed cadaveric hearts will enhance our ability to model and to understand the integrated function of the cardiomyocytes, conducting tissues, and fibrous supporting structures that generate the pumping function of the heart. PMID:24400272

  11. Spectroscopy of Sound Transmission in Solid Samples

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Peterson, Joshua P.; Fitzjarrald, Tamara J.

    2013-01-01

    These laboratory experiments are designed to familiarize students with concepts of spectroscopy by using sound waves. Topics covered in these experiments include the structure of nitinol alloys and polymer chain stiffness as a function of structure and temperature. Generally, substances that are stiffer or have higher symmetry at the molecular…

  12. Developing Structural Specification: Productivity in Early Hebrew Verb Usage

    ERIC Educational Resources Information Center

    Lustigman, Lyle

    2013-01-01

    The study investigates acquisition of verb inflections by four monolingual Hebrew-acquiring children from middle-class backgrounds, audio-recorded in longitudinal, weekly samples at a mean age-range of between 18 and 26 months. Productive use of inflectional morphology is shown to manifest increasing structural specification, as a function of…

  13. Characterizing Atomistic Geometries and Potential Functions Using Strain Functionals

    NASA Astrophysics Data System (ADS)

    Kober, Edward; Mathew, Nithin; Rudin, Sven

    2017-06-01

    We demonstrate the use of strain tensor functionals for characterizing arbitrarily ordered atomistic structures. This approach defines a Gaussian-weighted neighborhood around each atom and characterizes that local geometry in terms of n-th order strain tensors, which are equivalent to the n-th order moments/derivatives of the neighborhood. Fourth order expansions can distinguish the cubic structures (and deformations thereof), but sixth order expansions are required to fully characterize hexagonal structures. These functions are continuous and smooth and much less sensitive to thermal fluctuations than other descriptors based on discrete neighborhoods. Reducing these metrics to rotational invariant descriptors allows a large number of defect structures to be readily identified and forms the basis of a classification scheme that allows molecular dynamics simulations to be readily analyzed. Applications to the analysis of shock waves impinging on samples of Cu, Ta and Ti will be presented. The method has been extended to vector fields as well, enabling the local stress to be cast in terms of rotationally invariant functions as well. The stress-strain correlations can then be used as the basis for developing and analyzing potential functions.

  14. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  15. Fast de novo discovery of low-energy protein loop conformations.

    PubMed

    Wong, Samuel W K; Liu, Jun S; Kou, S C

    2017-08-01

    In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402-1412. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling

    NASA Astrophysics Data System (ADS)

    Schiepers, Christiaan; Hoh, Carl K.; Dahlbom, Magnus; Wu, Hsiao-Ming; Phelps, Michael E.

    1999-05-01

    PET imaging can quantify metabolic processes in-vivo; this requires the measurement of an input function which is invasive and labor intensive. A non-invasive, semi-automated, image based method of input function generation would be efficient, patient friendly, and allow quantitative PET to be applied routinely. A fully automated procedure would be ideal for studies across institutions. Factor analysis (FA) was applied as processing tool for definition of temporally changing structures in the field of view. FA has been proposed earlier, but the perceived mathematical difficulty has prevented widespread use. FA was utilized to delineate structures and extract blood and tissue time-activity-curves (TACs). These TACs were used as input and output functions for tracer kinetic modeling, the results of which were compared with those from an input function obtained with serial blood sampling. Dynamic image data of myocardial perfusion studies with N-13 ammonia, O-15 water, or Rb-82, cancer studies with F-18 FDG, and skeletal studies with F-18 fluoride were evaluated. Correlation coefficients of kinetic parameters obtained with factor and plasma input functions were high. Linear regression usually furnished a slope near unity. Processing time was 7 min/patient on an UltraSPARC. Conclusion: FA can non-invasively generate input functions from image data eliminating the need for blood sampling. Output (tissue) functions can be simultaneously generated. The method is simple, requires no sophisticated operator interaction and has little inter-operator variability. FA is well suited for studies across institutions and standardized evaluations.

  17. Functional enzyme-based modeling approach for dynamic simulation of denitrification process in hyporheic zone sediments: Genetically structured microbial community model

    NASA Astrophysics Data System (ADS)

    Song, H. S.; Li, M.; Qian, W.; Song, X.; Chen, X.; Scheibe, T. D.; Fredrickson, J.; Zachara, J. M.; Liu, C.

    2016-12-01

    Modeling environmental microbial communities at individual organism level is currently intractable due to overwhelming structural complexity. Functional guild-based approaches alleviate this problem by lumping microorganisms into fewer groups based on their functional similarities. This reduction may become ineffective, however, when individual species perform multiple functions as environmental conditions vary. In contrast, the functional enzyme-based modeling approach we present here describes microbial community dynamics based on identified functional enzymes (rather than individual species or their groups). Previous studies in the literature along this line used biomass or functional genes as surrogate measures of enzymes due to the lack of analytical methods for quantifying enzymes in environmental samples. Leveraging our recent development of a signature peptide-based technique enabling sensitive quantification of functional enzymes in environmental samples, we developed a genetically structured microbial community model (GSMCM) to incorporate enzyme concentrations and various other omics measurements (if available) as key modeling input. We formulated the GSMCM based on the cybernetic metabolic modeling framework to rationally account for cellular regulation without relying on empirical inhibition kinetics. In the case study of modeling denitrification process in Columbia River hyporheic zone sediments collected from the Hanford Reach, our GSMCM provided a quantitative fit to complex experimental data in denitrification, including the delayed response of enzyme activation to the change in substrate concentration. Our future goal is to extend the modeling scope to the prediction of carbon and nitrogen cycles and contaminant fate. Integration of a simpler version of the GSMCM with PFLOTRAN for multi-scale field simulations is in progress.

  18. High diversity and variability in the bacterial microbiota of the coffee berry borer (Coleoptera: Curculionidae), with emphasis on Wolbachia.

    PubMed

    Mariño, Yobana A; Ospina, Oscar E; Verle Rodrigues, José C; Bayman, Paul

    2018-03-30

    Variation in microbiota of the coffee berry borer (CBB) Hypothenemus hampei was studied. Diversity, structure and function of bacterial communities were compared between eggs vs. adults, CBBs from shade coffee vs. sun coffee, CBBs from the field vs. raised in the lab, and CBBs with and without the antibiotic tetracycline. We sequenced the region V4 of the gene 16 S rRNA. Pseudomonadaceae and Enterobacteriaceae, particularly Pseudomonas and Pantoea, dominated microbiota of the CBB. Comparative functional inferences with PICRUSt suggested that samples from the field were enriched for genes involved in carbohydrate and protein digestion and absorption, while lab-reared samples were higher in genes for melanization and caffeine metabolism. Microbiota of the CBB was diverse and dominated by the genus Pseudomonas, several species of which have been previously associated with caffeine degradation in this insect. Wolbachia was the only endosymbiont detected with known ability to manipulate host reproduction. This study demonstrates that stage of development and origin of samples affected the structure and function of the CBB's bacterial communities. This is the first attempt to predict functional significance of the CBB microbiota in nutrition, reproduction and defense. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Quantification of soil structure based on Minkowski functions

    NASA Astrophysics Data System (ADS)

    Vogel, H.-J.; Weller, U.; Schlüter, S.

    2010-10-01

    The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.

  20. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimal weighting in fNL constraints from large scale structure in an idealised case

    NASA Astrophysics Data System (ADS)

    Slosar, Anže

    2009-03-01

    We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter fNL. We work within the Fisher matrix formalism expanded around fiducial model with fNL = 0 and make several simplifying assumptions. By slicing a general sample into infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about fNL in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally suboptimal in the limit where Poisson errors dominate.

  2. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    NASA Astrophysics Data System (ADS)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  3. Relations between prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure

    PubMed Central

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M.; Riggins, Tracy

    2014-01-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory), and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample included 105 (55 female, 50 male) urban, primarily African American adolescents (mean age 15.5 years) from low socioeconomic status (SES) families; 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. PMID:24630759

  4. Influence of samarium substitution on structural, dielectric, and piezoelectric properties of PZT ceramics

    NASA Astrophysics Data System (ADS)

    Juneja, J. K.; Thakur, O. P.; Prakash, Chandra

    2003-10-01

    The structural, dielectric and piezoelectric properties have been studied in detail for the samarium modified PZT system. The samples, with chemical formula Pb1-xSmxZr0.52Ti0.48O3 with x varying from 0 to 0.02 in steps of 0.0025, were prepared by standard double sintering ceramic method. XRD analysis showed all the samples to be of single phase with tetragonal structure. Tetragonality (c/a) decreases gradually with samarium concentration (x) and the experimental density increases with x. Dielectric properties were studied as a function of temperature and frequency. All the samples show well-defined ferroelectric behavior. The remanance ratio (Pr/Ps) was found to increase with increasing Sm3+ concentration. Piezoelectric charge coefficient d33 decreases with x.

  5. Geometry-driven distributed compression of the plenoptic function: performance bounds and constructive algorithms.

    PubMed

    Gehrig, Nicolas; Dragotti, Pier Luigi

    2009-03-01

    In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.

  6. Co-ordinated structural and functional covariance in the adolescent brain underlies face processing performance

    PubMed Central

    Joel Shaw, Daniel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Bruce Pike, G.

    2016-01-01

    Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among ‘distal’ nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. PMID:26772669

  7. Craniofacial structures' development in prenatal period: An MRI study.

    PubMed

    Begnoni, G; Serrao, G; Musto, F; Pellegrini, G; Triulzi, F M; Dellavia, C

    2018-05-01

    The development of skeletal structures (cranial base, upper and lower) and upper airways spaces (oropharyngeal and nasopharyngeal) of the skull has always been an issue of great interest in orthodontics. Foetal MRI images obtained as screening exam during pregnancy can help to understand the development of these structures using a sample cephalometric analysis. A total of 28 MRI images in sagittal section of foetuses from 20th to 32th weeks of gestation were obtained to dispel doubts about the presence of skeletal malformations. Cephalometric measurements were performed on MRI T2-dependent images acquired with a 1.5 T scanner. The Software Osirix 5 permits to study sagittal and vertical dimensions of the skull analysing linear measurements, angles and areas of the skeletal structures. Vertical and sagittal dimension of cranial base, maxilla and mandible grow significantly (P < .01) between the second and third trimester of gestational period as well as nasopharyngeal and oropharyngeal spaces (P < .05). High correlation between the development of anterior cranial base and functional areas devoted to speech and swallow is demonstrated (r: .97). The development of craniofacial structures during foetal period seems to show a close correlation between skeletal features and functional spaces with a peak between the second and third trimester of gestation. MRI images result helpful for the clinician to detect with a sample cephalometric analysis anomalies of skeletal and functional structures during prenatal period. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  9. Joint reconstruction of PET-MRI by exploiting structural similarity

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Thielemans, Kris; Pizarro, Luis; Atkinson, David; Ourselin, Sébastien; Hutton, Brian F.; Arridge, Simon R.

    2015-01-01

    Recent advances in technology have enabled the combination of positron emission tomography (PET) with magnetic resonance imaging (MRI). These PET-MRI scanners simultaneously acquire functional PET and anatomical or functional MRI data. As function and anatomy are not independent of one another the images to be reconstructed are likely to have shared structures. We aim to exploit this inherent structural similarity by reconstructing from both modalities in a joint reconstruction framework. The structural similarity between two modalities can be modelled in two different ways: edges are more likely to be at similar positions and/or to have similar orientations. We analyse the diffusion process generated by minimizing priors that encapsulate these different models. It turns out that the class of parallel level set priors always corresponds to anisotropic diffusion which is sometimes forward and sometimes backward diffusion. We perform numerical experiments where we jointly reconstruct from blurred Radon data with Poisson noise (PET) and under-sampled Fourier data with Gaussian noise (MRI). Our results show that both modalities benefit from each other in areas of shared edge information. The joint reconstructions have less artefacts and sharper edges compared to separate reconstructions and the ℓ2-error can be reduced in all of the considered cases of under-sampling.

  10. High-resolution NMR study of light and heavy crude oils: “structure-property” analysis

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.

    2018-05-01

    Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.

  11. Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability

    ERIC Educational Resources Information Center

    von Oertzen, Timo; Boker, Steven M.

    2010-01-01

    This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that "time delay embedding," i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard…

  12. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  13. Namib Desert Soil Microbial Community Diversity, Assembly, and Function Along a Natural Xeric Gradient.

    PubMed

    Scola, Vincent; Ramond, Jean-Baptiste; Frossard, Aline; Zablocki, Olivier; Adriaenssens, Evelien M; Johnson, Riegardt M; Seely, Mary; Cowan, Don A

    2018-01-01

    The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.

  14. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study

    PubMed Central

    Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A

    2015-01-01

    Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother–infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning. PMID:26506054

  15. 75 FR 73034 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... into structure function relationships. Key capabilities of the instrument include extended [[Page 73035... geological samples for their microstructure, phase characteristics, and interfacial processes. This...

  16. Transforming SIBTEST to Account for Multilevel Data Structures

    ERIC Educational Resources Information Center

    French, Brian F.; Finch, W. Holmes

    2015-01-01

    SIBTEST is a differential item functioning (DIF) detection method that is accurate and effective with small samples, in the presence of group mean differences, and for assessment of both uniform and nonuniform DIF. The presence of multilevel data with DIF detection has received increased attention. Ignoring such structure can inflate Type I error.…

  17. Multigroup confirmatory factor analysis and structural invariance with age of the Behavior Rating Inventory of Executive Function (BRIEF)--French version.

    PubMed

    Fournet, Nathalie; Roulin, Jean-Luc; Monnier, Catherine; Atzeni, Thierry; Cosnefroy, Olivier; Le Gall, Didier; Roy, Arnaud

    2015-01-01

    The parent and teacher forms of the French version of the Behavioral Rating Inventory of Executive Function (BRIEF) were used to evaluate executive function in everyday life in a large sample of healthy children (N = 951) aged between 5 and 18. Several psychometric methods were applied, with a view to providing clinicians with tools for score interpretation. The parent and teacher forms of the BRIEF were acceptably reliable. Demographic variables (such as age and gender) were found to influence the BRIEF scores. Confirmatory factor analysis was then used to test five competing models of the BRIEF's latent structure. Two of these models (a three-factor model and a two-factor model, both based on a nine-scale structure) had a good fit. However, structural invariance with age was only obtained with the two-factor model. The French version of the BRIEF provides a useful measure of everyday executive function and can be recommended for use in clinical research and practice.

  18. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.

    PubMed

    Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin

    2016-06-01

    Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, William Glenn

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F 2 and xF 3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to α S(M Z 2) = 0.119 ±more » 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q 0 2 = 5GeV 2) = (2.22 ± 0.34) x (1 - x) 4.65±0.68.« less

  20. Initial Studies of the Bidirectional Reflectance Distribution Function of Multi-Walled Carbon Nanotube Structures for Stray Light Control Applications

    NASA Technical Reports Server (NTRS)

    Butler, J. J.; Tveekrem, J. L.; Quijada, M. A.; Getty, S. A.; Hagopian, J. G.; Georglev, G. T.

    2010-01-01

    The presentation examines the application of low reflectance surfaces in optical instruments, multi-walled carbon nanotubes (MWCNTs), research objects, MWCNT samples, measurement of 8 deg. directional/hemispherical reflectance, measurement of bidirectional reflectance distribution function (BRDF), and what is current the "blackest ever black".

  1. Associations between Children's Socioeconomic Status and Prefrontal Cortical Thickness

    ERIC Educational Resources Information Center

    Lawson, Gwendolyn M.; Duda, Jeffrey T.; Avants, Brian B.; Wu, Jue; Farah, Martha J.

    2013-01-01

    Childhood socioeconomic status (SES) predicts executive function performance and measures of prefrontal cortical function, but little is known about its anatomical correlates. Structural MRI and demographic data from a sample of 283 healthy children from the NIH MRI Study of Normal Brain Development were used to investigate the relationship…

  2. Human and Environmental Impacts on River Sediment Microbial Communities

    DOE PAGES

    Gibbons, Sean M.; Jones, Edwin; Bearquiver, Angelita; ...

    2014-05-19

    Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (~65,000 microbial ‘species’ identified) and most novel (93% of OTUsmore » do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.« less

  3. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  4. Surface chemical structure of poly(ethylene naphthalate) films during degradation in low-pressure high-frequency plasma treatments

    NASA Astrophysics Data System (ADS)

    Kamata, Noritsugu; Yuji, Toshifumi; Thungsuk, Nuttee; Arunrungrusmi, Somchai; Chansri, Pakpoom; Kinoshita, Hiroyuki; Mungkung, Narong

    2018-06-01

    The surface chemical structure of poly(ethylene naphthalate) (PEN) films treated with a low-pressure, high-frequency plasma was investigated by storing in a box at room temperature to protect the PEN film surface from dust. The functional groups on the PEN film surface changed over time. The functional groups of –C=O, –COH, and –COOH were abundant in the Ar + O2 mixture gas plasma-treated PEN samples as compared with those in untreated PEN samples. The changes occurred rapidly after 2 d following the plasma treatment, reaching steady states 8 d after the treatment. Hydrophobicity had an inverse relationship with the concentration of these functional groups on the surface. Thus, the effect of the low-pressure high-frequency plasma treatment on PEN varies as a function of storage time. This means that radical oxygen and oxygen molecules are clearly generated in the plasma, and this is one index to confirm that radical reaction has definitely occurred between the gas and the PEN film surface with a low-pressure high-frequency plasma.

  5. 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia.

    PubMed

    Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K

    2017-04-25

    Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.

  6. 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia

    PubMed Central

    Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K

    2017-01-01

    Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1–BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1–BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1–BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia. PMID:28440815

  7. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures

    PubMed Central

    Holmes, Avram J.; Hollinshead, Marisa O.; O’Keefe, Timothy M.; Petrov, Victor I.; Fariello, Gabriele R.; Wald, Lawrence L.; Fischl, Bruce; Rosen, Bruce R.; Mair, Ross W.; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset’s utility. PMID:26175908

  8. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    PubMed

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  9. Structural characterization/correlation of calorimetric properties of coal fluids: Final report, September 1, 1985--August 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, IR, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined. 8 refs.« less

  10. Structural characterization/correlation of calorimetric properties of coal fluids: Second annual report, September 1, 1986-August 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, ir, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined.« less

  11. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  12. Structural characterization/correlation of calorimetric properties of coal fluids. First annual report, September 1, 1985-August 31, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal liquids and their molecular functional group composition. Coal liquid samples which have had their calorimetric properties measured are characterized using proton NMR, ir and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal liquid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for heat capacities will then be examined within anmore » existing equation of state methodology to determine an optimal correlation. Also, the optimal recipe for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model will be examined and determined. 7 refs.« less

  13. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    PubMed

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  14. Hydrophobic potential of mean force as a solvation function for protein structure prediction.

    PubMed

    Lin, Matthew S; Fawzi, Nicolas Lux; Head-Gordon, Teresa

    2007-06-01

    We have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.

  15. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  16. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Adaptation of brain functional and structural networks in aging.

    PubMed

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  18. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  19. Microbial Extracellular Enzyme Activity and Community Assembly Processes Post Fire Disturbance Amanda Labrado, University of Texas at El Paso; Emily B. Graham, University of Colorado Boulder; Joseph E. Knelman, University of Colorado Boulder; Scott Ferrenberg, University of Colorado Boulder; Diana R. Nemergut, University of Colorado Boulder

    NASA Astrophysics Data System (ADS)

    Labrdo, A.; Knelman, J. E.; Graham, E. B.; Ferrenberg, S.; Nemergut, D. R.

    2013-12-01

    Microbes control major biogeochemical cycles and can directly impact the carbon, nitrogen, and phosphorus pools and fluxes of soils. However, many questions remain regarding when and where data on microbial community structure are necessary to accurately predict biogeochemical processes. In particular, it is unknown how shifts in microbial assembly processes may relate to changes in the relationship between community structure and ecosystem function. Here, we examine soil microbial community assembly processes and extracellular enzyme activity (EEA) at 4-weeks and 16-weeks after the Fourmile Canyon Fire in Boulder, CO in order to determine the effects of disturbance on community assembly and EEA. Microbial community structure was determined from 16S rRNA gene pyrosequencing, edaphic properties were determined using standard biogeochemical assays, and extracellular enzyme activity for β-1, 4-glucosidase (BG) and β-1, 4-N-acetylglucosaminidase (NAG) enzymes were determined using fluorimetric assays. Stepwise linear regressions were used to determine the effects of microbial community structure and edaphic factors on EEA. We determined that in 4-week post fire samples EEA was only correlated with microbial predictors. However, we observed a shift with 16-week samples in which EEA was significantly related to edaphic predictors. Null derivation analysis of community assembly revealed that communities in the 4-week samples were more neutrally assembled than communities in the 16-week samples. Together, these results support a conceptual model in which the relationship between edaphic factors and ecosystem processes is somewhat decoupled in more neutrally assembled communities, and data on microbial community structure is important to most accurately predict function.

  20. A new self-report inventory of dyslexia for students: criterion and construct validity.

    PubMed

    Tamboer, Peter; Vorst, Harrie C M

    2015-02-01

    The validity of a Dutch self-report inventory of dyslexia was ascertained in two samples of students. Six biographical questions, 20 general language statements and 56 specific language statements were based on dyslexia as a multi-dimensional deficit. Dyslexia and non-dyslexia were assessed with two criteria: identification with test results (Sample 1) and classification using biographical information (both samples). Using discriminant analyses, these criteria were predicted with various groups of statements. All together, 11 discriminant functions were used to estimate classification accuracy of the inventory. In Sample 1, 15 statements predicted the test criterion with classification accuracy of 98%, and 18 statements predicted the biographical criterion with classification accuracy of 97%. In Sample 2, 16 statements predicted the biographical criterion with classification accuracy of 94%. Estimations of positive and negative predictive value were 89% and 99%. Items of various discriminant functions were factor analysed to find characteristic difficulties of students with dyslexia, resulting in a five-factor structure in Sample 1 and a four-factor structure in Sample 2. Answer bias was investigated with measures of internal consistency reliability. Less than 20 self-report items are sufficient to accurately classify students with and without dyslexia. This supports the usefulness of self-assessment of dyslexia as a valid alternative to diagnostic test batteries. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Neural correlates of social exclusion across ages: A coordinate-based meta-analysis of functional MRI studies.

    PubMed

    Vijayakumar, Nandita; Cheng, Theresa W; Pfeifer, Jennifer H

    2017-06-01

    Given the recent surge in functional neuroimaging studies on social exclusion, the current study employed activation likelihood estimation (ALE) based meta-analyses to identify brain regions that have consistently been implicated across different experimental paradigms used to investigate exclusion. We also examined the neural correlates underlying Cyberball, the most commonly used paradigm to study exclusion, as well as differences in exclusion-related activation between developing (7-18 years of age, from pre-adolescence up to late adolescence) and emerging adult (broadly defined as undergraduates, including late adolescence and young adulthood) samples. Results revealed involvement of the bilateral medial prefrontal and posterior cingulate cortices, right precuneus and left ventrolateral prefrontal cortex across the different paradigms used to examine social exclusion; similar activation patterns were identified when restricting the analysis to Cyberball studies. Investigations into age-related effects revealed that ventrolateral prefrontal activations identified in the full sample were driven by (i.e. present in) developmental samples, while medial prefrontal activations were driven by emerging adult samples. In addition, the right ventral striatum was implicated in exclusion, but only in developmental samples. Subtraction analysis revealed significantly greater activation likelihood in striatal and ventrolateral prefrontal clusters in the developmental samples as compared to emerging adults, though the opposite contrast failed to identify any significant regions. Findings integrate the knowledge accrued from functional neuroimaging studies on social exclusion to date, highlighting involvement of lateral prefrontal regions implicated in regulation and midline structures involved in social cognitive and self-evaluative processes across experimental paradigms and ages, as well as limbic structures in developing samples specifically. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Construction of a General Purpose Command Language for Use in Computer Dialog.

    DTIC Science & Technology

    1980-09-01

    Page 1 Skeletal Command Action File...............35 2 Sample from Cyber Action File.................36 3 Program MONITOR Structure Chart...return indicates subroutine call and no return Fig 3. Program MONITOR Structure Chart 48 IV. Validation The general purpose command language was...executive control of these functions, in C addition to its role as interpreter. C C The structure , concept, design, and implementation of program C

  3. Rationale and Design of the Echocardiographic Study of Hispanics/Latinos (ECHO-SOL).

    PubMed

    Rodriguez, Carlos J; Dharod, Ajay; Allison, Matthew A; Shah, Sanjiv J; Hurwitz, Barry; Bangdiwala, Shrikant I; Gonzalez, Franklyn; Kitzman, Dalane; Gillam, Linda; Spevack, Daniel; Dadhania, Rupal; Langdon, Sarah; Kaplan, Robert

    2015-01-01

    Information regarding the prevalence and determinants of cardiac structure and function (systolic and diastolic) among the various Hispanic background groups in the United States is limited. The Echocardiographic Study of Latinos (ECHO-SOL) ancillary study recruited 1,824 participants through a stratified-sampling process representative of the population-based Hispanic Communities Health Study - Study of Latinos (HCHS-SOL) across four sites (Bronx, NY; Chicago, Ill; San Diego, Calif; Miami, Fla). The HCHS-SOL baseline cohort did not include an echo exam. ECHO-SOL added the echocardiographic assessment of cardiac structure and function to an array of existing HCHS-SOL baseline clinical, psychosocial, and socioeconomic data and provides sufficient statistical power for comparisons among the Hispanic subgroups. Standard two-dimensional (2D) echocardiography protocol, including M-mode, spectral, color and tissue Doppler study was performed. The main objectives were to: 1) characterize cardiac structure and function and its determinants among Hispanics and Hispanic subgroups; and 2) determine the contributions of specific psychosocial factors (acculturation and familismo) to cardiac structure and function among Hispanics. We describe the design, methods and rationale of currently the largest and most comprehensive study of cardiac structure and function exclusively among US Hispanics. ECHO-SOL aims to enhance our understanding of Hispanic cardiovascular health as well as help untangle the relative importance of Hispanic subgroup heterogeneity and sociocultural factors on cardiac structure and function.

  4. Sampling properties of directed networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Christensen, C.; Bizhani, G.; Foster, D. V.; Grassberger, P.; Paczuski, M.

    2012-10-01

    For many real-world networks only a small “sampled” version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.

  5. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-11-01

    Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  6. How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury.

    PubMed

    Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S

    2013-09-01

    Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p < .05, FDR corrected), while the right amygdala showed a trend in reduced functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.

  7. Coherent amplification of X-ray scattering from meso-structures

    DOE PAGES

    Lhermitte, Julien R.; Stein, Aaron; Tian, Cheng; ...

    2017-07-10

    Small-angle X-ray scattering (SAXS) often includes an unwanted background, which increases the required measurement time to resolve the sample structure. This is undesirable in all experiments, and may make measurement of dynamic or radiation-sensitive samples impossible. Here, we demonstrate a new technique, applicable when the scattering signal is background-dominated, which reduces the requisite exposure time. Our method consists of exploiting coherent interference between a sample with a designed strongly scattering `amplifier'. A modified angular correlation function is used to extract the symmetry of the interference term; that is, the scattering arising from the interference between the amplifier and the sample.more » This enables reconstruction of the sample's symmetry, despite the sample scattering itself being well below the intensity of background scattering. Thus, coherent amplification is used to generate a strong scattering term (well above background), from which sample scattering is inferred. We validate this method using lithographically defined test samples.« less

  8. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    PubMed

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  9. Quantitative evaluation of capillaroscopic microvascular changes in patients with established coronary heart disease.

    PubMed

    Sanchez-Garcia, M Esther; Ramirez-Lara, Irene; Gomez-Delgado, Francisco; Yubero-Serrano, Elena M; Leon-Acuña, Ana; Marin, Carmen; Alcala-Diaz, Juan F; Camargo, Antonio; Lopez-Moreno, Javier; Perez-Martinez, Pablo; Tinahones, Francisco José; Ordovas, Jose M; Caballero, Javier; Blanco-Molina, Angeles; Lopez-Miranda, Jose; Delgado-Lista, Javier

    2018-02-23

    Microcirculation disturbances have been associated to most of the cardiovascular risk factors as well as to multiple inflammatory diseases. However, whether these abnormalities are specifically augmented in patients with coronary heart disease is still unknown. We aimed to evaluate if there is a relationship between the presence of coronary heart disease and the existence of functional and structural capillary abnormalities evaluated in the cutaneous microcirculation by videocapillaroscopy. Two matched samples of 30 participants with and without coronary heart disease but with similar clinical and anthropometric characteristics were evaluated by videocapillaroscopy at the dorsal skin of the third finger of the non-dominant hand. We calculated basal capillary density as well as capillary density after a period of arterial and venous occlusion in order to evaluate functionality and maximum capillary density. We also measured capillary recruitment. Microvascular capillary density at rest was significantly lower in patients suffering from coronary heart disease than in controls. This fact was also found after dynamic tests (arterial and venous occlusion), suggesting functional impairments. Capillary recruitment of the samples was not different in our sample. In our study, patients with coronary heart disease exhibit functional and structural microvascular disturbances. Although this is a very preliminary study, these findings open the door for further studying the microvascular functionality in coronary patients and how it relates to the response to treatment and/or the prognosis of the disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  10. A Measurement Invariance Examination of the Revised Child Anxiety and Depression Scale in a Southern Sample: Differential Item Functioning between African American and Caucasian Youth

    ERIC Educational Resources Information Center

    Trent, Lindsay Rae; Buchanan, Erin; Ebesutani, Chad; Ale, Chelsea M.; Heiden, Laurie; Hight, Terry L.; Damon, John D.; Young, John

    2013-01-01

    This study examined the psychometric properties of the Revised Child Anxiety and Depression Scale in a large sample of youth from the Southern United States. The authors aimed to determine (a) if the established six-factor Revised Child Anxiety and Depression Scale structure could be replicated in this Southern sample and (b) if scores were…

  11. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction

    PubMed Central

    2013-01-01

    Background Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured. Methods We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima. Results and conclusions Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions. PMID:24565020

  12. BURRITO: An Interactive Multi-Omic Tool for Visualizing Taxa–Function Relationships in Microbiome Data

    PubMed Central

    McNally, Colin P.; Eng, Alexander; Noecker, Cecilia; Gagne-Maynard, William C.; Borenstein, Elhanan

    2018-01-01

    The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes. PMID:29545787

  13. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    PubMed Central

    Hager, Kevin W.; Fullerton, Heather; Butterfield, David A.; Moyer, Craig L.

    2017-01-01

    The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity. PMID:28970817

  14. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  15. Recombinant Intrinsically Disordered Proteins for NMR: Tips and Tricks.

    PubMed

    Calçada, Eduardo O; Korsak, Magdalena; Kozyreva, Tatiana

    2015-01-01

    The growing recognition of the several roles that intrinsically disordered proteins play in biology places an increasing importance on protein sample availability to allow the characterization of their structural and dynamic properties. The sample preparation is therefore the limiting step to allow any biophysical method being able to characterize the properties of an intrinsically disordered protein and to clarify the links between these properties and the associated biological functions. An increasing array of tools has been recruited to help prepare and characterize the structural and dynamic properties of disordered proteins. This chapter describes their sample preparation, covering the most common drawbacks/barriers usually found working in the laboratory bench. We want this chapter to be the bedside book of any scientist interested in preparing intrinsically disordered protein samples for further biophysical analysis.

  16. Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies.

    PubMed

    Shade, Ashley; Carey, Cayelan C; Kara, Emily; Bertilsson, Stefan; McMahon, Katherine D; Smith, Matthew C

    2009-08-01

    Automated sensing technologies, 'ASTs,' are tools that can monitor environmental or microbial-related variables at increasingly high temporal resolution. Microbial ecologists are poised to use AST data to couple microbial structure, function and associated environmental observations on temporal scales pertinent to microbial processes. In the context of aquatic microbiology, we discuss three applications of ASTs: windows on the microbial world, adaptive sampling and adaptive management. We challenge microbial ecologists to push AST potential in helping to reveal relationships between microbial structure and function.

  17. Differences in Intertidal Microbial Assemblages on Urban Structures and Natural Rocky Reef

    PubMed Central

    Tan, Elisa L.-Y.; Mayer-Pinto, Mariana; Johnston, Emma L.; Dafforn, Katherine A.

    2015-01-01

    Global seascapes are increasingly modified to support high levels of human activity in the coastal zone. Modifications include the addition of defense structures and boating infrastructure, such as seawalls and marinas that replace natural habitats. Artificial structures support different macrofaunal communities to those found on natural rocky shores; however, little is known about differences in microbial community structure or function in urban seascapes. Understanding how artificial constructions in marine environments influence microbial communities is important as these assemblages contribute to many basic ecological processes. In this study, the bacterial communities of intertidal biofilms were compared between artificial structures (seawalls) and natural habitats (rocky shores) within Sydney Harbour. Plots were cleared on each type of habitat at eight locations. After 3 weeks the newly formed biofilm was sampled and the 16S rRNA gene sequenced using the Illumina Miseq platform. To account for differences in orientation and substrate material between seawalls and rocky shores that might have influenced our survey, we also deployed recruitment blocks next to the habitats at all locations for 3 weeks and then sampled and sequenced their microbial communities. Intertidal bacterial community structure sampled from plots differed between seawalls and rocky shores, but when substrate material, age and orientation were kept constant (with recruitment blocks) then bacterial communities were similar in composition and structure among habitats. This suggests that changes in bacterial communities on seawalls are not related to environmental differences between locations, but may be related to other intrinsic factors that differ between the habitats such as orientation, complexity, or predation. This is one of the first comparisons of intertidal microbial communities on natural and artificial surfaces and illustrates substantial ecological differences with potential consequences for biofilm function and the recruitment of macrofauna. PMID:26635747

  18. Organizational Perspectives on Rapid Response Team Structure, Function, and Cost: A Qualitative Study.

    PubMed

    Smith, Patricia L; McSweeney, Jean

    Understanding how an organization determines structure and function of a rapid response team (RRT), as well as cost evaluation and implications, can provide foundational knowledge to guide decisions about RRTs. The objectives were to (1) identify influencing factors in organizational development of RRT structure and function and (2) describe evaluation of RRT costs. Using a qualitative, ethnographic design, nurse executives and experts in 15 moderate-size hospitals were interviewed to explore their decision-making processes in determining RRT structure and function. Face-to-face interviews were audio recorded and transcribed verbatim and verified for accurateness. Using content analysis and constant comparison, interview data were analyzed. Demographic data were analyzed using descriptive statistics. The sample included 27 participants from 15 hospitals in 5 south-central states. They described a variety of RRT responders and functions, with the majority of hospitals having a critical care charge nurse attending all RRT calls for assistance. Others described a designated RRT nurse with primary RRT duties as responder to all RRT calls. Themes of RRT development from the data included influencers, decision processes, and thoughts about cost. It is important to understand how hospitals determine optimal structure and function to enhance support of quality nursing care. Determining the impact of an RRT on costs and benefits is vital in balancing patient safety and limited resources. Future research should focus on clarifying differences between team structure and function in outcomes as well as the most effective means to estimate costs and benefits.

  19. Comparative analysis of the structure of temporomandibular joint in human and rabbit.

    PubMed

    Tomasello, Giovanni; Sorce, Alessandra; Mazzola, Margherita; Barone, Rosario; Lo Piccolo, Chiara; Farina, Felicia; Zummo, Giovanni; Carini, Francesco

    2017-01-16

    In order to increase knowledge on the morphology and structure of the articular disc of the TMJ for a better understanding of the functional role of the same, it proceeded with an investigation on histological samples in the block of 'TMJ and periarticular tissues of adult rabbits and human fetuses at different stage of development.

  20. Co-ordinated structural and functional covariance in the adolescent brain underlies face processing performance.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Grosbras, Marie-Helene; Leonard, Gabriel; Pike, G Bruce; Paus, Tomáš

    2016-04-01

    Our ability to process complex social cues presented by faces improves during adolescence. Using multivariate analyses of neuroimaging data collected longitudinally from a sample of 38 adolescents (17 males) when they were 10, 11.5, 13 and 15 years old, we tested the possibility that there exists parallel variations in the structural and functional development of neural systems supporting face processing. By combining measures of task-related functional connectivity and brain morphology, we reveal that both the structural covariance and functional connectivity among 'distal' nodes of the face-processing network engaged by ambiguous faces increase during this age range. Furthermore, we show that the trajectory of increasing functional connectivity between the distal nodes occurs in tandem with the development of their structural covariance. This demonstrates a tight coupling between functional and structural maturation within the face-processing network. Finally, we demonstrate that increased functional connectivity is associated with age-related improvements of face-processing performance, particularly in females. We suggest that our findings reflect greater integration among distal elements of the neural systems supporting the processing of facial expressions. This, in turn, might facilitate an enhanced extraction of social information from faces during a time when greater importance is placed on social interactions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Reduced mobility and PPC in In(.20)Ga(.80)As / Al(.23)Ga(.77)As HEMT structure

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, Rafael A.; Haugland, Edward J.; Alterovitz, Samuel A.

    1992-01-01

    Transport properties of a pseudomorphic In(.20)Ga(.80)As/Al(.23)Ga(.77)As High Electron Mobility Transistor (HEMT) structure were measured by Hall and SdH techniques. Two samples of identical structures but with different doping levels were compared. Low temperature mobility measurements as a function of concentration coincides with the onset of second subband occupancy, indicating that the decrease in mobility is due to intersubband scattering. In spite of the low Al content (23 percent), large persistent photoconductivity (PPC) was observed in the highly doped sample only, showing a direct correlation between the PPC and doping concentration of the barrier layer.

  2. Probabilistic #D data fusion for multiresolution surface generation

    NASA Technical Reports Server (NTRS)

    Manduchi, R.; Johnson, A. E.

    2002-01-01

    In this paper we present an algorithm for adaptive resolution integration of 3D data collected from multiple distributed sensors. The input to the algorithm is a set of 3D surface points and associated sensor models. Using a probabilistic rule, a surface probability function is generated that represents the probability that a particular volume of space contains the surface. The surface probability function is represented using an octree data structure; regions of space with samples of large conariance are stored at a coarser level than regions of space containing samples with smaller covariance. The algorithm outputs an adaptive resolution surface generated by connecting points that lie on the ridge of surface probability with triangles scaled to match the local discretization of space given by the algorithm, we present results from 3D data generated by scanning lidar and structure from motion.

  3. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Technical Reports Server (NTRS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-01-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  4. Modeling Particle Exposure in US Trucking Terminals

    PubMed Central

    Davis, ME; Smith, TJ; Laden, F; Hart, JE; Ryan, LM; Garshick, E

    2007-01-01

    Multi-tiered sampling approaches are common in environmental and occupational exposure assessment, where exposures for a given individual are often modeled based on simultaneous measurements taken at multiple indoor and outdoor sites. The monitoring data from such studies is hierarchical by design, imposing a complex covariance structure that must be accounted for in order to obtain unbiased estimates of exposure. Statistical methods such as structural equation modeling (SEM) represent a useful alternative to simple linear regression in these cases, providing simultaneous and unbiased predictions of each level of exposure based on a set of covariates specific to the exposure setting. We test the SEM approach using data from a large exposure assessment of diesel and combustion particles in the US trucking industry. The exposure assessment includes data from 36 different trucking terminals across the United States sampled between 2001 and 2005, measuring PM2.5 and its elemental carbon (EC), organic carbon (OC) components, by personal monitoring, and sampling at two indoor work locations and an outdoor “background” location. Using the SEM method, we predict: 1) personal exposures as a function of work related exposure and smoking status; 2) work related exposure as a function of terminal characteristics, indoor ventilation, job location, and background exposure conditions; and 3) background exposure conditions as a function of weather, nearby source pollution, and other regional differences across terminal sites. The primary advantage of SEMs in this setting is the ability to simultaneously predict exposures at each of the sampling locations, while accounting for the complex covariance structure among the measurements and descriptive variables. The statistically significant results and high R2 values observed from the trucking industry application supports the broader use of this approach in exposure assessment modeling. PMID:16856739

  5. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

    PubMed

    Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun

    2013-09-01

    By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

  6. Relations among prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure.

    PubMed

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M; Riggins, Tracy

    2014-11-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory) and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample consisted of 105 (55 female and 50 male) urban, primarily African American adolescents (mean age=15.5 years) from low socioeconomic status (SES) families. Approximately 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but the adolescents were similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI (magnetic resonance imaging) scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal, and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  8. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community

    Treesearch

    Mitchell A. Pavao-Zuckerman; David C. Coleman

    2007-01-01

    We evaluated the response of riparian forest soil nematode community structure to the physico-chemical environment associated with urban land use. Soils were sampled seasonally between December 2000 and October 2002 along an urban-rural transect in Asheville, North Carolina. We characterized the taxonomic (to genus) and functional composition (trophic groups) of the...

  9. Functional Impairments of College Students with Attention Deficit/Hyperactivity Disorder and Necessary Modifications for Higher Education

    ERIC Educational Resources Information Center

    Wright, Sylvia A.

    2011-01-01

    This study examines the impact of Attention Deficit/Hyperactivity Disorder (AD/HD) on college age students 18-25 years old. Qualitative research methods, including semi-structured interviews with students and significant others, writing samples and transcript documents, examine functional impairments of students with AD/HD as well as functional…

  10. Exploring Structural Dynamics within and between Sensory and Intellectual Functioning in Old and Very Old Age: Longitudinal Evidence from the Berlin Aging Study

    ERIC Educational Resources Information Center

    Ghisletta, Paolo; Lindenberger, Ulman

    2005-01-01

    Cross-sectional and longitudinal analyses of age-heterogeneous samples have revealed correlational links between and within intellectual, sensory, and sensorimotor domains. Due to basic limitations of cross-sectional designs and a reluctance to disentangle antecedent-consequent relations in longitudinal designs, the functional significance and…

  11. The Specific Level of Functioning Scale: construct validity, internal consistency and factor structure in a large Italian sample of people with schizophrenia living in the community.

    PubMed

    Mucci, Armida; Rucci, Paola; Rocca, Paola; Bucci, Paola; Gibertoni, Dino; Merlotti, Eleonora; Galderisi, Silvana; Maj, Mario

    2014-10-01

    The study aimed to assess the construct validity, internal consistency and factor structure of the Specific Levels of Functioning Scale (SLOF), a multidimensional instrument assessing real life functioning. The study was carried out in 895 Italian people with schizophrenia, all living in the community and attending the outpatient units of 26 university psychiatric clinics and/or community mental health departments. The construct validity of the SLOF was analyzed by means of the multitrait-multimethod approach, using the Personal and Social Performance (PSP) Scale as the gold standard. The factor structure of the SLOF was examined using both an exploratory principal component analysis and a confirmatory factor analysis. The six factors identified using exploratory principal component analysis explained 57.1% of the item variance. The examination of the multitrait-multimethod matrix revealed that the SLOF factors had high correlations with PSP factors measuring the same constructs and low correlations with PSP factors measuring different constructs. The confirmatory factor analysis (CFA) corroborated the 6-factor structure reported in the original validation study. Loadings were all significant and ranged from a minimum of 0.299 to a maximum of 0.803. The CFA model was adequately powered and had satisfactory goodness of fit indices (comparative fit index=0.927, Tucker-Lewis index=0.920 and root mean square error of approximation=0.047, 95% CI 0.045-0.049). The present study confirms, in a large sample of Italian people with schizophrenia living in the community, that the SLOF is a reliable and valid instrument for the assessment of social functioning. It has good construct validity and internal consistency, and a well-defined factor structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults.

    PubMed

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults ( N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.

  13. A Complex Interplay of Vitamin B1 and B6 Metabolism with Cognition, Brain Structure, and Functional Connectivity in Older Adults

    PubMed Central

    Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja

    2017-01-01

    Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55–85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels. PMID:29163003

  14. Predicting RNA 3D structure using a coarse-grain helix-centered model

    PubMed Central

    Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2015-01-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  15. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  16. Latent structures of female sexual functioning.

    PubMed

    Carvalho, Joana; Vieira, Armando Luís; Nobre, Pedro

    2012-08-01

    For the last three decades, male and female sexual responses have been conceptualized as similar, based on separated and sequential phases as proposed by the models of Masters and Johnson (1966) and Kaplan (1979) model. However, there is a growing debate around the need to conceptualize female sexual response and the classification of sexual dysfunction in women, in view of the upcoming editions of the DSM and ICD. The aim of this study was to test, using structural equation modeling, five conceptual, alternative models of female sexual function, using a sample of women with sexual difficulties and a sample of women without sexual problems. A total of 1993 Portuguese women participated in the study and completed a modified version of the Female Sexual Function Index. Findings suggested a four-factor solution as the model that best fit the data regarding women presenting sexual difficulties: (1) desire/arousal; (2) lubrication; (3) orgasm; (4) pain/vaginismus. In relation to sexually healthy women, the best model was a five-factor solution comprising of (1) desire; (2) arousal; (3) lubrication; (4) orgasm; and (5) pain/vaginismus. Discriminant validity between factors was supported, suggesting that these dimensions measure distinct phenomena. Model fit to the data significantly decreased in both samples, as models began to successively consider greater levels of overlap among phases of sexual function, towards a single-factor solution. By suggesting the overlap between pain and vaginismus, results partially support the new classification that is currently being discussed regarding DSM-5. Additionally, results on the relationship between sexual desire and arousal were inconclusive as sexually healthy women were better characterized by a five-factor model that considered the structural independence among these factors, whereas women with sexual difficulties better fit with a four-factor model merging sexual desire and subjective sexual arousal.

  17. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V.

    PubMed

    Shimada, Satoru; Maeda, Shintaro; Hikita, Masahide; Mieda-Higa, Kaoru; Uene, Shigefumi; Nariai, Yukiko; Shinzawa-Itoh, Kyoko

    2018-04-24

    Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Sampling intraspecific variability in leaf functional traits: Practical suggestions to maximize collected information.

    PubMed

    Petruzzellis, Francesco; Palandrani, Chiara; Savi, Tadeja; Alberti, Roberto; Nardini, Andrea; Bacaro, Giovanni

    2017-12-01

    The choice of the best sampling strategy to capture mean values of functional traits for a species/population, while maintaining information about traits' variability and minimizing the sampling size and effort, is an open issue in functional trait ecology. Intraspecific variability (ITV) of functional traits strongly influences sampling size and effort. However, while adequate information is available about intraspecific variability between individuals (ITV BI ) and among populations (ITV POP ), relatively few studies have analyzed intraspecific variability within individuals (ITV WI ). Here, we provide an analysis of ITV WI of two foliar traits, namely specific leaf area (SLA) and osmotic potential (π), in a population of Quercus ilex L. We assessed the baseline ITV WI level of variation between the two traits and provided the minimum and optimal sampling size in order to take into account ITV WI , comparing sampling optimization outputs with those previously proposed in the literature. Different factors accounted for different amount of variance of the two traits. SLA variance was mostly spread within individuals (43.4% of the total variance), while π variance was mainly spread between individuals (43.2%). Strategies that did not account for all the canopy strata produced mean values not representative of the sampled population. The minimum size to adequately capture the studied functional traits corresponded to 5 leaves taken randomly from 5 individuals, while the most accurate and feasible sampling size was 4 leaves taken randomly from 10 individuals. We demonstrate that the spatial structure of the canopy could significantly affect traits variability. Moreover, different strategies for different traits could be implemented during sampling surveys. We partially confirm sampling sizes previously proposed in the recent literature and encourage future analysis involving different traits.

  19. Structure of Hydrated Poly(d,l-lactic acid) Studied with X-ray Diffraction and Molecular Simulation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xianfeng; Murthy, N. Sanjeeva; Latour, Robert A.

    2012-10-10

    The effect of hydration on the molecular structure of amorphous poly(D,L-lactic acid) (PDLLA) with 50:50 L-to-D ratio has been studied by combining experiments with molecular simulations. X-ray diffraction measurements revealed significant changes upon hydration in the structure functions of the copolymer. Large changes in the structure functions at 10 days of incubation coincided with the large increase in the water uptake from {approx} 1 to {approx} 40% and the formation of voids in the film. Computer modeling based on the recently developed TIGER2/TIGER3 mixed sampling scheme was used to interpret these changes by efficiently equilibrating both dry and hydrated modelsmore » of PDLLA. Realistic models of bulk amorphous PDLLA structure were generated as demonstrated by close agreement between the calculated and the experimental structure functions. These molecular simulations were used to identify the interactions between water and the polymer at the atomic level including the change of positional order between atoms in the polymer due to hydration. Changes in the partial O-O structure functions, about 95% of which were due to water-polymer interactions, were apparent in the radial distribution functions. These changes, and somewhat smaller changes in the C-C and C-O partial structure functions, clearly demonstrated the ability of the model to capture the hydrogen-bonding interactions between water and the polymer, with the probability of water forming hydrogen bonds with the carbonyl oxygen of the ester group being about 4 times higher than with its ether oxygen.« less

  20. Iron oxides in human spleen.

    PubMed

    Kopáni, Martin; Miglierini, Marcel; Lančok, Adriana; Dekan, Július; Čaplovicová, Mária; Jakubovský, Ján; Boča, Roman; Mrazova, Hedviga

    2015-10-01

    Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures-tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization.

  1. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  2. Sampling And Resolution Enhancement Techniques For The Infrared Analysis Of Adsorbed Proteins.

    NASA Astrophysics Data System (ADS)

    Fuller, Michael P.; Singh, Bal R.

    1989-12-01

    In this report, we have analyzed the secondary structures of the dichain form of tetanus neurotoxin using. FT-IR and circular dichroic spectroscopies for a-helix, β-sheets, β-turns and random coils. These results indicate that the secondary structures are significantly different from those reported in earlier studies in that it shows much higher content of ordered structures (~50%) which could be significant for the function of the neurotoxin.

  3. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian

    2017-10-01

    During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.

  4. Granule-by-granule reconstruction of a sandpile from x-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, G. T.; Martinez, G.; Seeley, L. H.

    2000-12-01

    Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determinemore » the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.« less

  5. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    PubMed Central

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  6. Assessment and Implications of Coping Styles in Response to a Social Stressor among Early Adolescents in China

    ERIC Educational Resources Information Center

    Kingsbury, Mila; Liu, Junsheng; Coplan, Robert J.; Chen, Xinyin; Li, Dan

    2016-01-01

    The aims of the present study were to (a) examine the factor structure of the "Self-Report Coping Scale" in a sample of Chinese early adolescents and (b) explore associations between coping and socioemotional functioning in this sample. Participants were N = 569 elementary school students (307 boys) in Grades 4 to 6. Participants…

  7. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  8. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com; Tipakontitikul, R.; Jantaratana, P.

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edgemore » Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.« less

  9. SKATE: a docking program that decouples systematic sampling from scoring.

    PubMed

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  10. Factor structure of overall autobiographical memory usage: the directive, self and social functions revisited.

    PubMed

    Rasmussen, Anne S; Habermas, Tilmann

    2011-08-01

    According to theory, autobiographical memory serves three broad functions of overall usage: directive, self, and social. However, there is evidence to suggest that the tripartite model may be better conceptualised in terms of a four-factor model with two social functions. In the present study we examined the two models in Danish and German samples, using the Thinking About Life Experiences Questionnaire (TALE; Bluck, Alea, Habermas, & Rubin, 2005), which measures the overall usage of the three functions generalised across concrete memories. Confirmatory factor analysis supported the four-factor model and rejected the theoretical three-factor model in both samples. The results are discussed in relation to cultural differences in overall autobiographical memory usage as well as sharing versus non-sharing aspects of social remembering.

  11. Quantifiable Assessment of SWNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Kim, Jae-Woo; Wise, Kristopher E.; Working, Dennis; Siochi, Mia; Harrison, Joycelyn; Gibbons, Luke; Siochi, Emilie J.; Lillehei, Peter T.; Cantrell, Sean; hide

    2007-01-01

    NASA LaRC has established a new protocol for visualizing the nanomaterials in structural polymer matrix resins. Using this new technique and reconstructing the 3D distribution of the nanomaterials allows us to compare this distribution against a theoretically perfect distribution. Additional tertiary structural information can now be obtained and quantified with the electron tomography studies. These tools will be necessary to establish the structural-functional relationships between the nano and the bulk. This will also help define the critical length scales needed for functional properties. Field ready tool development and calibration can begin by using these same samples and comparing the response. i.e. gold standards of good and bad dispersion.

  12. Focused Ion Beam Fabrication of Microelectronic Structures

    DTIC Science & Technology

    1990-12-01

    a simple function generator and allows fast ing, the pressure measured by the capacitance manometer is equal to the pressure at the sample surface...height above the sample ties. In practice this restricts features to simple rectangles or surface. J. Vac. . Tedhnol. B, VOL 7, No. 4, Jul/Aug IM...the sample up to 300 keV are available.(2) -3- This higher energy is often needed for implantation and for lithography in thick resist. Be++ ions at

  13. Can technical, functional and structural characteristics of dental units predict Legionella pneumophila and Pseudomonas aeruginosa contamination?

    PubMed

    Aprea, Luigi; Cannova, Lucia; Firenze, Alberto; Bivona, Maria S; Amodio, Emanuele; Romano, Nino

    2010-12-01

    Legionella pneumophila and Pseudomonas aeruginosa are common colonizers of water environments, particularly dental unit waterlines. The aim of this study was to assess whether the technical, functional and structural characteristics of dental units can influence the presence and the levels of opportunistic pathogens. Overall, 42 water samples were collected from dental units in a teaching hospital in Palermo, Italy, including 21 samples from the 21 taps supplied by the municipal water distribution system and 21 samples from oral rinsing cups at 21 dental units. L. pneumophila was present in 16 out of 21 water samples (76.2%) from dental units, and the median concentration was higher in samples from oral rinsing cups than in those from taps (P < 0.001). P. aeruginosa was equally distributed in water samples collected from oral rinsing cups and from taps. Some characteristics of dental units (age, number of chairs per room, number of patients per day and water temperature) were slightly associated with the presence of P. aeruginosa, but not with contamination by L. pneumophila. Our experience suggests that L. pneumophila is frequently detected in dental units, as reported in previous studies, whereas P. aeruginosa is not a frequent contaminant. As a consequence, microbiological control of water quality should be routinely performed, and should include the detection of opportunistic pathogens when bacterial contamination is expected.

  14. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    PubMed

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  15. Proteoglycomics: Recent Progress and Future Challenges

    PubMed Central

    Ly, Mellisa; Laremore, Tatiana N.

    2010-01-01

    Abstract Proteoglycomics is a systematic study of structure, expression, and function of proteoglycans, a posttranslationally modified subset of a proteome. Although relying on the established technologies of proteomics and glycomics, proteoglycomics research requires unique approaches for elucidating structure–function relationships of both proteoglycan components, glycosaminoglycan chain, and core protein. This review discusses our current understanding of structure and function of proteoglycans, major players in the development, normal physiology, and disease. A brief outline of the proteoglycomic sample preparation and analysis is provided along with examples of several recent proteoglycomic studies. Unique challenges in the characterization of glycosaminoglycan component of proteoglycans are discussed, with emphasis on the many analytical tools used and the types of information they provide. PMID:20450439

  16. Improving immunization of programmable logic controllers using weighted median filters.

    PubMed

    Paredes, José L; Díaz, Dhionel

    2005-04-01

    This paper addresses the problem of improving immunization of programmable logic controllers (PLC's) to electromagnetic interference with impulsive characteristics. A filtering structure, based on weighted median filters, that does not require additional hardware and can be implemented in legacy PLC's is proposed. The filtering operation is implemented in the binary domain and removes the impulsive noise presented in the discrete input adding thus robustness to PLC's. By modifying the sampling clock structure, two variants of the filter are obtained. Both structures exploit the cyclic nature of the PLC to form an N-sample observation window of the discrete input, hence a status change on it is determined by the filter output taking into account all the N samples avoiding thus that a single impulse affects the PLC functionality. A comparative study, based on a statistical analysis, of the different filters' performances is presented.

  17. Local linear regression for function learning: an analysis based on sample discrepancy.

    PubMed

    Cervellera, Cristiano; Macciò, Danilo

    2014-11-01

    Local linear regression models, a kind of nonparametric structures that locally perform a linear estimation of the target function, are analyzed in the context of empirical risk minimization (ERM) for function learning. The analysis is carried out with emphasis on geometric properties of the available data. In particular, the discrepancy of the observation points used both to build the local regression models and compute the empirical risk is considered. This allows to treat indifferently the case in which the samples come from a random external source and the one in which the input space can be freely explored. Both consistency of the ERM procedure and approximating capabilities of the estimator are analyzed, proving conditions to ensure convergence. Since the theoretical analysis shows that the estimation improves as the discrepancy of the observation points becomes smaller, low-discrepancy sequences, a family of sampling methods commonly employed for efficient numerical integration, are also analyzed. Simulation results involving two different examples of function learning are provided.

  18. Caregiver Appraisals of Functional Dependence in Individuals With Dementia and Associated Caregiver Upset: Psychometric Properties of a New Scale and Response Patterns by Caregiver and Care Recipient Characteristics

    PubMed Central

    GITLIN, LAURA N.; ROTH, DAVID L.; BURGIO, LOUIS D.; LOEWENSTEIN, DAVID A.; WINTER, LARAINE; NICHOLS, LINDA; ARGÜELLES, SOLEDAD; CORCORAN, MARY; BURNS, ROBERT; MARTINDALE, JENNIFER

    2008-01-01

    Objective To evaluate psychometric properties and response patterns of the Caregiver Assessment of Function and Upset (CAFU), a 15-item multidimensional measure of dependence in dementia patients and caregiver reaction. Method 640 families were administered the CAFU (53% White, 43% African American, and 4% mixed race and ethnicity). We created a random split of the sample and conducted exploratory factor analyses on Sample 1 and confirmatory factor analyses on Sample 2. Convergent and discriminant validity were evaluated using Spearman rank correlation coefficients. Results A two-factor structure for functional items was derived, and excellent factorial validity was obtained. Convergent and discriminant validity were obtained for function and upset measures. Differential response patterns for dependence and caregiver upset were found for caregiver race, relationship, and care recipient gender but not for caregiver gender. Discussion The CAFU is easily administered, reliable, and valid for evaluating appraisals of dependencies and upsetting care areas. PMID:15750049

  19. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Concentration specific and tunable photoresponse of bismuth vanadate functionalized hexagonal ZnO nanocrystals based photoanodes for photoelectrochemical application

    NASA Astrophysics Data System (ADS)

    Singh, Sonal; Ruhela, Aakansha; Rani, Sanju; Khanuja, Manika; Sharma, Rishabh

    2018-02-01

    In the present work, dual layer BiVO4/ZnO photoanode is instigated for photo-electrochemical (PEC) water splitting applications. Two different photocatalytic layers ZnO and BiVO4, reduces charge carrier recombination and charge transfer resistance at photoanode/electrolyte junction. The concentration-specific, tunable and without 'spike and overshoot' features, photocurrent density response is originated by varying BiVO4 concentration in the BiVO4/ZnO photoanode. The crystal structure of ZnO (hexagonal wurtzite structure) and BiVO4 (monoclinic scheelite structure) is confirmed by X-ray diffraction studies. The band gap of BiVO4/ZnO was estimated to be ca. 2.42 eV through Kubler-Munk function F(R∞) using diffuse reflectance spectroscopy. Electrochemical behavior of samples was analyzed with photocurrent measurements, electrochemical impedance, Mott-Schottky plots, bulk separation efficiency and surface transfer efficiency. The maximum photocurrent density of BiVO4/ZnO photoanode was found to be 2.3 times higher than pristine ZnO sample.0.038 M BiVO4/ZnO exhibited the highest separation efficiency of 72% and surface transfer efficiency of 64.7% at +1.23 V vs. RHE. Mott-Schottky study revealed the maximum charge carrier density in the same sample.

  1. Single-crystal Raman spectroscopy and X-ray crystallography at beamline X26-C of the NSLS

    PubMed Central

    Stoner-Ma, Deborah; Skinner, John M.; Schneider, Dieter K.; Cowan, Matt; Sweet, Robert M.; Orville, Allen M.

    2011-01-01

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of ‘mystery density’, i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 Å resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data. PMID:21169688

  2. A ground-based method of assessing urban forest structure and ecosystem services

    Treesearch

    David J. Nowak; Daniel E. Crane; Jack C. Stevens; Robert E. Hoehn; Jeffrey T. Walton; Jerry Bond

    2008-01-01

    To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the...

  3. A system architecture for a planetary rover

    NASA Technical Reports Server (NTRS)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  4. Protein homology model refinement by large-scale energy optimization.

    PubMed

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  5. Chemical characterization of organic aerosol above a mid-latitude forest reveals a complex mixture of highly-functionalized chemical species and diverse structural features with temporal variability

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.

    2017-12-01

    Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.

  6. Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics.

    PubMed

    Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser

    2016-06-15

    During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    PubMed

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes

    PubMed Central

    Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.

    2013-01-01

    AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380

  9. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    NASA Astrophysics Data System (ADS)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  10. Attention and memory evaluation across the life span: heterogeneous effects of age and education.

    PubMed

    Gómez-Pérez, Esther; Ostrosky-Solís, Feggy

    2006-05-01

    The developmental sequences of attention and memory were studied by utilizing normative data derived from the neuropsychological battery named NEUROPSI ATTENTION AND MEMORY. A sample of 521 Spanish-speaking individuals, aged 6 to 85 years, participated in this study. In the adult sample, educational level ranged from 0 to 22 years of education. Data from subtests measuring orientation, attention and concentration, executive functions, working memory, immediate and delayed verbal memory, and immediate and delayed visual memory were included. The factor structure of the analyzed battery is presented. The effects of age and education on this structure were analyzed. Results suggested that although attention and memory are related, their developmental sequences are separated from one another. During childhood, the development of selective and sustained attention, attentional-working memory, and executive functions showed a fast improvement in performance. Development of verbal memory and place and person orientation showed a slower increment in scores. In the adult sample it was found that factors related to memory are sensitive to age, whereas those related to attention and executive functions are sensitive to education. The consideration of both the developmental sequence, as well as differential effects of education, can improve the sensitivity and specificity of neuropsychological measures, allowing early diagnosis of cognitive dysfunction and implementation of adequate rehabilitation programs.

  11. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less

  12. Effect of reaction atmosphere on structural and optical properties of hexagonal molybdenum oxide (h-MoO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, V. Arumai; Chithambararaj, A.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    The present work aims to synthesize single phase h-MoO{sub 3} nanocrytals by chemical precipitation method exposed under different reaction atmospheres. The reaction atmosphere have been successfully tuned as air, nitrogen and argon and studied its effects on structural, functional, morphology and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and diffuse reflectance spectroscopy (DRS) measurements. The XRD result indicates that the sample exhibits characteristic hexagonal phase of MoO{sub 3}. The crystallite size is estimated by well known Scherrer’s method. The crystallite size is relative small in the case of sample prepared atmore » argon atmosphere. The functional groups such as Mo-O, N-H and O-H are identified from FT-IR spectroscopy. The particle exhibits rod like morphology with perfect hexagonal cross-section. The optical absorption observed at 420-450 nm corresponds to fundamental optical absorption by h-MoO{sub 3}. The band gap values are estimated using Kublka-Munk (K-M) function and found to be 2. 87 eV, 2.93 eV and 2.97 eV for samples synthesized under air, nitrogen and argon, respectively.« less

  13. Family Structure and Income During the Stages of Childhood and Subsequent Prosocial Behavior in Young Adulthood

    PubMed Central

    Bandy, Robert; Ottoni-Wilhelm, Mark

    2012-01-01

    This study investigated whether family structure transition and low income are risk factors in the development of prosocial behavior. Models of young adults’ prosocial behavior – charitable giving and volunteering – were estimated as functions of their family structure and income during the stages of childhood. Participants were a representative sample of 1,011 American young adults. In the full sample, family structure transition during adolescence was negatively associated with subsequent charitable giving in young adulthood. Low income during adolescence was negatively associated with both giving and volunteering in young adulthood. European-American young men also exhibited a negative association between family structure transition during adolescence and subsequent volunteering. The results did not seem to describe African-American young adults. Keeping this qualification in mind, the results suggest that adolescence is a sensitive stage in the development of charitable giving and volunteering. PMID:22414561

  14. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  15. Enhanced sampling of glutamate receptor ligand-binding domains.

    PubMed

    Lau, Albert Y

    2018-04-14

    The majority of excitatory synaptic transmission in the central nervous system is mediated by ionotropic glutamate receptors (iGluRs). These membrane-bound protein assemblies consist of modular domains that can be genetically isolated and expressed, which has resulted in a plethora of crystal structures of individual domains in different conformations bound to different ligands. These structures have presented opportunities for molecular dynamics (MD) simulation studies. To examine the free energies that govern molecular behavior, simulation strategies and algorithms have been developed, collectively called enhanced sampling methods This review focuses on the use of enhanced sampling MD simulations of isolated iGluR ligand-binding domains to characterize thermodynamic properties important to receptor function. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A Latent Variable Approach to Determining the Structure of Executive Function in Preschool Children

    ERIC Educational Resources Information Center

    Miller, Michael R.; Giesbrecht, Gerald F.; Muller, Ulrich; McInerney, Robert J.; Kerns, Kimberly A.

    2012-01-01

    The composition of executive function (EF) in preschool children was examined using confirmatory factor analysis (CFA). A sample of 129 children between 3 and 5 years of age completed a battery of EF tasks. Using performance indicators of working memory and inhibition similar to previous CFA studies with preschoolers, we replicated a unitary EF…

  17. Reliability and Validity of a German Version of the "Questions about Behavioral Function" (QABF) Scale for Self-Injurious Behavior in Individuals with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bienstein, Pia; Nussbeck, Susanne

    2009-01-01

    The psychometric properties of a German version of the Questions About Behavioral Function Scale (QABF) (Matson & Vollmer, 1995) were examined in a sample of 522 individuals with intellectual disabilities residing in large facilities participated. The factor structure was first examined by exploratory factor analysis, yielding a…

  18. Bioelectrochemical Systems Workshop:Standardized Analyses, Design Benchmarks, and Reporting

    DTIC Science & Technology

    2012-01-01

    related to the exoelectrogenic biofilm activity, and to investigate whether the community structure is a function of design and operational parameters...where should biofilm samples be collected? The most prevalent methods of community characterization in BES studies have entailed phylogenetic ...of function associated with this genetic marker, and in methods that involve polymerase chain reaction (PCR) amplification the quantitative

  19. Glass transition-related thermorheological complexity in polystyrene melts

    NASA Astrophysics Data System (ADS)

    Lin, Y.-H.

    2007-11-01

    The relaxation-modulus G(t) functional forms covering the whole time range are given by incorporating a stretched exponential for the structural- (glassy-) relaxation process into the extended reptation theory (ERT; for entangled systems) or the Rouse theory (for entanglement-free systems). The creep compliance J(t) curves of two entangled (A and B) and one entanglement-free (C) polystyrene samples (Plazek) as well as the viscoelastic spectra G*(ω) of four entanglement-free polystyrene samples (Inoue et al) have been quantitatively analyzed in terms of the given G(t) functional forms. In such quantitatively successful analyses, the ERT or the Rouse theory works as the frame of reference in both the line shape and timescale. The thermorheological complexity in the J(t) curves is explained naturally and precisely by the temperature dependence of the energetic-interaction-derived structural relaxation being stronger than that of the entropic ERT or Rouse dynamics in a simple way. Structural-relaxation times τS (= 18s'K') of all the studied samples are equally well separated into two decoupled quantities: the structural-growth parameter s' and the frictional factor K' (for the Rouse-Mooney or Rouse modes of motion). The separation is fundamentally a clean-cut process: s' is determined entirely by the line shape of J(t) or G*(ω) while K' is calculated from the timescale shifting factor obtained from the superposition of the calculated curves onto the measured. The glassy-relaxation strength AGf and the stretching parameter β extracted from the J(t) and G*(ω) results over the glassy-relaxation region are in good agreement. The glass-transition temperature Tg is defined as corresponding to τS = 1000 s for all the studied samples. The τS, s' and K' data points of samples A, B and C extracted from their J(t) curves individually fall closely on the same curves when expressed as a function of ΔT = T-Tg, revealing a Tg-related universality within the polystyrene system, entangled or not. The revealed universality confirms the previously derived conclusion that the ERT and the Rouse theory have the same footing at the Rouse-segmental level. Representing important physical features of the universality, the length-scale of the structural relaxation increases as ΔT diminishes and reaches the value of ~3 nm at ΔT = 0 (or at Tg) for all three samples, A, B and C. Extracted from the G*(ω) results, the τS, s' and K' data of samples with molecular weights just below and well below entanglement molecular weight Me (13 500) are found to deviate more from the respective universal curves with decreasing molecular weight. Deviation is estimated to start occurring at Mw = 12 000.

  20. The structure of intelligence in children and adults with high functioning autism

    PubMed Central

    Goldstein, Gerald; Allen, Daniel N.; Minshew, Nancy J.; Williams, Diane L.; Volkmar, Fred; Klin, Ami; Schultz, Robert J.

    2011-01-01

    Confirmatory factor analyses of the traditional 11 subtests of the Wechsler child and adult intelligence scales were accomplished for 137 children and 118 adults with high functioning autism (HFA) and for comparable age groups from the standardization samples contained in the Wechsler manuals. The objective was determining whether HFA groups produced similar best fitting models to those found in the normative samples or formed a separate “social intelligence” factor. Four-factor models incorporating a “social intelligence” factor provided the best fit in both the autism and normative, but the subtest intercorrelations were generally lower in the autism samples. Findings were interpreted in terms of underconnectivity or reduced communication among brain regions in autism. PMID:18444708

  1. Study on structural, dielectric, ferroelectric and piezoelectric properties of Ba doped Lead Zirconate Titanate Ceramics

    NASA Astrophysics Data System (ADS)

    Dipti; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra

    2013-12-01

    The perovskite Pb(1-x)BaxZr0.55Ti0.45O3 material (x=0.00, 0.01, 0.02, 0.03, 0.05, and 0.07) was synthesized by solid state reaction route. Green bodies were sintered at 1250 °C. All samples were subjected to X-ray diffraction analysis and they were found to be in single phase. Dielectric properties were studied as a function of temperature and frequency. Ferroelectric properties were studied as a function of temperature. Remnant polarization, saturation polarization and coercive field were determined for all the samples using ferroelectric loops. Piezoelectric properties such as d33 and electromechanical coupling factor (kp) were also measured at room temperature for all samples.

  2. Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity

    PubMed Central

    Dennis, Emily L.; Ellis, Monica U.; Marion, Sarah D.; Jin, Yan; Moran, Lisa; Olsen, Alexander; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.

    2015-01-01

    Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1–5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy—a common sign of impaired WM—and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this variance, as diffusion weighted imaging is sensitive to the white matter disruption that is common after injury. The corpus callosum (CC) is one of the most commonly reported areas of disruption. In this multimodal study, we discovered a divergence within our pediatric moderate-to-severe TBI sample 1–5 months postinjury. A subset of the TBI sample showed significant impairment in CC function, which is supported by additional results showing deficits in CC structural integrity. This subset also had poorer neurocognitive functioning. Our research sheds light on postinjury heterogeneity. PMID:26180196

  3. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.

  4. Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition

    PubMed Central

    Saeed, Isaam; Tang, Sen-Lin; Halgamuge, Saman K.

    2012-01-01

    An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis. PMID:22180538

  5. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  6. A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy

    PubMed Central

    Wen, Hui; Xie, Weixin; Pei, Jihong

    2016-01-01

    This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737

  7. Gene function prediction based on the Gene Ontology hierarchical structure.

    PubMed

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  8. Universal mechanism of thermo-mechanical deformation in metallic glasses

    DOE PAGES

    Dmowski, W.; Tong, Y.; Iwashita, T.; ...

    2015-02-11

    Here we investigated the atomistic structure of metallic glasses subjected to thermo-mechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in-situ, at high temperatures as a time dependent deformation in the elastic regime, and ex-situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples undergone thermo-mechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level and the sign of the stress, demonstrating universal behavior and pointing to unique atomistic unit of anelastic deformation. The structural changes due tomore » creep are strongly localized within the second nearest neighbors, involving only a small group of atoms.« less

  9. Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles.

    PubMed

    Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad

    2015-12-05

    In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Early abnormalities of cardiovascular structure and function in middle-aged Korean adults with prehypertension: The Korean Genome Epidemiology study.

    PubMed

    Kim, Seong Hwan; Cho, Goo-Yeong; Baik, Inkyung; Lim, Sang Yup; Choi, Cheol Ung; Lim, Hong Euy; Kim, Eung Ju; Park, Chang Gyu; Park, Juri; Kim, Jinyoung; Shin, Chol

    2011-02-01

    Prehypertension is associated with increased cardiovascular morbidity and mortality. However, there are few population-based studies on the changes of cardiovascular structure and function that characterize prehypertension. The aim of this study was to assess whether prehypertension is associated with abnormalities of cardiovascular structure and function in the general Korean population. We analyzed the cross-sectional relationships between prehypertension and cardiovascular structure and function in a sample from the Korean Genome Epidemiology Study. A total of 1,671 individuals (54.5% women; mean age: 53 ± 6 years) without hypertension and diabetes mellitus were enrolled. Cardiovascular structure and function were assessed by conventional echocardiography, tissue Doppler imaging (TDI), carotid ultrasonography, and pulse wave velocity (PWV). The left ventricular (LV) mass index was significantly higher in subjects with prehypertension than in those with normotension (41 ± 8 g/m²·⁷ vs. 38 ± 7 g/m²·⁷, P < 0.001). LV diastolic parameters, such as the E/A ratio, TDI E(a) velocity, and E/E(a) ratio, were also impaired in subjects with prehypertension (all P < 0.001). Compared with normotension, prehypertension was characterized by a significantly higher common carotid artery intima-media thickness and a higher brachial-ankle PWV (all P < 0.001). These abnormalities of cardiovascular structure and function remained significant after adjustment for covariates. In this population-based cohort, we found that subtle alterations in cardiovascular structure and function were already present at the prehypertensive stage. Whether such subtle alterations convey an increased risk of cardiovascular events and whether the changes are reversible with treatment warrant further study.

  11. Image analysis of representative food structures: application of the bootstrap method.

    PubMed

    Ramírez, Cristian; Germain, Juan C; Aguilera, José M

    2009-08-01

    Images (for example, photomicrographs) are routinely used as qualitative evidence of the microstructure of foods. In quantitative image analysis it is important to estimate the area (or volume) to be sampled, the field of view, and the resolution. The bootstrap method is proposed to estimate the size of the sampling area as a function of the coefficient of variation (CV(Bn)) and standard error (SE(Bn)) of the bootstrap taking sub-areas of different sizes. The bootstrap method was applied to simulated and real structures (apple tissue). For simulated structures, 10 computer-generated images were constructed containing 225 black circles (elements) and different coefficient of variation (CV(image)). For apple tissue, 8 images of apple tissue containing cellular cavities with different CV(image) were analyzed. Results confirmed that for simulated and real structures, increasing the size of the sampling area decreased the CV(Bn) and SE(Bn). Furthermore, there was a linear relationship between the CV(image) and CV(Bn) (.) For example, to obtain a CV(Bn) = 0.10 in an image with CV(image) = 0.60, a sampling area of 400 x 400 pixels (11% of whole image) was required, whereas if CV(image) = 1.46, a sampling area of 1000 x 100 pixels (69% of whole image) became necessary. This suggests that a large-size dispersion of element sizes in an image requires increasingly larger sampling areas or a larger number of images.

  12. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2).

    PubMed

    Jiang, Y; Chen, H-C; Su, X; Thompson, P A; Liu, X; Do, K-A; Wierda, W; Keating, M J; Plunkett, W

    2016-09-02

    Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies.

  13. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  14. Digital robust active control law synthesis for large order flexible structure using parameter optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.

    1988-01-01

    A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.

  15. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical.

    PubMed

    Radl, Viviane; Pritsch, Karin; Munch, Jean Charles; Schloter, Michael

    2005-09-01

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool.

  16. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    PubMed

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  17. A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, William Glenn

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functionsmore » $$F_2$$ and $$xF_3$$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $$\\Lambda^{NLO,(4)}_{\\overline MS}$$ = 337 ± 28 (exp.) MeV, which corresponds to $$\\alpha_s$$ ($$M^2_z$$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $$xG(x,Q^2_0 = 5 GeV^2$$ ) = (2.22±0.34) x ($$1-x)^{4.65 \\pm 0.68}$$« less

  18. Studies of the physical, yield and failure behavior of aliphatic polyketones

    NASA Astrophysics Data System (ADS)

    Karttunen, Nicole Renee

    This thesis describes an investigation into the multiaxial yield and failure behavior of an aliphatic polyketone terpolymer. The behavior is studied as a function of: stress state, strain rate, temperature, and sample processing conditions. Results of this work include: elucidation of the behavior of a recently commercialized polymer, increased understanding of the effects listed above, insight into the effects of processing conditions on the morphology of the polyketone, and a description of yield strength of this material as a function of stress state, temperature, and strain rate. The first portion of work focuses on the behavior of a set of samples that are extruded under "common" processing conditions. Following this reference set of tests, the effect of testing this material at different temperatures is studied. A total of four different temperatures are examined. In addition, the effect of altering strain rate is examined. Testing is performed under pseudo-strain rate control at constant nominal octahedral shear strain rate for each failure envelope. A total of three different rates are studied. An extension of the first portion of work involves modeling the yield envelope. This is done by combining two approaches: continuum level and molecular level. The use of both methods allows the description of the yield envelope as a function of stress state, strain rate and temperature. The second portion of work involves the effects of processing conditions. For this work, additional samples are extruded with different shear and thermal histories than the "standard" material. One set of samples is processed with shear rates higher and lower than the standard. A second set is processed at higher and lower cooling rates than the standard. In order to understand the structural cause for changes in behavior with processing conditions, morphological characterization is performed on these samples. In particular, the effect on spherulitic structure is important. Residual stresses are also determined to be important to the behavior of the samples. Finally, an investigation into the crystalline structure of a family of aliphatic polyketones is performed. The effects of side group concentration and size are described.

  19. The hOGG1 Ser326Cys Gene Polymorphism and Breast Cancer Risk in Saudi Population.

    PubMed

    Alanazi, Mohammed; Pathan, Akbar Ali Khan; Shaik, Jilani P; Alhadheq, Abdullah; Khan, Zahid; Khan, Wajahatullah; Al Naeem, Abdulrahman; Parine, Narasimha Reddy

    2017-07-01

    The purpose of this study was to test the association between human 8-oxoguanine glycosylase 1 (hOGG1) gene polymorphisms and susceptibility to breast cancer in Saudi population. We have also aimed to screen the hOGG1 Ser326Cys polymorphism effect on structural and functional properties of the hOGG1 protein using in silico tools. We have analyzed four SNPs of hOGG1 gene among Saudi breast cancer patients along with healthy controls. Genotypes were screened using TaqMan SNP genotype analysis method. Experimental data was analyzed using Chi-square, t test and logistic regression analysis using SPSS software (v.16). In silco analysis was conducted using discovery studio and HOPE program. Genotypic analysis showed that hOGG1 rs1052133 (Ser326Cys) is significantly associated with breast cancer samples in Saudi population, however rs293795 (T >C), rs2072668 (C>G) and rs2075747 (G >A) did not show any association with breast cancer. The hOGG1 SNP rs1052133 (Ser326Cys) minor allele T showed a significant association with breast cancer samples (OR = 1.78, χ2 = 7.86, p = 0.02024). In silico structural analysis was carried out to compare the wild type (Ser326) and mutant (Cys326) protein structures. The structural prediction studies revealed that Ser326Cys variant may destabilize the protein structure and it may disturb the hOGG1 function. Taken together this is the first In silico study report to confirm Ser326Cys variant effect on structural and functional properties of hOGG1 gene and Ser326Cys role in breast cancer susceptibility in Saudi population.

  20. Structural analysis and characterization of synthesized ordered mesoporous silicate (MCM-41) using small angle X-rays scattering and complementary techniques

    NASA Astrophysics Data System (ADS)

    Akinlalu, Ademola V.

    Mesoporous silicate have widespread potential applications, such as drug delivery, supports for catalysis, selective adsorption and host to guest molecules. Most important in the area of scientific research and industrial applications is their demand due to its extremely high surface areas (> 800m 2g-1) and larger pores with well defined structures. Mesoporous silicate (MCM-41) samples were prepared by hydrothermal method under various chemo-physical conditions and various experimental methods such as small angle X-rays scattering (SAXS), Nitrogen adsorption-desorption analysis at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to investigate the changes in the structural morphology and subtle lattice parameter changes. With regards to the subtle changes in the structural characteristics of the synthesized mesoporous silicate, we seek to understand the electron density function changes as the synthesis parameter are varied from low molar concentration of ATAB/Si to higher concentration, the system becoming more acidity due to increase in the hydrolysis time of pH regulator as a result of increased production of ethanol and acetic acid and the changes due to extended reaction time. This Ph.D. research tries to understand the influence of various parameters like surfactant-Si molar ratio, reaction time, and the hydrolysis of the pH regulator on the orderliness/disorderliness of the lattice order, lattice spacing and electron density function. The stages during synthesis are carefully selected to better understand where the greater influence on the overall structural morphology exist so as to be able to ne tune this parameter for any desired specification and application. The SAXS measurement were conducted on a HECUS S3-Micro X-ray system at Rensselaer Polytechnic Institute, Troy, NY. while the data evaluation and visualization were carried in 3DView 4.2 and EasySWAXS software. The electron density functions were generated with a proprietary software called edens. In this dissertation, the following observations have been revealed resulting from SAXS measurement. 1. As one increases the hydrolysis duration of ethyl acetate, a gradual collapse of the lattice spacing of the mesoporous silcate MCM-41 is observed. We found from SAXS that there is a slight right shift of the spectra toward the higher q-values indicating that we are gradually losing orderliness in the lattice spacing and hexagonal structure of the mesoporous silica. Also, the intensity of the peak of second and third peaks are diminutive when compared to sample with shorter hydrolysis time. 2. A comparison of the SAXS spectra for the different molar concentration sample reveals that the 0:5M samples shows a deteriorating structural characteristics as compared to the 0:25 and 0:75M samples respectively and a clear decrease in the (100) reflection planes. Also noticed is the slight rightward shift in the overall spectrum prole. This observation suggest that further analysis is needed so as to better understand the result. 3. We establish that during MCM-41 synthesis, longer reaction time is needed to produce quality sample with well defined structurally characteristic for its intended application because according to spectrum for the sample with a longer reaction time (aging), a shift towards the lower q-values indicates that a sample with a larger lattice parameter and wall thickness but the intensities of its peak are diminishing when compared to the other of relatively shorter reaction time. Other complementary techniques were used to corroborated the result obtained from SAXS. Nitrogen adsorption-desorption analysis at 77K was used to generate the isotherms while B.E.T method was used in conjunction with the isotherms to obtained the very important surface area information. SEM provide a visual structural morphology of the samples and FTIR gave the fingerprint detail of the bonds and vibration types between particle present.

  1. Determination of the Effects of Magnesium on the Structural Order of Amorphous Calcium Phosphate

    NASA Astrophysics Data System (ADS)

    Hoeher, A.; Michel, F. M.; Rakovan, J. F.; Borkiewicz, O.; Klysubun, W.

    2016-12-01

    Determining the pathways and mechanisms of calcium phosphate formation is important for understanding bone mineralization and advancing potential biological applications such as coatings on internal prosthetics. Studies show that amorphous calcium phosphate (ACP) is a precursor phase in the low temperature crystallization of hydroxylapatite, the primary mineral component found in bone and teeth of most modern vertebrates. ACP has been shown to have a structural order out to about 1 nm. Our recent extended x-ray absorption fine structure (EXAFS) spectroscopy analysis of synthetic ACP showed that the local structure of calcium in ACP differed from that in hydroxylapatite. Phosphorus EXAFS, however, indicated that the local structure in ACP is similar to hydroxylapatite (i.e., tetrahedrally coordinated with oxygen). EXAFS results were limited to only the first and second nearest neighbors in these samples, so the intermediate range order in ACP is yet unexplored. Furthermore, it remains unclear how ACP structure varies as a function of initial solution chemistry, how common impurities such as Mg are incorporated, and what role they play in determining the structural and physical characteristics of the final crystalline solid. We are using synchrotron x-ray total scattering for pair distribution function (PDF) analysis to investigate the influence of initial solution chemistry and Mg content on the structure of ACP. Magnesium is commonly used to stabilize the amorphous nature of the material, preventing crystallization. Ex situ samples synthesized at pH 10, with Ca:Mg ratios of 2:1, and freeze-dried are structurally similar to hydroxylapatite. Samples synthesized in identical conditions without Mg are structurally similar to another calcium phosphate mineral, brushite. In situ PDF measurements done at similar conditions in a custom mixed-flow reactor reveal that the short range order of ACP after 10 minutes of reacting is structurally different from ACP formed ex situ in the laboratory. Future analysis is aimed at quantifying the influence of these differences and to determine the validity of competing structural models proposed for ACP. This information is essential to further develop our understanding of the ACP transformation process into hydroxylapatite.

  2. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    PubMed

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of non-rigid registration parameters for atlas-based segmentation of CT images of human cochlea

    NASA Astrophysics Data System (ADS)

    Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.

    2017-02-01

    Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.

  4. Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding.

    PubMed

    Mortazavi, Majid; Brandenburg, Jan Gerit; Maurer, Reinhard J; Tkatchenko, Alexandre

    2018-01-18

    Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semiempirical electronic structure methods are computationally more efficient than their ab initio counterparts, allowing structure sampling with significant speedups. We combine the Tkatchenko-Scheffler van der Waals method (TS) and the many-body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) via a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speedup of up to 3000 times compared with a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction.

  5. Separated structure functions for exclusive K+Λ and K+Σ0 electroproduction at 5.5 GeV measured with CLAS

    NASA Astrophysics Data System (ADS)

    Carman, D. S.; Park, K.; Raue, B. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Y.; Tkachenko, S.; Trivedi, A.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-02-01

    We report measurements of the exclusive electroproduction of K+Λ and K+Σ0 final states from an unpolarized proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σU, σLT, σTT, and σLT' were extracted from the Φ-dependent differential cross sections acquired with a longitudinally polarized 5.499 GeV electron beam. The data span a broad range of momentum transfers Q2 from 1.4 to 3.9 GeV2, invariant energy W from threshold to 2.6 GeV, and nearly the full center-of-mass angular range of the kaon. The separated structure functions provide an unprecedented data sample, which, in conjunction with other meson photo- and electroproduction data, will help to constrain the higher-level analyses being performed to search for missing baryon resonances.

  6. A measurement and QCD analysis of the proton structure function F2 ( x, Q2) at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançoni, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; BurgerF. W. Büsser, J.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbie, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, A.; MeyerH. Meyer, A.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, H.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabl, F.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchi, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; Kaufmannxa, O.; H1 Collaboration

    1996-02-01

    A new measurement of the proton structure function F2 ( x, Q2) is reported for momentum transfers squared Q2 between ].5 GeV 2 and 5000 GeV 2 and for Bjorken x between 3 · 10 -5 and 0.32 using data collected by the HERA experiment H1 in 1994. The data represent an increase in statistics by a factor of ten with respect to the analysis of the 1993 data. Substantial extension of the kinematic range towards low Q2 and x has been achieved using dedicated data samples and events with initial state photon radiation. The structure function is found to increase significantly with decreasing x, even in the lowest accessible Q2 region. The data are well described by a Next to Leading Order QCD fit and the gluon density is extracted.

  7. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  8. CO binding improves the structural, functional, physical and anti-oxidation properties of the PEGylated hemoglobin.

    PubMed

    Wang, Qingqing; Hu, Tao; Sun, Lijing; Ji, Shaoyang; Zhao, Dawei; Liu, Jiaxin; Ma, Guanghui; Su, Zhiguo

    2015-02-01

    PEGylated hemoglobin (Hb) is a promising oxygen therapeutic agent for clinical application. However, it suffered from structural perturbation, functional instability and methemoglobin (metHb) formation. To improve the structural, functional, physical and anti-oxidation properties of the PEGylated Hb. PEGylation of Hb with CO binding (HbCO) was conducted using maleimide and acylation chemistry, respectively. Physical and chemical parameters were measured for Hb samples. The circular dichroism spectra, dynamic light scattering and analytical ultracentrifugation were used to investigate the structure and conformation of PEGylated HbCO. CO binding can inhibit the autoxidation of the PEGylated Hb, structurally stabilize its tetramer and improve its thermal and pH stability. Importantly, the circular dichroism spectra showed that CO binding can decrease the structural perturbation of Hb induced by PEGylation. The PEGylated HbCO with CO release showed slightly higher oxygen-delivery capacity than the PEGylated Hb. The PEGylated HbCO did not show metHb formation after 30-day storage at 4°C. CO binding structurally stabilized the PEGylated Hb, abolished its metHb formation, and significantly increased its physical stability. In particular, it also avoided the perturbation of PEG chains on the heme microenvironment. The functional property of the PEGylated HbCO can be maintained during its long-term storage, which is of great significance for field transfusion.

  9. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    PubMed

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. A Dynamic Nuclear Polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities.

    PubMed

    Feintuch, Akiva; Shimon, Daphna; Hovav, Yonatan; Banerjee, Debamalya; Kaminker, Ilia; Lipkin, Yaacov; Zibzener, Koby; Epel, Boris; Vega, Shimon; Goldfarb, Daniella

    2011-04-01

    A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  12. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics.

    PubMed

    Ma, Ruoshui; Zhang, Xiumei; Wang, Yi; Zhang, Xiao

    2018-04-27

    The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g. depolymerization, modifications etc) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we demonstrated for the first time to apply multiple-variable linear estimations (MVLE) approach using R statistics to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A new configurational bias scheme for sampling supramolecular structures

    NASA Astrophysics Data System (ADS)

    De Gernier, Robin; Curk, Tine; Dubacheva, Galina V.; Richter, Ralf P.; Mognetti, Bortolo M.

    2014-12-01

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand-receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking.

  14. Protein Conformational Populations and Functionally Relevant Sub-states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K; Burger, Virginia; Savol, Andrej

    2013-01-01

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of themore » protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that allow it to attain the transition state, therefore promoting the reaction mechanism. In the long term, this emerging view of proteins with conformational substates has broad implications for improving our understanding of enzymes, enzyme engineering, and better drug design. Researchers have already used photoactivation to modulate protein conformations as a strategy to develop a hypercatalytic enzyme. In addition, the alteration of the conformational substates through binding of ligands at locations other than the active site provides the basis for the design of new medicines through allosteric modulation.« less

  15. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    PubMed

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  16. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    NASA Astrophysics Data System (ADS)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  17. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.

    PubMed

    Sloma, Michael F; Mathews, David H

    2016-12-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. © 2016 Sloma and Mathews; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    NASA Astrophysics Data System (ADS)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  19. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Analysis of RNA structure using small-angle X-ray scattering

    PubMed Central

    Cantara, William A.; Olson, Erik D.; Musier-Forsyth, Karin

    2016-01-01

    In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building. PMID:27777026

  1. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.; Suzuki, S.; Kimura, M.

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, {alpha}-FeOOH and {gamma}-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The twomore » rust components were found to be the network structure formed by FeO{sub 6} octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces.« less

  2. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark.

    PubMed

    Grinter, Sam Z; Yan, Chengfei; Huang, Sheng-You; Jiang, Lin; Zou, Xiaoqin

    2013-08-26

    In this study, we use the recently released 2012 Community Structure-Activity Resource (CSAR) data set to evaluate two knowledge-based scoring functions, ITScore and STScore, and a simple force-field-based potential (VDWScore). The CSAR data set contains 757 compounds, most with known affinities, and 57 crystal structures. With the help of the script files for docking preparation, we use the full CSAR data set to evaluate the performances of the scoring functions on binding affinity prediction and active/inactive compound discrimination. The CSAR subset that includes crystal structures is used as well, to evaluate the performances of the scoring functions on binding mode and affinity predictions. Within this structure subset, we investigate the importance of accurate ligand and protein conformational sampling and find that the binding affinity predictions are less sensitive to non-native ligand and protein conformations than the binding mode predictions. We also find the full CSAR data set to be more challenging in making binding mode predictions than the subset with structures. The script files used for preparing the CSAR data set for docking, including scripts for canonicalization of the ligand atoms, are offered freely to the academic community.

  3. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  4. A Highly Flexible, Automated System Providing Reliable Sample Preparation in Element- and Structure-Specific Measurements.

    PubMed

    Vorberg, Ellen; Fleischer, Heidi; Junginger, Steffen; Liu, Hui; Stoll, Norbert; Thurow, Kerstin

    2016-10-01

    Life science areas require specific sample pretreatment to increase the concentration of the analytes and/or to convert the analytes into an appropriate form for the detection and separation systems. Various workstations are commercially available, allowing for automated biological sample pretreatment. Nevertheless, due to the required temperature, pressure, and volume conditions in typical element and structure-specific measurements, automated platforms are not suitable for analytical processes. Thus, the purpose of the presented investigation was the design, realization, and evaluation of an automated system ensuring high-precision sample preparation for a variety of analytical measurements. The developed system has to enable system adaption and high performance flexibility. Furthermore, the system has to be capable of dealing with the wide range of required vessels simultaneously, allowing for less cost and time-consuming process steps. However, the system's functionality has been confirmed in various validation sequences. Using element-specific measurements, the automated system was up to 25% more precise compared to the manual procedure and as precise as the manual procedure using structure-specific measurements. © 2015 Society for Laboratory Automation and Screening.

  5. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms

    PubMed Central

    Ding, Feng; Sharma, Shantanu; Chalasani, Poornima; Demidov, Vadim V.; Broude, Natalia E.; Dokholyan, Nikolay V.

    2008-01-01

    RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 Å deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNAPhe, pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses. PMID:18456842

  6. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  7. Improvement of the mechanical properties of reinforced aluminum foam samples

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  8. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Maryam, Siddra; Bashir, Farooq

    2018-04-01

    Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.

  10. Visual assessment of soil structure quality in an agroextractivist system in Southeastern Amazonia

    NASA Astrophysics Data System (ADS)

    Fernanda Simões da Silva, Laura; Stuchi Boschi, Raquel; Ortega Gomes, Matheus; Cooper, Miguel

    2016-04-01

    Soil structure is considered a key factor in the functioning of soil, affecting its ability to support plant and animal life, and moderate environmental quality. Numerous methods are available to evaluate soil structure based on physical, chemical and biological indicators. Among the physical indicators, the attributes most commonly used are soil bulk density, porosity, soil resistance to penetration, tensile strength of aggregates, soil water infiltration, and available water. However, these methods are expensive and generally time costly for sampling and laboratorial procedures. Recently, evaluations using qualitative and semi-quantitative indicators of soil structure quality have gained importance. Among these methods, the method known as Visual Evaluation of Soil Structure (VESS) (Ball et al., 2007; Guimarães et al., 2011) can supply this necessity in temperate and tropical regions. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. Two toposequences were chosen, one under native forest and the other under pasture. Pits were opened in different landscape positions (upslope, midslope and downslope) for soil morphological, micromorphological and physical characterization. The use of the soil visual evaluation method (SVE) consisted in collecting an undisturbed soil sample of approximately 25 cm in length, 20 cm in width and 10 cm in depth. 12 soil samples were taken for each land use. The samples were manually fragmented, respecting the fracture planes between the aggregates. The SVE was done comparing the fragmented sample with a visual chart and scores were given to the soil structure. The categories that define the soil structure quality (Qe) vary from 1 to 5. Lower scores mean better soil structure. The final score calculation was done using the classification key of Ball et al. (2007) adapted by Guimarães (2011). A change in soil structure was observed between forest and pasture. The presence of layers of different depths, and size and shape of aggregates resulted in a lower Qe in the forest soils (Qe= 2,04 ±0,4), followed by the pasture (Qe= 3,09 ± 1,3). These results indicate certain degradation in the soil structure in the pasture. The variability of the soil structure in the forest samples was lower. The pasture samples presented a worse soil structure when compared to the forest, although their Qe values can be considered good.

  11. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  13. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis*

    PubMed Central

    Gago-Fuentes, Raquel; Fernández-Puente, Patricia; Megias, Diego; Carpintero-Fernández, Paula; Mateos, Jesus; Acea, Benigno; Fonseca, Eduardo; Blanco, Francisco Javier; Mayan, Maria Dolores

    2015-01-01

    We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA. PMID:25903580

  14. Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.

    PubMed

    Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C

    2016-07-01

    Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.

  15. Structural and functional hyperconnectivity within the sensorimotor system in xenomelia.

    PubMed

    Hänggi, Jürgen; Vitacco, Deborah A; Hilti, Leonie M; Luechinger, Roger; Kraemer, Bernd; Brugger, Peter

    2017-03-01

    Xenomelia is a rare condition characterized by the persistent and compulsive desire for the amputation of one or more physically healthy limbs. We highlight the neurological underpinnings of xenomelia by assessing structural and functional connectivity by means of whole-brain connectome and network analyses of regions previously implicated in empirical research in this condition. We compared structural and functional connectivity between 13 xenomelic men with matched controls using diffusion tensor imaging combined with fiber tractography and resting state functional magnetic resonance imaging. Altered connectivity in xenomelia within the sensorimotor system has been predicted. We found subnetworks showing structural and functional hyperconnectivity in xenomelia compared with controls. These subnetworks were lateralized to the right hemisphere and mainly comprised by nodes belonging to the sensorimotor system. In the connectome analyses, the paracentral lobule, supplementary motor area, postcentral gyrus, basal ganglia, and the cerebellum were hyperconnected to each other, whereas in the xenomelia-specific network analyses, hyperconnected nodes have been found in the superior parietal lobule, primary and secondary somatosensory cortex, premotor cortex, basal ganglia, thalamus, and insula. Our study provides empirical evidence of structural and functional hyperconnectivity within the sensorimotor system including those regions that are core for the reconstruction of a coherent body image. Aberrant connectivity is a common response to focal neurological damage. As exemplified here, it may affect different brain regions differentially. Due to the small sample size, our findings must be interpreted cautiously and future studies are needed to elucidate potential associations between hyperconnectivity and limb disownership reported in xenomelia.

  16. Psychometric assessment of the short-form Child Perceptions Questionnaire: an international collaborative study.

    PubMed

    Thomson, W M; Foster Page, L A; Robinson, P G; Do, L G; Traebert, J; Mohamed, A R; Turton, B J; McGrath, C; Bekes, K; Hirsch, C; Del Carmen Aguilar-Diaz, F; Marshman, Z; Benson, P E; Baker, S R

    2016-12-01

    To examine the factor structure and other psychometric characteristics of the most commonly used child oral-health-related quality-of-life (OHRQoL) measure (the 16-item short-form CPQ 11-14 ) in a large number of children (N = 5804) from different settings and who had a range of caries experience and associated impacts. Secondary data analyses used subnational epidemiological samples of 11- to 14-year-olds in Australia (N = 372), New Zealand (three samples: 352, 202, 429), Brunei (423), Cambodia (244), Hong Kong (542), Malaysia (439), Thailand (220, 325), England (88, 374), Germany (1055), Mexico (335) and Brazil (404). Confirmatory factor analysis (CFA) was used to examine the factor structure of the CPQ 11-14 across the combined sample and within four regions (Australia/NZ, Asia, UK/Europe and Latin America). Item impact and internal reliability analysis were also conducted. Caries experience varied, with mean DMFT scores ranging from 0.5 in the Malaysian sample to 3.4 in one New Zealand sample. Even more variation was noted in the proportion reporting only fair or poor oral health; this was highest in the Cambodian and Mexican samples and lowest in the German sample and one New Zealand sample. One in 10 reported that their oral health had a marked impact on their life overall. The CFA across all samples revealed two factors with eigenvalues greater than 1. The first involved all items in the oral symptoms and functional limitations subscales; the second involved all emotional well-being and social well-being items. The first was designated the 'symptoms/function' subscale, and the second was designated the 'well-being' subscale. Cronbach's alpha scores were 0.72 and 0.84, respectively. The symptoms/function subscale contained more of the items with greater impact, with the item 'Food stuck in between your teeth' having greatest impact; in the well-being subscale, the 'Felt shy or embarrassed' item had the greatest impact. Repeating the analyses by world region gave similar findings. The CPQ 11-14 performed well cross-sectionally in the largest analysis of the scale in the literature to date, with robust and mostly consistent psychometric characteristics, albeit with two underlying factors (rather than the originally hypothesized four-factor structure). It appears to be a sound, robust measure which should be useful for research, practice and policy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  18. Progression in structural, magnetic and electrical properties of La-doped group IV elements

    NASA Astrophysics Data System (ADS)

    Deepapriya, S.; Annie Vinosha, P.; Rodney, John D.; Jerome Das, S.

    2018-04-01

    Progression of group IV elements such as zinc ferrite (ZnFe2O4), cobalt ferrite (CoFe2O4) was synthesized by doping lanthanum (La), via adopting a facile co-precipitation method. Doping hefty rare earth ion in spinel structure can amend to the physical properties of the lattice, which can be used in the enhancement of magnetic and electrical properties of the as-synthesized nanomaterial, it is vital to metamorphose and optimize its micro structural and magnetic features. The structural properties of the samples was analysed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM) and UV-visible spectral analysis (UV-vis) reveals the optical property and optical band gap. The magnetic properties were evaluated using a vibrating sample magnetometer (VSM), the presence of functional group was confirmed by FTIR. XRD analyses elucidates that the synthesized samples zinc and cobalt had a spinel structure. From TEM analyses the morphology and diameter of the particle was observed. The substituted rare earth ions in Zinc ferrite inhibit the grain growth of the materials in an efficient manner compared with that of the Cobalt ferrite.

  19. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  20. Analyzing the test process using structural coverage

    NASA Technical Reports Server (NTRS)

    Ramsey, James; Basili, Victor R.

    1985-01-01

    A large, commercially developed FORTRAN program was modified to produce structural coverage metrics. The modified program was executed on a set of functionally generated acceptance tests and a large sample of operational usage cases. The resulting structural coverage metrics are combined with fault and error data to evaluate structural coverage. It was shown that in the software environment the functionally generated tests seem to be a good approximation of operational use. The relative proportions of the exercised statement subclasses change as the structural coverage of the program increases. A method was also proposed for evaluating if two sets of input data exercise a program in a similar manner. Evidence was provided that implies that in this environment, faults revealed in a procedure are independent of the number of times the procedure is executed and that it may be reasonable to use procedure coverage in software models that use statement coverage. Finally, the evidence suggests that it may be possible to use structural coverage to aid in the management of the acceptance test processed.

  1. Ego Defense Mechanisms and Types of Object Relations in Adults With ADHD.

    PubMed

    de Almeida Silva, Vanessa; Louzã, Mario Rodrigues; da Silva, Maria Aparecida; Nakano, Eduardo Yoshio

    2016-11-01

    This research evaluates the personality structure of adults with ADHD from a psychodynamic perspective. The hypothesis was that possible structural characteristics in personality could be correlated with this syndrome. Assessment tools for ego functions (Bell Object Relations and Reality Testing Inventory [BORRTI-Form O], Defense Style Questionnaire ( DSQ-40)) were applied to a sample of 90 adults with ADHD, recruited in a specialized clinic. Among the ADHD sample, 84.4% of the participants were identified as having object relations pathologies. Pathological elevations were observed mainly in the Alienation, Egocentricity, and Insecure Attachment subscales. Statistically, significant differences were found especially in the use of immature and neurotic defense mechanisms, compared with normative data. The findings indicate that adults with ADHD make more use of immature and neurotic defense mechanisms, and presented pathological internalized object relations that are typical of an archaic and poorly structured egoic structure. © The Author(s) 2012.

  2. Structural and Functional Biomedical Imaging Using Polarization-Based Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Black, Adam J.

    Biomedical imaging has had an enormous impact in medicine and research. There are numerous imaging modalities covering a large range of spatial and temporal scales, penetration depths, along with indicators for function and disease. As these imaging technologies mature, the quality of the images they produce increases to resolve finer details with greater contrast at higher speeds which aids in a faster, more accurate diagnosis in the clinic. In this dissertation, polarization-based optical coherence tomography (OCT) systems are used and developed to image biological structure and function with greater speeds, signal-to-noise (SNR) and stability. OCT can image with spatial and temporal resolutions in the micro range. When imaging any sample, feedback is very important to verify the fidelity and desired location on the sample being imaged. To increase frame rates for display as well as data throughput, field-programmable gate arrays (FPGAs) were used with custom algorithms to realize real-time display and streaming output for continuous acquisition of large datasets of swept-source OCT systems. For spectral domain (SD) OCT systems, significant increases in signal-to-noise ratios were achieved from a custom balanced detection (BD) OCT system. The BD system doubled measured signals while reducing common term. For functional imaging, a real-time directed scanner was introduced to visualize the 3D image of a sample to identify regions of interest prior to recording. Elucidating the characteristics of functional OCT signals with the aid of simulations, novel processing methods were also developed to stabilize samples being imaged and identify possible origins of functional signals being measured. Polarization-sensitive OCT was used to image cardiac tissue before and after clearing to identify the regions of vascular perfusion from a coronary artery. The resulting 3D image provides a visualization of the perfusion boundaries for the tissue that would be damaged from a myocardial infarction to possibly identity features that lead to fatal cardiac arrhythmias. 3D functional imaging was used to measure functional retinal activity from a light stimulus. In some cases, single trial responses were possible; measured at the outer segment of the photoreceptor layer. The morphology and time-course of these signals are similar to the intrinsic optical signals reported from phototransduction. Assessing function in the retina could aid in early detection of degenerative diseases of the retina, such as glaucoma and macular degeneration.

  3. Fatigue-Induced Damage in Zr-Based Bulk Metallic Glasses

    PubMed Central

    Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K.; Li, Ran; Zhang, Tao

    2013-01-01

    In the present work, we investigate the effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size. PMID:23999496

  4. Progress Implementing a Model-Based Iterative Reconstruction Algorithm for Ultrasound Imaging of Thick Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Johnson, Christi R; Clayton, Dwight A

    All commercial nuclear power plants (NPPs) in the United States contain concrete structures. These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and the degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Concrete structures in NPPs are often inaccessible and contain large volumes of massively thick concrete. While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin specimens of concrete such as concrete transportation structures, enhancements are needed for heavily reinforced, thick concrete. We argue that image reconstruction quality for acoustic imaging in thickmore » concrete could be improved with Model-Based Iterative Reconstruction (MBIR) techniques. MBIR works by designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior model). Both models are used to formulate an objective function (cost function). The final step in MBIR is to optimize the cost function. Previously, we have demonstrated a first implementation of MBIR for an ultrasonic transducer array system. The original forward model has been upgraded to account for direct arrival signal. Updates to the forward model will be documented and the new algorithm will be assessed with synthetic and empirical samples.« less

  5. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume

    USGS Publications Warehouse

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy

    2014-01-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  6. Progress implementing a model-based iterative reconstruction algorithm for ultrasound imaging of thick concrete

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Johnson, Christi; Clayton, Dwight; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2017-02-01

    All commercial nuclear power plants (NPPs) in the United States contain concrete structures. These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and the degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Concrete structures in NPPs are often inaccessible and contain large volumes of massively thick concrete. While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin specimens of concrete such as concrete transportation structures, enhancements are needed for heavily reinforced, thick concrete. We argue that image reconstruction quality for acoustic imaging in thick concrete could be improved with Model-Based Iterative Reconstruction (MBIR) techniques. MBIR works by designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior model). Both models are used to formulate an objective function (cost function). The final step in MBIR is to optimize the cost function. Previously, we have demonstrated a first implementation of MBIR for an ultrasonic transducer array system. The original forward model has been upgraded to account for direct arrival signal. Updates to the forward model will be documented and the new algorithm will be assessed with synthetic and empirical samples.

  7. Evidence of Dynamic Crustal Deformation in Tohoku, Japan, From Time-Varying Receiver Functions

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Yoshioka, S.

    2017-10-01

    Temporal variation of crustal structure is key to our understanding of Earth processes on human timescales. Often, we expect that the most significant structural variations are caused by strong ground shaking associated with large earthquakes, and recent studies seem to confirm this. Here we test the possibility of using P receiver functions (PRF) to isolate structural variations over time. Synthetic receiver function tests indicate that structural variation could produce PRF changes on the same order of magnitude as random noise or contamination by local earthquakes. Nonetheless, we find significant variability in observed receiver functions over time at several stations located in northeastern Honshu. Immediately following the Tohoku-oki earthquake, we observe high PRF variation clustering spatially, especially in two regions near the beginning and end of the rupture plane. Due to the depth sensitivity of PRF and the timescales over which this variability is observed, we infer this effect is primarily due to fluid migration in volcanic regions and shear stress/strength reorganization. While the noise levels in PRF are high for this type of analysis, by sampling small data sets, the computational cost is lower than other methods, such as ambient noise, thereby making PRF a useful tool for estimating temporal variations in crustal structure.

  8. Random function representation of stationary stochastic vector processes for probability density evolution analysis of wind-induced structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui

    2018-06-01

    This paper develops a hybrid approach of spectral representation and random function for simulating stationary stochastic vector processes. In the proposed approach, the high-dimensional random variables, included in the original spectral representation (OSR) formula, could be effectively reduced to only two elementary random variables by introducing the random functions that serve as random constraints. Based on this, a satisfactory simulation accuracy can be guaranteed by selecting a small representative point set of the elementary random variables. The probability information of the stochastic excitations can be fully emerged through just several hundred of sample functions generated by the proposed approach. Therefore, combined with the probability density evolution method (PDEM), it could be able to implement dynamic response analysis and reliability assessment of engineering structures. For illustrative purposes, a stochastic turbulence wind velocity field acting on a frame-shear-wall structure is simulated by constructing three types of random functions to demonstrate the accuracy and efficiency of the proposed approach. Careful and in-depth studies concerning the probability density evolution analysis of the wind-induced structure have been conducted so as to better illustrate the application prospects of the proposed approach. Numerical examples also show that the proposed approach possesses a good robustness.

  9. X-ray absorption spectroscopy to watch catalysis by metalloenzymes: status and perspectives discussed for the water-splitting manganese complex of photosynthesis.

    PubMed

    Dau, Holger; Haumann, Michael

    2003-01-01

    Understanding structure-function relations is one of the main interests in the molecular biosciences. X-ray absorption spectroscopy of biological samples (BioXAS) has gained the status of a useful tool for characterization of the structure of protein-bound metal centers with respect to the electronic structure (oxidation states, orbital occupancies) and atomic structure (arrangement of ligand atoms). Owing to progress in the performance characteristics of synchrotron radiation sources and of experimental stations dedicated to the study of (ultra-dilute) biological samples, it is now possible to carry out new types of BioXAS experiments, which have been impracticable in the past. Of particular interest are approaches to follow biological catalysis at metal sites by characterization of functionally relevant structural changes. In this Article, the first steps towards the use of BioXAS to 'watch' biological catalysis are reviewed for the water-splitting reactions occurring at the manganese complex of photosynthesis. The following aspects are considered: the role of BioXAS in life sciences; methodological aspects of BioXAS; catalysis at the Mn complex of photosynthesis; combination of EXAFS and crystallographic information; the freeze-quench technique to capture semi-stable states; time-resolved BioXAS using a freeze-quench approach; room-temperature experiments and 'real-time' BioXAS; tasks and perspectives.

  10. Structure of four executive functioning tests in healthy older adults.

    PubMed

    de Frias, Cindy M; Dixon, Roger A; Strauss, Esther

    2006-03-01

    The authors examined the factor structure of 4 indicators of executive functioning derived from 2 new (i.e., Hayling and Brixton) and 2 traditional (i.e., Stroop and Color Trails) tests. Data were from a cross-sectional sample of 55- to 85-year-old healthy adults (N=427) from the Victoria Longitudinal Study. Confirmatory factor analysis (LISREL 8.52) tested both a 2-factor model of Inhibition (Hayling, Stroop) and Shifting (Brixton, Color Trails) and a single-factor model. The 2-factor model did not fit the data because the covariance matrix of the factors was not positive definite. The single-factor model fit the data well, chi(2)(2, N=427)=0.32, p=.85, root-mean-square error of approximation (RMSEA)=.00, comparative fit index (CFI)=1.00, goodness-of-fit index (GFI)=1.00. Moreover, the single-factor structure of executive functioning was invariant (configural and metric) across gender, and invariant (configural with limited metric) across age. Structural relations showed that poorer executive functioning performance was related to older age and lower fluid intelligence, chi(2)(11, N=418)=23.04, p=.02, RMSEA=.05, CFI=.97, GFI=.98.

  11. Synthesis, Structure, and Pressure-Induced Polymerization of Li3Fe(CN)6 Accompanied with Enhanced Conductivity.

    PubMed

    Li, Kuo; Zheng, Haiyan; Hattori, Takanori; Sano-Furukawa, Asami; Tulk, Christopher A; Molaison, Jamie; Feygenson, Mikhail; Ivanov, Ilia N; Yang, Wenge; Mao, Ho-Kwang

    2015-12-07

    Pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal-carbon network composite, thus providing a new route to synthesize inorganic/organic conductors with tunable composition and properties. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. The conductivity of the polymer is above 10(-3) S · cm(-1), which reaches the range of conductive polymers. This investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.

  12. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  13. Resting cerebral blood flow, attention, and aging.

    PubMed

    Bertsch, Katja; Hagemann, Dirk; Hermes, Michael; Walter, Christof; Khan, Robina; Naumann, Ewald

    2009-04-24

    Aging is accompanied by a decline of fluid cognitive functions, e.g., a slowing of information processing, working memory, and division of attention. This is at least partly due to structural and functional changes in the aging brain. Although a decrement of resting cerebral blood flow (CBF) has been positively associated with cognitive functions in patients with brain diseases, studies with healthy participants have revealed inconsistent results. Therefore, we investigated the relation between resting cerebral blood flow and cognitive functions (tonic and phasic alertness, selective and divided attention) in two samples of healthy young and older participants. We found higher resting CBF and better cognitive performances in the young than in the older sample. In addition, resting CBF was inversely correlated with selective attention in the young and with tonic alertness in the elderly participants. This finding is discussed with regard to the neural efficiency hypothesis of human intelligence.

  14. Measurement of the proton structure function F 2 from the 1993 HERA data

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kędzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.

    1995-09-01

    The ZEUS detector has been used to measure the proton structure function F 2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb-1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7< Q 2<104 GeV2 and x values as low as 3×10-4. The rapid rise in F 2 as x decreases observed previously is now studied in greater detail and persists for Q 2 values up to 500 GeV2.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantayat, S., E-mail: subhra-gantayat@rediffmail.com; Rout, D.; Swain, S. K.

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increasedmore » with increasing concentration of f-MWCNTs.« less

  16. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of ∼190 mAh g-1 in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distribution-function (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2MnSiO4 nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (β) Li2MnSiO4 crystalline phase (space group Pmn21) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures.

  17. Spatial variation in the bacterial and denitrifying bacterial community in a biofilter treating subsurface agricultural drainage.

    PubMed

    Andrus, J Malia; Porter, Matthew D; Rodríguez, Luis F; Kuehlhorn, Timothy; Cooke, Richard A C; Zhang, Yuanhui; Kent, Angela D; Zilles, Julie L

    2014-02-01

    Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples.In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria.Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect,while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics.Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically in undated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

  18. Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik

    2016-08-01

    Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.

  19. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  20. Data processing for water monitoring system

    NASA Technical Reports Server (NTRS)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  1. Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations

    PubMed Central

    Wig, Gagan S.; Laumann, Timothy O.; Cohen, Alexander L.; Power, Jonathan D.; Nelson, Steven M.; Glasser, Matthew F.; Miezin, Francis M.; Snyder, Abraham Z.; Schlaggar, Bradley L.; Petersen, Steven E.

    2014-01-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability—reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. PMID:23476025

  2. A unified framework for unraveling the functional interaction structure of a biomolecular network based on stimulus-response experimental data.

    PubMed

    Cho, Kwang-Hyun; Choo, Sang-Mok; Wellstead, Peter; Wolkenhauer, Olaf

    2005-08-15

    We propose a unified framework for the identification of functional interaction structures of biomolecular networks in a way that leads to a new experimental design procedure. In developing our approach, we have built upon previous work. Thus we begin by pointing out some of the restrictions associated with existing structure identification methods and point out how these restrictions may be eased. In particular, existing methods use specific forms of experimental algebraic equations with which to identify the functional interaction structure of a biomolecular network. In our work, we employ an extended form of these experimental algebraic equations which, while retaining their merits, also overcome some of their disadvantages. Experimental data are required in order to estimate the coefficients of the experimental algebraic equation set associated with the structure identification task. However, experimentalists are rarely provided with guidance on which parameters to perturb, and to what extent, to perturb them. When a model of network dynamics is required then there is also the vexed question of sample rate and sample time selection to be resolved. Supplying some answers to these questions is the main motivation of this paper. The approach is based on stationary and/or temporal data obtained from parameter perturbations, and unifies the previous approaches of Kholodenko et al. (PNAS 99 (2002) 12841-12846) and Sontag et al. (Bioinformatics 20 (2004) 1877-1886). By way of demonstration, we apply our unified approach to a network model which cannot be properly identified by existing methods. Finally, we propose an experiment design methodology, which is not limited by the amount of parameter perturbations, and illustrate its use with an in numero example.

  3. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.

    PubMed

    Sasse, Alexander; de Vries, Sjoerd J; Schindler, Christina E M; de Beauchêne, Isaure Chauvot; Zacharias, Martin

    2017-01-01

    Protein-protein docking protocols aim to predict the structures of protein-protein complexes based on the structure of individual partners. Docking protocols usually include several steps of sampling, clustering, refinement and re-scoring. The scoring step is one of the bottlenecks in the performance of many state-of-the-art protocols. The performance of scoring functions depends on the quality of the generated structures and its coupling to the sampling algorithm. A tool kit, GRADSCOPT (GRid Accelerated Directly SCoring OPTimizing), was designed to allow rapid development and optimization of different knowledge-based scoring potentials for specific objectives in protein-protein docking. Different atomistic and coarse-grained potentials can be created by a grid-accelerated directly scoring dependent Monte-Carlo annealing or by a linear regression optimization. We demonstrate that the scoring functions generated by our approach are similar to or even outperform state-of-the-art scoring functions for predicting near-native solutions. Of additional importance, we find that potentials specifically trained to identify the native bound complex perform rather poorly on identifying acceptable or medium quality (near-native) solutions. In contrast, atomistic long-range contact potentials can increase the average fraction of near-native poses by up to a factor 2.5 in the best scored 1% decoys (compared to existing scoring), emphasizing the need of specific docking potentials for different steps in the docking protocol.

  4. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.

  5. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study.

    PubMed

    Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur

    2018-05-01

    Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.

  6. Structural Changes in the Vanadium Sample Surface Induced by Pulsed High-Temperature Deuterium Plasma and Deuterium Ion Fluxes

    NASA Astrophysics Data System (ADS)

    Borovitskaya, I. V.; Pimenov, V. N.; Gribkov, V. A.; Padukh, M.; Bondarenko, G. G.; Gaidar, A. I.; Paramonova, V. V.; Morozov, E. V.

    2017-11-01

    The structural changes in the vanadium sample surface are studied as functions of the conditions of irradiation by pulsed high-temperature deuterium plasma and deuterium ion fluxes in the Plasma Focus installation. It is found that processes of partial evaporation, melting, and crystallization of the surface layer of vanadium samples take place in the plasma flux power density range q = 108-1010 W/cm2 and the ion flux density range q = 1010-1012 W/cm2. The surface relief is wavelike. There are microcracks, gas-filled bubbles (blisters), and traces of fracture on the surface. The blisters are failed in the solid state. The character of blister fracture is similar to that observed during usual ion irradiation in accelerators. The samples irradiated at relatively low power density ( q = 107-108 W/cm2) demonstrate the ejection of microparticles (surface fragments) on the side facing plasma. This process is assumed to be due to the fact that the unloading wave formed in the sample-target volume reaches its irradiated surface. Under certain irradiation conditions (sample-anode distance, the number of plasma pulses), a block microstructure with block sizes of several tens of microns forms on the sample surfaces. This structure is likely to form via directional crack propagation upon cooling of a thin melted surface layer.

  7. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  8. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  9. Relationships between chemical structure and rat repellency. II. Compounds screened between 1950 and 1960

    USGS Publications Warehouse

    Bowles, W.A.; Adomaitis, V.A.; DeWitt, J.B.; Pratt, J.J.

    1974-01-01

    Over 4,600 compounds, chiefly organic types, were evaluated using both a food acceptance test (Part A) and a barrier penetration bioassay (Part B), to correlate relationships between chemical structure and rodent repellency.These chemicals are indexed and classified according to the functional groups present and to the degree of substitution within their molecular structures. The results of reduction in foot consumption for each compound appraised are calculated and their K values listed in Table I.The repellent activities of the functional groups represented, alone or in combinations, are expressed in Table II by a Functional Group Repellency Index. A ranking of these indices suggests that acyclic and heteroyclic compounds containing tri- or pentavalent nitrogen would be a parent compound of choice for synthesizing novel repellents. Other molecular arrangements, spatial configurations and combinations of functional groups are compared.There were 123 active, interesting or promising compounds included in the 699 having K values of 85 or greater, which were selected for the barrier appraisal study. These chemicals were formulated in selective solvents at several concentrations and applied to burlap. Small foot bags were fashioned using the fabric impregnated with the candidate formulation, and exposed to rodent attack following storage periods of varying intervals. The results of these tests are listed in Table III. Again, those compounds containing nitrogen in the functional groupings indicated a high order of effectiveness. Several commercial patents covering rodent repellents were issued using the data from the food acceptance and barrier studies.Organizations and cooperators which supplied samples for the program are listed in Appendix I. The Wiswesser cipher for compounds in Table I is used in Appendix II to facilitate location of chemicals by sample code number as they appear under the index headings, and for computer storage and analysis.

  10. Relationships between chemical structure and rat repellency: II. compounds screened between 1950 and 1960

    USGS Publications Warehouse

    Bowles, Walter A.; Adomaitis, V.A.; DeWitt, J.B.; Pratt, J.J.

    1974-01-01

    Over 4,600 compounds, chiefly organic types, were evaluated using both a food acceptance test (Part A) and a barrier penetration bioassay (Part B), to correlate relationships between chemical structure and rodent repellency. These chemicals are indexed and classified according to the functional groups present and to the degree of substitution within their molecular structures. The results of reduction in food consumption for each compound appraised are calculated and their K values listed in Table 1. The repellent activities of the functional groups represented, alone or in combinations, are expressed in Table II by a Functional Group Repellency Index.. A ranking of these indices suggests that acyclic and heteroyclic compounds containing tri- or pentavalent nitrogen would be a parent compound of choice for synthesizing novel repellents. Other molecular arrangements, spatial configurations and combinations of functional groups are compared. There were 123 active, interesting or promising compounds included in the 699 having K values of 85 or greater, which were selected for the barrier appraisal study. These chemicals were formulated in selective solvents at several concentrations and applied to burlap. Small food bags were fashioned using the fabric impregnated with the candidate formulation, and exposed to rodent attack following storage periods of varying intervals. The results of these tests are listed in Table III. Again, those compounds containing nitrogen in the functional groupings indicated a high order of effectiveness. Several commercial patents covering rodent repellents were issued using the data from the food acceptance and barrier studies. Organizations and cooperators which supplied samples for the program are listed in Appendix I. The Wiswesser cipher for compounds in Table I is used in Appendix II to facilitate location of chemicals by sample code number as they appear under the index headings, and for computer storage and analysis.

  11. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, Sus scrofa

    PubMed Central

    Yeh, Kuang-Dah; Popowics, Tracy

    2011-01-01

    Summary The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n=3), corresponding with the mucosal penetration stage of M1 tooth eruption, and 23 weeks (n=3), corresponding with early occlusion of M1/M1. Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M1 roots on one side. Following euthanasia, bone samples for hematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M1. However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth. PMID:21434979

  12. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    PubMed

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  13. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    USGS Publications Warehouse

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  14. Multi-technology Investigation of the Atomic Structure of Calcium Silicate Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Guoqing; Kilcoyne, David A.; Benmore, Chris J.

    2015-01-01

    In this study, synthetic C-S-H samples were investigated to reveal the feature at atomic scale. Rietveld refinement was applied to high resolution X-ray scattering data, yielding the lattice constants of the pseudocrystal structure, as well as the crystallinity along three axes. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra was collected at calcium L3,2-edge. Evolution of calcium coordination symmetry were studied by investigating spectra characteristics. Pair Distribution Function (PDF) study yields the statistics of atom pair distribution. Coordination number of Ca and Si were obtained by integrating Radial distribution function. Atomic model based on dimeric structure were discussed and comparedmore » with experimental data. Synthetic C-S-H samples with increasing Ca/Si ratio exhibit pseudo-crystal structure, resembling Dreierketten configuration similar to natural tobermorite structure. Along c-axis, the repeated structure could not survives two layers in case of low Ca/Si ratio (0.70, 1.05). But in high Ca/Si ratio (1.42) case, the crystallinity along c-axis is much bigger. The coordination number of Ca decreases with increasing Ca/Si ratio. Octahedrally coordinated Ca are observed in sample with Ca/Si ratio of 1.42. Various dimeric models are compared with experimental data. In case of Ca/Si ratio of 1.42, SiO4 tetrahedron chain needs to be shortened in linkage, most probably by substituting bridging SiO4 tetrahedron with CaO6 octahedron. These octahedrons in interlayer space act like pins to join two adjacent layer structures together. The crystallinity is thus increased along c-axis, and average coordination number is therefore reduced. In case of Ca/Si 1.05, crystallinity is low along c-axis since, indicating that not too many Ca ions exist in interlayer space to hold two layers together. Instead, negative charge of end oxygen could be balanced by proton. Ca/Si 0.70 has long tetrahedron chain linkage within layer while the linkage between adjacent layers are not strong, resulting in low crystallinity along c-axis. Neither Ca/Si ratio 0.70 nor 1.42 sample contains any Ca in octahedral symmetry, as indicated by the weak crystal field splitting of NEXAFS spectra.« less

  15. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  16. Crystallite size strain analysis of nanocrystalline La0.7Sr0.3MnO3 perovskite by Williamson-Hall plot method

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Verma, Narendra Kumar; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-04-01

    The nanocrystalline Sr-doped LaMnO3 (La0.7Sr0.3MnO3 = LSMO) perovskite manganites having different crystallite size were synthesized using the nitrate-glycine auto-combustion method. The phase purity of the manganites was checked by X-ray diffraction (XRD) measurement. The XRD patterns of the sample reveal that La0.7S0.3MnO3 crystallizes into rhombohedral crystal structure with space group R-3c. The size-dependence of structural lattice parameters have been investigated with the help of Rietveld refinement. The structural parameters increase as a function of crystallite size. The crystallite-size and internal strain as a function of crystallite-size have been calculated using Williamson-Hall plot.

  17. Pair distribution function (PDF) analysis of mesoporous α-Fe2O3 and Cr2O3.

    PubMed

    Hill, Adrian H; Allieta, Mattia

    2013-06-14

    We have measured atomic pair distribution functions of novel mesoporous metal oxides, α-Fe2O3 and Cr2O3. These have an ordered pore mosaic as well as crystalline structure within the pore walls, making them an interesting class of materials to characterise. Comparison of "bulk" and mesoporous data sets has allowed an estimate of long range structural coherence to be derived; ≈125 Å and ≈290 Å for α-Fe2O3 and Cr2O3 respectively. Further "box-car" analysis has shown that above ≈40 Å both mesoporous samples deviate greatly from their bulk counterparts. This is attributed to the pores of the mesoporous structure creating voids in the pair-correlations, disrupting long range order.

  18. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.

    PubMed

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-03-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Bionic Design for Mars Sampling Scoop Inspired by Himalayan Marmot Claw

    PubMed Central

    2016-01-01

    Cave animals are often adapted to digging and life underground, with claw toes similar in structure and function to a sampling scoop. In this paper, the clawed toes of the Himalayan marmot were selected as a biological prototype for bionic research. Based on geometric parameter optimization of the clawed toes, a bionic sampling scoop for use on Mars was designed. Using a 3D laser scanner, the point cloud data of the second front claw toe was acquired. Parametric equations and contour curves for the claw were then built with cubic polynomial fitting. We obtained 18 characteristic curve equations for the internal and external contours of the claw. A bionic sampling scoop was designed according to the structural parameters of Curiosity's sampling shovel and the contours of the Himalayan marmot's claw. Verifying test results showed that when the penetration angle was 45° and the sampling speed was 0.33 r/min, the bionic sampling scoops' resistance torque was 49.6% less than that of the prototype sampling scoop. When the penetration angle was 60° and the sampling speed was 0.22 r/min, the resistance torque of the bionic sampling scoop was 28.8% lower than that of the prototype sampling scoop. PMID:28127229

  20. Assessment of family functioning in Caucasian and Hispanic Americans: reliability, validity, and factor structure of the Family Assessment Device.

    PubMed

    Aarons, Gregory A; McDonald, Elizabeth J; Connelly, Cynthia D; Newton, Rae R

    2007-12-01

    The purpose of this study was to examine the factor structure, reliability, and validity of the Family Assessment Device (FAD) among a national sample of Caucasian and Hispanic American families receiving public sector mental health services. A confirmatory factor analysis conducted to test model fit yielded equivocal findings. With few exceptions, indices of model fit, reliability, and validity were poorer for Hispanic Americans compared with Caucasian Americans. Contrary to our expectation, an exploratory factor analysis did not result in a better fitting model of family functioning. Without stronger evidence supporting a reformulation of the FAD, we recommend against such a course of action. Findings highlight the need for additional research on the role of culture in measurement of family functioning.

  1. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  2. Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro

    2018-01-01

    Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.

  3. Right ventricular function during acute exacerbation of severe equine asthma.

    PubMed

    Decloedt, A; Borowicz, H; Slowikowska, M; Chiers, K; van Loon, G; Niedzwiedz, A

    2017-09-01

    Pulmonary hypertension has been described in horses with severe equine asthma, but its effect on the right ventricle has not been fully elucidated. To evaluate right ventricular structure and function after a 1-week period of pulmonary hypertension secondary to acute exacerbation of severe equine asthma. Prospective study. A clinical episode of severe equine asthma was induced experimentally in six susceptible horses. Examinations in remission and on day 7 of the clinical episode included a physical examination with clinical scoring, echocardiography, arterial blood gas measurements, venous blood sampling for cardiac biomarkers, intracardiac pressure measurements, right ventricular and right atrial myocardial biopsies, airway endoscopy and bronchoalveolar lavage. After 1 month of recovery, physical examination, echocardiography and cardiac biomarker analysis were repeated. Echocardiographic and pressure measurements were compared with those in 10 healthy control horses. All horses developed clinical signs of acute pulmonary obstruction. Right heart pressures increased significantly. Altered right ventricular function could be detected by tissue Doppler and speckle tracking echocardiography. Cardiac troponin concentrations did not increase significantly, but were highly elevated in one horse which exercised in the paddock prior to sampling. Focal neutrophil infiltration was present in two myocardial samples. Even in remission, asthmatic horses showed a thicker right ventricular wall, an increased left ventricular end-systolic eccentricity index at chordal level and decreased right ventricular longitudinal strain compared with controls. The induced clinical episode was rather mild and the number of horses was limited because of the invasive nature of the study. Pulmonary obstruction in asthmatic horses induces pulmonary hypertension with right ventricular structural and functional changes. © 2017 EVJ Ltd.

  4. Structural and magnetic properties of turmeric functionalized CoFe2O4 nanocomposite powder

    NASA Astrophysics Data System (ADS)

    Mehran, E.; Farjami Shayesteh, S.; Sheykhan, M.

    2016-10-01

    The structural and magnetic properties of the synthesized pure and functionalized CoFe2O4 magnetic nanoparticles (NPs) are studied by analyzing the results from the x-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectroscopy, thermogravimetry (TG), and vibrating sample magnetometer (VSM). To extract the structure and lattice parameters from the XRD analysis results, we first apply the pseudo-Voigt model function to the experimental data obtained from XRD analysis and then the Rietveld algorithm is used in order to optimize the model function to estimate the true intensity values. Our simulated intensities are in good agreement with the experimental peaks, therefore, all structural parameters such as crystallite size and lattice constant are achieved through this simulation. Magnetic analysis reveals that the synthesized functionalized NPs have a saturation magnetization almost equal to that of pure nanoparticles (PNPs). It is also found that the presence of the turmeric causes a small reduction in coercivity of the functionalized NPs in comparison with PNP. Our TGA and FTIR results show that the turmeric is bonded very well to the surface of the NPs. So it can be inferred that a nancomposite (NC) powder of turmeric and nanoparticles is produced. As an application, the anti-arsenic characteristic of turmeric makes the synthesized functionalized NPs or NC powder a good candidate for arsenic removal from polluted industrial waste water. Project supported by the University of Guilan and the Iran Nanotechnology Initiative Council.

  5. Acute effects of 30 minutes of exposure to a smartphone call on in vitro platelet function

    PubMed Central

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Gelati, Matteo; Salvagno, Gian Luca; Montagnana, Martina

    2017-01-01

    Background Significant concerns are now regularly raised about the safety of excessive mobile phone use. This study was aimed to assess the acute effects of radiofrequency waves emitted by a commercial smartphone on platelet function. Materials and methods Two sequential citrated blood samples were collected from 16 healthy volunteers recruited from laboratory staff. The first sample was placed in a plastic rack, 1 cm distant from a commercial smartphone receiving a 30-min call and emitting 900 MHz radiofrequency waves. The second sample was placed in another plastic rack, isolated from radiofrequency wave sources, for the same period. The platelet count and the mean platelet volume were then assessed in all blood samples, whereas platelet function was evaluated using the platelet function analyser-100 (PFA-100). Results A 30-min exposure of citrated blood to smartphone radiofrequency waves induced significant prolongation of collagen-epinephrine aggregation (median increase, 10%) and a considerable increase of mean platelet volume (median increase, 5%), whereas collagen-adenosine diphosphate aggregation and platelet count remained unchanged. Discussion This study demonstrates that smartphone radiofrequency waves induce significant perturbation of platelet structure and function, thus providing further support to concerns regarding excessive use of mobile phones. Caution should also be taken with regards to blood products containing platelets, which should be kept far away from mobile phones and smartphones throughout the production pipeline and storage period. PMID:27177410

  6. Acute effects of 30 minutes of exposure to a smartphone call on in vitro platelet function.

    PubMed

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Gelati, Matteo; Salvagno, Gian Luca; Montagnana, Martina

    2017-05-01

    Significant concerns are now regularly raised about the safety of excessive mobile phone use. This study was aimed to assess the acute effects of radiofrequency waves emitted by a commercial smartphone on platelet function. Two sequential citrated blood samples were collected from 16 healthy volunteers recruited from laboratory staff. The first sample was placed in a plastic rack, 1 cm distant from a commercial smartphone receiving a 30-min call and emitting 900 MHz radiofrequency waves. The second sample was placed in another plastic rack, isolated from radiofrequency wave sources, for the same period. The platelet count and the mean platelet volume were then assessed in all blood samples, whereas platelet function was evaluated using the platelet function analyser-100 (PFA-100). A 30-min exposure of citrated blood to smartphone radiofrequency waves induced significant prolongation of collagen-epinephrine aggregation (median increase, 10%) and a considerable increase of mean platelet volume (median increase, 5%), whereas collagen-adenosine diphosphate aggregation and platelet count remained unchanged. This study demonstrates that smartphone radiofrequency waves induce significant perturbation of platelet structure and function, thus providing further support to concerns regarding excessive use of mobile phones. Caution should also be taken with regards to blood products containing platelets, which should be kept far away from mobile phones and smartphones throughout the production pipeline and storage period.

  7. Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    2003-01-01

    This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.

  8. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    PubMed

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  9. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  10. Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes

    NASA Astrophysics Data System (ADS)

    Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin

    2017-04-01

    Bacteria are widely distributed in atmospheric aerosols and are indispensable components of clouds, playing an important role in the atmospheric hydrological cycle. However, limited information is available about the bacterial community structure and function, especially for the increasing air pollution in the North China Plain. Here, we present a comprehensive characterization of bacterial community composition, function, variation, and environmental influence for cloud water collected at Mt Tai from 24 July to 23 August 2014. Using Miseq 16S rRNA gene sequencing, the highly diverse bacterial community in cloud water and the predominant phyla of Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes were investigated. Bacteria that survive at low temperature, radiation, and poor nutrient conditions were found in cloud water, suggesting adaption to an extreme environment. The bacterial gene functions predicted from the 16S rRNA gene using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) suggested that the pathways related to metabolism and disease infections were significantly correlated with the predominant genera. The abundant genera Acinetobacter, Stenotrophomonas, Pseudomonas, and Empedobacter originated from a wide range of habitats including cloud condensation nuclei and ice nuclei active species, opportunistic pathogens, and functional species, demonstrating the importance of ecology and health in cloud water. Cluster analysis including hierarchical cluster (Hcluster) and principal coordinate analysis (PCoA) indicated a significant disparity between polluted and non-polluted samples. Linear discriminant analysis effect size (LEfSe) demonstrated that potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples. Discrepant community structure determined by redundancy analysis (RDA) indicated that the major ions in cloud water and PM2. 5 in the atmosphere have a negative impact on bacteria, playing a vital role in shaping microbial community structure. The major ions might provide nutrition to bacteria and directly influence the bacterial community, whereas PM2. 5 in air has an indirect impact on bacterial community structure. During wet deposition, soluble particulate matter was dissolved in water droplets resulting in elevated concentration in cloud water. PM2. 5 was possibly associated with different origins and pathways of air mass as determined using source tracking by the backward trajectory, mainly related to long-range transport. This work enhanced our understanding of the characteristics of bacterial ecology in the atmospheric aqueous phase, highlighting the potential influence of environmental variables on the bacterial community in cloud processes. It may provide fundamental information of the bacterial community response in cloud water under increasing pollution. However, due to the limited sample size (13 samples) collected at the summit of Mt Tai, these issues need in-depth discussion. Further studies based on an annual series of field observation experiments and laboratory simulations will continue to track these issues.

  11. The Mass Function of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Chen, J.; Huchra, J. P.; McNamara, B. R.; Mader, J.

    1998-12-01

    The velocity dispersion and mass functions for rich clusters of galaxies provide important constraints on models of the formation of Large-Scale Structure (e.g., Frenk et al. 1990). However, prior estimates of the velocity dispersion or mass function for galaxy clusters have been based on either very small samples of clusters (Bahcall and Cen 1993; Zabludoff et al. 1994) or large but incomplete samples (e.g., the Girardi et al. (1998) determination from a sample of clusters with more than 30 measured galaxy redshifts). In contrast, we approach the problem by constructing a volume-limited sample of Abell clusters. We collected individual galaxy redshifts for our sample from two major galaxy velocity databases, the NASA Extragalactic Database, NED, maintained at IPAC, and ZCAT, maintained at SAO. We assembled a database with velocity information for possible cluster members and then selected cluster members based on both spatial and velocity data. Cluster velocity dispersions and masses were calculated following the procedures of Danese, De Zotti, and di Tullio (1980) and Heisler, Tremaine, and Bahcall (1985), respectively. The final velocity dispersion and mass functions were analyzed in order to constrain cosmological parameters by comparison to the results of N-body simulations. Our data for the cluster sample as a whole and for the individual clusters (spatial maps and velocity histograms) in our sample is available on-line at http://cfa-www.harvard.edu/ huchra/clusters. This website will be updated as more data becomes available in the master redshift compilations, and will be expanded to include more clusters and large groups of galaxies.

  12. Pituitary gland volumes in bipolar disorder.

    PubMed

    Clark, Ian A; Mackay, Clare E; Goodwin, Guy M

    2014-12-01

    Bipolar disorder has been associated with increased Hypothalamic-Pituitary-Adrenal axis function. The mechanism is not well understood, but there may be associated increases in pituitary gland volume (PGV) and these small increases may be functionally significant. However, research investigating PGV in bipolar disorder reports mixed results. The aim of the current study was twofold. First, to assess PGV in two novel samples of patients with bipolar disorder and matched healthy controls. Second, to perform a meta-analysis comparing PGV across a larger sample of patients and matched controls. Sample 1 consisted of 23 established patients and 32 matched controls. Sample 2 consisted of 39 medication-naïve patients and 42 matched controls. PGV was measured on structural MRI scans. Seven further studies were identified comparing PGV between patients and matched controls (total n; 244 patients, 308 controls). Both novel samples showed a small (approximately 20mm(3) or 4%), but non-significant, increase in PGV in patients. Combining the two novel samples showed a significant association of age and PGV. Meta-analysis showed a trend towards a larger pituitary gland in patients (effect size: .23, CI: -.14, .59). While results suggest a possible small difference in pituitary gland volume between patients and matched controls, larger mega-analyses with sample sizes greater even than those used in the current meta-analysis are still required. There is a small but potentially functionally significant increase in PGV in patients with bipolar disorder compared to controls. Results demonstrate the difficulty of finding potentially important but small effects in functional brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Modelling dynamics in protein crystal structures by ensemble refinement

    PubMed Central

    Burnley, B Tom; Afonine, Pavel V; Adams, Paul D; Gros, Piet

    2012-01-01

    Single-structure models derived from X-ray data do not adequately account for the inherent, functionally important dynamics of protein molecules. We generated ensembles of structures by time-averaged refinement, where local molecular vibrations were sampled by molecular-dynamics (MD) simulation whilst global disorder was partitioned into an underlying overall translation–libration–screw (TLS) model. Modeling of 20 protein datasets at 1.1–3.1 Å resolution reduced cross-validated Rfree values by 0.3–4.9%, indicating that ensemble models fit the X-ray data better than single structures. The ensembles revealed that, while most proteins display a well-ordered core, some proteins exhibit a ‘molten core’ likely supporting functionally important dynamics in ligand binding, enzyme activity and protomer assembly. Order–disorder changes in HIV protease indicate a mechanism of entropy compensation for ordering the catalytic residues upon ligand binding by disordering specific core residues. Thus, ensemble refinement extracts dynamical details from the X-ray data that allow a more comprehensive understanding of structure–dynamics–function relationships. DOI: http://dx.doi.org/10.7554/eLife.00311.001 PMID:23251785

  14. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection

    PubMed Central

    Ross, Caná L.; Spinler, Jennifer K.; Savidge, Tor C.

    2016-01-01

    Alteration of the gut microbial community structure and function through antibiotic use increases susceptibility to colonization by Clostridium difficile and other enteric pathogens. However, the mechanisms that mediate colonization resistance remain elusive. As the leading definable cause of infectious diarrhea, toxigenic C. difficile represents a burden for patients and health care systems, underscoring the need for better diagnostics and treatment strategies. Next-generation sequence data has increased our understanding of how the gut microbiota is influenced by many factors including diet, disease, aging and drugs. However, a microbial-based biomarker differentiating C. difficile infection from antibiotic-associated diarrhea remains elusive. Metabolomics profiling, which is highly responsive to changes in physiological conditions, have shown promise in differentiating subtle disease phenotypes that exhibit a nearly identical microbiome community structure, suggesting metabolite-based biomarkers may be an ideal diagnostic for identifying patients with CDI. This review focuses on the current understanding of structural and functional changes to the gut microbiota during C. difficile infection obtained from studies assessing the microbiome and metabolome of samples from patients and murine models. PMID:27180006

  15. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface

    PubMed Central

    2012-01-01

    Background Despite computational challenges, elucidating conformations that a protein system assumes under physiologic conditions for the purpose of biological activity is a central problem in computational structural biology. While these conformations are associated with low energies in the energy surface that underlies the protein conformational space, few existing conformational search algorithms focus on explicitly sampling low-energy local minima in the protein energy surface. Methods This work proposes a novel probabilistic search framework, PLOW, that explicitly samples low-energy local minima in the protein energy surface. The framework combines algorithmic ingredients from evolutionary computation and computational structural biology to effectively explore the subspace of local minima. A greedy local search maps a conformation sampled in conformational space to a nearby local minimum. A perturbation move jumps out of a local minimum to obtain a new starting conformation for the greedy local search. The process repeats in an iterative fashion, resulting in a trajectory-based exploration of the subspace of local minima. Results and conclusions The analysis of PLOW's performance shows that, by navigating only the subspace of local minima, PLOW is able to sample conformations near a protein's native structure, either more effectively or as well as state-of-the-art methods that focus on reproducing the native structure for a protein system. Analysis of the actual subspace of local minima shows that PLOW samples this subspace more effectively that a naive sampling approach. Additional theoretical analysis reveals that the perturbation function employed by PLOW is key to its ability to sample a diverse set of low-energy conformations. This analysis also suggests directions for further research and novel applications for the proposed framework. PMID:22759582

  16. Factor Structure of Cognition and Functional Capacity in Two Studies of Schizophrenia and Bipolar Disorder: Implications for Genomic Studies

    PubMed Central

    Harvey, Philip D.; Aslan, Mihaela; Du, Mengtian; Zhao, Hongyu; Siever, Larry J.; Pulver, Ann; Gaziano, J. Michael; Concato, John

    2015-01-01

    Objective Impairments in cognition and everyday functioning are common in schizophrenia and bipolar disorder. Based on two studies of schizophrenia (SCZ) and bipolar I disorder (BPI) with similar methods, this paper presents factor analyses of cognitive and functional capacity (FC) measures. The overall goal of these analyses was to determine whether performance-based assessments should be examined individually, or aggregated on the basis of the correlational structure of the tests and as well as to evaluate the similarity of factor structures in SCZ and BPI. Method Veterans Affairs (VA) Cooperative Studies Program study #572, evaluated cognitive and FC measures among 5,414 BPI and 3,942 SZ patients. A second study evaluated similar neuropsychological (NP) and FC measures among 368 BPI and 436 SZ patients. Principal components analysis, as well as exploratory and confirmatory factor analyses, were used to examine the data. Results Analyses in both datasets suggested that NP and FC measures were explained by of a single underlying factor in BPI and SCZ patients, both when analyzed separately or as in a combined sample. The factor structure in both studies was similar, with or without inclusion of FC measures; homogeneous loadings were observed for that single factor across cognitive and FC domains across the samples. Conclusions The empirically derived factor model suggests that NP performance and FC are best explained as a single latent trait applicable to people with schizophrenia and bipolar illness. This single measure may enhance the robustness of the analyses relating genomic data to performance-based phenotypes. PMID:26710094

  17. Factor structure of cognition and functional capacity in two studies of schizophrenia and bipolar disorder: Implications for genomic studies.

    PubMed

    Harvey, Philip D; Aslan, Mihaela; Du, Mengtian; Zhao, Hongyu; Siever, Larry J; Pulver, Ann; Gaziano, J Michael; Concato, John

    2016-01-01

    Impairments in cognition and everyday functioning are common in schizophrenia and bipolar disorder (BPD). In this article, we present factor analyses of cognitive and functional capacity (FC) measures based on 2 studies of schizophrenia (SCZ) and bipolar I disorder (BPI) using similar methods. The overall goal of these analyses was to determine whether performance-based assessments should be examined individually, or aggregated on the basis of the correlational structure of the tests, as well as to evaluate the similarity of factor structures of SCZ and BPI. Veterans Affairs Cooperative Studies Program Study #572 (Harvey et al., 2014) evaluated cognitive and FC measures among 5,414 BPI and 3,942 SCZ patients. A 2nd study evaluated similar neuropsychological (NP) and FC measures among 368 BPI and 436 SCZ patients. Principal components analysis, as well as exploratory and CFAs, were used to examine the data. Analyses in both datasets suggested that NP and FC measures were explained by a single underlying factor in BPI and SCZ patients, both when analyzed separately or as in a combined sample. The factor structure in both studies was similar, with or without inclusion of FC measures; homogeneous loadings were observed for that single factor across cognitive and FC domains across the samples. The empirically derived factor model suggests that NP performance and FC are best explained as a single latent trait applicable to people with SCZ and BPD. This single measure may enhance the robustness of the analyses relating genomic data to performance-based phenotypes. (c) 2015 APA, all rights reserved).

  18. Manual control models of industrial management

    NASA Technical Reports Server (NTRS)

    Crossman, E. R. F. W.

    1972-01-01

    The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.

  19. Longitudinal decline in speech production in Parkinson's disease spectrum disorders.

    PubMed

    Ash, Sharon; Jester, Charles; York, Collin; Kofman, Olga L; Langey, Rachel; Halpin, Amy; Firn, Kim; Dominguez Perez, Sophia; Chahine, Lama; Spindler, Meredith; Dahodwala, Nabila; Irwin, David J; McMillan, Corey; Weintraub, Daniel; Grossman, Murray

    2017-08-01

    We examined narrative speech production longitudinally in non-demented (n=15) and mildly demented (n=8) patients with Parkinson's disease spectrum disorder (PDSD), and we related increasing impairment to structural brain changes in specific language and motor regions. Patients provided semi-structured speech samples, describing a standardized picture at two time points (mean±SD interval=38±24months). The recorded speech samples were analyzed for fluency, grammar, and informativeness. PDSD patients with dementia exhibited significant decline in their speech, unrelated to changes in overall cognitive or motor functioning. Regression analysis in a subset of patients with MRI scans (n=11) revealed that impaired language performance at Time 2 was associated with reduced gray matter (GM) volume at Time 1 in regions of interest important for language functioning but not with reduced GM volume in motor brain areas. These results dissociate language and motor systems and highlight the importance of non-motor brain regions for declining language in PDSD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak

    2009-01-01

    In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.

  1. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.

    PubMed

    Xu, Shoufang; Lu, Hongzhi

    2016-11-15

    A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    DOE PAGES

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...

    2015-12-17

    Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less

  3. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  4. Wide angle X-ray scattering (WAXS) study of "two-line" ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Rea, B.A.; Davis, J.A.

    1996-01-01

    Wide angle X-ray scattering (WAXS) measurements have been made on a suite of "two-line" ferrihydrite (FHY2) samples containing varying amounts of coprecipitated arsenate. Samples prepared at pH 8 with counter ions chloride, nitrate, and a mixture of both also were examined. The raw WAXS scattering functions show that "two-line" ferrihydrite actually has a large number of non-Bragg (i.e., diffuse scattering) maxima up to our observation limit of 16 A??-1. The type of counter ion used during synthesis produces no significant change in this function. In unarsenated samples, Radial Distribution Functions (RDFs) produced from the scattering functions show a well-defined Fe-O peak at 2.02 A?? in excellent agreement with the mean distance of 2.01 A?? from extended X-ray absorption fine structure (EXAFS) analysis. The area under the Fe-O peak is consistent with only octahedral oxygen coordination about iron, and an iron coordination about oxygen of 2.2, in agreement with the EXAFS results, the sample composition, and XANES measurements. The second peak observed in the RDFs is clearly divided into two populations of correlations, at 3.07 and 3.52 A??, respectively. These distances are close to the EXAFS-derived Fe-Fe subshell distances of 3.02-3.05 and 3.43-3.46 A??, respectively, though this is misleading as the RDF peaks also include contributions from O-Fe and O-O correlations. Simulated RDFs of the FeOOH polymorphs indicate how the observed RDF structure relates to the EXAFS pair-correlation function, and allow comparisons with an ordered ferrihydrite structure. The effect of increasing arsenate content is dramatic, as the RDF peaks are progressively smeared out, indicating a wider range of interatomic distances even at moderate surface coverages, and a loss of longer range correlations. At an As/Fe ratio of 0.68, the surface saturation level of arsenate, the RDF shows little order beyond what would be expected from small pieces of dioctahedral Fe oxyhydroxyl chains or small "sheet" units. Analysis of the first RDF peak yields components due to As-O and Fe-O correlations. As the As-O component at 1.67 A?? increases in size, the Fe-O component decreases, reflecting a decrease in Fe coordination about the average oxygen. This reduction is consistent with a decrease in mean crystallite size as suggested by EXAFS studies. Analysis of the second RDF peak components shows the progressive decrease in Fe-Fe correlations, and the enhancement of As-Fe correlations, as arsenate level increases. Comparison of the experimental RDF from coprecipitated arsenate-saturated FHY2 with simulated RDFs of model iron oxyhydroxyl structures further constrains possible sizes and geometry for the precipitates, and is consistent with sorbed complexes of the bidentate binuclear (apical oxygen sharing) type.

  5. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    PubMed Central

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  6. Proposal of a socio-cognitive-behavioral structural equation model of internalized stigma in people with severe and persistent mental illness.

    PubMed

    Muñoz, Manuel; Sanz, María; Pérez-Santos, Eloísa; Quiroga, María de Los Ángeles

    2011-04-30

    The social stigma of mental illness has received much attention in recent years and its effects on diverse variables such as psychiatric symptoms, social functioning, self-esteem, self-efficacy, quality of life, and social integration are well established. However, internalized stigma in people with severe and persistent mental illness has not received the same attention. The aim of the present work was to study the relationships between the principal variables involved in the functioning of internalized stigma (sociodemographic and clinical variables, social stigma, psychosocial functioning, recovery expectations, empowerment, and discrimination experiences) in a sample of people with severe and persistent mental illness (N=108). The main characteristics of the sample and the differences between groups with high and low internalized stigma were analyzed, a correlation analysis of the variables was performed, and a structural equation model, integrating variables of social, cognitive, and behavioral content, was proposed and tested. The results indicate the relationships among social stigma, discrimination experiences, recovery expectation, and internalized stigma and their role in the psychosocial and behavioral outcomes in schizophrenia spectrum disorders. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. A practical approach to assessing structure, function, and value of street tree populations in small communities

    Treesearch

    S.E. Maco; E.G. McPherson

    2003-01-01

    This study demonstrates an approach to quantify the structure, benefits, and costs of street tree populations in resource-limited communities without tree inventories. Using the city of Davis, California, U.S., as a model, existing data on the benefits and costs of municipal trees were applied to the results of a sample inventory of the city’s public and private street...

  8. Judging Statistical Models of Individual Decision Making under Risk Using In- and Out-of-Sample Criteria

    PubMed Central

    Drichoutis, Andreas C.; Lusk, Jayson L.

    2014-01-01

    Despite the fact that conceptual models of individual decision making under risk are deterministic, attempts to econometrically estimate risk preferences require some assumption about the stochastic nature of choice. Unfortunately, the consequences of making different assumptions are, at present, unclear. In this paper, we compare three popular error specifications (Fechner, contextual utility, and Luce error) for three different preference functionals (expected utility, rank-dependent utility, and a mixture of those two) using in- and out-of-sample selection criteria. We find drastically different inferences about structural risk preferences across the competing functionals and error specifications. Expected utility theory is least affected by the selection of the error specification. A mixture model combining the two conceptual models assuming contextual utility provides the best fit of the data both in- and out-of-sample. PMID:25029467

  9. Judging statistical models of individual decision making under risk using in- and out-of-sample criteria.

    PubMed

    Drichoutis, Andreas C; Lusk, Jayson L

    2014-01-01

    Despite the fact that conceptual models of individual decision making under risk are deterministic, attempts to econometrically estimate risk preferences require some assumption about the stochastic nature of choice. Unfortunately, the consequences of making different assumptions are, at present, unclear. In this paper, we compare three popular error specifications (Fechner, contextual utility, and Luce error) for three different preference functionals (expected utility, rank-dependent utility, and a mixture of those two) using in- and out-of-sample selection criteria. We find drastically different inferences about structural risk preferences across the competing functionals and error specifications. Expected utility theory is least affected by the selection of the error specification. A mixture model combining the two conceptual models assuming contextual utility provides the best fit of the data both in- and out-of-sample.

  10. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  11. Assessment of sampling stability in ecological applications of discriminant analysis

    USGS Publications Warehouse

    Williams, B.K.; Titus, K.

    1988-01-01

    A simulation study was undertaken to assess the sampling stability of the variable loadings in linear discriminant function analysis. A factorial design was used for the factors of multivariate dimensionality, dispersion structure, configuration of group means, and sample size. A total of 32,400 discriminant analyses were conducted, based on data from simulated populations with appropriate underlying statistical distributions. A review of 60 published studies and 142 individual analyses indicated that sample sizes in ecological studies often have met that requirement. However, individual group sample sizes frequently were very unequal, and checks of assumptions usually were not reported. The authors recommend that ecologists obtain group sample sizes that are at least three times as large as the number of variables measured.

  12. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside

    NASA Astrophysics Data System (ADS)

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-05-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10 and 15%) of low-calorie sweeteners (xylitol (X) and stevioside (S)) to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S’s high molecular mass. The viscoelasticity (G' and G″), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  13. EFFECT OF INTENSE FUNCTIONAL TASK TRAINING UPON TEMPORAL STRUCTURE OF VARIABILITY OF UPPER EXTREMITY POST STROKE

    PubMed Central

    Sethi, Amit; Davis, Sandra; McGuirk, Theresa; Patterson, Tara S.; Richards, Lorie G.

    2012-01-01

    Study Design Quasi-experimental design Introduction Although the effectiveness of constraint induced movement therapy (CIMT) in upper extremity (UE) rehabilitation post stroke is well known, the efficacy of CIMT to enhance the temporal structure of variability in upper extremity movement is not known. Purpose The purpose of this study was to investigate whether CIMT could enhance temporal structure of variability in upper extremity movement in individuals with chronic stroke. Methods Six participants with chronic stroke underwent CIMT for 4 hours/day for 2 weeks. Participants performed three trials of functional reach-to-grasp before and after CIMT. Temporal structure of variability was determined by calculating approximate entropy (ApEn) in shoulder, elbow and wrist flexion/extension joint angles. Results ApEn increased post CIMT, however, statistical significance was not achieved (p > 0.0167). Conclusion Future studies with larger sample size are warranted to investigate the effect of CIMT upon temporal structure of variability in UE movement. PMID:23084461

  14. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids.

    PubMed

    Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir

    2017-06-01

    The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

  15. Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside.

    PubMed

    Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao

    2018-01-01

    The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10, and 15%) of low-calorie sweeteners [xylitol (X) and stevioside (S)] to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S's high molecular mass. The viscoelasticity (G' and G''), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.

  16. Support vector regression to predict porosity and permeability: Effect of sample size

    NASA Astrophysics Data System (ADS)

    Al-Anazi, A. F.; Gates, I. D.

    2012-02-01

    Porosity and permeability are key petrophysical parameters obtained from laboratory core analysis. Cores, obtained from drilled wells, are often few in number for most oil and gas fields. Porosity and permeability correlations based on conventional techniques such as linear regression or neural networks trained with core and geophysical logs suffer poor generalization to wells with only geophysical logs. The generalization problem of correlation models often becomes pronounced when the training sample size is small. This is attributed to the underlying assumption that conventional techniques employing the empirical risk minimization (ERM) inductive principle converge asymptotically to the true risk values as the number of samples increases. In small sample size estimation problems, the available training samples must span the complexity of the parameter space so that the model is able both to match the available training samples reasonably well and to generalize to new data. This is achieved using the structural risk minimization (SRM) inductive principle by matching the capability of the model to the available training data. One method that uses SRM is support vector regression (SVR) network. In this research, the capability of SVR to predict porosity and permeability in a heterogeneous sandstone reservoir under the effect of small sample size is evaluated. Particularly, the impact of Vapnik's ɛ-insensitivity loss function and least-modulus loss function on generalization performance was empirically investigated. The results are compared to the multilayer perception (MLP) neural network, a widely used regression method, which operates under the ERM principle. The mean square error and correlation coefficients were used to measure the quality of predictions. The results demonstrate that SVR yields consistently better predictions of the porosity and permeability with small sample size than the MLP method. Also, the performance of SVR depends on both kernel function type and loss functions used.

  17. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and subsequent insertion into a diagnostic device. A more advanced form of tissue integration with microfluidics is tissue encapsulation, wherein the sample is completely encapsulated within a microfluidic device, to allow for full surface access. The immediate applications of these approaches lie with diagnostics of tissue slices and biopsy samples e.g. for cancer but the approaches would also be very useful in comparative genomics and other areas of fundamental research involving heterogeneous tissue samples.

  18. Chitinolytic and pectinolytic community in the vertical structure of chernozem's zone ecosystems

    NASA Astrophysics Data System (ADS)

    Lukacheva, E.; Manucharova, N.

    2012-04-01

    Chitin is a long-chain polymer of a N-acetylglucosamine and is found in many places throughout the natural world. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. For this reason it is important to investigate the structural and functional properties of complex organisms, offering degradation of these biopolymers in the terrestrial and soil ecosystems. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pektinolytic microbial communities dedicated to different layers of the ecosystem of the chernozem zone. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet`s quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other options investigated. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. Quantity of Actinomycets and Firmicutes was the largest among identified cells with metabolic activity in soil samples. Should be noted significant increasing of the quantity of Acidobateria and Bacteroidetes in pectinolytic community and Alphaproteobacteria in chitinolytic community. In considering of the phylogenetic structure investigated communities in samples of the litter should be noted increase in the segment of Proteobacteria. Increasing of this group of microorganisms was also detected in samples of the phylloplane. Also should be noted increasing of Baceroidetes in these samples. Further inoculation from investigated samples was provided. The dominant species of microorganisms were isolated on dense nutrient media. These microorganisms were detected by sequence analysis. Thus the differences of decomposing biopolymers were educed in the microbial communities in the terrestrial and soil ecosystems.

  19. Comparison of macroinvertebrate community structure between two riffle-based sampling protocols in Wyoming, Colorado, and Montana, 2000-2001

    USGS Publications Warehouse

    Peterson, David A.; Zumberge, Jeremy R.

    2006-01-01

    Samples of benthic macroinvertebrates were collected side-by-side from riffles at 12 stream sites in Wyoming, Colorado, and Montana during 2000-2001, following protocols established by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program and the U.S. Environmental Protection Agency Environmental Monitoring and Assessment Program (EMAP). Samples from riffles were collected following NAWQA protocols, using a sampler with 425-micron net mesh-opening size from a total area of 1.25 m2 per sample in multiple riffles. Samples also were collected following EMAP protocols, using a sampler with 500-micron net mesh-opening size from a total area of 0.72 m2 per sample in multiple riffles. The taxonomic identification and enumeration of the samples followed procedures established for each program. Benthic macroinvertebrate community structure was compared between the data sets using individual metrics, a multimetric index, and multivariate analysis. Comparisons between the macroinvertebrate community structures were made after sequentially adjusting both data sets for: (1) ambiguous taxa, (2) taxonomic inconsistencies, and (3) differences in laboratory subsampling. After removal of ambiguous taxa, pair-wise differences in total taxa richness and Ephemeroptera taxa richness were statistically significant (p < 0.05). Differences between the data sets generally were not significant for richness of other taxa, tolerant taxa, semi-voltine taxa, functional feeding groups, diversity, and dominance. Sample scores calculated using the Wyoming Stream Integrity Index were not significantly different between the two data sets. After reconciling both data sets for taxonomic inconsistencies, total taxa richness and Ephemeroptera taxa richness remained significantly different between the data sets. After adjusting the data for differences in laboratory subsampling, the differences in taxa richness were no longer significant. Bray-Curtis similarity coefficients and non-metric multi-dimensional scaling were used to examine macroinvertebrate community structure. Similarity in community structure between sites was affected to a greater extent by taxa reconciliation than by adjustment for subsampling.

  20. Predicting cognitive function of the Malaysian elderly: a structural equation modelling approach.

    PubMed

    Foong, Hui Foh; Hamid, Tengku Aizan; Ibrahim, Rahimah; Haron, Sharifah Azizah; Shahar, Suzana

    2018-01-01

    The aim of this study was to identify the predictors of elderly's cognitive function based on biopsychosocial and cognitive reserve perspectives. The study included 2322 community-dwelling elderly in Malaysia, randomly selected through a multi-stage proportional cluster random sampling from Peninsular Malaysia. The elderly were surveyed on socio-demographic information, biomarkers, psychosocial status, disability, and cognitive function. A biopsychosocial model of cognitive function was developed to test variables' predictive power on cognitive function. Statistical analyses were performed using SPSS (version 15.0) in conjunction with Analysis of Moment Structures Graphics (AMOS 7.0). The estimated theoretical model fitted the data well. Psychosocial stress and metabolic syndrome (MetS) negatively predicted cognitive function and psychosocial stress appeared as a main predictor. Socio-demographic characteristics, except gender, also had significant effects on cognitive function. However, disability failed to predict cognitive function. Several factors together may predict cognitive function in the Malaysian elderly population, and the variance accounted for it is large enough to be considered substantial. Key factor associated with the elderly's cognitive function seems to be psychosocial well-being. Thus, psychosocial well-being should be included in the elderly assessment, apart from medical conditions, both in clinical and community setting.

  1. The heritability of the functional connectome is robust to common nonlinear registration methods

    NASA Astrophysics Data System (ADS)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  2. Calculation of density of states of transition metals: From bulk sample to nanocluster

    NASA Astrophysics Data System (ADS)

    Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.

    2018-03-01

    A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.

  3. UWB communication receiver feedback loop

    DOEpatents

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  4. Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA

    USGS Publications Warehouse

    Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.

    2005-01-01

    We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.

  5. Overgeneral autobiographical memory in healthy young and older adults: Differential age effects on components of the capture and rumination, functional avoidance, and impaired executive control (CaRFAX) model.

    PubMed

    Ros, Laura; Latorre, Jose M; Serrano, Juan P; Ricarte, Jorge J

    2017-08-01

    The CaRFAX model (Williams et al., 2007) has been used to explain the causes of overgeneral autobiographical memory (OGM; the difficulty to retrieve specific autobiographical memories), a cognitive phenomenon generally related with different psychopathologies. This model proposes 3 different mechanisms to explain OGM: capture and rumination (CaR), functional avoidance (FA) and impaired executive functions (X). However, the complete CaRFAX model has not been tested in nonclinical populations. This study aims to assess the usefulness of the CaRFAX model to explain OGM in 2 healthy samples: a young sample and an older sample, to test for possible age-related differences in the underlying causes of OGM. A total of 175 young (age range: 19-36 years) and 175 older (age range: 53-88 years) participants completed measures of brooding rumination (CaR), functional avoidance (FA), and executive tasks (X). Using structural equation modeling, we found that memory specificity is mainly associated with lower functional avoidance and higher executive functions in the older group, but only with executive functions in young participants. We discuss the different roles of emotional regulation strategies used by young and older people and their relation to the CaRFAX model to explain OGM in healthy people. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  7. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    DOE PAGES

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin; ...

    2016-10-14

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  8. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  9. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  10. Association between smoking status and the parameters of vascular structure and function in adults: results from the EVIDENT study.

    PubMed

    Recio-Rodriguez, Jose I; Gomez-Marcos, Manuel A; Patino Alonso, Maria C; Martin-Cantera, Carlos; Ibañez-Jalon, Elisa; Melguizo-Bejar, Amor; Garcia-Ortiz, Luis

    2013-12-01

    The present study analyses the relation between smoking status and the parameters used to assess vascular structure and function. This cross-sectional, multi-centre study involved a random sample of 1553 participants from the EVIDENT study. The smoking status, peripheral augmentation index and ankle-brachial index were measured in all participants. In a small subset of the main population (265 participants), the carotid intima-media thickness and pulse wave velocity were also measured. After controlling for the effect of age, sex and other risk factors, present smokers have higher values of carotid intima-media thickness (p = 0.011). Along the same lines, current smokers have higher values of pulse wave velocity and lower mean values of ankle-brachial index but without statistical significance in both cases. Among the parameters of vascular structure and function analysed, only the IMT shows association with the smoking status, after adjusting for confounders.

  11. Association between smoking status and the parameters of vascular structure and function in adults: results from the EVIDENT study

    PubMed Central

    2013-01-01

    Background The present study analyses the relation between smoking status and the parameters used to assess vascular structure and function. Methods This cross-sectional, multi-centre study involved a random sample of 1553 participants from the EVIDENT study. Measurements: The smoking status, peripheral augmentation index and ankle-brachial index were measured in all participants. In a small subset of the main population (265 participants), the carotid intima-media thickness and pulse wave velocity were also measured. Results After controlling for the effect of age, sex and other risk factors, present smokers have higher values of carotid intima-media thickness (p = 0.011). Along the same lines, current smokers have higher values of pulse wave velocity and lower mean values of ankle-brachial index but without statistical significance in both cases. Conclusions Among the parameters of vascular structure and function analysed, only the IMT shows association with the smoking status, after adjusting for confounders. PMID:24289208

  12. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.

    PubMed

    Foulquier, Arnaud; Volat, Bernadette; Neyra, Marc; Bornette, Gudrun; Montuelle, Bernard

    2013-08-01

    In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  14. A comparison of family functioning, life and marital satisfaction, and mental health of women in polygamous and monogamous marriages.

    PubMed

    Al-Krenawi, Alean; Graham, John R

    2006-01-01

    A considerable body of research concludes that the polygamous family structure has an impact on children's and wives' psychological, social and family functioning. The present study is among the first to consider within the same ethno-racial community such essential factors as family functioning, life satisfaction, marital satisfaction and mental health functioning among women who are in polygamous marriages and women who are in monogamous marriages. A sample of 352 Bedouin-Arab women participated in this study: 235 (67%) were in a monogamous marriage and 117 (33%) were in a polygamous marriage. Findings reveal differences between women in polygamous and monogamous marriages. Women in polygamous marriages showed significantly higher psychological distress, and higher levels of somatisation, phobia and other psychological problems. They also had significantly more problems in family functioning, marital relationships and life satisfaction. The article calls on public policy and social service personnel to increase public awareness of the significance of polygamous family structures for women's wellbeing.

  15. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  16. Mental Health Correlates of the Victim-Perpetrator Relationship among Interpersonally Victimized Adolescents

    ERIC Educational Resources Information Center

    Lawyer, Steven R.; Ruggiero, Kenneth J.; Resnick, Heidi S.; Kilpatrick, Dean G.; Saunders, Benjamin E.

    2006-01-01

    This research examines mental health correlates of different victim-perpetrator relationships among adolescent victims of interpersonal violence. A large and nationally representative sample of adolescents (N = 4,023) responded to structured telephone interviews concerning mental health functioning (posttraumatic stress disorder--PTSD, major…

  17. Typology of alcohol mixed with energy drink consumers: motivations for use.

    PubMed

    Peacock, Amy; Droste, Nicolas; Pennay, Amy; Miller, Peter; Lubman, Dan I; Bruno, Raimondo

    2015-06-01

    Previous research on alcohol mixed with energy drinks (AmED) has shown that use is typically driven by hedonistic, social, functional, and intoxication-related motives, with differential associations with alcohol-related harm across these constructs. There has been no research looking at whether there are subgroups of consumers based on patterns of motivations. Consequently, the aims were to determine the typology of motivations for AmED use among a community sample and to identify correlates of subgroup membership. In addition, we aimed to determine whether this structure of motivations applied to a university student sample. Data were used from an Australian community sample (n = 731) and an Australian university student sample (n = 594) who were identified as AmED consumers when completing an online survey about their alcohol and ED use. Participants reported their level of agreement with 14 motivations for AmED use; latent classes of AmED consumers were identified based on patterns of motivation endorsement using latent class analysis. A 4-class model was selected using data from the community sample: (i) taste consumers (31%): endorsed pleasurable taste; (ii) energy-seeking consumers (24%): endorsed functional and taste motives; (iii) hedonistic consumers (33%): endorse pleasure and sensation-seeking motives, as well as functional and taste motives; and (iv) intoxication-related consumers (12%): endorsed motives related to feeling in control of intoxication, as well as hedonistic, functional, and taste motives. The consumer subgroups typically did not differ on demographics, other drug use, alcohol and ED use, and AmED risk taking. The patterns of motivations for the 4-class model were similar for the university student sample. This study indicated the existence of 4 subgroups of AmED consumers based on their patterns of motivations for AmED use consistently structured across the community and university student sample. These findings lend support to the growing conceptualization of AmED consumers as a heterogeneous group in regard to motivations for use, with a hierarchical and cumulative class order in regard to the number of types of motivation for AmED use. Prospective research may endeavor to link session-specific motives and outcomes, as it is apparent that primary consumption motives may be fluid between sessions. Copyright © 2015 by the Research Society on Alcoholism.

  18. Effectiveness of Hydraulic Parameterization Strategies for Simulating Moisture Dynamics in a Deep Semi-Arid Vadose Zone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2012-12-01

    Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.

  19. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; Boada, R.; Rivera-Calzada, A.; León, C.; Bauer, E.; de la Torre, M. A. López; Chaboy, J.

    2011-01-01

    This work reports on the effect of grain size on the electrical, thermal, and structural properties of CuAlO2 samples obtained by solid-state reaction combined with ball milling. Electrical characterization made in microcrystalline and nanocrystalline samples shows that the electrical conductivity decreases several orders of magnitude for the nanocrystalline samples, and, in addition, there is a large discrepancy between the activation energies associated to thermoelectric power ES. The study of the Cu K-edge x-ray absorption spectra of the CuAlO2 samples shows that the local structure around Cu is preserved after the sintering process, indicating that the observed behavior of the electrical conductivity is of intrinsic origin. Complex conductivity measurements as a function of frequency allow us to discard grain-boundaries effects on the electrical transport. Thus, the changes in σ(T) and S(T) are interpreted in terms of charge localization in the framework of small polarons. This is in agreement with the analysis of the near-edge region of the absorption spectra, which indicates that sintering favors the Cu-O hybridization. As a consequence, oxygen atoms progressively lose their capability of trapping holes, and the electrical conductivity is also enhanced.

  20. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  1. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog.

    PubMed

    Alvarez-Paggi, Damián; Hannibal, Luciana; Castro, María A; Oviedo-Rouco, Santiago; Demicheli, Veronica; Tórtora, Veronica; Tomasina, Florencia; Radi, Rafael; Murgida, Daniel H

    2017-11-08

    Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.

  2. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    PubMed

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Structure prediction of nanoclusters; a direct or a pre-screened search on the DFT energy landscape?

    PubMed

    Farrow, M R; Chow, Y; Woodley, S M

    2014-10-21

    The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide (ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, where n = 1-12 formula units. The computational cost of each search is dominated by the effort to evaluate each sample point on the energy landscape and the number of required sample points. The effect of changing the balance between these two factors on the success of the search is investigated. The choice of sample points will also affect the number of required data points and therefore the efficiency of the search. Monte Carlo based global optimisation routines (evolutionary and stochastic quenching algorithms) within a new software package, viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-screening on the DFT energy landscape. Pre-screening includes structural relaxation to minimise a cheaper energy function - based on interatomic potentials - and is found to improve significantly the search efficiency, and typically reduces the number of DFT calculations required to locate the local minima by more than an order of magnitude. Although the choice of functional form is important, the approach is robust to small changes to the interatomic potential parameters. The computational cost of initial DFT calculations of each structure is reduced by employing Gaussian smearing to the electronic energy levels. Larger (KF)n nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences between the HOMO and LUMO energies, for all the compounds apart from KF, are in the visible region of the optical spectrum (2-3 eV); KF lies deep in the UV region at 5 eV and shows little variation. Extrapolating the electron affinities found for the clusters with respect to size results in the qualitatively correct work functions for the respective bulk materials.

  4. Measurement of the proton structure function F2 and σγ*ptot at low Q2 and very low x at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, J.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q2 inelastic neutral current scattering, e+p -> e+X, at HERA. A measurement of the proton structure function F2 and the total virtual photon-proton (γ*p) cross-section is presented for 0.11 <= Q2 <= 0.65 GeV2 and 2 × 10-6 <= x <= 6 × 10-5, corresponding to a range in the γ*p c.m. energy of 100 <= W <= 230 GeV. Comparisons with various models are also presented.

  5. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  6. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model (omega = 1, b = 1.5; see below for definitions) and nonzero cosmological constant CDM model (omega = 0.4, h = 0.6 lambda(sub 0) = 0.6, b = 1.3) produce voids that are too empty. All three simulations match the observed VPF and underdensity probability for samples of very bright (M less than M asterisk = -19.2) galaxies, but produce voids that are too empty when compared with samples that include fainter galaxies.

  7. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  8. Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing.

    PubMed

    Hotta, Kinya; Ranganathan, Soumya; Liu, Ruchuan; Wu, Fei; Machiyama, Hiroaki; Gao, Rong; Hirata, Hiroaki; Soni, Neelesh; Ohe, Takashi; Hogue, Christopher W V; Madhusudhan, M S; Sawada, Yasuhiro

    2014-04-01

    Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.

  9. Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI

    PubMed Central

    Alexander-Bloch, Aaron; Clasen, Liv; Stockman, Michael; Ronan, Lisa; Lalonde, Francois; Giedd, Jay; Raznahan, Armin

    2016-01-01

    While the potential for small amounts of motion in functional magnetic resonance imaging (fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even among “good quality” structural scans, there may be systematic effects of motion on measures of brain morphometry. In the present study, the subjects’ tendency to move during fMRI scans, acquired in the same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner motion. Using this approach within a sample of 127 children, adolescents, and young adults, significant relationships were found between this measure and estimates of cortical gray matter volume and mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical volume and thickness decreased with greater motion, and mean curvature increased. These effects of subtle motion were anatomically heterogeneous, were present across different automated imaging pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of 274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed that in-scanner motion—even at levels which do not manifest in visible motion artifact—can lead to systematic and regionally specific biases in anatomical estimation. These findings have special relevance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated humans. PMID:27004471

  10. Cognitive structures in women with sexual dysfunction: the role of early maladaptive schemas.

    PubMed

    Oliveira, Cátia; Nobre, Pedro J

    2013-07-01

    Cognitive schemas are often related to psychological problems. However, the role of these structures within sexual problems is not yet well established. The aim of this study was to evaluate the presence and importance of early maladaptive schemas on women's sexual functioning and cognitive schemas activated in response to negative sexual events. A total of 228 women participated in the study: a control sample of 167 women without sexual problems, a subclinical sample of 37 women with low sexual functioning, and a clinical sample of 24 women with sexual dysfunction. Participants completed several self-reported measures: the Schema Questionnaire, the Questionnaire of Cognitive Schema Activation in Sexual Context, the Brief Symptom Inventory, the Beck Depression Inventory, and the Female Sexual Function Index. Findings indicated that women with sexual dysfunction presented significantly more early maladaptive schemas from the Impaired Autonomy and Performance domain, particularly failure (P < 0.001, η(2) = 0.08), dependence/incompetence (P < 0.05, η(2) = 0.03), and vulnerability to danger (P < 0.05, η(2) = 0.04). Additionally, in response to negative sexual events, women with sexual dysfunction presented significantly higher scores on incompetence (P < 0.001, η(2) = 0.16), self-depreciation (P < 0.01, η(2) = 0.05), and difference/loneliness (P < 0.01, η(2) = 0.05) schemas. Results supported differences between women with and without sexual problems regarding cognitive factors. This may have implications for the knowledge, assessment, and treatment of sexual dysfunction in women. © 2012 International Society for Sexual Medicine.

  11. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects.

    PubMed

    Feder, Stephan; Sundermann, Benedikt; Wersching, Heike; Teuber, Anja; Kugel, Harald; Teismann, Henning; Heindel, Walter; Berger, Klaus; Pfleiderer, Bettina

    2017-11-01

    Combinations of resting-state fMRI and machine-learning techniques are increasingly employed to develop diagnostic models for mental disorders. However, little is known about the neurobiological heterogeneity of depression and diagnostic machine learning has mainly been tested in homogeneous samples. Our main objective was to explore the inherent structure of a diverse unipolar depression sample. The secondary objective was to assess, if such information can improve diagnostic classification. We analyzed data from 360 patients with unipolar depression and 360 non-depressed population controls, who were subdivided into two independent subsets. Cluster analyses (unsupervised learning) of functional connectivity were used to generate hypotheses about potential patient subgroups from the first subset. The relationship of clusters with demographical and clinical measures was assessed. Subsequently, diagnostic classifiers (supervised learning), which incorporated information about these putative depression subgroups, were trained. Exploratory cluster analyses revealed two weakly separable subgroups of depressed patients. These subgroups differed in the average duration of depression and in the proportion of patients with concurrently severe depression and anxiety symptoms. The diagnostic classification models performed at chance level. It remains unresolved, if subgroups represent distinct biological subtypes, variability of continuous clinical variables or in part an overfitting of sparsely structured data. Functional connectivity in unipolar depression is associated with general disease effects. Cluster analyses provide hypotheses about potential depression subtypes. Diagnostic models did not benefit from this additional information regarding heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis, Structure, and Pressure-Induced Polymerization of Li 3 Fe(CN) 6 Accompanied with Enhanced Conductivity

    DOE PAGES

    Li, Kuo; Zheng, Haiyan; Hattori, Takanori; ...

    2015-11-17

    By providing a new route to synthesize inorganic/organic conductors with tunable composition and properties, pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal–carbon network composite. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li 3Fe(CN) 6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutronmore » diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. Moreover, the conductivity of the polymer is above 10 –3 S·cm –1, which reaches the range of conductive polymers. Our investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.« less

  13. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    PubMed Central

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2016-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00±29.04) showed less scores for sadness compared to healthy controls (128.70±22.26) (p<0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics. PMID:25963262

  14. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    PubMed

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  15. On Galactic Density Modeling in the Presence of Dust Extinction

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.

    2016-02-01

    Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.

  16. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    PubMed

    Pachov, Dimitar V; van den Bedem, Henry

    2015-07-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.

  17. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs. PMID:26218073

  18. Permanently densified SiO2 glasses: a structural approach.

    PubMed

    Martinet, C; Kassir-Bodon, A; Deschamps, T; Cornet, A; Le Floch, S; Martinez, V; Champagnon, B

    2015-08-19

    Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes. For this, densified silica glasses are prepared from cold and high temperature (up to 1020 °C) compressions. The different densified glasses obtained in our study are characterized by micro-Raman spectroscopy. Intertetrahedral angles from the main band relative to the bending mode decrease and their values are larger for densified samples from high temperature compression than those samples from cold compression. The relative amount of 3-membered rings deduced from the D2 line area increases as a function of density for cold compression. The temperature increase during the compression process induces a decrease of the 3 fold ring population. Moreover, 3 fold rings are more deformed and stressed for densified samples at room temperature at the expense of those densified at high temperature. Temperature plays a main role in the reorganization structure during the densification and leads to obtaining a more relaxed structure with lower stresses than glasses densified from cold compression. The role of hydrostatic or non-hydrostatic applied stresses on the glass structure is discussed. From the Sen and Thorpe central force model, intertetrahedral angle average value and their distribution are estimated.

  19. Heat Management Strategies for Solid-state NMR of Functional Proteins

    PubMed Central

    Fowler, Daniel J.; Harris, Michael J.; Thompson, Lynmarie K.

    2012-01-01

    Modern solid-state NMR methods can acquire high-resolution protein spectra for structure determination. However, these methods use rapid sample spinning and intense decoupling fields that can heat and denature the protein being studied. Here we present a strategy to avoid destroying valuable samples. We advocate first creating a sacrificial sample, which contains unlabeled protein (or no protein) in buffer conditions similar to the intended sample. This sample is then doped with the chemical shift thermometer Sm2Sn2O7. We introduce a pulse scheme called TCUP (for Temperature Calibration Under Pulseload) that can characterize the heating of this sacrificial sample rapidly, under a variety of experimental conditions, and with high temporal resolution. Sample heating is discussed with respect to different instrumental variables such as spinning speed, decoupling strength and duration, and cooling gas flow rate. The effects of different sample preparation variables are also discussed, including ionic strength, the inclusion of cryoprotectants, and the physical state of the sample (i.e. liquid, solid, or slurry). Lastly, we discuss probe detuning as a measure of sample thawing that does not require retuning the probe or using chemical shift thermometer compounds. Use of detuning tests and chemical shift thermometers with representative sample conditions makes it possible to maximize the efficiency of the NMR experiment while retaining a functional sample. PMID:22868258

  20. Matrix metalloproteinases and left ventricular function and structure in spinal cord injured subjects.

    PubMed

    Schreiber, Roberto; Paim, Layde R; de Rossi, Guilherme; Matos-Souza, José R; Costa E Silva, Anselmo de A; Souza, Cristiane M; Borges, Mariane; Azevedo, Eliza R; Alonso, Karina C; Gorla, José I; Cliquet, Alberto; Nadruz, Wilson

    2014-11-01

    Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    NASA Astrophysics Data System (ADS)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  2. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  3. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2010-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  4. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  6. Advanced Structures: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for extremely lightweight, multi-function structures with modular interfaces - the building-block technology for advanced spacecraft. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  7. Non-linear optical techniques and optical properties of condensed molecular systems

    NASA Astrophysics Data System (ADS)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  8. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.

    PubMed

    Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav

    2014-01-01

    Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.

  9. Automatic transfer function generation for volume rendering of high-resolution x-ray 3D digital mammography images

    NASA Astrophysics Data System (ADS)

    Alyassin, Abdal M.

    2002-05-01

    3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.

  10. Noneconomic Analysis Considerations for Management and Information System for Occupational Education.

    ERIC Educational Resources Information Center

    Creager, John A.

    As the first of two papers delineating the design of Massachusetts' Management and Information System for Occupational Education (MISOE), these specific dimensions of MISOE structure and function are considered: (1) the distinction between economic and noneconomic analysis, (2) distinctions among census, sample, and other data, (3) the distinction…

  11. Size matters: The contribution of mega-infauna to the food webs and ecosystem services of an Oregon estuary - 9-30-12

    EPA Science Inventory

    Large-bodied invertebrates (bivalves, polychaetes, burrowing shrimps) are common to infaunal communities of NE Pacific estuaries, but their contribution to estuarine community structure, function and ecosystem services is poorly understood because they are difficult to sample and...

  12. The Growth of Human Hair.

    ERIC Educational Resources Information Center

    Jones, Helen J.

    1984-01-01

    Suggests a simple technique for collecting and observing human hair roots to compare structure, function, and variation. Students extract their own hair samples and view them using a 40-power microscope objective. Differences between active/inactive phases of hair growth are readily observed. (The activity can be adapted for younger students.) (DH)

  13. Shrub expansion in northern Chihuahuan Desert grasslands: Spatial patterns of transition and biophysical constraints

    USDA-ARS?s Scientific Manuscript database

    Among the greatest contemporary threats to the structure, function and biological diversity of desert grassland and shrub savanna ecosystems of the southwestern United States is the displacement of mesophytic grasses by xerophytic woody plants. Through a combination of field sampling and spatial mod...

  14. SHALLOW HABITATS IN TWO RHODE ISLAND SYSTEMS: II. PATTERNS OF SIZE, STRUCTURE AND FUNCTIONAL GROUPS

    EPA Science Inventory

    We are examining habitats in small estuarine coves that may be important for the development of ecological indicators of integrity. We sampled nekton in Coggeshall Cove (shallow estuarine cove) in summer 1999 and 2000 and Ninigret Pond (coastal lagoon) in summer 2000. Coggeshall ...

  15. Temperature dependent Raman spectroscopy of melamine and structural analogs in milk powder

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral Raman imaging has the potential for rapid screening of solid-phase samples for potential adulterants. We found that the Raman spectra of melamine analogs changed dramatically and uniquely as a function of elevated temperature. Raman spectra were acquired for urea, biuret, cyanuric acid...

  16. Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon

    2017-08-01

    Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.

  17. Extension of the Contingency Naming Test to adult assessment: psychometric analysis in a college student sample.

    PubMed

    Riddle, Tara; Suhr, Julie

    2012-01-01

    The Contingency Naming Test (CNT; Taylor, Albo, Phebus, Sachs, & Bierl, 1987) was initially designed to assess aspects of executive functioning, such as processing speed and response inhibition, in children. The measure has shown initial utility in identifying differences in executive function among child clinical groups; however, there is an absence of adequate psychometric data for use with adults. The current study expanded psychometric data upward for use with a college student sample and explored the measure's test-retest reliability and factor structure. Performance in the adult sample showed continued improvement above child norms, consistent with theories of executive function development. Exploratory factor analysis showed that the CNT is most closely related to measures of processing speed, as well as elements of response inhibition within the latter trials. Overall, results from the current study provide added support for the utility of the CNT as a measure of executive functioning in young adults. However, more research is needed to determine patterns of performance among adult clinical groups, as well as to better understand how performance patterns may change in a broader age range, including middle and older adulthood.

  18. Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen; Van Berkel, Gary J.

    The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of themore » liberated species by MS. Here in this paper, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating function produced a 381× improvement in the DE and an 8× improvement in spatial resolution compared to the conventional heating approach showing that signal/amount of material sampled was improved significantly by this new cantilever heating strategy.« less

  19. Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions

    DOE PAGES

    Somnath, Suhas; Jesse, Stephen; Van Berkel, Gary J.; ...

    2017-04-17

    The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of themore » liberated species by MS. Here in this paper, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating function produced a 381× improvement in the DE and an 8× improvement in spatial resolution compared to the conventional heating approach showing that signal/amount of material sampled was improved significantly by this new cantilever heating strategy.« less

  20. A Factor Analysis of Functional Independence and Functional Assessment Measure Scores Among Focal and Diffuse Brain Injury Patients: The Importance of Bifactor Models.

    PubMed

    Gunn, Sarah; Burgess, Gerald H; Maltby, John

    2018-04-30

    To explore the factor structure of the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM) among focal and diffuse acquired brain injury patients. Criterion standard. A National Health Service acute acquired brain injury inpatient rehabilitation hospital. Referred sample of N=447 adults admitted for inpatient treatment following an acquired brain injury significant enough to justify intensive inpatient neurorehabilitation INTERVENTION: Not applicable. Functional Independence Measure and Functional Assessment Measure. Exploratory factor analysis suggested a 2-factor structure to FIM+FAM scores, among both focal-proximate and diffuse-proximate acquired brain injury aetiologies. Confirmatory factor analysis suggested a 3-factor bifactor structure presented the best fit of the FIM+FAM score data across both aetiologies. However, across both analyses, a convergence was found towards a general factor, demonstrated by high correlations between factors in the exploratory factor analysis, and by a general factor explaining the majority of the variance in scores on confirmatory factor analysis. Our findings suggested that although factors describing specific functional domains can be derived from FIM+FAM item scores, there is a convergence towards a single factor describing overall functioning. This single factor informs the specific group factors (eg, motor, psychosocial, and communication function) after brain injury. Further research into the comparative value of the general and group factors as evaluative/prognostic measures is indicated. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. The Spinal Cord Injury- Functional Index: Item Banks to Measure Physical Functioning of Individuals with Spinal Cord Injury

    PubMed Central

    Tulsky, David S.; Jette, Alan; Kisala, Pamela A.; Kalpakjian, Claire; Dijkers, Marcel P.; Whiteneck, Gale; Ni, Pengsheng; Kirshblum, Steven; Charlifue, Susan; Heinemann, Allen W.; Forchheimer, Martin; Slavin, Mary; Houlihan, Bethlyn; Tate, Denise; Dyson-Hudson, Trevor; Fyffe, Denise; Williams, Steve; Zanca, Jeanne

    2012-01-01

    Objective To develop a comprehensive set of patient reported items to assess multiple aspects of physical functioning relevant to the lives of people with spinal cord injury (SCI) and to evaluate the underlying structure of physical functioning. Design Cross-sectional Setting Inpatient and community Participants Item pools of physical functioning were developed, refined and field tested in a large sample of 855 individuals with traumatic spinal cord injury stratified by diagnosis, severity, and time since injury Interventions None Main Outcome Measure SCI-FI measurement system Results Confirmatory factor analysis (CFA) indicated that a 5-factor model, including basic mobility, ambulation, wheelchair mobility, self care, and fine motor, had the best model fit and was most closely aligned conceptually with feedback received from individuals with SCI and SCI clinicians. When just the items making up basic mobility were tested in CFA, the fit statistics indicate strong support for a unidimensional model. Similar results were demonstrated for each of the other four factors indicating unidimensional models. Conclusions Though unidimensional or 2-factor (mobility and upper extremity) models of physical functioning make up outcomes measures in the general population, the underlying structure of physical function in SCI is more complex. A 5-factor solution allows for comprehensive assessment of key domain areas of physical functioning. These results informed the structure and development of the SCI-FI measurement system of physical functioning. PMID:22609299

  2. Characterization of Viscoelastic Materials Through an Active Mixer by Direct-Ink Writing

    NASA Astrophysics Data System (ADS)

    Drake, Eric

    The goal of this thesis is two-fold: First, to determine mixing effectiveness of an active mixer attachment to a three-dimensional (3D) printer by characterizing actively-mixed, three-dimensionally printed silicone elastomers. Second, to understand mechanical properties of a printed lattice structure with varying geometry and composition. Ober et al defines mixing effectiveness as a measureable quantity characterized by two key variables: (i) a dimensionless impeller parameter (O ) that depends on mixer geometry as well as Peclet number (Pe) and (ii) a coefficient of variation (COV) that describes the mixer effectiveness based upon image intensity. The first objective utilizes tungsten tracer particles distributed throughout a batch of Dow Corning SE1700 (two parts silicone) - ink "A". Ink "B" is made from pure SE1700. Using the in-site active mixer, both ink "A" and "B" coalesce to form a hybrid ink just before extrusion. Two samples of varying mixer speeds and composition ratios are printed and analyzed by microcomputed tomography (MicroCT). A continuous stirred tank reactor (CSTR) model is applied to better understand mixing behavior. Results are then compared with computer models to verify the hypothesis. Data suggests good mixing for the sample with higher impeller speed. A Radial Distrubtion Function (RDF) macro is used to provide further qualitative analysis of mixing efficiency. The second objective of this thesis utilized three-dimensionally printed samples of varying geometry and composition to ascertain mechanical properties. Samples were printed using SE1700 provided by Lawrence Livermore National Laboratory with a face-centered tetragonal (FCT) structure. Hardness testing is conducted using a Shore OO durometer guided by a computer-controlled, three-axis translation stage to provide precise movements. Data is collected across an 'x-y' plane of the specimen. To explain the data, a simply supported beam model is applied to a single unit cell which yields basic structural behavior per cell. Characterizing the sample as a whole requires a more rigorous approach and non-trivial complexities due to varying geometries and compositions exist. The data demonstrates a uniform change in hardness as a function of position. Additionally, the data indicates periodicities in the lattice structure.

  3. The High-Throughput Protein Sample Production Platform of the Northeast Structural Genomics Consortium

    PubMed Central

    Xiao, Rong; Anderson, Stephen; Aramini, James; Belote, Rachel; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John K.; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Jiang, Mei; Kornhaber, Gregory J.; Lee, Dong Yup; Locke, Jessica Y.; Ma, Li-Chung; Maglaqui, Melissa; Mao, Lei; Mitra, Saheli; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Sharma, Seema; Shastry, Ritu; Swapna, G.V.T.; Tong, Saichu N.; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.; Acton, Thomas B.

    2014-01-01

    We describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods. In most cases, the 6X-His-tagged proteins are sufficiently purified (> 97% homogeneity) using a HTP two-step purification protocol for most structural studies. Using this platform, the open reading frames of over 16,000 different targeted proteins (or domains) have been cloned as > 26,000 constructs. Over the past nine years, more than 16,000 of these expressed protein, and more than 4,400 proteins (or domains) have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html). Using these samples, the NESG has deposited more than 900 new protein structures to the Protein Data Bank (PDB). The methods described here are effective in producing eukaryotic and prokaryotic protein samples in E. coli. This paper summarizes some of the updates made to the protein production pipeline in the last five years, corresponding to phase 2 of the NIGMS Protein Structure Initiative (PSI-2) project. The NESG Protein Production Platform is suitable for implementation in a large individual laboratory or by a small group of collaborating investigators. These advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are of broad value to the structural biology, functional proteomics, and structural genomics communities. PMID:20688167

  4. Effective role of deposition duration on the growth of V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Saini, Sujit Kumar; Singh, Megha; Reddy, G. B.

    2016-05-01

    In this report, vanadium pentoxide nanostructured thin films (NSTs) with nanoplates (NPs) have synthesized on Ni coated glass substrate employing plasma assisted sublimation process (PASP), as a function of deposition/growth durations. The effect of deposition durations on the morphological, structural, vibrational, and compositional properties have been investigated one by one. The structural and vibrational studies endorsed that the grown NPs have only orthorhombic phase, no other sub oxide phases are recorded in the limit of resolution. The morphological results of all samples using SEM, revealed that the features, coverage density, and alignments of NPs are greatly controlled by deposition duration and the best sample is obtained for 25 min (S2). Further, the more insight information is accomplished by HRTEM/SAED on the best featured sample, which confirmed the single crystalline nature of NPs. The XPS result again confirmed the compositional purity and the nearly stoichiometric nature of NPs.

  5. Effect of Sm on dielectric, ferroelectric and piezoelectric properties of BPTNZ system

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Juneja, J. K.; Prakash, Chandra; Raina, K. K.; Singh, Sangeeta

    2013-10-01

    Study on structural, dielectric and ferroelectric properties of Sm substituted BPTNZ system with compositional formula Ba0.80-xSmxPb0.20Zr0.10Ti0.90O3+0.5% Nb2O5 by weight, (x=0 to 0.01 in the steps of 0.0025) was done. Conventional solid state method was adopted for the synthesis of the samples. The single phase was confirmed by X-ray diffraction (XRD) analysis. Scanning electron microscopy was done for microstructural analysis. The dielectric properties were measured as a function of temperature and frequency. Ferroelectric P-E loops were recorded for all the samples at room temperature. Piezoelectric parameters such as ‘d33’ and electromechanical coupling coefficient ‘kp’ were also measured at room temperature for all the samples. The relationship between properties and structure of the prepared ceramics was established and results are discussed here.

  6. Exploring RNA structure and dynamics through enhanced sampling simulations.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-04-01

    RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes.

    PubMed

    Toogood, Helen S; Leys, David; Scrutton, Nigel S

    2007-11-01

    Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.

  8. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    PubMed

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. © The Author 2013. Published by Oxford University Press.

  9. FTIR study of secondary structure of bovine serum albumin and ovalbumin

    NASA Astrophysics Data System (ADS)

    Abrosimova, K. V.; Shulenina, O. V.; Paston, S. V.

    2016-11-01

    Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation.

  10. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  11. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  12. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  13. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE PAGES

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    2017-06-26

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  14. Population activity structure of excitatory and inhibitory neurons

    PubMed Central

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  15. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions.

    PubMed

    Tristram-Nagle, Stephanie; Nagle, John F

    2004-01-01

    This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure.

  16. The NEO Five-Factor Inventory: latent structure and relationships with dimensions of anxiety and depressive disorders in a large clinical sample.

    PubMed

    Rosellini, Anthony J; Brown, Timothy A

    2011-03-01

    The present study evaluated the latent structure of the NEO Five-Factor Inventory (NEO FFI) and relations between the five-factor model (FFM) of personality and dimensions of DSM-IV anxiety and depressive disorders (panic disorder, generalized anxiety disorder [GAD], obsessive-compulsive disorder, social phobia [SOC], major depressive disorder [MDD]) in a large sample of outpatients (N = 1,980). Exploratory structural equation modeling (ESEM) was used to show that a five-factor solution provided acceptable model fit, albeit with some poorly functioning items. Neuroticism demonstrated significant positive associations with all but one of the disorder constructs whereas Extraversion was inversely related to SOC and MDD. Conscientiousness was inversely related to MDD but demonstrated a positive relationship with GAD. Results are discussed in regard to potential revisions to the NEO FFI, the evaluation of other NEO instruments using ESEM, and clinical implications of structural paths between FFM domains and specific emotional disorders.

  17. The NEO Five-Factor Inventory: Latent Structure and Relationships With Dimensions of Anxiety and Depressive Disorders in a Large Clinical Sample

    PubMed Central

    Rosellini, Anthony J.; Brown, Timothy A.

    2017-01-01

    The present study evaluated the latent structure of the NEO Five-Factor Inventory (NEO FFI) and relations between the five-factor model (FFM) of personality and dimensions of DSM-IV anxiety and depressive disorders (panic disorder, generalized anxiety disorder [GAD], obsessive–compulsive disorder, social phobia [SOC], major depressive disorder [MDD]) in a large sample of outpatients (N = 1,980). Exploratory structural equation modeling (ESEM) was used to show that a five-factor solution provided acceptable model fit, albeit with some poorly functioning items. Neuroticism demonstrated significant positive associations with all but one of the disorder constructs whereas Extraversion was inversely related to SOC and MDD. Conscientiousness was inversely related to MDD but demonstrated a positive relationship with GAD. Results are discussed in regard to potential revisions to the NEO FFI, the evaluation of other NEO instruments using ESEM, and clinical implications of structural paths between FFM domains and specific emotional disorders. PMID:20881102

  18. Lipid bilayers: thermodynamics, structure, fluctuations, and interactions

    PubMed Central

    Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure. PMID:14706737

  19. Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen

    2014-01-01

    Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.

  20. Psychometric evaluation of the canine brief pain inventory in a Swedish sample of dogs with pain related to osteoarthritis.

    PubMed

    Essner, Ann; Zetterberg, Lena; Hellström, Karin; Gustås, Pia; Högberg, Hans; Sjöström, Rita

    2017-07-01

    To evaluate intervention, implement evidence-based practice and enhance the welfare of dogs with naturally occurring osteoarthritis (OA), access to valid, reliable and clinically relevant outcome measures is crucial for researchers, veterinarians and rehabilitation practitioners. The objectives of the present study were to translate and evaluate psychometric properties, in terms of internal consistency and construct validity, of the owner-reported measure canine brief pain inventory (CBPI) in a Swedish sample of dogs with pain related to OA. Twenty-one owners of clinically sound dogs and 58 owners of dogs with pain related to OA were included in this observational and cross-sectional study. After being translated according to the guidelines for patient-reported outcome measures, the CBPI was completed by the canine owners. Construct validity was assessed by confirmatory factor analysis, by repeating the principal component analysis and by assessing for differences between clinically sound dogs and dogs with pain related to OA. Internal consistency was estimated by Cronbach's α. Confirmatory factor analysis was not able to confirm the factor-structure models tested in our sample. Principal component analysis showed a two-component structure, pain severity and pain interference of function. Two components accounted for 76.8% of the total variance, suggesting an acceptable fit of a two-component structure. The ratings from the clinically sound dogs differed from OA dogs and showed significantly lower CBPI total sum. Cronbach's α was 0.94 for the total CBPI, 0.91 for the pain severity and 0.91 for the pain interference of function. The results indicate that the translated version of the CBPI is valid for use in the Swedish language. The findings suggest satisfying psychometric properties in terms of high internal consistencies and ability to discriminate clinically sound dogs from OA dogs. However, based on the confirmatory factor analysis, the original factor structure in the CBPI is not ideally suited to measure pain related to OA in our sample and the hypothesis of the presented two-factor structure was rejected. Further research needs to be conducted to determine whether the original psychometric results from CBPI can be replicated across different target groups and particularly with larger sample size.

Top