Sample records for sample surface topography

  1. Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges.

    PubMed

    Zhong, Lieshuang; Zhu, Hai; Wu, Yang; Guo, Zhiguang

    2018-09-01

    The Namib Desert beetle-Stenocara can adapt to the arid environment by its fog harvesting ability. A series of samples with different topography and wettability that mimicked the elytra of the beetle were fabricated to study the effect of these factors on fog harvesting. The superhydrophobic bulgy sample harvested 1.5 times the amount of water than the sample with combinational pattern of hydrophilic bulgy/superhydrophobic surrounding and 2.83 times than the superhydrophobic surface without bulge. These bulges focused the droplets around them which endowed droplets with higher velocity and induced the highest dynamic pressure atop them. Superhydrophobicity was beneficial for the departure of harvested water on the surface of sample. The bulgy topography, together with surface wettability, dominated the process of water supply and water removal. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Development of Nomarski microscopy for quantitative determination of surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. S.; Gordon, R. L.; Lessor, D. L.

    1979-01-01

    The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.

  3. Surface topography characterization of brass alloys: lead brass (CuZn39Pb3) and lead free brass (CuZn21Si3P)

    NASA Astrophysics Data System (ADS)

    Reddy, Vijeth V.; Vedantha Krishna, Amogh; Schultheiss, Fredrik; Rosén, B.-G.

    2017-06-01

    Manufactured surfaces usually consist of topographical features which include both those put forth by the manufacturing process, and micro-features caused by disturbances during this process. Surface characterization basically involves study of these features which influence the functionality of the surface. This article focuses on characterization of the surface topography of machined lead brass and lead free brass. The adverse effect of lead on human health and the environment has led the manufacturing sector to focus on sustainable manufacturing of lead free brass, as well as how to maintain control of the surface integrity when substituting the lead content in the brass with silicon. The investigation includes defined areal surface parameters measured on the turned samples of lead- and lead free brass using an optical coherence scanning interferometer, CSI. This paper deals with the study of surface topography of turned samples of lead- and lead free brass. It is important to study the topographical characteristics of the brass samples which are the intermediate link between the manufacturing process variables and the functional behaviour of the surface. To numerically evaluate the sample’s surface topography and to validate the measurements for a significant study, a general statistical methodology is implemented. The results indicate higher surface roughness in turned samples of lead brass compared to lead free brass.

  4. Enhanced Characterization of Niobium Surface Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xu, Hui Tian, Charles Reece, Michael Kelley

    2011-12-01

    Surface topography characterization is a continuing issue for the Superconducting Radio Frequency (SRF) particle accelerator community. Efforts are underway to both to improve surface topography, and its characterization and analysis using various techniques. In measurement of topography, Power Spectral Density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how chemical processes modifiesy the roughnesstopography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, polycrystalline surfaces with different process histories are sampled with AFMmore » and stylus/white light interferometer profilometryers and analyzed to indicate trace topography evolution at different scales. evolving during etching or polishing. Moreover, Aan optimized PSD analysis protocol will be offered to serve the SRF surface characterization needs is presented.« less

  5. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    PubMed

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  6. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  7. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  8. Correcting for surface topography in X-ray fluorescence imaging

    PubMed Central

    Geil, E. C.; Thorne, R. E.

    2014-01-01

    Samples with non-planar surfaces present challenges for X-ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet. PMID:25343805

  9. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.

    PubMed

    Polak, Leo; Wijngaarden, Rinke J

    2016-12-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  11. Measuring topographies from conventional SEM acquisitions.

    PubMed

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-04-27

    The present study extends the stereoscopic imaging principle for estimating the surface topography to two orientations, namely, normal to the electron beam axis and inclined at 70° as suited for EBSD analyses. In spite of the large angle difference, it is shown that the topography can be accurately determined using regularized global Digital Image Correlation. The surface topography is compared to another estimate issued from a 3D FIB-SEM procedure where the sample surface is first covered by a Pt layer, and its initial topography is progressively revealed from successive FIB-milling. These two methods are successfully compared on a 6% strained steel specimen in an in situ mechanical test. This analysis is supplemented by a third approach estimating the change of topography from crystal rotations as measured from successive EBSD images. This last technique ignores plastic deformation, and thus only holds in an elastic regime. For the studied example, despite the large plastic flow, it is shown that crystal rotation already accounts for a significant part of the deformation-induced topography. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Time-dependent effects of heat advection and topography on cooling histories during erosion

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil S.; Grasemann, Bernhard

    1997-03-01

    Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by the lateral cooling effect of topographic relief, with samples exhumed in valleys displaying a different near-surface cooling history to those on ridge crests.

  13. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  14. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  15. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  16. Surface analytical study of CuInSe[sub 2] treated in Cd-containing partial electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asher, S.E.; Ramanathan, K.; Wiesner, H.

    1999-03-01

    Junction formation in CuInSe[sub 2] (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH[sub 4]OH and CdSO[sub 4]. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. [copyright] [ital 1999 American Institute of Physics.]« less

  17. Surface analytical study of CuInSe{sub 2} treated in Cd-containing partial electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asher, S.E.; Ramanathan, K.; Wiesner, H.

    1999-03-01

    Junction formation in CuInSe{sub 2} (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH{sub 4}OH and CdSO{sub 4}. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. {copyright} {ital 1999 American Institute of Physics.}« less

  18. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized inmore » a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.« less

  19. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force.

    PubMed

    Ren, Juan; Zou, Qingze

    2014-07-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  20. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  1. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  2. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  3. Surface roughness control by extreme ultraviolet (EUV) radiation

    NASA Astrophysics Data System (ADS)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  4. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  5. Towards Mapping the Ocean Surface Topography at 1 km Resolution

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriquez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  6. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1980-09-01

    The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow thesemore » results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory.« less

  7. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study

    PubMed Central

    Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

    2014-01-01

    Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

  8. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study.

    PubMed

    Brindha, M; Kumaran, N Kurunji; Rajasigamani, K

    2014-07-01

    The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys.

  9. Effect of two storage solutions on surface topography of two root-end fillings.

    PubMed

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh

    2009-12-01

    The effect of different storage solutions on surface topography of mineral trioxide aggregate (MTA) and new experimental cement (NEC) as root-end fillings was investigated. Twenty-four single-rooted teeth were cleaned, shaped and obturated in a same manner. After root-end resection, 3-mm deep root-end cavities were ultrasonically prepared. Samples were randomly divided into four test groups (A1-A2-B1-B2, n = 6). Root-end cavities in groups A and B were filled with MTA and NEC, respectively, and were then stored in 100% humidity for 24 h. The samples of groups 1 and 2 were, respectively, immersed in normal saline (NS) and phosphate buffer saline solutions for 1 week. The samples were imaged under stereomicroscope before and after immersion and were then investigated and analysed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA). Results showed significant difference among studied groups. Surface topography of all samples was altered by crystal formation and precipitation on root-end fillings except for group A1 (MTA-NS). SEM and EDXA results showed that the composition and structure of precipitated crystals were comparable with that of standard hydroxyapatite. It was concluded that biocompatibility, sealing ability, and cementogenic activity of MTA and probably NEC may be attributed to this fundamental bioactive reaction.

  10. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu

    2018-02-01

    Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.

  11. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics.

    PubMed

    Rajab, Fatema H; Liauw, Christopher M; Benson, Paul S; Li, Lin; Whitehead, Kathryn A

    2017-12-01

    The development of surfaces which reduce biofouling has attracted much interest in practical applications. Three picosecond laser generated surface topographies (Ti1, Ti2, Ti3) on titanium were produced, treated with fluoroalkylsilane (FAS), then characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy, Fourier Transform Infra-Red (FTIR) spectroscopy, contact angle measurements and white light interference microscopy. The surfaces had a range of different macro/micro/nano topographies. Ti2 had a unique, surface topography with large blunt conical peaks and was predominantly a rutile surface with closely packed, self-assembled FAS; this was the most hydrophobic sample (water contact angle 160°; ΔG iwi was -135.29mJm -2 ). Bacterial attachment, adhesion and retention to the surfaces demonstrated that all the laser generated surfaces retained less bacteria than the control surface. This also occurred following the adhesion and retention assays when the bacteria were either not rinsed from the surfaces or were retained in static conditions for one hour. This work demonstrated that picosecond laser generated surfaces may be used to produce antiadhesive surfaces that significantly reduced surface fouling. It was determined that a tri-modally dimensioned surface roughness, with a blunt conical macro-topography, combined with a close-packed fluoroalkyl monolayer was required for an optimised superhydrophobic surface. These surfaces were effective even following surface immersion and static conditions for one hour, and thus may have applications in a number of food or medical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    PubMed

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    PubMed

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  14. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    NASA Astrophysics Data System (ADS)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  15. SRF Cavity Surface Topography Characterization Using Replica Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less

  16. Effect of different pH solvents on micro-hardness and surface topography of dental nano-composite: An in vitro analysis

    PubMed Central

    Khan, Aftab Ahmed; Siddiqui, Adel Zia; Al-Kheraif, Abdulaziz A; Zahid, Ambreen; Divakar, Darshan Devang

    2015-01-01

    Objective: Erosion of tooth surface is attributed to recent shift in diet pattern and frequent use of beverages. The aim of this research was to evaluate the effects of different beverages on surface topography and hardness of nano-filled composite material. Methods: Sixty flat disc shaped resin composite samples were fabricated and placed in distilled water for 24 hours. After 24 hours test samples were dried and divided into 4 groups. Group A (n=15) specimens were placed in tight amber bottle comprising 25 ml of artificial saliva. Similarly Group B, C and D were stored in equal amounts of orange juice, milk and coca cola drink respectively. Samples were checked for hardness and surface changes were evaluated with scanning electron microscopy. Results: There were strong significant difference observed in samples immersed in orange juice and artificial saliva. A strong significant difference was seen between Group D and Group A. Group A and Group C showed no significant difference. The micro-hardness test showed reduced values among all samples. Conclusion: Beverages consumed daily have a negative influence on hardness and surface degradation of nano-filled dental composite. Comparatively, nano-filled composites possess higher surface area to volume ratio of their fillers particle size may lead to higher surface roughness than other resin based dental biomaterials. PMID:26430417

  17. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.

  18. Influence of surface topography on depth profiles obtained with secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walker, A. J.; Borchert, M. T.; Vriezema, C. J.; Zalm, P. C.

    1990-11-01

    Lithographically generated well-defined surface topography of submicron dimensions has been etched into silicon (100) previously implanted with 25 keV 11B to a fluence of 2×1014 atoms/cm2. The thus-obtained samples were depth profiled via secondary-ion mass spectrometry (SIMS). The boron concentration distributions measured were contrasted against those found on undisturbed flat parts of the target. From this intercomparison the otherwise trivial observation that surface topography causes profile distortion becomes suddenly alarming as an apparent improvement of depth resolution occurs. Scanning electron microscope images enable identification of the origin of this remarkable phenomenon. The present results imply that (i) the hitherto commonly accepted assumption in the interpretation of SIMS depth profiles that perceived gradients are never steeper than actual ones is subject to revision; (ii) it may prove very difficult, if not impossible, to construct SIMS equipment for reliable on-chip analysis of submicron details.

  19. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Davis, A. D.; Heimbach, P.; Marzouk, Y.

    2017-12-01

    We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice sheet volume). Continual surrogate refinement guarantees asymptotic sampling from the predictive distribution. Directly characterizing the predictive distribution in this way allows us to assess the ice sheet's sensitivity to climate variability and change.

  20. ToF-SIMS measurements with topographic information in combined images.

    PubMed

    Koch, Sabrina; Ziegler, Georg; Hutter, Herbert

    2013-09-01

    In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.

  1. Surface properties of beached plastics.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  2. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    PubMed

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Effect of topography-dependent light coupling through a near-field aperture on the local photocurrent of a solar cell.

    PubMed

    Cao, Zhao; Ermes, Markus; Lehnen, Stephan; Carius, Reinhard; Bittkau, Karsten

    2018-01-03

    An aperture-type scanning near-field optical microscope (a-SNOM) is readily used for the optical and optoelectronic characterizations of a wide variety of chemical, biological and optoelectronic samples with sub-wavelength optical resolution. These samples mostly exhibit nanoscale topographic variations, which are related to local material inhomogeneity probed either by an optical contrast or by secondary effects such as photoconductivity or photoluminescence. To date, in the interpretation and evaluation of the measurement results from a-SNOM or derived methods, often only the local material inhomogeneity is taken into account. A possible influence of the optical interaction between the scanning probe and the surface topography is rarely discussed. In this paper, we present experimental and theoretical investigation of the effects of nanoscale topographic features on a-SNOM measurement results. We conduct local photocurrent measurements on a thin-film solar cell with an a-SNOM as the illumination source. A clear correlation between the photocurrent response and local topography is observed in all measurements with a signal contrast of up to ∼30%, although the sample features homogeneous permittivity and electrical properties. With the help of finite-difference time-domain (FDTD) simulations, this correlation is reproduced and local light coupling is identified as the mechanism which determines the local photocurrent response. Our results suggest that a-SNOM-based measurements of any sample with material inhomogeneity will be superimposed by the local light-coupling effect if surface topography variation exists. This effect should always be taken into consideration for an accurate interpretation of the measurement results.

  4. Topographic forcing and related uncertainties on glacier surface energy balance in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.; Shean, D. E.

    2017-12-01

    Topography directly influences the amount of global radiation, as well as other key energy flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface energy and mass balance estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface energy balance for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface energy due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and energy balance results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier energy and mass balance modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface energy fluxes due to surrounding topography for mountain glaciers.

  5. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  6. Effect of co-doping process on topography, optical and electrical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Syamsir, S. A.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    We investigated of Undoped ZnO and Magnesium (Mg)-Aluminium (Al) co-doped Zinc Oxide (MAZO) nanostructured films were prepared by sol gel spin coating technique. The surface topography was analyzed using Atomic Force Microscopy (AFM). Based on the AFM results, Root Mean Square (RMS) of MAZO films have rougher surface compared to pure ZnO films. The optical and electrical properties of thin film samples were characterized using Uv-Vis spectroscopy and two point probes, current-voltage (I-V) measurements. The transmittance spectra for both thin samples was above 80% in the visible wavelength. The MAZO film shows the highest conductivity compared to pure ZnO films. This result indicates that the improvement of carrier mobility throughout doping process and possibly contribute by extra ion charge.

  7. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    PubMed

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  8. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    PubMed

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic information about the surface. Our results also indicate that root-mean-square roughness cannot be used to reliably characterize the surface topography of fractal surfaces because it is an inherently noisy parameter for such surfaces with the scale of the noise being independent of length scale.

  9. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  10. Origin of bending in uncoated microcantilever - Surface topography?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  11. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less

  12. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    PubMed

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  13. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    DOE PAGES

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; ...

    2016-08-10

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less

  14. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  15. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    NASA Astrophysics Data System (ADS)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  16. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    PubMed

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  17. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  18. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.

    PubMed

    de Andrade, Dennia Perez; de Vasconcellos, Luana Marotta Reis; Carvalho, Isabel Chaves Silva; Forte, Lilibeth Ferraz de Brito Penna; de Souza Santos, Evelyn Luzia; Prado, Renata Falchete do; Santos, Dalcy Roberto Dos; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    NASA Astrophysics Data System (ADS)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  20. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  1. Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform

    DOE PAGES

    Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; ...

    2015-03-18

    The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less

  2. Hydrodynamic Drag Force Measurement Of A Functionalized Surface Exhibiting Superhydrophobic Properties

    DTIC Science & Technology

    2016-12-01

    22. Completed Test Stand. ...............................................................................24 Figure 23. Steel Spring and Mesh...topography that is superhydrophobic. Furthering this research, Zuhlke et al. [27] using FLSP, created stainless steel and titanium samples with...synthetic stomach acid. Each sample created attained initial wetting angles greater than 160 degrees while the stainless steel samples had a better

  3. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  4. Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process

    PubMed Central

    Amigó, Angélica

    2018-01-01

    Surface topography and composition influence the osteoblastic proliferation and osseointegration rates, which favor the biomechanical stability of bone anchoring and implants. In recent years, beta titanium alloys have been developed, and are composed of biocompatible elements, have low elastic modulus, high corrosion resistance, and mechanical properties to improve the long performance behavior of biomaterials. In the present research, the influence of the acid-etching process was studied in Ti6Al4V ELI and Ti35Nb10Ta1.5Fe. Samples were etched in a two-step acid treatment. Surface roughness parameters were quantified under a confocal microscope, topography was studied by scanning electron microscopy, and surface composition was analyzed with energy dispersive X-ray spectroscopy. The results revealed that the two-step acid treatment changes the topography of the β alloy, increases the surface area, and changes the chemical composition of the surface. Two differentiated regions were identified in the Ti35Nb10Ta1.5Fe alloy after the acid-etching process: The α + β region with higher values of mean roughness due to the lower chemical resistance of this region; and the β region with lower values of roughness parameters. PMID:29587427

  5. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study.

    PubMed

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Gupta, Alpa; Singla, Rakesh

    2014-12-01

    To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding.

  6. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study

    PubMed Central

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Singla, Rakesh

    2014-01-01

    Objectives: To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. Material and Methods: The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Results: Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Conclusions: Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding. PMID:25674310

  7. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  8. SILAR derived CdO films: Effect of triethanolamine on the surface morphology and optical bandgap energy

    NASA Astrophysics Data System (ADS)

    Sahin, B.; Aydin, R.

    2018-07-01

    Nanostructured CdO films have been successfully synthesized with different ratios of surfactant triethanolamine (TEA) under SILAR condition. The influence of addition of TEA on the physical properties of CdO nanoparticles was studied. The surface morphology of the films was studied by metallurgical microscope and SEM analysis. Surface topography of the film was studied by AFM. The structural properties of the samples were studied by X-ray diffraction (XRD). The XRD studies confirm that the deposited CdO films has cubic structure (111) preferred orientation with well-crystallinity and purity. The optical bandgap energy was estimated based on the UV-vis spectroscopies which were obtained in the range of 2.16 eV-2.46 eV. Our study is encouraging to get enhanced surface topography by surfactant TEA.

  9. Surface Topography Hinders Bacterial Surface Motility.

    PubMed

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  10. Quantified Differentiation of Surface Topography for Nano-materials As-Obtained from Atomic Force Microscopy Images

    NASA Astrophysics Data System (ADS)

    Gupta, Mousumi; Chatterjee, Somenath

    2018-04-01

    Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.

  11. An algorithm-based topographical biomaterials library to instruct cell fate

    PubMed Central

    Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan

    2011-01-01

    It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368

  12. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2012-10-01

    Commercially pure titanium samples were exposed to grit blasting and acid-alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  13. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    PubMed

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of bleaching on color change and surface topography of composite restorations.

    PubMed

    Pruthi, Gunjan; Jain, Veena; Kandpal, H C; Mathur, Vijay Prakash; Shah, Naseem

    2010-01-01

    This study was conducted to determine the effect of 15% carbamide peroxide bleaching agent on color change and surface topography of different composite veneering materials (Filtek Z350 (3M ESPE), Esthet X (Dentsply India), and Admira (Voco, Germany). Methods. 30 samples were fabricated for evaluation of color change using CIELAB color system and Gonioreflectometer (GK 311/M, ZEISS). 45 disc-shaped specimens were made for evaluation of surface topography after bleaching (Nupro White Gold; Dentsply) using SEM. Statistical analysis. One way ANOVA and Multiple comparison tests were used to analyze the data. Statistical significance was declared if the P value was .05 or less. Results and conclusion. All the specimens showed significant discoloration (ΔE > 3.3) after their immersion in solutions representing food and beverages. The total color change after bleaching as compared to baseline color was significant in Filtek Z350 (P = .000) and Esthet X (P = .002), while it was insignificant for Admira (P = .18). Esthet X showed maximum surface roughness followed by Admira and Filtek Z350. Bleaching was effective in reducing the discoloration to a clinically acceptable value in all the three groups (ΔE < 3.3).

  15. Spectral analysis of groove spacing on Ganymede

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    1984-01-01

    The technique used to analyze groove spacing on Ganymede is presented. Data from Voyager images are used determine the surface topography and position of the grooves. Power spectal estimates are statistically analyzed and sample data is included.

  16. Reduction of measurement errors in OCT scanning

    NASA Astrophysics Data System (ADS)

    Morel, E. N.; Tabla, P. M.; Sallese, M.; Torga, J. R.

    2018-03-01

    Optical coherence tomography (OCT) is a non-destructive optical technique, which uses a light source with a wide band width that focuses on a point in the sample to determine the distance (strictly, the optical path difference, OPD) between this point and a reference surface. The point can be superficial or at an interior interface of the sample (transparent or semitransparent), allowing topographies and / or tomographies in different materials. The Michelson interferometer is the traditional experimental scheme for this technique, in which a beam of light is divided into two arms, one the reference and the other the sample. The overlap of reflected light in the sample and in the reference generates an interference signal that gives us information about the OPD between arms. In this work, we work on the experimental configuration in which the reference signal and the reflected signal in the sample travel on the same arm, improving the quality of the interference signal. Among the most important aspects of this improvement we can mention that the noise and errors produced by the relative reference-sample movement and by the dispersion of the refractive index are considerably reduced. It is thus possible to obtain 3D images of surfaces with a spatial resolution in the order of microns. Results obtained on the topography of metallic surfaces, glass and inks printed on paper are presented.

  17. Recent advances in engineering topography mediated antibacterial surfaces

    PubMed Central

    Hasan, Jafar

    2015-01-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264

  18. Recent advances in engineering topography mediated antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  19. Surface characterization of selected LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.

    1993-01-01

    The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.

  20. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    PubMed

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (<100 nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    PubMed

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  2. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.

  4. Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Son N.; Liyu, Andrey V.; Chu, Rosalie K.

    A new approach for constant distance mode mass spectrometry imaging of biological samples using nanospray desorption electrospray ionization (nano-DESI MSI) was developed by integrating a shear-force probe with nano-DESI probe. The technical concept and basic instrumental setup as well as general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enables constant-distance imaging mode via a computer controlled closed feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus Subtilis ATCC 49760 colonies on agarmore » plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites including non-ribosomal peptides (surfactin, plipastatin and iturin) and iron-bound heme on the surface of living bacterial colonies ranging in diameter from 10 mm to 13 mm with height variations of up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Constant-mode nano-DESI MSI is ideally suited for imaging biological samples of complex topography in their native state.« less

  5. A new adaptive light beam focusing principle for scanning light stimulation systems.

    PubMed

    Bitzer, L A; Meseth, M; Benson, N; Schmechel, R

    2013-02-01

    In this article a novel principle to achieve optimal focusing conditions or rather the smallest possible beam diameter for scanning light stimulation systems is presented. It is based on the following methodology: First, a reference point on a camera sensor is introduced where optimal focusing conditions are adjusted and the distance between the light focusing optic and the reference point is determined using a laser displacement sensor. In a second step, this displacement sensor is used to map the topography of the sample under investigation. Finally, the actual measurement is conducted, using optimal focusing conditions in each measurement point at the sample surface, that are determined by the height difference between camera sensor and the sample topography. This principle is independent of the measurement values, the optical or electrical properties of the sample, the used light source, or the selected wavelength. Furthermore, the samples can be tilted, rough, bent, or of different surface materials. In the following the principle is implemented using an optical beam induced current system, but basically it can be applied to any other scanning light stimulation system. Measurements to demonstrate its operation are shown, using a polycrystalline silicon solar cell.

  6. Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias

    2017-02-01

    In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.

  7. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic composite sample. Impressive results were obtained for all samples when compared with diamond-tip profiles and measurements from micrometers. The method is completely nondestructive, noninvasive, non-contact and does not require light-reflective surfaces.

  8. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.« less

  9. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  11. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    NASA Astrophysics Data System (ADS)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  12. Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Silver, P. G.

    2009-12-01

    Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.

  13. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  14. Ocean Surface Topography Mission/Jason 2 Artist Concept

    NASA Image and Video Library

    2008-09-23

    An artist concept of the Ocean Surface Topography Mission/Jason 2 Earth satellite. The Ocean Surface Topography Mission/Jason 2 is an Earth satellite designed to make observations of ocean topography for investigations into sea-level rise and the relationship between ocean circulation and climate change. The satellite also provides data on the forces behind such large-scale climate phenomena as El Niño and La Niña. The mission is a follow-on to the French-American Jason 1 mission, which began collecting data on sea-surface levels in 1992. http://photojournal.jpl.nasa.gov/catalog/PIA18158

  15. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-01-01

    We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.

  16. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings.

    PubMed

    Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey

    2013-10-01

    The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  18. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.

    PubMed

    Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J

    2012-11-30

    This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Leaf cuticle topography retrieved by using fringe projection

    NASA Astrophysics Data System (ADS)

    Martínez, Amalia; Rayas, J. A.; Cordero, Raúl R.; Balieiro, Daniela; Labbe, Fernando

    2012-02-01

    The combination (often referred to as phase-stepping profilometry, PSP) of the fringe projection technique and the phase-stepping method allowed us to retrieve topographic maps of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree ( Malus domestica) of the variety Golden Delicious. The topographic maps enabled us to assess the natural features on the illuminated surface and also to detect the whole-field spatial variations in the thickness of the cuticle. Most of our attention was paid to retrieve the highly-resolved elevation information from the cuticle surface, which included the trace (in the order of tens of micrometers) left by ribs and veins. We expect that the PSP application for retrieving the cuticle topography will facilitate further studies on the dispersion and coverage of state-of-the-art agrochemical compounds meant to improve the defending properties of the cuticle. Methodological details are provided below.

  1. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  2. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  3. Density Determination and Metallographic Surface Preparation of Electron Beam Melted Ti6Al4V

    DTIC Science & Technology

    2015-06-02

    Electron Microscopy SiC Silicon Carbide Ti6Al4V Titanium-6Aluminum-4Vanadium WRNMMC Walter Reed National Military Medical Center Wd Dry...polishing with silicon carbide ( SiC ) papers and colloidal silica suspension to produce samples with varying surface topographies. Surfaces were...manufacturing process. For titanium alloys, the grinding media typically used is silicon carbide ( SiC ) paper. Table 1 lists grades of SiC papers that are

  4. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surface topography analysis and performance on post-CMP images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Jusang; Bello, Abner F.; Kakita, Shinichiro; Pieniazek, Nicholas; Johnson, Timothy A.

    2017-03-01

    Surface topography on post-CMP processing can be measured with white light interference microscopy to determine the planarity. Results are used to avoid under or over polishing and to decrease dishing. The numerical output of the surface topography is the RMS (root-mean-square) of the height. Beyond RMS, the topography image is visually examined and not further quantified. Subjective comparisons of the height maps are used to determine optimum CMP process conditions. While visual comparison of height maps can determine excursions, it's only through manual inspection of the images. In this work we describe methods of quantifying post-CMP surface topography characteristics that are used in other technical fields such as geography and facial-recognition. The topography image is divided into small surface patches of 7x7 pixels. Each surface patch is fitted to an analytic surface equation, in this case a third order polynomial, from which the gradient, directional derivatives, and other characteristics are calculated. Based on the characteristics, the surface patch is labeled as peak, ridge, flat, saddle, ravine, pit or hillside. The number of each label and thus the associated histogram is then used as a quantified characteristic of the surface topography, and could be used as a parameter for SPC (statistical process control) charting. In addition, the gradient for each surface patch is calculated, so the average, maximum, and other characteristics of the gradient distribution can be used for SPC. Repeatability measurements indicate high confidence where individual labels can be lower than 2% relative standard deviation. When the histogram is considered, an associated chi-squared value can be defined from which to compare other measurements. The chi-squared value of the histogram is a very sensitive and quantifiable parameter to determine the within wafer and wafer-to-wafer topography non-uniformity. As for the gradient histogram distribution, the chi-squared could again be calculated and used as yet another quantifiable parameter for SPC. In this work we measured the post Cu CMP of a die designed for 14nm technology. A region of interest (ROI) known to be indicative of the CMP processing is chosen for the topography analysis. The ROI, of size 1800 x 2500 pixels where each pixel represents 2um, was repeatably measured. We show the sensitivity based on measurements and the comparison between center and edge die measurements. The topography measurements and surface patch analysis were applied to hundreds of images representing the periodic process qualification runs required to control and verify CMP performance and tool matching. The analysis is shown to be sensitive to process conditions that vary in polishing time, type of slurry, CMP tool manufacturer, and CMP pad lifetime. Keywords: Keywords: CMP, Topography, Image Processing, Metrology, Interference microscopy, surface processing [1] De Lega, Xavier Colonna, and Peter De Groot. "Optical topography measurement of patterned wafers." Characterization and Metrology for ULSI Technology 2005 788 (2005): 432-436. [2] de Groot, Peter. "Coherence scanning interferometry." Optical Measurement of Surface Topography. Springer Berlin Heidelberg, 2011. 187-208. [3] Watson, Layne T., Thomas J. Laffey, and Robert M. Haralick. "Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation." Computer Vision, Graphics, and Image Processing 29.2 (1985): 143-167. [4] Wang, Jun, et al. "3D facial expression recognition based on primitive surface feature distribution." Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 2. IEEE, 2006.

  6. Scanning mass spectrometry with integrated constant distance positioning

    NASA Astrophysics Data System (ADS)

    Li, Nan; Eckhard, Kathrin; Aßmann, Jens; Hagen, Volker; Otto, Horst; Chen, Xingxing; Schuhmann, Wolfgang; Muhler, Martin

    2006-08-01

    Scanning mass spectrometry is of growing importance for the characterization of catalytically active surfaces. The instrument presented here is capable of measuring catalytic activity spatially resolved by means of two concentric capillaries. The outer one is used for cofeeding reactants such as ethene and hydrogen to the sample surface, whereas the inner one is pumping off the product mixture as inlet to a quadrupole mass spectrometer. Three-dimensional measurements under stagnant-point flow conditions become possible based on a home-built capillary positioning unit. Step-motor driven positioning stages exhibiting a minimum step width of 2.5μm̸half step are used for the x, y positioning, and the step motor in z direction has a resolution of 1μm̸half step. The system is additionally equipped with a feedback loop for following the topography of the sample throughout scanning. Hence, the obtained catalytic data are unimpaired by signal changes caused by the morphology of the investigated structure. For distance control the argon ion current is used originating from externally fed argon diffusing into the confined space between the accurately positioned capillaries and the sample surface. A well-defined microchannel flow field with 400μm wide channels and 200μm wide mounds was chosen to evaluate the developed method. The catalytic activity of a Pt catalyst deposited on glassy carbon was successfully visualized in constant probe to sample distance. Simultaneously, the topography of the sample was recorded derived from the z positioning of the capillaries.

  7. Development of a surface topography instrument for automotive textured steel plate

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  8. Velopharyngeal mucosal surface topography in healthy subjects and subjects with obstructive sleep apnea.

    PubMed

    Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina

    2017-03-01

    Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1 ) develop methodology to measure UA mucosal surface topography, and 2 ) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models ( P < 0.01). OSA VP mucosal surface models were also found to have more mucosal surface roughness ( P < 0.0001) than healthy VP mucosal surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss. NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was found in the obstructive sleep apnea vs. healthy group, but further research is required to determine the functional effects of the measured difference on upper airway airflow mechanics. Copyright © 2017 the American Physiological Society.

  9. Photoinduced Changes of Surface Topography in Amorphous, Liquid-Crystalline, and Crystalline Films of Bent-Core Azobenzene-Containing Substance.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej

    2016-06-09

    Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.

  10. The study of X-ray scattering to determine surface topography of smooth surfaces. [X-ray telescope mirrors

    NASA Technical Reports Server (NTRS)

    Williams, A. C.

    1982-01-01

    The scattering of X-rays from state-of-the-art polished mirrors is discussed with reference to the requirements of the Advanced X-ray Astrophysics Facility telescope. An experimental set-up is described which allows information to be obtained with subarcsecond resolution. A sample of the data obtained is presented along with a possible theoretical model for its interpretation.

  11. Surface topography characterization using 3D stereoscopic reconstruction of SEM images

    NASA Astrophysics Data System (ADS)

    Vedantha Krishna, Amogh; Flys, Olena; Reddy, Vijeth V.; Rosén, B. G.

    2018-06-01

    A major drawback of the optical microscope is its limitation to resolve finer details. Many microscopes have been developed to overcome the limitations set by the diffraction of visible light. The scanning electron microscope (SEM) is one such alternative: it uses electrons for imaging, which have much smaller wavelength than photons. As a result high magnification with superior image resolution can be achieved. However, SEM generates 2D images which provide limited data for surface measurements and analysis. Often many research areas require the knowledge of 3D structures as they contribute to a comprehensive understanding of microstructure by allowing effective measurements and qualitative visualization of the samples under study. For this reason, stereo photogrammetry technique is employed to convert SEM images into 3D measurable data. This paper aims to utilize a stereoscopic reconstruction technique as a reliable method for characterization of surface topography. Reconstructed results from SEM images are compared with coherence scanning interferometer (CSI) results obtained by measuring a roughness reference standard sample. This paper presents a method to select the most robust/consistent surface texture parameters that are insensitive to the uncertainties involved in the reconstruction technique itself. Results from the two-stereoscopic reconstruction algorithms are also documented in this paper.

  12. Effects of titanium surface topography on bone integration: a systematic review.

    PubMed

    Wennerberg, Ann; Albrektsson, Tomas

    2009-09-01

    To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)<0.5 microm) and minimally rough (S(a) 0.5-1 mum) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (S(a)>1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.

  13. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling moieties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  15. Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.

    2012-12-01

    Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.

  16. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  17. Effects of surface roughness and energy on ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M. A.

    2011-02-01

    The aim of this study is to investigate the effects of surface roughness and surface energy on ice adhesion strength. Sandblasting technique was used to prepare samples with high roughness. Silicon-doped hydrocarbon and fluorinated-carbon thin films were employed to alter the surface energy of the samples. Silicon-doped hydrocarbon films were deposited by plasma-enhanced chemical vapor deposition, while fluorinated-carbon films were produced using deep reactive ion etching equipment by only activating the passivation step. Surface topographies were characterized using scanning electron microscopy and a stylus profilometer. The surface wetting properties were characterized by a video-based contact angle measurement system. The adhesion strength of ice formed from a water droplet on these surfaces was studied using a custom-built shear force test apparatus. It was found that the ice adhesion strength is correlated to the water contact angles of the samples only for surfaces with similar roughness: the ice adhesion strength decreases with the increase in water contact angle. The study also shows that smoother as-received sample surfaces have lower ice adhesion strength than the much rougher sandblasted surfaces.

  18. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    NASA Astrophysics Data System (ADS)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  19. Installation Restoration Program. Phase I. Records Search, Hazardous Materials Disposal Sites. Myrtle Beach Air Force Base, South Carolina.

    DTIC Science & Technology

    1981-10-01

    Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit

  20. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    PubMed

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  1. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. Amore » more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.« less

  2. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  3. The Effect of Multiple Surface Treatments on Biological Properties of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2014-09-01

    In this research, the effect of various surface treatments including laser processing, grit blasting and anodizing on chemical structure, surface topography, and bioactivity of Ti-6Al-4V was investigated. Six groups of samples were prepared by a combination of two alternative laser processes, grit blasting and anodizing. Selected samples were first evaluated using microanalysis techniques and contact roughness testing and were then exposed to in vitro environment. Scanning electron microscopy was used to characterize the corresponding final surface morphologies. Weight measurement and atomic absorption tests were employed for determination of bioactivity limits of different surface conditions. Based on the data obtained in this study, low-energy laser processing generally yields a better biological response. The maximum bioactivity was attained in those samples exposed to a three step treatment including low-energy laser treatment followed by grit blasting and anodizing.

  4. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  5. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    PubMed

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  7. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    PubMed

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  8. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  9. Tactile mapping system: a novel imaging technology for surface topography and elasticity of tissues or organs.

    PubMed

    Oie, Tomonori; Suzuki, Hisato; Fukuda, Toru; Murayama, Yoshinobu; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2009-11-01

    : We demonstrated that the tactile mapping system (TMS) has a high degree of spatial precision in the distribution mapping of surface elasticity of tissues or organs. : Samples used were a circumferential section of a small-caliber porcine artery (diameter: ∼3 mm) and an elasticity test pattern with a line and space configuration for the distribution mapping of elasticity, prepared by regional micropatterning of a 14-μm thick gelatin hydrogel coating on a polyurethane sheet. Surface topography and elasticity in normal saline were simultaneously investigated by TMS using a probe with a diameter of 5 or 12 μm, a spatial interval of 1 to 5 μm, and an indentation depth of 4 μm. : In the test pattern, a spatial resolution in TMS of <5 μm was acquired under water with a minimal probe diameter and spatial interval of the probe movement. TMS was used for the distribution mapping of surface elasticity in a flat, circumferential section (thickness: ∼0.5 mm) of a porcine artery, and the concentric layers of the vascular wall, including the collagen-rich and elastin-rich layers, could be clearly differentiated in terms of surface elasticity at the spatial resolution of <2 μm. : TMS is a simple and inexpensive technique for the distribution mapping of the surface elasticity in vascular tissues at the spatial resolution <2 μm. TMS has the ability to analyze a complex structure of the tissue samples under normal saline.

  10. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  11. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGES

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  12. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    PubMed

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  13. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces

    PubMed Central

    Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.

    2013-01-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997

  14. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    PubMed

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  16. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  17. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  18. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography

    PubMed Central

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  19. A strategy for analysis of (molecular) equilibrium simulations: Configuration space density estimation, clustering, and visualization

    NASA Astrophysics Data System (ADS)

    Hamprecht, Fred A.; Peter, Christine; Daura, Xavier; Thiel, Walter; van Gunsteren, Wilfred F.

    2001-02-01

    We propose an approach for summarizing the output of long simulations of complex systems, affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in conjunction with dimension reduction methods to obtain a low-dimensional representation of the configuration space explored by the system. A nonparametric estimate of the density of states in this subspace is then obtained using kernel methods. The free energy surface is calculated from that density, and the configurations produced in the simulation are then clustered according to the topography of that surface, such that all configurations belonging to one local free energy minimum form one class. This topographical cluster analysis is performed using basin spanning trees which we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize the intimate relation of density estimation techniques to modern enhanced sampling algorithms.

  20. [Influence of different surface treatments on porcelain surface topography].

    PubMed

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  1. Can weak crust explain the correlation of geoid and topography on Venus?

    NASA Technical Reports Server (NTRS)

    Buck, W. Roger

    1993-01-01

    The effect on geoid and topography of low viscosity crust overlying a steady-state convecting mantle is estimated under the assumption that the shear between crust and mantle does not alter the mantle flow. The weak crustal layer can change the sign of the geoid to topography ratio (admittance). The positive long wavelength admittance for Venus is consistent with a weak crust overlying a mantle with a viscosity that increases strongly with depth. The accepted interpretation of the strong positive correlation of geoid and topography on Venus, is that the convecting mantle of Venus has a constant viscosity with depth. Topography results from vertical normal stresses caused by mantle convection and highlands occur where mantle upwells. For topography to be supported by normal stress, the time scale for crustal flow must be long compared to the time scale for changes in the pattern of mantle flow. Because the high surface temperature of Venus may cause the crust to have a low viscosity, this assumption may be false. Topography should then be dominated by shear coupling between the crust and mantle. In the absence of a crustal layer, convection in a constant viscosity layer gives rise to a geoid anomaly that correlates positively with surface topography. When the viscosity in the layer increases with depth by several orders of magnitude, the surface topography and geoid anomaly become anti-correlated.

  2. Calcite dissolution rate spectra measured by in situ digital holographic microscopy.

    PubMed

    Brand, Alexander S; Feng, Pan; Bullard, Jeffrey W

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ , real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s -1 . Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates ( e.g. , 0.1 µmol m -2 s -1 to 0.3 µmol m -2 s -1 ). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  3. Calcite dissolution rate spectra measured by in situ digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Brand, Alexander S.; Feng, Pan; Bullard, Jeffrey W.

    2017-09-01

    Digital holographic microscopy in reflection mode is used to track in situ, real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s-1. Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates (e.g., 0.1 μmol m-2 s-1 to 0.3 μmol m-2 s-1). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.

  4. Feature-based characterisation of signature topography in laser powder bed fusion of metals

    NASA Astrophysics Data System (ADS)

    Senin, Nicola; Thompson, Adam; Leach, Richard

    2018-04-01

    The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.

  5. Cell adhesion on nanotopography

    NASA Astrophysics Data System (ADS)

    Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.

  6. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    PubMed

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016. © 2016 Wiley Periodicals, Inc.

  7. Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies.

    PubMed

    Barr, S; Hill, E; Bayat, A

    2010-04-26

    Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue-derived fibroblasts react and align to these surfaces. Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue-derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response.

  8. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  9. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  10. Nano-metrology and terrain modelling - convergent practice in surface characterisation

    USGS Publications Warehouse

    Pike, R.J.

    2000-01-01

    The quantification of magnetic-tape and disk topography has a macro-scale counterpart in the Earth sciences - terrain modelling, the numerical representation of relief and pattern of the ground surface. The two practices arose independently and continue to function separately. This methodological paper introduces terrain modelling, discusses its similarities to and differences from industrial surface metrology, and raises the possibility of a unified discipline of quantitative surface characterisation. A brief discussion of an Earth-science problem, subdividing a heterogeneous terrain surface from a set of sample measurements, exemplifies a multivariate statistical procedure that may transfer to tribological applications of 3-D metrological height data.

  11. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei

    2017-05-01

    The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Topography compensation for haptization of a mesh object and its stiffness distribution.

    PubMed

    Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon

    2015-01-01

    This work was motivated by the need for perceptualizing nano-scale scientific data, e.g., those acquired by a scanning probe microscope, where collocated topography and stiffness distribution of a surface can be measured. Previous research showed that when the topography of a surface with spatially varying stiffness is rendered using the conventional penalty-based haptic rendering method, the topography perceived by the user could be significantly distorted from its original model. In the worst case, a higher region with a smaller stiffness value can be perceived to be lower than a lower region with a larger stiffness value. This problem was explained by the theory of force constancy: the user tends to maintain an invariant contact force when s/he strokes the surface to perceive its topography. In this paper, we present a haptization algorithm that can render the shape of a mesh surface and its stiffness distribution with high perceptual accuracy. Our algorithm adaptively changes the surface topography on the basis of the force constancy theory to deliver adequate shape information to the user while preserving the stiffness perception. We also evaluated the performance of the proposed haptization algorithm in comparison to the constraint-based algorithm by examining relevant proximal stimuli and carrying out a user experiment. Results demonstrated that our algorithm could improve the perceptual accuracy of shape and reduce the exploration time, thereby leading to more accurate and efficient haptization.

  13. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  14. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  15. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools.

    PubMed

    Lau, C K; Sim, K S; Tso, C P

    2011-01-01

    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.

  16. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  17. Surface topography due to convection in a variable viscosity fluid - Application to short wavelength gravity anomalies in the central Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lin, J.; Parmentier, E. M.

    1985-01-01

    Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.

  18. Human Fetal Osteoblast Response on Poly(Methyl Methacrylate)/Polystyrene Demixed Thin Film Blends: Surface Chemistry Vs Topography Effects.

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J

    2016-06-22

    Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.

  19. Topography of Vesta Surface

    NASA Image and Video Library

    2011-08-26

    This view of the topography of asteroid Vesta surface is composed of several images obtained with the framing camera on NASA Dawn spacecraft on August 6, 2011. The image mosaic is shown superimposed on a digital terrain model.

  20. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    PubMed

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Beyond Roughness: Maximum-Likelihood Estimation of Topographic "Structure" on Venus and Elsewhere in the Solar System

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Eggers, G. L.; Lewis, K. W.; Olhede, S. C.

    2015-12-01

    What numbers "capture" topography? If stationary, white, and Gaussian: mean and variance. But "whiteness" is strong; we are led to a "baseline" over which to compute means and variances. We then have subscribed to topography as a correlated process, and to the estimation (noisy, afftected by edge effects) of the parameters of a spatial or spectral covariance function. What if the covariance function or the point process itself aren't Gaussian? What if the region under study isn't regularly shaped or sampled? How can results from differently sized patches be compared robustly? We present a spectral-domain "Whittle" maximum-likelihood procedure that circumvents these difficulties and answers the above questions. The key is the Matern form, whose parameters (variance, range, differentiability) define the shape of the covariance function (Gaussian, exponential, ..., are all special cases). We treat edge effects in simulation and in estimation. Data tapering allows for the irregular regions. We determine the estimation variance of all parameters. And the "best" estimate may not be "good enough": we test whether the "model" itself warrants rejection. We illustrate our methodology on geologically mapped patches of Venus. Surprisingly few numbers capture planetary topography. We derive them, with uncertainty bounds, we simulate "new" realizations of patches that look to the geologists exactly as if they were derived from similar processes. Our approach holds in 1, 2, and 3 spatial dimensions, and generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity, erosion, or other surface and sub-surface modifying processes). Our results have widespread implications for the study of planetary topography in the Solar System, and are interpreted in the light of trying to derive "process" from "parameters", the end goal to assign likely formation histories for the patches under consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature detection, on geological data. We present procedural details but focus on high-level results that have real-world implications for the study of Venus, Earth, other planets, and moons.

  2. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Characterizing Arctic sea ice topography and atmospheric form drag using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.

    2015-12-01

    Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.

  4. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  5. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth

    NASA Astrophysics Data System (ADS)

    Colli, L.; Ghelichkhan, S.; Bunge, H. P.

    2016-12-01

    Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (<30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space.

  6. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  7. Back-scattered electron imaging of skeletal tissues.

    PubMed

    Boyde, A; Jones, S J

    The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.

  8. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  9. Applications of corneal topography and tomography: a review.

    PubMed

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  10. Optical properties and surface topography of CdCl2 activated CdTe thin films

    NASA Astrophysics Data System (ADS)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  11. Application of Unmanned Aerial System-based Photogrammetry to Monitor Landforms Evolution of Mudstone Badlands

    NASA Astrophysics Data System (ADS)

    Chen, Yichin

    2017-04-01

    Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.

  12. Patterning of Novel Breast Implant Surfaces by Enhancing Silicone Biocompatibility, Using Biomimetic Topographies

    PubMed Central

    Barr, S.; Hill, E.; Bayat, A.

    2010-01-01

    Introduction and Aims: Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue–derived fibroblasts react and align to these surfaces. Methods: Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue–derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Results: Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. Conclusions: This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response. PMID:20458346

  13. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  14. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    PubMed

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  15. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion

    PubMed Central

    Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.

    2016-01-01

    Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875

  16. Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy

    DOEpatents

    Kazmerski, Lawrence L.

    1990-01-01

    A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

  17. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  18. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    PubMed

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  19. Development of antifouling surfaces to reduce bacterial attachment

    NASA Astrophysics Data System (ADS)

    Graham, Mary Viola

    Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.

  20. The effect of skin surface topography and skin colouration cues on perception of male facial age, health and attractiveness.

    PubMed

    Fink, B; Matts, P J; Brauckmann, C; Gundlach, S

    2018-04-01

    Previous studies investigating the effects of skin surface topography and colouration cues on the perception of female faces reported a differential weighting for the perception of skin topography and colour evenness, where topography was a stronger visual cue for the perception of age, whereas skin colour evenness was a stronger visual cue for the perception of health. We extend these findings in a study of the effect of skin surface topography and colour evenness cues on the perceptions of facial age, health and attractiveness in males. Facial images of six men (aged 40 to 70 years), selected for co-expression of lines/wrinkles and discolouration, were manipulated digitally to create eight stimuli, namely, separate removal of these two features (a) on the forehead, (b) in the periorbital area, (c) on the cheeks and (d) across the entire face. Omnibus (within-face) pairwise combinations, including the original (unmodified) face, were presented to a total of 240 male and female judges, who selected the face they considered younger, healthier and more attractive. Significant effects were detected for facial image choice, in response to skin feature manipulation. The combined removal of skin surface topography resulted in younger age perception compared with that seen with the removal of skin colouration cues, whereas the opposite pattern was found for health preference. No difference was detected for the perception of attractiveness. These perceptual effects were seen particularly on the forehead and cheeks. Removing skin topography cues (but not discolouration) in the periorbital area resulted in higher preferences for all three attributes. Skin surface topography and colouration cues affect the perception of age, health and attractiveness in men's faces. The combined removal of these features on the forehead, cheeks and in the periorbital area results in the most positive assessments. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  2. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    PubMed

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging

    PubMed Central

    Zhukov, Alex; Richards, Owen; Ostanin, Victor; Korchev, Yuri; Klenerman, David

    2012-01-01

    We have developed a new method of controlling the pipette for scanning ion conductance microscopy to obtain high-resolution images faster. The method keeps the pipette close to the surface during a single line scan but does not follow the exact surface topography, which is calculated by using the ion current. Using an FPGA platform we demonstrate this new method on model test samples and then on live cells. This method will be particularly useful to follow changes occurring on relatively flat regions of the cell surface at high spatial and temporal resolutions. PMID:22902298

  4. Interpolations of groundwater table elevation in dissected uplands.

    PubMed

    Chung, Jae-won; Rogers, J David

    2012-01-01

    The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  5. Dynamic sea surface topography from GEOS-3 altimetry - Determination of some dominant parameters

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.

    1979-01-01

    The second, third and fourth degree zonal harmonics of the quasi-stationary dynamic sea surface topography can be recovered from the GEOS-3 altimetry despite the adverse levels of noise indicated by the crossover discrepancies generated from the best orbits available at the end of 1977 and the GEOS-3 altimetry. Techniques for modelling the global sea surface topography are discussed along with methods for signal recovery in the presence of significant levels of noise. The analysis also provides a means of defining the geocentricity of the system of reference used in preparing the GEOS-3 ephemeris.

  6. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  7. Integrated approach to estimate the ocean's time variable dynamic topography including its covariance matrix

    NASA Astrophysics Data System (ADS)

    Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter

    2015-04-01

    The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.

  8. Payload topography camera of Chang'e-3

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-11-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.

  9. Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups

    NASA Technical Reports Server (NTRS)

    Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.

    2008-01-01

    As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit for approx.4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton(TradeMark) and Mylar(Trademark) of comparable or greater thickness. The samples were characterized for changes in physical properties, thermal/optical properties surface chemistry, and surface topography. The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.

  10. Geophysical imaging reveals topographic stress control of bedrock weathering

    NASA Astrophysics Data System (ADS)

    St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.

    2015-10-01

    Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.

  11. Evaluation of modified titanium surfaces physical and chemical characteristics

    NASA Astrophysics Data System (ADS)

    Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw

    2017-11-01

    Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.

  12. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    PubMed

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength

    NASA Astrophysics Data System (ADS)

    Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.

    2017-09-01

    Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as λ-0.25+/-0.05. Nanoindentation tests on the Corona Heights sample and another fault sample whose topography was previously measured with AFM (the Yair Fault) reveal a scale-dependent yield stress with power-law exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08, respectively. These values are within one to two standard deviations of the predicted value, and provide experimental evidence that fault roughness is controlled by intrinsic material properties, which produces a characteristic surface geometry.

  14. Design and implementation of optical system for Placido-disc topography

    NASA Astrophysics Data System (ADS)

    Sui, Chenghua; Wo, Shengjie; Cai, Pinggen; Gao, Nan; Xu, Danyang; Han, Yonghao; Du, Chunnian

    2017-11-01

    Corneal topography provides powerful support in the diagnosis and treatment of corneal disease by displaying the corneal surface topography in data or image format. To realize the precise detection of corneal surface topography, an optical system for the corneal topography that is based on a Placido disc is designed, which includes a ring distribution on a Placido disc, an imaging system and a collimating illumination system. First, a mathematical model that is based on the corneal topography working principles is established with MATLAB to determine the distribution of white-and-black rings on the Placido disc, in which the ellipsoid facial rings-target of the Placido disc is utilized. Second, the imaging lens structure is designed and optimized by Zemax software. Last, the collimating illumination lens structure is designed by paraxial ray trace equations. The quality of the corneal topography, which is based on our designed optical system, is evaluated. The high-contrast image of uniformly distributed white-and-black rings is observed through the CCD camera. Our optical system for the corneal topography has high precision, with a measuring region of the cornea with a diameter of approximately 10 mm. Therefore, the creation of this optical system offers guidance for designing and improving the optical system of Placido-disc topography.

  15. Simulation of foulant bioparticle topography based on Gaussian process and its implications for interface behavior research

    NASA Astrophysics Data System (ADS)

    Zhao, Leihong; Qu, Xiaolu; Lin, Hongjun; Yu, Genying; Liao, Bao-Qiang

    2018-03-01

    Simulation of randomly rough bioparticle surface is crucial to better understand and control interface behaviors and membrane fouling. Pursuing literature indicated a lack of effective method for simulating random rough bioparticle surface. In this study, a new method which combines Gaussian distribution, Fourier transform, spectrum method and coordinate transformation was proposed to simulate surface topography of foulant bioparticles in a membrane bioreactor (MBR). The natural surface of a foulant bioparticle was found to be irregular and randomly rough. The topography simulated by the new method was quite similar to that of real foulant bioparticles. Moreover, the simulated topography of foulant bioparticles was critically affected by parameters correlation length (l) and root mean square (σ). The new method proposed in this study shows notable superiority over the conventional methods for simulation of randomly rough foulant bioparticles. The ease, facility and fitness of the new method point towards potential applications in interface behaviors and membrane fouling research.

  16. Note: Microelectrode-shielding tip for scanning probe electron energy spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Zhean; Xu, Chunkai; Liu, Jian; Xu, Chunye; Chen, Xiangjun

    2018-04-01

    We report a novel microelectrode-shielding tip (ME tip) for scanning probe electron energy spectroscopy (SPEES). The shielding effect of this tip is studied through comparing the detection efficiency with the normal tip by both experiment and simulation. The results show that the backscattering count rate detected by the SPEES instrument using the normal tip begins to decrease as the tip approaches to the sample surface within 21 μm, while that using the ME tip only starts to drop off within 1 μm. This indicates that the electron energy spectra can be measured with the ME tip at a much closer tip-sample distance. Furthermore, it is also demonstrated that the ME tip can be used to obtain topography of the sample surface in situ simultaneously.

  17. Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Smith, Dru A.

    1994-01-01

    TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.

  18. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  19. Topography of the Moon from the Clementine Lidar

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G.

    1997-01-01

    Range measurements from the lidar instrument carried aboard the Clementine spacecraft have been used to produce an accurate global topographic model of the Moon. This paper discusses the function of the lidar; the acquisition, processing, and filtering of observations to produce a global topographic model; and the determination of parameters that define the fundamental shape of the Moon. Our topographic model: a 72nd degree and order spherical harmonic expansion of lunar radii, is designated Goddard Lunar Topography Model 2 (GLTM 2). This topographic field has an absolute vertical accuracy of approximately 100 m and a spatial resolution of 2.5 deg. The field shows that the Moon can be described as a sphere with maximum positive and negative deviations of approx. 8 km, both occurring on the farside, in the areas of the Korolev and South Pole-Aitken (S.P.-Aitken) basins. The amplitude spectrum of the topography shows more power at longer wavelengths as compared to previous models, owing to more complete sampling of the surface, particularly the farside. A comparison of elevations derived from the Clementine lidar to control point elevations from the Apollo laser altimeters indicates that measured relative topographic heights generally agree to within approx. 200 in over the maria. While the major axis of the lunar gravity field is aligned in the Earth-Moon direction, the major axis of topography is displaced from this line by approximately 10 deg to the cast and intersects the farside 24 deg north of the equator. The magnitude of impact basin topography is greater than the lunar flattening (approx. 2 km) and equatorial ellipticity (approx. 800 m), which imposes a significant challenge to interpreting the lunar figure. The floors of mare basins are shown to lie close to an equipotential surface, while the floors of unflooded large basins, except for S.P.-Aitken, lie above this equipotential. The radii of basin floors are thus consistent with a hydrostatic mechanism for the absence of significant farside maria except for S.P.-Aitken, whose depth and lack of mare require significant internal compositional and/or thermal heterogeneity. A macroscale surface roughness map shows that roughness at length scales of 10(exp 1) - 10(exp 2) km correlates with elevation and surface age.

  20. Ageing effects on the diameter, nanomechanical properties and tactile perception of human hair.

    PubMed

    Tang, W; Zhang, S G; Zhang, J K; Chen, S; Zhu, H; Ge, S R

    2016-04-01

    The typical changes to hair associated with ageing are greying, thinning, dryness and brittleness. Research on the influence of ageing on hair properties will enable a detailed understanding of the natural ageing process. The studies were carried out using an SEM (scanning electron microscope), a TriboIndenter and an artificial finger. Three characteristic features of tactile perception that could reflect the perceptual dimensions of the fineness, roughness and slipperiness of hair were extracted. The influences of ageing on the diameter, surface topography, nanomechanical properties and tactile perception of hair were determined. In the three age group hair samples, the children's group hair samples have the smallest diameter. The hair cuticles in the children and young adult groups were relatively complete and less damaged than in the elderly group. The hardness and elastic modulus of the young adult group's hair samples were higher than those in the elderly and children's groups. For all groups, loss modulus E" was smaller than storage modulus E'. Vertical deviations (R) and coefficient of friction (μ) increased, and spectral centroid (SC) decreased, with the increase in age. Ageing decreased the tactile perception of hair. Ageing influences the diameter, surface topography, hardness, loss modulus, storage modulus and tactile perception of human hair. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  2. Topography measurements and applications in ballistics and tool mark identifications*

    PubMed Central

    Vorburger, T V; Song, J; Petraco, N

    2016-01-01

    The application of surface topography measurement methods to the field of firearm and toolmark analysis is fairly new. The field has been boosted by the development of a number of competing optical methods, which has improved the speed and accuracy of surface topography acquisitions. We describe here some of these measurement methods as well as several analytical methods for assessing similarities and differences among pairs of surfaces. We also provide a few examples of research results to identify cartridge cases originating from the same firearm or tool marks produced by the same tool. Physical standards and issues of traceability are also discussed. PMID:27182440

  3. Note: development of high speed confocal 3D profilometer.

    PubMed

    Ang, Kar Tien; Fang, Zhong Ping; Tay, Arthur

    2014-11-01

    A high-speed confocal 3D profilometer based on the chromatic confocal technology and spinning Nipkow disk technique has been developed and tested. It can measure a whole surface topography by taking only one image that requires less than 0.3 s. Surface height information is retrieved based on the ratios of red, green, and blue color information. A new vector projection technique has developed to enhance the vertical resolution of the measurement. The measurement accuracy of the prototype system has been verified via different test samples.

  4. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  5. A step forward in the study of the electroerosion by optical methods

    NASA Astrophysics Data System (ADS)

    Aparicio, R.; Gale, M. F. Ruiz; Hogert, E. N.; Landau, M. R.; Gaggioli, y. N. G.

    2003-05-01

    This work develops two theoretical models of surfaces to explain the behavior of the light scattered by samples that suffers some alteration. In a first model, it is evaluated the mean intensity scattered by the sample, analyzing the different curves obtained as function of the eroded/total surface ratio. The theoretical results are compared with those obtained experimentally. It can be seen that there exists a strong relation between the electroerosion level and the light scattered by the sample. A second model analyzes a surface with random changes in its roughness. A translucent surface with its roughness changing in a controlled way is studied. Then, the correlation coefficient variation as function of the roughness variation is determined by the transmission speckle correlation method. The obtained experimental values are compared with those obtained with this model. In summary, it can be shown that the first- and second-order statistics properties of the transmitted or reflected light by a sample with a variable topography can be taken account as a parameter to analyze these morphologic changes.

  6. Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb; Crowley, Lindy; Leight, Clarissa; Dyar, Darby; Minton, David; Hirabayashi, Toshi; Thomson, Brad; Watters, Wesley

    2017-01-01

    Motivating questions: 1. How does the topography of airless bodies evolve? 2. What is the relative rate on the Moon and Mercury? 3. Can we constrain the age of features and units from their topography?

  7. Topography and nanostructural evaluation of chemically and thermally modified titanium substrates.

    PubMed

    Salemi, Hoda; Behnamghader, Aliasghar; Afshar, Abdollah

    2016-10-01

    In this research, the effects of chemical and thermal treatment on the morphological and compositional aspects of titanium substrates and so, potentially, on development of biomimetic bone like layers formation during simulated body fluid (SBF) soaking was investigated. The HF, HF/HNO3 and NaOH solutions were used for chemical treatment and some of alkali-treated samples followed a heat treatment at 600°C. The treated samples before and after soaking were subjected to material characterization tests using scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). White light interferometry (WLI) was used to determine the roughness parameters such as Ra, Rq, RKu and Rsk. The significance of the obtained data was assessed using ANOVA variance analysis between all samples. It was observed that the reaction at grain boundaries and sodium titanate intermediate layers play a great role in the nucleation of calcium phosphate layers. Based on the obtained results in this work, the calcium phosphate microstructure deposited on titanium substrates was more affected by chemical modification than surface topography.

  8. Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts In Vitro Biocompatibility

    PubMed Central

    Blanquer, Andreu; Hynowska, Anna; Nogués, Carme; Ibáñez, Elena; Sort, Jordi; Baró, Maria Dolors; Özkale, Berna; Pané, Salvador; Pellicer, Eva

    2016-01-01

    The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes. PMID:27243628

  9. Early human bone response to laser metal sintering surface topography: a histologic report.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  10. Surface texture measurement for dental wear applications

    NASA Astrophysics Data System (ADS)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  11. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration.

    PubMed

    Hulshof, Frits F B; Papenburg, Bernke; Vasilevich, Aliaksei; Hulsman, Marc; Zhao, Yiping; Levers, Marloes; Fekete, Natalie; de Boer, Meint; Yuan, Huipin; Singh, Shantanu; Beijer, Nick; Bray, Mark-Anthony; Logan, David J; Reinders, Marcel; Carpenter, Anne E; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-08-01

    Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  13. Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro

    PubMed Central

    Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.

    2012-01-01

    Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042

  14. Photometric stereo endoscopy.

    PubMed

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J

    2013-07-01

    While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.

  15. Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)

    DTIC Science & Technology

    2015-09-30

    Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography

  16. Allometric scaling of infraorbital surface topography in Homo.

    PubMed

    Maddux, Scott D; Franciscus, Robert G

    2009-02-01

    Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be explained, in part, as a function of possessing large infraorbital regions, the ancestral condition for Homo. Furthermore, it appears likely that the diminutive infraorbital region of anatomically modern Homo sapiens is a primary derived trait, with related features such as depressed infraorbital surface topography expressed as correlated secondary characters.

  17. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  18. Effects of various etching protocols on the flexural properties and surface topography of fiber-reinforced composite dental posts.

    PubMed

    Aksornmuang, Juthatip; Chuenarrom, Chanya; Chittithaworn, Natjira

    2017-09-26

    The purpose of this study was to evaluate the flexural properties and surface topography of fiber posts surface-treated with various etching protocols. Seventy each of three types of fiber posts: RelyX Fiber Post, Tenax Fiber Trans, and D.T. Light-Post Illusion X-Ro, were randomly divided into 7 groups: no surface treatment, surface treated with hydrofluoric acid (HF) 4.5% for 60 s, HF 4.5% for 120 s, HF 9.6% for 15 s, HF 9.6% for 60 s, HF 9.6% for 120 s, and treated with H 2 O 2 24% for 10 min. The specimens were then subjected to a three-point bending test. Surface topographies of the posts were observed using a SEM. The results indicate that fiber post surface pretreatments had no adverse effects on the flexural properties. However, the fiber posts treated with high HF concentrations or long etching times seemed to have more surface irregularities.

  19. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  20. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Naveed, A.; Chen, X.

    2016-12-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  1. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  2. Characterizing effects of wind erosion on soil microtopography in a semiarid grassland using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Washington-Allen, R. A.; Okin, G. S.

    2010-12-01

    Aeolian processes play important roles in microtopography and associated soil-plant interactions in arid and semiarid landscapes. Most previous research has focused on scales larger than plant-interspaces and the dynamics of “fertile islands” associated with individual shrubs. Arid and semiarid ecosystems are notoriously heterogeneous in both microtopography and soil nutrients, and investigations of soil topography and plant-soil interactions at much finer scales (e.g., a few millimeters) are difficult using traditional point based sampling methods. Terrestrial laser scanners (TLS) are novel tools for which techniques can be developed to accurately characterize micro-scale topography with a spot diameter of 4.5 mm, and 2 mm ranging accuracy at 50 kHz. In this study, we employed a portable TLS (a Leica ScanStation 2) to digitally capture the 3-dimensional soil microtopography in a Chihuahuan desert grassland located in southern New Mexico. Soil surface on this site had been exposed to enhanced wind erosion since the spring of 2004. A control plot, located adjacent to the wind erosion plot, was also scanned to provide soil microtopography bench mark. A nearest neighbor interpolation was used on the elevation point clouds to yield bare ground, vegetation, and combined digital surface models for both plots. Additionally, measures of height and foliage diversity, vegetation and bare ground cover, and surface roughness were calculated. The results from this field study clearly demonstrate that TLS can provide insights on changes in microtopography affected by aeolian processes. Moreover, within the known distribution of soil nutrients, the 3D surface model of the soil microtopography provided unprecedented detail on the distribution of “mini” fertile islands associated with topography that were not revealed by studies at plant-interspace scale.

  3. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.

    PubMed

    Stanton, Morgan M; Ducker, Robert E; MacDonald, John C; Lambert, Christopher R; McGimpsey, W Grant

    2012-02-01

    Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Combined surface hardening and laser patterning approach for functionalising stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Romano, J. M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S. S.

    2018-05-01

    The paper reports a laser patterning method for producing surfaces with dual scale topographies on ferritic stainless steel plates that are hardened by low temperature plasma surface alloying. Nitrogen and carbon based gasses were used in the alloying process to obtain surface layers with an increased hardness from 172 HV to 1001 HV and 305 HV, respectively. Then, a nanosecond infrared laser was used to pattern the plasma treated surfaces and thus to obtain super-hydrophobicity, by creating cell- or channel-like surface structures. The combined surface hardening and laser patterning approach allowed super-hydrophobic surfaces to be produced on both nitrided and carburised stainless steel plates with effective contact angles higher than 150°. The hardened layers on nitrided samples had cracks and was delaminated after the laser patterning while on plasma carburised samples remained intact. The results showed that by applying the proposed combined approach it is possible to retain the higher hardness of the nitrided stainless steel plates and at the same time to functionalise them to obtain super-hydrophobic properties.

  5. Characterization of the Roman curse tablet

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Boyang; Fu, Lin

    2017-08-01

    The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.

  6. Spatial distribution of erosion in the Hangay Mountains of Mongolia and implications for the development of epeirogenic topography

    NASA Astrophysics Data System (ADS)

    West, A.; Fox, M.; Walker, R. T.; Carter, A.; Watts, A. B.; Gantulga, B.

    2012-12-01

    Potential feedbacks between climate-driven erosion and the development of intra-continental topography have received relatively little attention, particularly compared to the significant efforts to understand the interplay of climate, erosion, and uplift in orogenic settings. But such links may be vital for understanding the topographic evolution of epeirogenic topography and for making inferences about geodynamic processes based on associated sedimentary and geomorphic signals. In this study, we consider the role of orographically-driven climate variability in shaping continental topography by focusing on the Hangay mountain range, a uplifted dome in central Mongolia. The work presented here is based on results from a topographic analysis of the Hangay, making use of the flat-topped peaks that effectively represent preserved remnants of a pre-erosional surface. We have determined the scale and distribution of erosion by recreating this pre-erosional surface and subtracting the present-day, dissected topography. Our results show that the extent of erosion correlates with spatial variation in mean annual precipitation, but not with the extent of total surface uplift. The morphology of the range reflects the higher, climate-driven fluvial erosion rates by northern rivers that receive higher precipitation when compared to the southern rivers, which have steeper relief as a result of the asymmetric main drainage divide. Overall asymmetry in inferred isostatic response to erosional unloading is not mirrored in asymmetry of total surface uplift, hinting at interaction between surface erosion and the forces sustaining topography. This has important implications for understanding the geodynamics of epeirogenic uplift. In addition to these main outcomes from our topographic analysis, we will also present preliminary findings from detrital thermochronology and cosmogenic analyses that help to pinpoint the location of erosion and provide a basis for quantifying rates.

  7. Insect Wing Membrane Topography Is Determined by the Dorsal Wing Epithelium

    PubMed Central

    Belalcazar, Andrea D.; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character. PMID:23316434

  8. Method and Apparatus for Creating a Topography at a Surface

    DOEpatents

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  9. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  10. Dynamic Topography Revisited

    NASA Astrophysics Data System (ADS)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The relationship between surface topography, gravity anomalies, and temperature structure of convection, Journal of Geophysical Research: Solid Earth (1978-2012), 88(B2), 1129-1144, doi:10.1029/JB088iB02p01129. [3] Robinson, E. M., B. Parsons, and S. F. Daly (1987), The effect of a shallow low viscosity zone on the apparent compensation of mid-plate swells, Earth and Planetary Science Letters, 82(3-4), 335-348, doi:10.1016/0012-821X(87)90207-X.

  11. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  12. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    PubMed

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  13. The global topography of Mars and implications for surface evolution

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin, J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.; hide

    1999-01-01

    Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.

  14. The effect of plasma surface treatment on the bioactivity of titanium implant materials (in vitro)

    PubMed Central

    Abdelrahim, Ramy A.; Badr, Nadia A.; Baroudi, Kusai

    2016-01-01

    Background: The surface of an implantable biomaterial plays a very important role in determining the biocompatibility, osteoinduction, and osteointegration of implants because it is in intimate contact with the host bone and soft tissues. Objective: This study was aimed to assess the effect of plasma surface treatment on the bioactivity of titanium alloy (Ti–6Al–4V). Materials and Methods: Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (with five samples in each group). Five samples were kept untreated and served as control (group A). Another five plasma samples were sprayed for nitrogen ion implantation on their surfaces (group B) and the last five samples were pre-etched with acid before plasma treatment (group C). All the investigated samples were immersed for 7 days in Hank's balanced salt solution (HBSS) which was used as a simulating body fluid (SBF) at pH 7.4 and 37°C. HBSS was renewed every 3 days. The different surfaces were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXA), and Fourier Transformation Infrared Spectroscopy (FTIR). Results: Nitriding of Ti-alloy samples via plasma nitrogen ion implantation increased the bioactivity of titanium. Moreover, the surface topography affected the chemical structure of the formed apatite. Increasing the surface roughness enhanced the bioactivity of the implant material. Conclusions: Nitridation can be exploited as an effective way to promote the formation of bone-like material on the implant surface. PMID:27011927

  15. Atomic-scale visualization of surface-assisted orbital order

    PubMed Central

    Kim, Howon; Yoshida, Yasuo; Lee, Chi-Cheng; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Haga, Yoshinori; Fisk, Zachary; Hasegawa, Yukio

    2017-01-01

    Orbital-related physics attracts growing interest in condensed matter research, but direct real-space access of the orbital degree of freedom is challenging. We report a first, real-space, imaging of a surface-assisted orbital ordered structure on a cobalt-terminated surface of the well-studied heavy fermion compound CeCoIn5. Within small tip-sample distances, the cobalt atoms on a cleaved (001) surface take on dumbbell shapes alternatingly aligned in the [100] and [010] directions in scanning tunneling microscopy topographies. First-principles calculations reveal that this structure is a consequence of the staggered dxz-dyz orbital order triggered by enhanced on-site Coulomb interaction at the surface. This so far overlooked surface-assisted orbital ordering may prevail in transition metal oxides, heavy fermion superconductors, and other materials. PMID:28948229

  16. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  17. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    PubMed

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p < 0.05). However, 3D surface topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  18. Effects of chelating agent and acids on Biodentine.

    PubMed

    Ballal, V; Marques, J N; Campos, C N; Lima, C O; Simão, R A; Prado, M

    2018-06-01

    To evaluate the effect of distilled water, ethylenediaminetetraacetic acid (EDTA), phosphoric acid and maleic acid on Biodentine regarding surface topography, microhardness and push-out bond strength (POBS). Fifty-two cylindrical shaped Biodentine specimens were divided into groups: control (distilled water); EDTA (17% EDTA); PA (37% phosphoric acid); and MA (7% maleic acid). Surfaces were evaluated by topographic analysis and Vickers microhardness test. Topographic changes were evaluated qualitatively and microhardness was statistically analyzed by Kruskal-Wallis test. Forty mandibular molars were used to simulate clinical conditions. The crowns were removed and a perforation was created at the furcal floor. The Biodentine was packed into the root perforations and the roots were divided into four groups (DW, EDTA, PA, MA). Samples were stored and subjected to interfacial analysis. POBS data were analyzed by Kruskal-Wallis and Dunn tests. Ethylenediaminetetraacetic acid, MA and PA changed the morphology of the Biodentine surface. PA showed microhardness similar to distilled water (P > 0.05), while MA and EDTA demonstrated reduced values when compared with PA (P < 0.05). PA improved the POBS of Biodentine in comparison with the control. Changes in the topography, microhardness and POBS of Biodentine are associated with irrigant agent used. © 2018 Australian Dental Association.

  19. In vitro study on bone formation and surface topography from the standpoint of biomechanics.

    PubMed

    Kawahara, H; Soeda, Y; Niwa, K; Takahashi, M; Kawahara, D; Araki, N

    2004-12-01

    Effect of surface topography upon cell-adhesion, -orientation and -differentiation was investigated by in vitro study on cellular responses to titanium substratum with different surface roughness. Cell-shape, -function and -differentiation depending upon the surface topography were clarified by use of bone formative group cells (BFGCs) derived from bone marrow of beagle's femur. BFGCs consisted of hematopoietic stem cells (HSC) and osteogenetic stem cells (OSC). Cell differentiation of BFGCs was expressed and promoted by structural changes of cytoskeleton, and cell-organella, which was caused by mechanical stress with cytoplasmic stretching of cell adhesions to the substratum. Phagocytic monocytes of HSC differentiated to osteomediator cells (OMC) by cytoplasmic stretching with cell adhesion to the substratum. The OMC mediated and promoted cell differentiation from OSC to osteoblast through osteoblastic phenotype cell (OBC) by cell-aggregation of nodules with "pile up" phenomenon of OBC onto OMC. The osteogenesis might be performed by coupling work of both cells, OMC originated from monocyte of HSC and OBC originated from OSC, which were explained by SEM, TEM and fluorescent probe investigation on BFGCs on the test plate of cp titanium plates with different topographies. This osteogenetic process was proved by investigating cell proliferation, DNA contents, cell-adhesion, alkaline phosphatase activity and osteocalcine productivity for cells on the titanium plates with different topographies. The study showed increased osteogenic effects for cells cultured on Ti with increased surface roughness. Possible mechanisms were discussed from a biomechanical perspective.

  20. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces.

    PubMed

    Chen, C Q; Scott, W; Barker, T M

    1999-01-01

    Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.

  1. Prediction of lake depth across a 17-state region in the United States

    USGS Publications Warehouse

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  2. Surface finish measurement studies

    NASA Technical Reports Server (NTRS)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  3. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry and topography to successfully direct cell attachment and function.

  4. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  5. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  6. The impact of runoff and surface hydrology on Titan's climate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs.

  7. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    PubMed

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  8. Effect of polymer coating on the osseointegration of CP-Ti dental implant

    NASA Astrophysics Data System (ADS)

    Al-Hassani, Emad; Al-Hassani, Fatima; Najim, Manar

    2018-05-01

    Modifications achieved coatings of titanium samples were investigated in order to improve their surface characteristics so as to facilitate bio-integration. Chitosan coating was use for commercial pure Ti alloys manufactured by two different methods in which commercial pure titanium rod converted in form of implant screw by using wire cut machine and lathe, second method included the used of powder technology for producing the implant screws. The coating process of chitosan polymer was carried out using advance technology (electrospnning process) to create fibrous structure from Nano to micro scale of the chitosan on the implant surface which result in a bioactive surface. The characterization includes; microstructure observation, surface chemical composition analysis (EDS), surface roughness (AFM), and the histological analysis. from the SEM No morphological differences were observed among the implants surfaces except for some inconsiderable morphological differences that results from the manufacturing process, by using EDX analysis the surfaces chemical compositions were completely changed and there was large decrease in the percentage of titanium element at the surface which indicates that the surface is covered with chitosan and had a new surface composition and topography. The sample was produced by powder technology process have higher roughness (845.36 nm) than sample produced by machining without any surface treatment (531.7nm),finally The histological view of implant samples after 4weeks of implantation, showed active bone formation in all implant surface which give clear indication of tissue acceptance.

  9. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications.

    PubMed

    Verma, Mahesh; Kumari, Pooja; Gupta, Rekha; Gill, Shubhra; Gupta, Ankur

    2015-01-01

    Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique. Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3-0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine. The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer. Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength. Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.

  11. Near-Surface Profiles of Water Stable Isotope Components and Indicated Transitional History of Ice-Wedge Polygons Near Barrow

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.

    2017-12-01

    Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.

  12. Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis.

    PubMed

    Wickens, David; Lynch, Stephen; West, Glen; Kelly, Peter; Verran, Joanna; Whitehead, Kathryn A

    2014-09-01

    The effects of surface topography on bacterial distribution across a surface are of extreme importance when designing novel, hygienic or antimicrobial surface coatings. The majority of methods that are deployed to describe the pattern of cell dispersion, density and clustering across surfaces are currently qualitative. This paper presents a novel application of multifractal analysis to quantitatively measure these factors using medically relevant microorganisms (Staphylococcus aureus or Staphylococcus epidermidis). Surfaces (medical grade 316 stainless steel) and coatings (Ti-ZrN, Ti-ZrN/6.0%Ag, Ti-ZrN/15.6%Ag, TiZrN/24.7%Ag) were used in microbiological retention assays. Results demonstrated that S. aureus displayed a more heterogeneous cell dispersion (∆αAS<1) whilst the dispersion of S. epidermidis was more symmetric and homogeneous (∆αAS≥1). Further, although the surface topography and chemistry had an effect on cell dispersion, density and clustering, the type of bonding that occurred at the surface interface was also important. Both types of cells were influenced by both surface topographical and chemical effects; however, S. aureus was influenced marginally more by surface chemistry whilst S. epidermidis cells was influenced marginally more by surface topography. Thus, this effect was bacterially species specific. The results demonstrate that multifractal analysis is a method that can be used to quantitatively analyse the cell dispersion, density and clustering of retained microorganisms on surfaces. Using quantitative descriptors has the potential to aid the understanding the effect of surface properties on the production of hygienic and antimicrobial coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Three-channel false colour AFM images for improved interpretation of complex surfaces: a study of filamentous cyanobacteria.

    PubMed

    Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H

    2010-05-01

    Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.

  14. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering.

    PubMed

    Aufan, M Rifqi; Sumi, Yang; Kim, Semin; Lee, Jae Young

    2015-10-28

    Electrically conducting biomaterials have gained great attention in various biomedical studies especially to influence cell and tissue responses. In addition, wrinkling can present a unique topography that can modulate cell-material interactions. In this study, we developed a simple method to create wrinkle topographies of conductive polypyrrole (wPPy) on soft polydimethylsiloxane surfaces via a swelling-deswelling process during and after PPy polymerization and by varying the thickness of the PPy top layers. As a result, various features of wPPy in the range of the nano- and microscales were successfully obtained. In vitro cell culture studies with NIH 3T3 fibroblasts and PC12 neuronal cells indicated that the conductive wrinkle topographies promote cell adhesion and neurite outgrowth of PC12 cells. Our studies help to elucidate the design of the surface coating and patterning of conducting polymers, which will enable us to simultaneously provide topographical and electrical signals to improve cell-surface interactions for potential tissue-engineering applications.

  15. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H.J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  16. Photometric stereo endoscopy

    PubMed Central

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.

    2013-01-01

    Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015

  17. Noise evaluation of a point autofocus surface topography measuring instrument

    NASA Astrophysics Data System (ADS)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  18. A method for surface topography measurement using a new focus function based on dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping

    2018-01-01

    Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.

  19. Experiments on topographies lacking tidal conversion

    NASA Astrophysics Data System (ADS)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  20. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  1. Open questions in surface topography measurement: a roadmap

    NASA Astrophysics Data System (ADS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W.; O'Connor, Daniel

    2015-03-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first principles for statistically stationary, random surfaces. For rougher surfaces, correlations can be found experimentally for specific manufacturing processes. Improvements in computational methods encourage us to revisit light scattering as a powerful and versatile tool to investigate surface and thin film topographies, potentially providing information on both topography and defects over large areas at high speed. Future scattering techniques will be applied for complex film systems and for sub-surface damage measurement, but more research is required to quantify and standardise such measurements. A fundamental limitation of all topography measurement systems is their finite spatial bandwidth, which limits the slopes that they can detect. The third section ‘Optical measurements of surfaces containing high slope angles’ discusses this limitation and potential methods to overcome it. In some cases, a rough surface can allow measurement of slopes outside the classical optics limit, but more research is needed to fully understand this process. The last section ‘What are the challenges for high dynamic range surface measurement?’ presents the challenge facing metrologists by the use of surfaces that need measurement systems with very high spatial and temporal bandwidths, for example, those found in roll-to-roll manufacturing. High resolution, large areas and fast measurement times are needed, and these needs are unlikely to be fulfilled by developing a single all-purpose instrument. A toolbox of techniques needs to be developed which can be applied for any specific manufacturing scenario. The functional significance of surface topography has been known for centuries. Mirrors are smooth. Sliding behaviour depends on roughness. We have been measuring surfaces for centuries, but we still face many challenges. New manufacturing paradigms suggest that we need to make rapid measurements online that relate to the functional performance of the surface. This first ‘open questions’ collection addresses a subset of the challenges facing the surface metrology community. There are many more challenges which we would like to address in future ‘open questions’ articles. We welcome your feedback and your suggestions.

  2. Geoid, topography, and convection-driven crustal deformation on Venus

    NASA Technical Reports Server (NTRS)

    Simons, Mark; Hager, Bradford H.; Solomon, Sean C.

    1992-01-01

    High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.

  3. SWOT: A high-resolution wide-swath altimetry mission for oceanography and hydrology

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Fu, Lee-Lueng; Rodriguez, Ernesto

    2013-04-01

    A new satellite mission called Surface Water and Ocean Topography (SWOT) has been developed jointly by the U.S. National Aeronautics and Space Administration and France's Centre National d'Etudes Spatiales. Based on the success of nadir-looking altimetry missions in the past, SWOT will use the technique of radar interferometry to make wide-swath altimetric measurements of the elevation of surface water on land and the ocean's surface topography. The new measurements will provide information on the changing ocean currents that are key to the prediction of climate change, as well as the shifting fresh water resources resulting from climate change. Conventional satellite altimetry has revolutionized oceanography by providing nearly two decades' worth of global measurements of ocean surface topography. However, the noise level of radar altimeters limits the along-track spatial resolution to 50-100 km over the oceans. The large spacing between the satellite ground tracks limits the resolution of 2D gridded data to 200 km. Yet most of the kinetic energy of ocean circulation takes place at the scales unresolved by conventional altimetry. About 50% of the vertical transfer of heat and chemical properties of the ocean (e.g., dissolved CO2 and nutrients) is also accomplished by processes at these scales. SWOT observations will provide the critical new information at these scales for developing and testing ocean models that are designed for predicting future climate change. SWOT measurements will be in Ka band (~35 GHZ), chosen for the radar to achieve high precision with a much shorter inteferometry baseline of 10 m. Small look angles (~ 4 degrees) are required to minimize elevation errors, which limits the swath width to 120 km. An orbit with inclination of 78 degrees and 22 day repeat period was chosen for gapless coverage and good tidal aliasing properties. With this configuration, SWOT is expected to achieve 1 cm precision at 1 km x 1 km pixels over the ocean and 10 cm precision over 50 m x 50 m pixels over land waters. This presentation will be in two parts. Firstly we will give a brief overview of the SWOT mission and its sampling characteristics. We will then introduce a number of recent scientific results on our present understanding of ocean topography and surface geostropic velocities at mesoscales and sub-mesoscales, results which have been inspired by the upcoming SWOT measurements.

  4. Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups

    NASA Technical Reports Server (NTRS)

    Watson, K. A.; Ghose, S.; Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.

    2007-01-01

    As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit (LEO) for approximately 4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton and Mylar of comparable or greater thickness. The samples consisted of a colorless polyimide film and a poly(arylene ether benzimidazole) film and thread. The samples were characterized for changes in physical properties, thermal/optical properties (i.e. solar absorptivity and thermal emissivity), surface chemistry (X-ray photoelectron spectroscopy), and surface topography (atomic force microscopy). The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.

  5. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  6. Advances for the Topographic Characterisation of SMC Materials

    PubMed Central

    Calvimontes, Alfredo; Grundke, Karina; Müller, Anett; Stamm, Manfred

    2009-01-01

    For a comprehensive study of Sheet Moulding Compound (SMC) surfaces, topographical data obtained by a contact-free optical method (chromatic aberration confocal imaging) were systematically acquired to characterise these surfaces with regard to their statistical, functional and volumetrical properties. Optimal sampling conditions (cut-off length and resolution) were obtained by a topographical-statistical procedure proposed in the present work. By using different length scales specific morphologies due to the influence of moulding conditions, metallic mould topography, glass fibre content and glass fibre orientation can be characterized. The aim of this study is to suggest a systematic topographical characterization procedure for composite materials in order to study and recognize the influence of production conditions on their surface quality.

  7. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  8. Mapping of the Moon by Clementine

    USGS Publications Warehouse

    McEwen, A.S.; Robinson, M.S.

    1997-01-01

    The "faster, cheaper, better" Clementine spacecraft mission mapped the Moon from February 19 to May 3, 1994. Global coverage was acquired in 11 spectral bandpasses from 415 to 2792 nm and at resolutions of 80-330 m/pixel; a thermal-infrared camera sampled ???20% of the surface; a high-resolution camera sampled selected areas (especially the polar regions); and a lidar altimeter mapped the large-scale topography up to latitudes of ??75??. The spacecraft was in a polar, elliptical orbit, 400-450 km periselene altitude. Periselene latitude was -28.5?? for the first month of mapping, then moved to +28.5??. NASA is supporting the archiving, systematic processing, and analysis of the ???1.8 million lunar images and other datasets. A new global positional network has been constructed from 43,000 images and ???0.5 million match points; new digital maps will facilitate future lunar exploration. In-flight calibrations now enable photometry to a high level of precision for the uv-visible CCD camera. Early science results include: (1) global models of topography, gravity, and crustal thicknesses; (2) new information on the topography and structure of multiring impact basins; (3) evidence suggestive of water ice in large permanent shadows near the south pole; (4) global mapping of iron abundances; and (5) new constraints on the Phanerozoic cratering rate of the Earth. Many additional results are expected following completion of calibration and systematic processing efforts. ?? 1997 COSPAR. Published by Elsevier Science Ltd.

  9. Ground-based LiDAR Measurements of Actively Inflating Pahoehoe Flows, Kilauea Volcano, Hawaii: Implications for Emplacement of Basaltic Units on Mars

    NASA Astrophysics Data System (ADS)

    Byrnes, J. M.; Finnegan, D. C.; Nicoll, K.; Anderson, S. W.

    2007-05-01

    Remote sensing datasets enable planetary volcanologists to extract information regarding eruption processes. Long-lived effusive eruptions at sites such as Kilauea Volcano (HI) provide opportunities to collect rich observational data sets, including detailed measurements of topography and extrusion rates, that allow comparisons between lava flow surface morphologies and emplacement conditions for use in interpreting similar morphological features associated with planetary lava flows. On Mars, the emplacement of basaltic lava flows is a volumetrically and spatially important process, creating both large-scale and small-scale surface morphologies. On Earth, low effusion rate eruptions on relatively horizontal slopes tend to create inflated lava flows that display hummocky topography. To better understand the processes involved in creating observed surface characteristics, we repeatedly measured the surface topography of an actively flowing and inflating basaltic unit within the Pu'u O'o flow field over a 5-day period. We used a ground-based laser-scanner (LiDAR) system that provided vertical and horizontal accuracies of 4 mm. Comparing DEMs from repeated laser scans yielded the magnitudes and styles of constructional processes, allowing us to quantify the relationship between pre- and post-emplacement surface topography. Our study site (roughly 200 m x 200 m) experienced about 5 m of vertical inflation over a 3 day period and created a new hummocky surface containing several tumuli. The temporal and spatial patterns of inflation were complex and showed no obvious relationship with underlying topography. High-precision morphometric measurements acquired using ground-based LiDAR affords us the opportunity to capture the essential boundary conditions necessary for evaluating and comparing high-resolution planetary data sets, such as those acquired by the MOC, HRSC, and HiRISE instruments.

  10. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.

    PubMed

    Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara

    2012-10-01

    Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Impact of the rheological layering of the lithosphere on the topography generated by sublithospheric density anomalies: Insights from analog modeling

    NASA Astrophysics Data System (ADS)

    Sembroni, A.; Globig, J.; Rozel, A.; Faccenna, C.; Funiciello, F.; Fernandez, M.

    2013-12-01

    Density anomalies located beneath the lithosphere are thought to generate dynamic topography at the surface of the Earth. Tomographic models are often used to infer the later variations of the density field in the mantle. Surface topography can then be computed using analytical solutions or numerical simulations of mantle convection. It has been shown that the viscosity profile of the upper mantle has a strong influence on the magnitude and spectral signature of surface topography and uplift rate. Here we present results from analogue modeling of the interaction between a rising ball-shaped density anomaly and the lithosphere in an isoviscous, isothermal Newtonian mantle system. Preliminary data show that surface topography is strongly influenced not only by mantle viscosity but also by density and viscosity profiles of the lithosphere. Our apparatus consists of a plexiglass square box (40x40x50 cm3) filled with glucose syrup. From the bottom a silicon ball was free to rise up until impinging a silicon plate floating on top of the syrup, mimicking the lithosphere. In order to investigate the role of lithospheric thickness and layered continental crust on stress partitioning, maximum dynamic topography, uplift rate and signal wavelength, two different configurations were tested: homogeneous lithosphere and stratified lithosphere including a low-viscosity lower crust. The topographic evolution of the surface was tracked using a laser scanning the top of the apparatus. The rise of the density anomaly was recorded by a side camera. We observe that a thick and then more resistant lithosphere makes up to 2 times lower and laterally wider topographic signatures. Layered lithospheres including a decoupling lower crust decrease the equilibrium topography and its lateral extend by ~30% to 40%. Most importantly, the uplift rate is strongly affected by the choice of lithosphere model. Both lithosphere width and the presence of a decoupling lower crust may modify the uplift rate by a factor 3. Thus, depending on the lithosphere rheology, we show that uplift rate may vary by one order of magnitude, for the same density anomaly and mantle viscosity. This result shows that surface uplift rate can be used to infer the viscosity of the upper mantle in specific Earth regions only if the rheology of the lithosphere is well constrained. With respect to previous approaches, whether numerical or analog modeling of dynamic topography, our experiments represent a new attempt to investigate the propagation of normal stresses generated by mantle flow through a rheologically stratified lithosphere and its resulting topographic signal.

  12. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    PubMed

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  13. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    NASA Astrophysics Data System (ADS)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  14. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  15. Impact of lithospheric rheology on surface topography

    NASA Astrophysics Data System (ADS)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  16. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  17. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.

    2002-06-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.

  18. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  19. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.

  20. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  1. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference was observed between the patterned topography tested. Another potential strategy for biofilm control through patterned topography is based on the design of robust non-wetting surfaces with undercut feature geometries, characterized by 1) breakthrough pressure and 2) triple phase contact line model. It was found that height and presence of undercut had statistically significant effects, directly proportional to breakthrough pressures, whereas extent of undercut did not. A predictive triple phase contact line model was also developed. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  2. Some effects on SPM based surface measurement

    NASA Astrophysics Data System (ADS)

    Wenhao, Huang; Yuhang, Chen

    2005-01-01

    The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.

  3. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    PubMed

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure

    NASA Astrophysics Data System (ADS)

    Duvall, M. S.; Hench, J. L.

    2016-02-01

    The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.

  5. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim

    2001-11-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).

  6. KSC-08pd1656

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  7. KSC-08pd1658

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  8. KSC-08pd1655

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  9. KSC-08pd1657

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  10. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  11. Design and construction of a novel tribometer with online topography and wear measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korres, Spyridon; Dienwiebel, Martin

    2010-06-15

    We present a novel experimental platform that links topographical and material changes with the friction and wear behavior of oil-lubricated metal surfaces. This concept combines state-of-the-art methods for the analysis of the surface topography on the micro- and nanoscale with the online measurement of wear. At the same time, it allows for frictional and lateral force detection. Information on the topography of one of the two surfaces is gathered in situ with a three-dimensional (3D) holography microscope at a maximum frequency of 15 frames/s and higher resolution images are provided at defined time intervals by an atomic force microscope. Themore » wear measurement is conducted online by means of radio nuclide technique. The quantitative measurement of the lateral and frictional forces is conducted with a custom-built 3D force sensor. The surfaces can be lubricated with an optically transparent oil or water. The stability and precision of the setup have been tested in a model experiment. The results show that the exact same position can be relocated and examined after each load cycle. Wear and topography measurements were performed with a radioactive labeled iron pin sliding against an iron plate.« less

  12. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.

    PubMed

    Att, Wael; Kubo, Katsutoshi; Yamada, Masahiro; Maeda, Hatsuhiko; Ogawa, Takahiro

    2009-01-01

    This study evaluated the biomechanical properties of periosteum-derived mineralized culture on different surface topographies of titanium. Titanium surfaces modified by machining or by acid etching were analyzed using scanning electron microscopy (SEM). Rat mandibular periosteum-derived cells were cultured on either of the titanium surfaces. Cell proliferation was evaluated by cell counts, and gene expression was analyzed using a reverse-transcriptase polymerase chain reaction. Alkaline phosphatase (ALP) stain assay was employed to evaluate osteoblastic activity. Matrix mineralization was examined via von Kossa stain assay, total calcium deposition, and SEM. The hardness and elastic modulus of mineralized cultures were measured using a nano-indenter. The machined surface demonstrated a flat topographic configuration, while the acid-etched surface revealed a uniform micron-scale roughness. Both cell density and ALP activity were significantly higher on the machined surface than on the acid-etched surface. The expression of bone-related genes was up-regulated or enhanced on the acid-etched surface compared to the machined surface. Von Kossa stain showed significantly greater positive areas for the machined surface compared to the acid-etched surface, while total calcium deposition was statistically similar. Mineralized culture on the acid-etched surface was characterized by denser calcium deposition, more mature collagen deposition on the superficial layer, and larger and denser globular matrices inside the matrix than the culture on the machined surface. The mineralized matrix on the acid-etched surface was two times harder than on the machined surface, whereas the elastic modulus was comparable between the two surfaces. The design of this study can be used as a model to evaluate the effect of implant surface topography on the biomechanical properties of periosteum-derived mineralized culture. The results suggest that mandibular periosteal cells respond to different titanium surface topographies differently enough to produce mineralized matrices with different biomechanical qualities.

  13. EAARL Topography - Natchez Trace Parkway 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Natchez Trace Parkway in Mississippi, acquired on September 14, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  14. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  15. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first-surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Vicksburg National Military Park in Mississippi, acquired on September 12, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  16. The effect of Gonioscopy on keratometry and corneal surface topography.

    PubMed

    George, Mathew K; Kuriakose, Thomas; DeBroff, Brian M; Emerson, John W

    2006-06-17

    Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann) and the 4-mirror (Sussman) Gonioscopes. A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times - within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10-15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings. Reversible steepening of the central corneal surface is produced by the act of gonioscopy as measured by Sim K, whereas no significant differences were present with Auto-K measurements. The type of Gonioscope used does not appear to influence these results. If topographically derived Sim K is used to calculate the power of the intraocular lens implant, we recommend waiting a minimum of 20 minutes before measuring the corneal curvature after gonioscopy with either Goldmann or Sussman contact lenses.

  17. The effect of Gonioscopy on keratometry and corneal surface topography

    PubMed Central

    George, Mathew K; Kuriakose, Thomas; DeBroff, Brian M; Emerson, John W

    2006-01-01

    Background Biometric procedures such as keratometry performed shortly after contact procedures like gonioscopy and applanation tonometry could affect the validity of the measurement. This study was conducted to understand the short-term effect of gonioscopy on corneal curvature measurements and surface topography based Simulated Keratometry and whether this would alter the power of an intraocular lens implant calculated using post-gonioscopy measurements. We further compared the effect of the 2-mirror (Goldmann) and the 4-mirror (Sussman) Gonioscopes. Methods A prospective clinic-based self-controlled comparative study. 198 eyes of 99 patients, above 50 years of age, were studied. Exclusion criteria included documented dry eye, history of ocular surgery or trauma, diabetes mellitus and connective tissue disorders. Auto-Keratometry and corneal topography measurements were obtained at baseline and at three follow-up times – within the first 5 minutes, between the 10th-15th minute and between the 20th-25th minute after intervention. One eye was randomized for intervention with the 2-mirror gonioscope and the other underwent the 4-mirror after baseline measurements. t-tests were used to examine differences between interventions and between the measurement methods. The sample size was calculated using an estimate of clinically significant lens implant power changes based on the SRK-II formula. Results Clinically and statistically significant steepening was observed in the first 5 minutes and in the 10–15 minute interval using topography-based Sim K. These changes were not present with the Auto-Keratometer measurements. Although changes from baseline were noted between 20 and 25 minutes topographically, these were not clinically or statistically significant. There was no significant difference between the two types of gonioscopes. There was greater variability in the changes from baseline using the topography-based Sim K readings. Conclusion Reversible steepening of the central corneal surface is produced by the act of gonioscopy as measured by Sim K, whereas no significant differences were present with Auto-K measurements. The type of Gonioscope used does not appear to influence these results. If topographically derived Sim K is used to calculate the power of the intraocular lens implant, we recommend waiting a minimum of 20 minutes before measuring the corneal curvature after gonioscopy with either Goldmann or Sussman contact lenses. PMID:16780595

  18. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  19. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    PubMed

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.

  20. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.

  1. Simultaneous topography imaging and broadband nanomechanical mapping on atomic force microscope

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zou, Qingze

    2017-12-01

    In this paper, an approach is proposed to achieve simultaneous imaging and broadband nanomechanical mapping of soft materials in air by using an atomic force microscope. Simultaneous imaging and nanomechanical mapping are needed, for example, to correlate the morphological and mechanical evolutions of the sample during dynamic phenomena such as the cell endocytosis process. Current techniques for nanomechanical mapping, however, are only capable of capturing static elasticity of the material, or the material viscoelasticity in a narrow frequency band around the resonant frequency(ies) of the cantilever used, not competent for broadband nanomechanical mapping, nor acquiring topography image of the sample simultaneously. These limitations are addressed in this work by enabling the augmentation of an excitation force stimuli of rich frequency spectrum for nanomechanical mapping in the imaging process. Kalman-filtering technique is exploited to decouple and split the mixed signals for imaging and mapping, respectively. Then the sample indentation generated is quantified online via a system-inversion method, and the effects of the indentation generated and the topography tracking error on the topography quantification are taken into account. Moreover, a data-driven feedforward-feedback control is utilized to track the sample topography. The proposed approach is illustrated through experimental implementation on a polydimethylsiloxane sample with a pre-fabricated pattern.

  2. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.

    PubMed

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  3. Simultaneous AFM topography and recognition imaging at the plasma membrane of mammalian cells.

    PubMed

    Chtcheglova, Lilia A; Hinterdorfer, Peter

    2018-01-01

    Elucidation the nano-organization of membrane proteins at/within the plasma membrane is probably the most demanding and still challenging task in cell biology since requires experimental approaches with nanoscale resolution. During last decade, atomic force microscopy (AFM)-based simultaneous topography and recognition imaging (TREC) has become a powerful tool to quickly obtain local receptor nano-maps on complex heterogeneous biosurfaces such as cells and membranes. Here we emphasize the TREC technique and explain how to unravel the nano-landscape of mammalian cells. We describe the procedures for all steps of the experiment including tip functionalization with ligand molecules, sample preparation, and localization of key molecules on the cell surface. We also discuss the current limitations and future perspectives of this technique. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  5. Repercussion of noni mouthwash on surface characterization of Nickel-Titanium archwire.

    PubMed

    Dilipkumar, Dhivya; Dhinahar, S; Deenadayalan, P; Tandon, Akshay; Suresh, Poonkuzhali

    2017-01-01

    Maintaining oral hygiene is very important during orthodontic therapy mouthwashes are prescribed as an adjunct to improve patient's oral hygiene. Commercially available mouthwashes e.g. Chlorhexidine, Listerine, fluoride containing mouthwashes have shown to alter the surface characteristics of orthodontic wires. Hence the purpose of the study was to evaluate the effect of Noni mouthwash on surface quality and compositional changes of Nickel Titanium orthodontic wires. In this in vitro study pre-formed 0.014 inch NiTi arch wire was used. The study comprised of two samples, one control and one test sample which were 25mm in length. Control sample was stored at room temperature without any manipulation while test sample was immersed in Noni mouthwash solution for 1.5 hours, after which the test specimen was removed from the mouthwash solution and rinsed with distilled water. Both control and test samples were sent for scanning electron microscopy analysis, to qualitatively characterize the topography of the wire surface. Electron dispersion spectrum analysis was done to evaluate the various components of both the wires. No significant difference in the average surface roughness for both wire samples was observed. There was no significant difference seen in the composition of wire after immersion in Noni mouthwash. Noni mouthwash did not have significant influence on the surface roughness or altered the composition of the Ni-Ti wire. Hence Noni mouthwash may be prescribed as a natural, non-destructive prophylactic agent for orthodontic patients.

  6. Driving Organic Molecule Crystalliztion with Surface Reconstructions

    NASA Astrophysics Data System (ADS)

    Bickel, Jessica; Trovato, Gianfranco

    This work examines how surface reconstructions can drive crystallization of organic molecules via self-assembly. Organic electronic molecules have low conductivities compared to inorganic materials, but crystallizing these polymers increases their conductivity. This project uses surface reconstructions with periodically repeating topographies to drive the crystallization process. The samples are grown by placing a drop of a dilute PEDOT solution on the clean Si(001)-(2x1) or Si(111)-(7x7) surface reconstruction and heating the surface up to both evaporate the solvent and promote diffusion of the polymer to the thermodynamically defined lowest energy position. The resulting samples are characterized by scanning tunneling microscopy (STM) with respect to their crystallinity and electronic properties. Of particular interest is whether there is a preferential location for the PEDOT molecule to adsorb and whether there are any conformational changes upon adsorption that modify the HOMO-LUMO gap. This work is being done in a new pan-style RHK-STM enclosed in a glovebox at Cleveland State University. The glovebox has O2 and H2O levels of less than 1ppm. This allows for sample preparation and imaging in a controlled environment that is free from contamination.

  7. Snap evaporation of droplets on smooth topographies.

    PubMed

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  8. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  9. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    PubMed

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    ur Rahman, Zia; Deen, K. M.; Cano, Lawrence; Haider, Waseem

    2017-07-01

    Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra = 6.07 nm) and smaller surface free energy (44.21 mJ/m2). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 μA/cm2) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (Rct) and passive film resistance (Rf) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties.

  11. Impact of lithosphere rheology on the dynamic topography

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni; Gerya, Taras; Koptev, Alexander

    2014-05-01

    Dynamic topography is a key observable signature of the Earth's and planetary (e.g. Venus) mantle dynamics. In general view, it reflects complex mantle flow patterns, and hence is supposed to correlate at different extent with seismic tomography, SKS fast orientations, geodetic velocity fields and geoid anomalies. However, identification of dynamic topography had no systematic success, specifically in the Earth's continents. Here we argue that lithosphere rheology, in particular, rheological stratification of continents, results in modulation of dynamic topography, converting commonly expected long-wavelength/small amplitude undulations into short-wavelength surface undulations with wide amplitude spectrum, superimposed onto "tectonic" topography. These ideas are explored in 3D using unprecedentedly high resolution numerical experiments (grid step size 2-3 km for 1500x1500x600 km computational area) incorporating realistic rheologically stratified lithosphere. Such high resolution is actually needed to resolve small-scale crustal faulting and inter-layer coupling/uncoupling that shape surface topography. The results reveal strikingly discordant, counterintuitive features of 3D dynamic topography, going far beyond the inferences from previous models. In particular, even weak anisotropic tectonic stress field results both in large-scale small-amplitude dynamic topography and in strongly anisotropic short-wavelength (at least in one direction) dynamic topography with wide amplitude range (from 100 to 2000-3000 m), including basins and ranges and large-scale linear normal and strike-slip faults. Even very slightly pre-stressed strong lithosphere yields and localizes deformation much easier , than un-prestressed one, in response to plume impact and mantle flow. The results shed new light on the importance of lithosphere rheology and active role of lithosphere in mantle-lithosphere interactions as well as on the role of mantle flow and far-field stresses in tectonic-scale deformation. We show, for example, that crustal fault patterns initiated by plume impact are rapidly re-organized in sub-linear rifts and spreading centers, which orientation is largely dictated (e.g., perpendicular to) by the direction of the tectonic far-field stress field, as well as the plume-head material soon starts to flow along the sub-linear rifted shear zones in crustal and mantle lithosphere further amplifying their development. The final surface deformation and mantle flow patterns rapidly loose the initial axisymmetric character and take elongated sub-linear shapes whereas brittle deformation at surface is amplified and stabilized by coherent flow of mantle/plume-head material from below. These "tectonically" looking dynamic topography patterns are quite different from those expected from conventional models as well as from those directly observed, for example, on Venus where plume-lithosphere interactions produce only axisymmetric coronae domal-shaped features with radiating extensional rifts, suggesting that the Venusian lithosphere is rheologically too weak , and its crust is too thin, to produce any significant impact on the dynamic topography.

  12. Eocene to mid-Pliocene landscape evolution in Scandinavia inferred from offshore sediment volumes and pre-glacial topography using inverse modelling

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.

    2018-02-01

    The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1.1 km) at 54 Ma and minor continued rock uplift (< 0.04 mm/yr) until 4 Ma, and III) a two-phased tectonic rock uplift of an initially low topography ( 0.1 km). However, out of these, only scenario I (no tectonic rock uplift) matches large-scale characteristics of our reconstructed pre-glacial (mid-Pliocene) topography well. Our preferred model for Eocene to mid-Pliocene landscape evolution in Scandinavia is therefore one where high topography ( 2 km) has existed throughout the time interval from 54 to 4 Ma. We do not find several phases of peneplain surface uplift necessary to explain offshore sediment volumes and large-scale topographic patterns. On the contrary, extensive peneplain dissection seems inconsistent with the low rates of erosion we infer based on the offshore sediment volumes.

  13. Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.

    1989-01-01

    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.

  14. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less

  15. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    PubMed

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in vitro results suggest changes in OP Ra due to bur reuse and polishing application force. Within the parameters of this study, the resultant topography of zirconia polishing is force-dependent and the reuse of coarse polishing burs is possible without statistically significant differences in Ra values after initial use. Nanoscale and microscale topography were shown to depend on specific polishing bur type.

  16. Stress distribution and topography of Tellus Regio, Venus

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  17. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  18. Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings.

    PubMed

    Skoog, Shelby A; Kumar, Girish; Zheng, Jiwen; Sumant, Anirudha V; Goering, Peter L; Narayan, Roger J

    2016-12-01

    Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp 3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp 3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.

  19. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  20. Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.

    2014-12-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  1. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Three-dimension reconstruction based on spatial light modulator

    NASA Astrophysics Data System (ADS)

    Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu

    2011-02-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  3. Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic.

    PubMed

    Silvestri, Tais; Pereira, Gabriel Kalil Rocha; Guilardi, Luis Felipe; Rippe, Marilia Pivetta; Valandro, Luiz Felipe

    2018-01-01

    This study aimed to investigate the effect of grinding and multi-stimuli aging on the fatigue strength, surface topography and the phase transformation of Y-TZP ceramic. Discs were manufactured according to ISO-6872:2008 for biaxial flexure testing (diameter: 15 mm; thickness: 1.2 mm) and randomly assigned considering two factors "grinding" and "aging": C- control (as-sintered); CA- control + aging; G- ground; GA- ground + aging. Grinding was carried out with coarse diamond burs under water-cooling. Aging protocols consisted of: autoclave (134°C, 2 bars pressure, 20 hours), followed by storage for 365 days (samples were kept untouched at room temperature), and by mechanical cycling (106 cycles by 20 Hz under a load of 50% from the biaxial flexure monotonic tests). Flexural fatigue strengths (20,000 cycles; 6 Hz) were determined under sinusoidal cyclic loading using staircase approach. Additionally, surface topography analysis by FE-SEM and phase transformation analysis by X-ray Diffractometry were performed. Dixon and Mood methodology was used to analyze the fatigue strength data. Grinding promotes alterations of topographical pattern, while aging apparently did not alter it. Grinding triggered t-m phase transformation without impacting the fatigue strength of the Y-TZP ceramic; and aging promoted an intense t-m transformation that resulted in a toughening mechanism leading to higher fatigue strength for as-sintered condition, and a tendency of increase for ground condition (C < CA; G = GA). It concludes that grinding and aging procedures did not affect deleteriously the fatigue strength of the evaluated Y-TZP ceramic, although, it promotes surface topography alterations, except to aging, and t-m phase transformation.

  4. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    PubMed

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  5. Effect of Diamond Bur Grit Size on Composite Repair.

    PubMed

    Valente, Lisia L; Silva, Manuela F; Fonseca, Andrea S; Münchow, Eliseu A; Isolan, Cristina P; Moraes, Rafael R

    2015-06-01

    This study investigated the effect of diamond bur grit size on the repair bond strength of fresh and aged resin composites. Blocks of microhybrid composite (Opallis, FGM) were stored in distilled water at 37°C for 24 h (fresh composite) or subjected to 5000 thermal cycles (aged composite). The surfaces were roughened using diamond-coated, flame-shaped carbide burs with medium grit (#3168), fine grit (#3168F), or extra-fine grit (#3168FF). The control group underwent no surface treatment. Surface roughness, water contact angle, and surface topography by scanning electron microscopy (SEM) were evaluated (n = 3). Samples were restored with resin composite and sectioned into beam-shaped specimens, which were subjected to microtensile bond testing. Failure modes were classified using a stereomicroscope. Data were statistically analyzed using the Student- Newman-Keuls test and two-way ANOVA, with significance set at p < 0.05. Higher surface roughness was observed for groups treated with the medium- and fine-grit burs; aged composites were rougher than fresh composites. The water contact angle formed on the aged composite was lower than that on the fresh composite. The highest repair bond strength was observed for the fine-grit bur group, and the lowest was recorded for control. Interfacial failures were more predominant. SEM images showed that the surfaces treated with fine- and extra-fine-grit burs had a more irregular topography. Surface roughening of fresh or aged resin composites with diamond burs improved retention of the repair material. Fine-grit burs generally performed better than medium- and extra-fine-grit burs.

  6. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    PubMed Central

    Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek

    2013-01-01

    Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416

  7. A normalisation framework for (hyper-)spectral imagery

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian

    2015-06-01

    It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.

  8. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    NASA Astrophysics Data System (ADS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-02-01

    Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV-vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH2)11OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and electrical) real-time monitoring of length-scale-dependent biomaterial-surface interactions.

  9. The organization of the human cerebellum estimated by intrinsic functional connectivity

    PubMed Central

    Krienen, Fenna M.; Castellanos, Angela; Diaz, Julio C.; Yeo, B. T. Thomas

    2011-01-01

    The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. PMID:21795627

  10. A high-resolution synthetic bed elevation grid of the Antarctic continent

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Roberts, Jason L.; Galton-Fenzi, Ben K.; Young, Duncan; Blankenship, Donald; Siegert, Martin J.

    2017-05-01

    Digital elevation models of Antarctic bed topography are smoothed and interpolated onto low-resolution ( > 1 km) grids as current observed topography data are generally sparsely and unevenly sampled. This issue has potential implications for numerical simulations of ice-sheet dynamics, especially in regions prone to instability where detailed knowledge of the topography, including fine-scale roughness, is required. Here, we present a high-resolution (100 m) synthetic bed elevation terrain for Antarctica, encompassing the continent, continental shelf, and seas south of 60° S. Although not identically matching observations, the synthetic bed surface - denoted as HRES - preserves topographic roughness characteristics of airborne and ground-based ice-penetrating radar data measured by the ICECAP (Investigating the Cryospheric Evolution of the Central Antarctic Plate) consortium or used to create the Bedmap1 compilation. Broad-scale ( > 5 km resolution) features of the Antarctic landscape are incorporated using a low-pass filter of the Bedmap2 bed elevation data. HRES has applicability in high-resolution ice-sheet modelling studies, including investigations of the interaction between topography, ice-sheet dynamics, and hydrology, where processes are highly sensitive to bed elevations and fine-scale roughness. The data are available for download from the Australian Antarctic Data Centre (doi:10.4225/15/57464ADE22F50).

  11. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram-positive bacteria (S. aureus and S. epidermidis) decreased with increasing nanoscale surface roughness, and was not affected by grain refinement. Ultimately, this study demonstrated the advantages of the proposed shot peening treatment to produce multifunctional 316L stainless steel materials for improved implant functions without necessitating the use of drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hydrologic characteristics of surface-mined land reclaimed by sludge irrigation, Fulton County, Illinois

    USGS Publications Warehouse

    Patterson, G.L.; Fuentes, R.F.; Toler, L.G.

    1982-01-01

    Analyses of water samples collected at four stream-monitoring stations, in an area surface mined for coal and being reclaimed by sludge irrigation, show the principal metals are sodium, calcium, and magnesium and principal non-metals are chloride, sulfate, and bicarbonate. Comparing yearly mean chemical concentrations shows no changing trends since reclamation began, nor are there differences between stations upstream and downstream from the site. Yearly suspended-sediment loads and discharge relations upstream and downstream from the site also show no differences. Discharge hydrographs of two streams draining the site show a delayed response to precipitation due to the storage capacity of several upstream strip-mine lakes. The water-table surface generally follows the irregular topography. Monthly water-level fluctuations were dependent on the surface material (mined or unmined) and proximity to surface discharge. The largest fluctuations were in unmined land away from discharge while the smallest were in mined land near discharge. The water table is closer to the surface in unmined land. Analyses of water samples from 70 wells within or adjacent to the reclamation site showed no differences in water quality which could be attributed to sludge or supernatant application. Samples from wells in mined land, however, had higher concentrations of dissolved sulfate, calcium, magnesium, chloride, iron, zinc, and manganese than samples from wells in unmined land. (USGS)

  13. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    PubMed Central

    Ewais, Ola H.; Al Abbassy, Fayza; Ghoneim, Mona M.; Aboushelib, Moustafa N.

    2014-01-01

    Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE), fusion sputtering (FS), and low pressure particle abrasion (LPPA). The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness) received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α = 0.05). Results. There were significant differences between all groups regarding surface roughness (F = 1678, P < 0.001), porosity (F = 3278, P < 0.001), and hardness (F = 1106.158, P < 0.001). Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered. PMID:25349610

  14. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  15. Distribution of curvature of 3D nonrotational surfaces approximating the corneal topography

    NASA Astrophysics Data System (ADS)

    Kasprzak, Henryk T.

    1998-10-01

    The first part of the paper presents the analytical curves used to approximate the corneal profile. Next, some definition of 3D surfaces curvature, like main normal sections, main radii of curvature and their orientations are given. The examples of four nonrotational 3D surfaces such as: ellipsoidal, surface based on hyperbolic cosine function, sphero-cylindrical and toroidal, approximating the corneal topography are proposed. The 3D surface and the contour plots of main radii of curvature and their orientation for four nonrotational approximation of the cornea are shown. Results of calculations are discussed from the point of view of videokeratometric images.

  16. Interfacial engineering of microstructured materials

    NASA Astrophysics Data System (ADS)

    Poda, Aimee

    The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process. This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces. In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.

  17. Grayscale lithography-automated mask generation for complex three-dimensional topography

    NASA Astrophysics Data System (ADS)

    Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.

    2016-01-01

    Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.

  18. Computer-assisted design and finite element simulation of braces for the treatment of adolescent idiopathic scoliosis using a coronal plane radiograph and surface topography.

    PubMed

    Pea, Rany; Dansereau, Jean; Caouette, Christiane; Cobetto, Nikita; Aubin, Carl-Éric

    2018-05-01

    Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach. With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference). There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis. This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Method and apparatus for chemical and topographical microanalysis

    NASA Technical Reports Server (NTRS)

    Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)

    2002-01-01

    A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.

  20. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  1. Implications of MOLA Global Roughness, Statistics, and Topography

    NASA Technical Reports Server (NTRS)

    Aharonson, O.; Zuber, M. T.; Neumann, G. A.

    1999-01-01

    New insights are emerging as the ongoing high-quality measurements of the Martian surface topography by Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) spacecraft increase in coverage, resolution, and diversity. For the first time, a global characterization of the statistical properties of topography is possible. The data were collected during the aerobreaking hiatus, science phasing, and mapping orbits of MGS, and have a resolution of 300-400 m along track, a range resolution of 37.5 cm, a range precision of 1-10 m for surface slopes up to 30 deg., and an absolute accuracy of topography of 13 m. The spacecraft's orbit inclination dictates that nadir observations have latitude coverage of about 87.1S to 87.1N; the addition of observations obtained during a period of off-nadir pointing over the north pole extended coverage to 90N. Additional information is contained in the original extended abstract.

  2. The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.

    The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.

  3. Restoration of high-resolution AFM images captured with broken probes

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Corrigan, D.; Forman, C.; Jarvis, S.; Kokaram, A.

    2012-03-01

    A type of artefact is induced by damage of the scanning probe when the Atomic Force Microscope (AFM) captures a material surface structure with nanoscale resolution. This artefact has a dramatic form of distortion rather than the traditional blurring artefacts. Practically, it is not easy to prevent the damage of the scanning probe. However, by using natural image deblurring techniques in image processing domain, a comparatively reliable estimation of the real sample surface structure can be generated. This paper introduces a novel Hough Transform technique as well as a Bayesian deblurring algorithm to remove this type of artefact. The deblurring result is successful at removing blur artefacts in the AFM artefact images. And the details of the fibril surface topography are well preserved.

  4. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less

  5. The dynamical control of subduction parameters on surface topography

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  6. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  8. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  9. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  10. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy

    NASA Astrophysics Data System (ADS)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-05-01

    The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.

  11. Investigation of the antibiofilm capacity of peptide-modified stainless steel

    PubMed Central

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing

    2018-01-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809

  12. Investigation of the antibiofilm capacity of peptide-modified stainless steel.

    PubMed

    Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying

    2018-03-01

    Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.

  13. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  14. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  15. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.

  16. The Influence of Topography on Subaqueous Sediment Gravity Flows and the Resultant Deposits: Examples from Deep-water Systems in Offshore Morocco and Offshore Trinidad

    NASA Astrophysics Data System (ADS)

    Deng, H.; Wood, L.; Overeem, I.; Hutton, E.

    2016-12-01

    Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.

  17. EAARL topography-Potato Creek watershed, Georgia, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  18. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  19. Topography of Troughs on Vesta

    NASA Image and Video Library

    2011-08-23

    This view of the topography of asteroid Vesta surface is composed of several images obtained with the clear filter in the framing camera on NASA Dawn spacecraft on August 6, 2011. The image has a resolution of about 260 meters per pixel.

  20. Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy

    DOE PAGES

    Mazet, Lucie; Jesse, Stephen; Niu, Gang; ...

    2016-06-20

    Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO 3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging andmore » hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less

  1. Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.

    2015-12-01

    The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.

  2. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    PubMed

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Surface topography and ordering-variant segregation in GaInP[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.

    1993-09-27

    Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1

  5. Dual interferometer for dynamic measurement of corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.

    2016-08-01

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates.

  6. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  7. A convergence algorithm for correlation of breech face images based on the congruent matching cells (CMC) method.

    PubMed

    Chen, Zhe; Song, John; Chu, Wei; Soons, Johannes A; Zhao, Xuezeng

    2017-11-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for accurate firearm evidence identification and error rate estimation. The CMC method is based on the principle of discretization. The toolmark image of the reference sample is divided into correlation cells. Each cell is registered to the cell-sized area of the compared image that has maximum surface topography similarity. For each resulting cell pair, one parameter quantifies the similarity of the cell surface topography and three parameters quantify the pattern congruency of the registration position and orientation. An identification (declared match) requires a significant number of CMCs, that is, cell pairs that meet both similarity and pattern congruency requirements. The use of cell correlations reduces the effects of "invalid regions" in the compared image pairs and increases the correlation accuracy. The identification accuracy of the CMC method can be further improved by considering a feature named "convergence," that is, the tendency of the x-y registration positions of the correlated cell pairs to converge at the correct registration angle when comparing same-source samples at different relative orientations. In this paper, the difference of the convergence feature between known matching (KM) and known non-matching (KNM) image pairs is characterized, based on which an improved algorithm is developed for breech face image correlations using the CMC method. Its advantage is demonstrated by comparison with three existing CMC algorithms using four datasets. The datasets address three different brands of consecutively manufactured pistol slides, with significant differences in the distribution overlap of cell pair topography similarity for KM and KNM image pairs. For the same CMC threshold values, the convergence algorithm demonstrates noticeably improved results by reducing the number of false-positive or false-negative CMCs in a comparison. Published by Elsevier B.V.

  8. Human-Robot Site Survey and Sampling for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  9. Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

    PubMed Central

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A. G.; Meyerov, Robin; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration. PMID:25767803

  10. The topographic development and areal parametric characterization of a stratified surface polished by mass finishing

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Blunt, Liam; Fleming, Leigh

    2015-09-01

    Mass finishing is amongst the most widely used finishing processes in modern manufacturing, in applications from deburring to edge radiusing and polishing. Processing objectives are varied, ranging from the cosmetic to the functionally critical. One such critical application is the hydraulically smooth polishing of aero engine component gas-washed surfaces. In this, and many other applications the drive to improve process control and finish tolerance is ever present. Considering its widespread use mass finishing has seen limited research activity, particularly with respect to surface characterization. The objectives of the current paper are to; characterise the mass finished stratified surface and its development process using areal surface parameters, provide guidance on the optimal parameters and sampling method to characterise this surface type for a given application, and detail the spatial variation in surface topography due to coupon edge shadowing. Blasted and peened square plate coupons in titanium alloy are wet (vibro) mass finished iteratively with increasing duration. Measurement fields are precisely relocated between iterations by fixturing and an image superimposition alignment technique. Surface topography development is detailed with ‘log of process duration’ plots of the ‘areal parameters for scale-limited stratified functional surfaces’, (the Sk family). Characteristic features of the Smr2 plot are seen to map out the processing of peak, core and dale regions in turn. These surface process regions also become apparent in the ‘log of process duration’ plot for Sq, where lower core and dale regions are well modelled by logarithmic functions. Surface finish (Ra or Sa) with mass finishing duration is currently predicted with an exponential model. This model is shown to be limited for the current surface type at a critical range of surface finishes. Statistical analysis provides a group of areal parameters including; Vvc, Sq, and Sdq, showing optimal discrimination for a specific range of surface finish outcomes. As a consequence of edge shadowing surface segregation is suggested for characterization purposes.

  11. EAARL coastal topography-Assategue Island National Seashore, Maryland and Virginia, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan; Stevens, Sara

    2011-01-01

    This DVD contains lidar-derived bare-earth (BE) and first-surface (FS) topography GIS datasets of a portion of the Assateague Island National Seashore in Maryland and Virginia. These datasets were acquired on March 19 and 24, 2010.

  12. EAARL topography-Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Clark, A.P.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama. These datasets were acquired on March 6, 2010.

  13. Topography and Roughness Signatures of Erosion of Crusted Soils on Mars

    NASA Astrophysics Data System (ADS)

    Cooper, C. D.; Mustard, J. F.

    1999-03-01

    MOLA slope and roughness data shed light on the erosion of regional duricrust and suggest it follows preexisting topography. This implies that cementation of the duricrust was likely due to atmosphere-surface interactions or in situ alteration.

  14. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by the National Research Council's first decadal survey of NASA's Earth science program. This document provides wide-ranging examples of research opportunities in oceanography and land hydrology that would be enabled by the new type of measurement. Additional applications in many other branches of Earth System science ranging from ocean bathymetry to sea ice dynamics are also discussed. Many of the technical issues in making the measurement are discussed as well. Also presented is a preliminary design of the SWOT Mission concept, which is being jointly developed by NASA and CNES, with contributions from the Canadian Space Agency.

  15. HOS cell adhesion on Ti6Al4V surfaces texturized by laser engraving

    NASA Astrophysics Data System (ADS)

    Sandoval Amador, A.; Carreño Garcia, H.; Escobar Rivero, P.; Peña Ballesteros, D. Y.; Estupiñán Duran, H. A.

    2016-02-01

    The cell adhesion of the implant is determinate by the chemical composition, topography, wettability, surface energy and biocompatibility of the biomaterial. In this work the interaction between human osteosarcoma HOS cells and textured Ti6Al4V surfaces were evaluated. Ti6Al4V surfaces were textured using a CO2 laser in order to obtain circular spots on the surfaces. Test surfaces were uncoated (C1) used as a control surface, and surfaces with points obtained by laser engraving, with 1mm spacing (C2) and 0.5mm (C3). The HOS cells were cultured in RPMI-1640 medium with 10% fetal bovine serum and 1% antibiotics. No cells toxicity after one month incubation time occurred. The increased cell adhesion and cell spreading was observed after 1, 3 and 5 days without significant differences between the sample surfaces (C2 and C3) and control (uncoated) at the end of the experiment.

  16. Cryo-planing of frozen-hydrated samples using cryo triple ion gun milling (CryoTIGM™).

    PubMed

    Chang, Irene Y T; Joester, Derk

    2015-12-01

    Cryo-SEM is a high throughput technique for imaging biological ultrastructure in its most pristine state, i.e. without chemical fixation, embedding, or drying. Freeze fracture is routinely used to prepare internal surfaces for cryo-SEM imaging. However, the propagation of the fracture plane is highly dependent on sample properties, and the resulting surface frequently shows substantial topography, which can complicate image analysis and interpretation. We have developed a broad ion beam milling technique, called cryogenic triple ion gun milling (CryoTIGM™ ['krī-ə-,tīm]), for cryo-planing frozen-hydrated biological specimens. Comparing sample preparation by CryoTIGM™ and freeze fracture in three model systems, Baker's yeast, mouse liver tissue, and whole sea urchin embryos, we find that CryoTIGM™ yields very large (∼700,000 μm(2)) and smooth sections that present ultrastructural details at similar or better quality than freeze-fractured samples. A particular strength of CryoTIGM™ is the ability to section samples with hard-soft contrast such as brittle calcite (CaCO3) spicules in the sea urchin embryo. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    PubMed

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  18. MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole

    NASA Technical Reports Server (NTRS)

    2001-01-01

    MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.

  19. High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science

    USGS Publications Warehouse

    Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L.

    2003-01-01

    More than 10,000 km2 of high-resolution, public-domain topography acquired by the Puget Sound Lidar Consortium is revolutionizing investigations of active faulting, continental glaciation, landslides, and surficial processes in the seismically active Puget Lowland. The Lowland-the population and economic center of the Pacific Northwest-presents special problems for hazards investigations, with its young glacial topography, dense forest cover, and urbanization. Lidar mapping during leaf-off conditions has led to a detailed digital model of the landscape beneath the forest canopy. The surface thus revealed contains a rich and diverse record of previously unknown surface-rupturing faults, deep-seated landslides, uplifted Holocene and Pleistocene beaches, and subglacial and periglacial features. More than half a dozen suspected postglacial fault scarps have been identified to date. Five scarps that have been trenched show evidence of large, Holocene, surface-rupturing earthquakes.

  20. Impact of topography-radiation interaction on surface energy budget of the Tibetan Plateau in GCM simulations

    NASA Astrophysics Data System (ADS)

    Lee, W. L.; Liou, K. N.; Gu, Y.; Wang, C. C.; Wu, C. H.; Hsu, H. H.

    2017-12-01

    We have develop a parameterization to quantify the effect of 3-D topography on surface solar radiation, including multiple reflection and heating difference at sunward and shaded slopes of mountains. A series of sensitivity tests using NCAR CCSM4 with and without this parameterization have been carried out to investigate this effect in climate simulations. The result indicates that missing the 3-D radiation-topography interaction could be a key factor leading to cold biases over the Tibetan Plateau in winter in all of the CMIP5 models. Consequently, the snowmelt rate in the Tibetan Plateau could be underestimated in most future projections. In addition, the topographic effect can also increase the net surface solar radiation at the southern slope of the Himalayas in summer. The temporal and spatial distribution of monsoon precipitation and circulation could also be influenced.

  1. Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires.

    PubMed

    Mane, Pratap P; Pawar, Renuka; Ganiger, Chanamallappa; Phaphe, Sandesh

    2012-05-01

    The aim of this study was to see the effect of topical fluoride on surface texture on nickel-titanium and copper-nickel-titanium orthodontic archwires. Preformed rectangular NiTi and CuNiTi wires were immersed in in fluoride solution and artificial saliva (control) for 90 minutes at 37°C. after immersion optical microscope was used to see the fluoride effect on the wire topography. The acidulated fluoride agents appeared to cause greater corrosive effects as compared to the neutral fluoride agents. The result suggest that using topical fluoride agents leads to corrosion of surface topography indirectly affecting the mechanical properties of the wire that will lead to prolonged orthodontic treatment. The use of topical fluoride agents has to be limited in patients with prolonged orthodontic treatment as it causes the corrosion of the NiTi and CuNiTi wires.

  2. When the Desert Beetle Met the Carnivorous Plant: A Perfect Match for Droplet Growth and Shedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizenberg, Joanna; Park, Kyoo Chul; Kim, Philseok

    2015-01-14

    Phase change of vapor followed by coalescence and transport on ubiquitous bumped or curved surfaces is of fundamental importance for a wide range of phenomena and applications from water condensation on cold beverage bottles, to fogging on glasses and windshields, self-cleaning by jumping droplets, weathering, self-assembly, desalination, latent heat transfer, etc. Over the past decades, many attempts to understand and control the droplet growth dynamics and shedding of condensates on textured surfaces have focused on finding the role of micro/nanotexture combined with wettability. In particular, inspired by the Namib desert beetle bump structure, studies tested the effect of topography onmore » the preferential condensation. However, like the preferential condensation observed on flat surfaces, hybrid wettability rather than texture plays a major role; the role of bump topography on local preferential condensation has been unexplored and still not clearly understood. In addition, given that not only facilitating the droplet growth but also transporting the condensed droplets toward the desired reservoir is essential to make fresh sites for renucleation and regrowth of the droplets for enhancing condensation efficiency, the current hybrid-wettability- based design is not efficient to transport the condensates due to the high contact angle hysteresis created by highly wettable pinning points. Here we show that beetle-inspired bump topography leads faster localized condensation and transport of water. Employing simple analytic and more complicated numerical calculations, we reveal the detailed role of topography and predict the focused diffusion flux based on the distortion of concentration gradient around convex surface topography. We experimentally demonstrate the systematic understanding on the unseen effect of topographical parameters on faster droplet growth dynamics on various bump geometries. Further rational design of asymmetric topography and synergetic combination with slippery coating simultaneously enable both faster droplet growth and transport for applications including efficient water condensation.« less

  3. Tip in–light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples

    PubMed Central

    Gierlinger, Notburga

    2016-01-01

    Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318

  4. Space Weathering of Silicates Simulated by Successive Laser Irradiation: In Situ Reflectance Measurements of Fo90, Fo99+, and Sio2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of nanophase metallic Fe (npFe0) grains, 2050 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laserpulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  5. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    PubMed

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  6. Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M.

    2017-12-01

    We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.

  7. Laser confocal microscope for analysis of 3013 inner container closure weld region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rodriguez, M. J.

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for datamore » acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.« less

  8. Effects of topography on the interpretation of the deformation field of prominent volcanoes - Application to Etna

    USGS Publications Warehouse

    Cayol, V.; Cornet, F.H.

    1998-01-01

    We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.

  9. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.

  10. Topographic characterisation of dental implants for commercial use

    PubMed Central

    Mendoza-Arnau, Amparo; Vallecillo-Capilla, Manuel-Francisco; Cabrerizo-Vílchez, Miguel-Ángel

    2016-01-01

    Background To characterize the surface topography of several dental implants for commercial use. Material and Methods Dental implants analyzed were Certain (Biomet 3i), Tissue Level (Straumann), Interna (BTI), MG-InHex (MozoGrau), SPI (Alphabio) and Hikelt (Bioner). Surface topography was ascertained using a confocal microscope with white light. Roughness parameters obtained were: Ra, Rq, Rv, Rp, Rt, Rsk and Rku. The results were analysed using single-factor ANOVA and Student-Neuman-Keuls(p<0.05) tests. Results Certain and Hikelt obtained the highest Ra and Rq scores, followed by Tissue Level. Interna and SPI obtained lower scores, and MG-InHex obtained the lowest score. Rv scores followed the same trend. Certain obtained the highest Rp score, followed by SPI and Hikelt, then Interna and Tissue Level. MG-InHex obtained the lowest scores. Certain obtained the highest Rt score, followed by Interna and Hikelt, then SPI and Tissue Level. The lowest scores were for MG-InHex. Rsk was negative (punctured surface) in the MG-InHex, SPI and Tissue Level systems, and positive (pointed surface) in the other systems. Rku was higher than 3 (Leptokurtic) in Tissue Level, Interna, MG-InHex and SPI, and lower than 3 (Platykurtic) in Certain and Hikelt. Conclusions The type of implant determines surface topography, and there are differences in the roughness parameters of the various makes of implants for clinical use. Key words:Implants for clinical use, topography, confocal microscopy. PMID:27475680

  11. Charon's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto's largest moon, Charon, was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Charon's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. All feature names on Pluto and Charon are informal. The global mosaic has been overlain with transparent, colorized topography data wherever on their surfaces stereo data is available. Standing out on Charon is the Caleuche Chasma ("C") in the far north, an enormous trough at least 350 kilometers (nearly 220 miles) long, and reaching 14 kilometers (8.5 miles) deep -- more than seven times as deep as the Grand Canyon. https://photojournal.jpl.nasa.gov/catalog/PIA21860

  12. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  13. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  14. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  15. Advances in research on structural characterisation of agricultural products using atomic force microscopy.

    PubMed

    Liu, Dongli; Cheng, Fang

    2011-03-30

    Atomic force microscopy (AFM) has many unique features compared with other conventional microscopies, such as high magnification with high resolution, minimal sample preparation, acquiring 2D and 3D images at the same time, observing ongoing processes directly, the possibility of manipulating macromolecules, etc. As a nanotechnology tool, AFM has been used to investigate the nanostructure of materials in many fields. This mini-review focuses mainly on its latest application to characterise the macromolecular nanostructure and surface topography of agricultural products. First the fundamentals of AFM are briefly explained. Then the macromolecular nanostructure information on agricultural products from AFM images is introduced by exploring the structure-function relationship in three aspects: agricultural product processing, agricultural product ripening and storage, and genetic and environmental factors. The surface topography characterisation of agricultural products using AFM is also discussed. The results reveal that AFM could be a powerful nanotechnology tool to acquire a deeper understanding of the mechanisms of structure and quality variations of agricultural products, which could be instructive in improving processing and storage technologies, and AFM is also helpful to reveal the essential nature of a product at nanoscale. Copyright © 2011 Society of Chemical Industry.

  16. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  17. Surface analysis of graphite fiber reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  18. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  19. Glacial Inception in north-east Canada: The Role of Topography and Clouds

    NASA Astrophysics Data System (ADS)

    Birch, Leah; Tziperman, Eli; Cronin, Timothy

    2016-04-01

    Over the past 0.8 million years, ice ages have dominated Earth's climate on a 100 thousand year cycle. Interglacials were brief, sometimes lasting only a few thousand years, leading to the next inception. Currently, state-of-the-art global climate models (GCMs) are incapable of simulating the transition of Earth's climate from interglacial to glaciated. We hypothesize that this failure may be related to their coarse spatial resolution, which does not allow resolving the topography of inception areas, and their parameterized representation of clouds and atmospheric convection. To better understand the small scale topographic and cloud processes mis-represented by GCMs, we run the Weather Research and Forecasting model (WRF), which is a regional, cloud-resolving atmospheric model capable of a realistic simulation of the regional mountain climate and therefore of surface ice and snow mass balance. We focus our study on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred at 115kya. We examine the sensitivity of mountain glaciers to Milankovitch Forcing, topography, and meteorology, while observing impacts of a cloud resolving model. We first verify WRF's ability to simulate present day climate in the region surrounding the Penny Ice Cap, and then investigate how a GCM-like biased representation of topography affects sensitivity of this mountain glacier to Milankovitch forcing. Our results show the possibility of ice cap growth on an initially snow-free landscape with realistic topography and insolation values from the last glacial inception. Whereas, smoothed topography as seen in GCMs has a negative surface mass balance, even with the relevant orbital parameter configuration. We also explore the surface mass balance feedbacks from an initially ice-covered Baffin Island and discuss the role of clouds and convection.

  20. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  1. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    NASA Astrophysics Data System (ADS)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.

  2. [Activation of endoplasmic reticulum stress and its effect on osteogenic differentiation induced by micropit/nanotube topography].

    PubMed

    Shi, M Q; Song, W; Han, T X; Chang, B; Zhang, Y M

    2017-02-09

    Objective: To explore the activation of endoplasmic reticulum stress (ERS) in bone marrow mesenchymal stem cell (BMMSC) and its effect on osteogenic differentiation induced by micropit/nanotube topography (MNT), so as to provide guidance for the topography design of biomaterials. Methods: Four sample groups were fabricated: polishing control group (polished titanium, PT, no treatment), thapsigargin treatment (TG, 0.1 μmol/L TG treated for 9 h), MNT5 and MNT20 (anodized at 5 V and 20 V after acid etching). Scanning electron microscope (SEM) was used to observe the topography of Ti samples. The alkaline phosphatase (ALP) production, collagen secretion and extracellular matrix (ECM) mineralization of BMMSC (osteogenic induced for 7, 14 and 21 d) on Ti samples were detected to evaluate the osteogenic differentiation. After 12 h incubation, the shape and size of ER was examined using a transmission electron microscope (TEM), and ERS-related genes including immunoglobulin heavy chain binding protein (BiP), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) were detected by quantitative real-time PCR (qRT-PCR). Results: After 7, 14 and 21 d of induction, the ALP production, collagen secretion and ECM mineralization in TG and MNT20 all significantly increased compared to PT ( P< 0.05). The cells grown on TG, MNT5 and MNT20 surfaces displayed gross distortions of the ER. Compared to PT, BiP, PERK, ATF4 mRNA expression in TG was respectively 1.87±0.10, 2.24±0.35, 1.85±0.14; BiP, ATF4 mRNA expression in MNT5 were respectively 1.27±0.09, 1.25±0.04; BiP, PERK, ATF4 mRNA expression in MNT20 were respectively 1.44±0.09, 2.40±0.60, 1.48±0.05 ( P< 0.05). Conclusions: MNT triggered different degree of ERS, and the activated ERS may promote MNT-induced osteogenic differentiation.

  3. Simulations of HIV Capsid Protein Dimerization Reveal the Effect of Chemistry and Topography on the Mechanism of Hydrophobic Protein Association

    PubMed Central

    Yu, Naiyin; Hagan, Michael F.

    2012-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509

  4. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    NASA Astrophysics Data System (ADS)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  5. Separating local topography from snow effects on momentum roughness in mountain regions

    NASA Astrophysics Data System (ADS)

    Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.

    2013-12-01

    Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.

  6. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  7. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  8. Project GEOS-C. [designed to measure the topography of ocean surface and the sea state

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oceanographic-geodetic satellite, designated Geodynamics Experimental Ocean Satellite-C (GEOS-C), an earth-orbiting spacecraft designed to measure precisely the topography of the ocean surface and the sea state (wave height, wave period, wave propagation direction) is described. Launch operations, spacecraft description, and mission objectives are included along with a brief flight history of the NASA satellite geodesy program. Principal investigations to be performed by the GEOS-C mission are discussed.

  9. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment.

    PubMed

    Zhang, E W; Wang, Y B; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2011-04-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  10. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  11. Development of surface functionalized ZnO-doped LiFePO4/C composites as alternative cathode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Saroha, Rakesh; Panwar, Amrish K.; Sharma, Yogesh; Tyagi, Pawan K.; Ghosh, Sudipto

    2017-02-01

    Surface modified olivine-type LiFePO4/C-ZnO doped samples were synthesized using sol-gel assisted ball-milling route. In this work, the influence of ZnO-doping on the physiochemical, electrochemical and surface properties such as charge separation at solid-liquid interphase, surface force gradient, surface/ionic conductivity of pristine LiFePO4/C (LFP) has been investigated thoroughly. Synthesized samples were characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. All the synthesized samples were indexed to the orthorhombic phase with Pnma space group. Pristine LiFePO4 retain its structure for higher ZnO concentrations (i.e. 2.5 and 5.0 wt.% of LFP). Surface topography and surface force gradient measurements by EFM revealed that the kinetics of charge carriers, e-/Li+ is more in ZnO-doped LFP samples, which may be attributed to diffusion or conduction process of the charges present at the surface. Among all the synthesized samples LFP/C with 2.5 wt.% of ZnO (LFPZ2.5) displays the highest discharge capacity at all C-rates and exhibit excellent rate performance. LFPZ2.5 delivers a specific discharge capacity of 164 (±3) mAh g-1 at 0.1C rate. LFPZ2.5 shows best cycling performance as it provides a discharge capacity of 135 (±3) mAh g-1 at 1C rate and shows almost 95% capacity retention after 50 charge/discharge cycles. Energy density plot shows that LFPZ2.5 offers high energy and power density measured at high discharge rates (5C), proving its usability for hybrid vehicles application.

  12. [Analysis on the role of Sirius combined topography and tomography system in screening for suspect keratoconus].

    PubMed

    Zhang, Y; Chen, Y G; Yang, H Y; Xia, Y J; Zhao, R

    2018-01-11

    Objective: To evaluate the role of Sirius combined topography and tomography system in screening for suspect keratoconus among the corneal refractive surgery candidates. Methods: Retrospective case series study. Eight hundred and sixteen consecutive ametropic patients (1 632 eyes) who underwent routine examinations before corneal refractive surgery at Peking University Third Hospital from January 2016 to September 2016 were reviewed. All the cases were analyzed with Sirius combined topography and tomography system. Fifty-nine eyes of 37 patients, aged (28.9±7.4) years, classified as suspect keratoconus by the system were enrolled in the suspect group, including 25 females (40 eyes) and 12 males (19 eyes). A random eye of the first 59 patients, aged (27.1±6.4)years, whose both eyes were classified as normal by Sirius system were enrolled in the control group, including 38 females and 21 males. The corneal anterior surface, posterior surface and minimum thickness data of the suspect group were analyzed and then compared with the control group. The classified results were further verified by Pentacam system. Independent-samples t test and Mann-Whitney U test were applied to analyze the normal distribution and non-normal distribution data respectively. Results: The medians of anterior surface and posterior surface symmetry index and Baiocchi Calossi Versaci index of anterior surface and posterior surface of the suspect group were 0.84, 0.22, 0.58 and 0.51 D, and that of the control group were 0.05, 0.04, 0.09 and 0.06 D, and the differences were of statistical significance ( Z=- 18.764, -8.351, -12.248, -10.709, P< 0.01). Mean corneal minimum thickness data of the suspect group were (504.4±30.0)μm, and that of the control group were (541.2±32.1)μm, the differences were of statistical significance ( t=- 6.408, P< 0.01). In the suspect group, the eyes related with suspect or abnormal corneal anterior indices accounted for 47.5% (28/59), the eyes related with suspect or abnormal corneal posterior indices accounted for 55.9% (33/59), and the eyes related with suspect or abnormal corneal minimum thickness accounted for 40.7% (24/59). In the suspect group, 45 eyes (76.3%) were classified as suspect or abnormal according to the overall variance index "D" by Belin-Ambrósio Display (BAD) of the Pentacam system, and the other 14 eyes exhibited at least one abnormal index related with keratoconus. Conclusions: Sirius 3D combined topography and tomography and its integral automatic classification system is capable to screen out the suspect keratoconus simply and effectively. These indices maybe arranged in descending order in terms of the sensitivity as corneal posterior surface, followed by corneal anterior surface and then corneal thinnest point thickness. (Chin J Ophthalmol, 2018, 54: 33-38) .

  13. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  14. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  15. Experimental study on infrared radiation temperature field of concrete under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Lou, Quan; He, Xueqiu

    2018-05-01

    Infrared thermography, as a nondestructive, non-contact and real-time monitoring method, has great significance in assessing the stability of concrete structure and monitoring its failure. It is necessary to conduct in depth study on the mechanism and application of infrared radiation (IR) of concrete failure under loading. In this paper, the concrete specimens with size of 100 × 100 × 100 mm were adopted to carry out the uniaxial compressions for the IR tests. The distribution of IR temperatures (IRTs), surface topography of IRT field and the reconstructed IR images were studied. The results show that the IRT distribution follows the Gaussian distribution, and the R2 of Gaussian fitting changes along with the loading time. The abnormities of R2 and AE counts display the opposite variation trends. The surface topography of IRT field is similar to the hyperbolic paraboloid, which is related to the stress distribution in the sample. The R2 of hyperbolic paraboloid fitting presents an upward trend prior to the fracture which enables to change the IRT field significantly. This R2 has a sharp drop in response to this large destruction. The normalization images of IRT field, including the row and column normalization images, were proposed as auxiliary means to analyze the IRT field. The row and column normalization images respectively show the transverse and longitudinal distribution of the IRT field, and they have clear responses to the destruction occurring on the sample surface. In this paper, the new methods and quantitative index were proposed for the analysis of IRT field, which have some theoretical and instructive significance for the analysis of the characteristics of IRT field, as well as the monitoring of instability and failure for concrete structure.

  16. EAARL coastal topography-Northern Outer Banks, North Carolina, post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the northern Outer Banks beachface in North Carolina. These datasets were acquired post-Nor'Ida on November 27 and 29, 2009.

  17. Geologic structure of the eastern mare basins. [lunar basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  18. Atomic force microscopy study on topography of films produced by ion-based techniques

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.

    1996-09-01

    The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.

  19. Spectral analysis of topography and gravity in the Basin and Range Province

    USGS Publications Warehouse

    Ricard, Y.; Froidevaux, C.; Simpson, R.

    1987-01-01

    A two-dimensional spectral analysis has been carried out for the topography and the Bouguer gravity anomaly of the Basin and Range Province in western North America. The aim was to investigate the possible presence of dominant wavelengths in the deformation pattern at the surface and at the depth of compensation. The results suggest that a 200-km wavelength in the deep compensating mass distribution has been inherited from an early tectonic phase of extension at an azimuth N65??E. The corresponding surface topography exhibits prominent overtones at wavelength of 100, 75, and possibly 45 km. It is argued that these characterize the non-linear rheology of the upper crust. The short wavelengths in the topography reflect the present phase of deformation, mixed with the results of the older deformations. These results point to a need to extend the physical models of lithospheric stretching beyond the presently available one-phase scenario. However, they show that the boudinage instability concept is consistent with the data. ?? 1987.

  20. The Residual Polar Caps of Mars: Geological Differences and Possible Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, P. C.; Sullivan, R.; Ingersoll, A. P.; Murray, B. C.; Danielson, G. E.; Herkenhoff, K. E.; Soderblom, L.; Malin, M. C.; Edgett, K. S.; James, P. B.

    2000-01-01

    The Martian polar regions have been known to have thick layered sequences (presumed to consist of silicates and ice), CO2 seasonal frost, and residual frosts that remain through the summer: H2O in the north, largely CO2 in the south. The relationship of the residual frosts to the underlying layered deposits could not be determined from Viking images. The Mars Orbiter Camera on Mars Global Surveyor has provided a 50-fold increase in resolution that shows more differences between the two poles. The north residual cap surface has rough topography of pits, cracks, and knobs, suggestive of ablational forms. This topography is less than a few meters in height, and grades in to surfaces exposing the layers underneath. In contrast, the south residual cap has distinctive collapse and possibly ablational topography emplaced in four or more layers, each approx. two meters thick. The top surface has polygonal depressions suggestive of thermal contraction cracks. The collapse and erosional forms include circular and cycloidal depressions, long sinuous troughs, and nearly parallel sets of troughs. The distinctive topography occurs throughout the residual cap area, but not outside it. Unconformities exposed in polar layers, or other layered materials, do not approximate the topography seen on the south residual cap. The coincidence of a distinct geologic feature, several layers modified by collapse, ablation, and mass movement with the residual cap indicates a distinct composition and/or climate compared to both the remainder of the south polar layered units and those in the north.

  1. The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

    PubMed Central

    2013-01-01

    Background Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague–Dawley (SD) rats. Methods Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively. Results We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface. Conclusion Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application. PMID:24083888

  2. Risk factors and topographies for self-injurious behaviour in a sample of adults with intellectual developmental disorders.

    PubMed

    Folch, A; Cortés, M J; Salvador-Carulla, L; Vicens, P; Irazábal, M; Muñoz, S; Rovira, L; Orejuela, C; Haro, J M; Vilella, E; Martínez-Leal, R

    2018-04-01

    Self-injurious behaviour (SIB) is a prevalent form of challenging behaviour in people with intellectual developmental disorders (IDD). Existing research has yielded conflicting findings concerning the major risk factors involved, and in addition, SIB shows multiple topographies and presentations. Although presence of autism spectrum disorders (ASD) and severity of intellectual disability (ID) are known risk factors for SIB, there are no studies comparing SIB topographies by severity degrees of ID and ASD. The purpose of the present paper has been to identify risk factors and topographies for SIB in a representative, stratified and randomised sample of adults with IDD. This study was conducted on the basis of data collected by the POMONA-ESP project, in a sample of 833 adults with IDD. Data concerning demographic and health information, ASD symptoms, psychopathology and ID, have been analysed to determine the presence of risk factors for SIB among participants and to explore the occurrence and topographies of SIB across different severity levels of ID and ASD symptoms. Self-injurious behaviour prevalence in the sample was 16.2%. Younger age, oral pain, greater severity of ID, presence of dual diagnosis, psychiatric medication intake and higher scores on Childhood Autism Rating Scale were risk factors for SIB among participants, whereas number of areas with functioning limitations, place of residence, diagnosis of epilepsy and sex were not. SIB was more frequent in participants with ASD symptoms regardless of its severity level, and they displayed a higher number of different topographies of SIB. People with profound ID without co-morbid ASD symptoms showed similar results concerning SIB prevalence and topographies. Knowledge on risk factors and topographies of SIB might play a vital role in the development of prevention strategies and management of SIB in people with IDD. The mere presence of ASD symptoms, regardless of its severity level, can be a crucial factor to be taken into account in assessing SIB. Accordingly, the presence of SIB in people with ID, especially when presented with a varied number of topographies, might provide guidance on ASD differential diagnosis. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  3. The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km 2) surface-atmosphere heat and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.

    1997-03-01

    It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.

  4. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  5. Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy.

    PubMed

    Choi, Samjin; Lee, Seung Jun; Shin, Jae-Ho; Cheong, Youjin; Lee, Hui-Jae; Paek, Joo Hee; Kim, Jae Sik; Jin, Kyung-Hyun; Park, Hun-Kuk

    2011-01-01

    This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.

  6. Identifying persistent and characteristic features in firearm tool marks on cartridge cases

    NASA Astrophysics Data System (ADS)

    Ott, Daniel; Soons, Johannes; Thompson, Robert; Song, John

    2017-12-01

    Recent concerns about subjectivity in forensic firearm identification have motivated the development of algorithms to compare firearm tool marks that are imparted on ammunition and to generate quantitative measures of similarity. In this paper, we describe an algorithm that identifies impressed tool marks on a cartridge case that are both consistent between firings and contribute strongly to a surface similarity metric. The result is a representation of the tool mark topography that emphasizes both significant and persistent features across firings. This characteristic surface map is useful for understanding the variability and persistence of the tool marks created by a firearm and can provide improved discrimination between the comparison scores of samples fired from the same firearm and the scores of samples fired from different firearms. The algorithm also provides a convenient method for visualizing areas of similarity that may be useful in providing quantitative support for visual comparisons by trained examiners.

  7. Quaternary Landscape Evolution and the Surface Expression of Plume-Lithosphere Interactions in the Greater Yellowstone Area.

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Meigs, A.; Kirby, E.

    2016-12-01

    Numerous investigations demonstrate that mantle convective processes such as upwelling affect the surface topography of the overriding plate and propagates through the plate accompanying its lateral motion. This deformation signal is known as transient topography and is thought to occur in the North American plate as it passes over the Yellowstone hotspot. This work explores the sensitivity of the surface of Western North America by testing the hypothesis that advection of a transient topographic wave through the North American plate is driving post-Pliocene landscape evolution of the greater Yellowstone region as the plate passes over the mantle plume. Analysis of digital elevation data reveals an asymmetric topographic swell that has an amplitude of 400-1200 m and a wavelength of 600 km which was disentangled from overlapping signals preserved in the topography. A maximum uplift rate of 0.17 mm yr-1 leads the apex of the transient topography swell by nearly 100 km. This means that presently, the western edge of the Bighorn Basin is experiencing a surface uplift rate between 0.166 and 0.302 mm yr-1 which indicates 400-800m of surface uplift in the western edge of the basin since 3 Ma and a tilt of 0.3° and 0.5° away from Yellowstone. We reinterpret the drainage evolution and erosional story of the Bighorn Basin preserved by sequences of fluvial terraces in the Bighorn Basin based on this new deformation model. We integrate this new deformation model with mapping, dating, and paleoflow data into the post-Pliocene erosional story in the basin. The change from a northward drainage to an eastward drainage through stream capture, the lateral migration of the Bighorn river away from Yellowstone, and differential incision in the basin coincides with transient topography-forced deformation.

  8. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    NASA Astrophysics Data System (ADS)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The contact damage behavior of the treated surfaces is shown to differ from those of untreated surfaces, for SOsb2-treated float glass, where the crack initiation characteristics indicate crack formation from the surface and the indenter tip, different than the expected anomalous deformation. This behavior resembles that of a silica glass deformation on the surface, which is in agreement with the other foundations in this study.

  9. Spectral Topography Generation for Arbitrary Grids

    NASA Astrophysics Data System (ADS)

    Oh, T. J.

    2015-12-01

    A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).

  10. Does Titan's Landscape Betray the Late Acquisitions of Its Current Atmosphere?

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Nimmo, F.

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The sudden appearance of a thick atmosphere may have changed Titan's global topography. This change in global topography may be expressed in the latitudinal distribution of landform types across its surface.

  11. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  12. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope.

    PubMed

    Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar

    2018-04-01

    Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.

  13. Engineering design of sub-micron topographies for simultaneously adherent and reflective metal-polymer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, Christopher A.

    1993-01-01

    The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.

  14. Creation of fluorocarbon barriers on surfaces of starch-based products through cold plasma treatment

    NASA Astrophysics Data System (ADS)

    Han, Yousoo

    Two kinds of starch foam trays (starch and aspen-starch foam trays) were produced using a lab model baking machine. Surfaces of the trays were treated with CF4 and SF6 plasma to create fluorine-rich layers on the surfaces, which might show strong water resistance. The plasma parameters, such like RF power, gas pressure and reaction time, were varied to evaluate the effects of each parameter on fluorination of surfaces. The atomic concentrations of fluorine, oxygen and carbon on samples' surfaces were earned from ESCA (electron spectroscopy for chemical analysis) and contact angles of sample surfaces were measured for hydrophobicity. For water resistance of plasma treated surfaces, liquid water uptake and water vapor uptake test were performed. Also, equilibrium moisture contents of unmodified and plasma treated samples were measured to evaluate biodegradability of plasma treated samples. Fluorine-rich barriers were created on sample surfaces treated with CF 4 and SF6 plasma. The fluorine atomic concentrations of treated sample surfaces were ranged from 34.4% to 64.4% (CF4 treatment) and 43.6% to 57.9% (SF6 treatment). It was found at both plasma gases that plasma parameters affected total fluorine concentration and carbon-peak shapes in ESCA surveys, which imply different distributions of mono- or multi-fluoro carbon's contents. In various reaction times, it was found that total fluorine contents were decreased after a critical point as the reaction time was prolonged, which may imply that a dominant mechanism has been changed from deposition or functionalization to etching. Oxygen atomic concentration was decreased at sample surfaces treated by both plasmas. In the case of SF6 plasma, it was proved that the removal of oxygen surely occurred because there was no addition of sulfur species. Plasma treated sample surfaces had high contact angles with distilled water up to 150° and the high values of angles have been kept constant up to for 15 minutes. Fluorine-rich barriers created by plasma showed lower water liquid and vapor permeability than untreated surfaces did. Plasma treated samples had similar moisture contents with untreated samples at all relative humidity tested. AFM and SEM images were taken for sample surfaces' morphology and topography.

  15. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  16. The influence of chemical structure on thermal properties and surface morphology of polyurethane materials.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria

    2018-01-01

    The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.

  17. The support of long wavelength loads on Venus

    NASA Astrophysics Data System (ADS)

    Benerdt, W. B.; Saunders, R. S.

    1985-04-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  18. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  19. The Support of Long Wavelength Loads on Venus

    NASA Technical Reports Server (NTRS)

    Benerdt, W. B.; Saunders, R. S.

    1985-01-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  20. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    PubMed Central

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-01-01

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645

  1. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material.

    PubMed

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-11-03

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  2. Correlation between surface topography and lubricant migration in steel sheets for the autobody manufacturing process

    NASA Astrophysics Data System (ADS)

    Benati, F.; Sacerdotti, F.; Griffiths, B. J.; Butler, C.; Karila, J. M.; Vermeulen, M.; Holtkamp, H.; Gatti, S.

    2002-05-01

    Material for the production of autobody panels is usually dispatched in the form of coils. Because of their weight, they tend to `compress' the lubricant applied for rust protection and some of it leaks from the coil. Those areas affected by lubricant starvation are known as `dry-spots' and are a cause of a number of product rejections during the subsequent forming operation. A test was deployed with the combined work of Ocas, CORUS IJmuiden and Renault that proved that surface topography controls, amongst other factors, affects lubricant migration. The test consists of compressing a stack of lubricated steel sheets at known pressure for a known time using different lubricants in different amounts. It was observed that, because of the `compression', the lubricant tends to migrate to the side of the sheet, and its migration was quantified using a Fischer Betascope MMS module. Analysis consisted of analysis of variance on several designs of experiments and subsequent correlation with surface topography 3D parameters. These experiments showed the importance of standard amplitude surface parameters and new closed area surface parameters to characterize lubricant migration under pressure.

  3. Microscopic asperity contact and deformation of ultrahigh molecular weight polyethylene bearing surfaces.

    PubMed

    Wang, F C; Jin, Z M; McEwen, H M J; Fisher, J

    2003-01-01

    The effect of the roughness and topography of ultrahigh molecular weight polyethylene (UHMWPE) bearing surfaces on the microscopic contact mechanics with a metallic counterface was investigated in the present study. Both simple sinusoidal roughness forms, with a wide range of amplitudes and wavelengths, and real surface topographies, measured before and after wear testing in a simple pin-on-plate machine, were considered in the theoretical analysis. The finite difference method was used to solve the microscopic contact between the rough UHMWPE bearing surface and a smooth hard counterface. The fast Fourier transform (FFT) was used to cope with the large number of mesh points required to represent the surface topography of the UHMWPE bearing surface. It was found that only isolated asperity contacts occurred under physiological loading, and the real contact area was only a small fraction of the nominal contact area. Consequently, the average contact pressure experienced at the articulating surfaces was significantly higher than the nominal contact pressure. Furthermore, it was shown that the majority of asperities on the worn UHMWPE pin were deformed in the elastic region, and consideration of the plastic deformation only resulted in a negligible increase in the predicted asperity contact area. Microscopic asperity contact and deformation mechanisms may play an important role in the understanding of the wear mechanisms of UHMWPE bearing surfaces.

  4. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  5. Coastal retracking using along-track echograms and its dependency on coastal topography

    NASA Astrophysics Data System (ADS)

    Ichikawa, K.; Wang, X.

    2017-12-01

    Although the Brown mathematical model is the standard model for waveform retracking over open oceans, coastal waveforms usually deviate from open ocean waveform shapes due to inhomogeneous surface reflections within altimeter footprints, and thus cannot be directly interpreted by the Brown model. Generally, the two primary sources of heterogeneous surface reflections are land surfaces and bright targets such as calm surface water. The former reduces echo power, while the latter often produces particularly strong echoes. In previous studies, sub-waveform retrackers, which use waveform samples collected from around leading edges in order to avoid trailing edge noise, have been recommended for coastal waveform retracking. In the present study, the peaky-type noise caused by fixed-point bright targets is explicitly detected and masked using the parabolic signature in the sequential along-track waveforms (or, azimuth-range echograms). Moreover, the power deficit of waveform trailing edges caused by weak land reflections is compensated for by estimating the ratio of sea surface area within each annular footprint in order to produce pseudo-homogeneous reflected waveforms suitable for the Brown model. Using this method, Jason-2 altimeter waveforms are retracked in several coastal areas. Our results show that both the correlation coefficient and root mean square difference between the derived sea surface height anomalies and tide gauge records retain similar values at the open ocean (0.9 and 20 cm) level, even in areas approaching 3 km from coastlines, which is considerably improved from the 10 km correlation coefficient limit of the conventional MLE4 retracker and the 7 km sub-waveform ALES retracker limit. These values, however, depend on the coastal topography of the study areas because the approach distance limit increases (decreases) in areas with complicated (straight) coastlines

  6. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.

    PubMed

    Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang

    2009-05-01

    In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.

  7. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-08-01

    This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.

  8. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    PubMed

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  9. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  10. A numerical circulation model with topography for the Martian Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Mass, C.; Sagan, C.

    1975-01-01

    A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.

  11. Surface treated polypropylene (PP) fibres for reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Buendía, Angel M., E-mail: buendia@uv.es; Romero-Sánchez, María Dolores; Climent, Verónica

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in themore » mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.« less

  12. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone.

    PubMed

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-12-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O 2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.

  13. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  14. Imaging isodensity contours of molecular states with STM

    NASA Astrophysics Data System (ADS)

    Reecht, Gaël; Heinrich, Benjamin W.; Bulou, Hervé; Scheurer, Fabrice; Limot, Laurent; Schull, Guillaume

    2017-11-01

    We present an improved way for imaging the density of states of a sample with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dI/dV) constant. When archetypical C60 molecules on Cu(111) are imaged with this method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60 orbitals and their hybridization is then possible.

  15. CASTp 3.0: computed atlas of surface topography of proteins.

    PubMed

    Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie

    2018-06-01

    Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.

  16. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  17. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  18. Topography: dusting for the fingerprints of mantle dynamics

    NASA Astrophysics Data System (ADS)

    Faccenna, C.; Becker, T. W.

    2016-12-01

    The surface of the Earth is an ever-changing expression of the dynamic processes occurring deep in the mantle and at and above its surface, but our ability to "read" landscapes in terms of their underlying tectonic or climatic forcing is rudimentary. During the last decade, particular attention has been drawn to the deep, convection-related component of topography, induced by the stress produced at the base of the lithosphere by mantle flow, and its relevance compared to the (iso)static component. Despite much progress, several issues, including the magnitude and rate of this dynamic component, remain open. Here, we use key sites from convergent margins (e.g., the Apennines) and from intraplate settings (e.g., Ethiopia) to estimate the amplitude and rate of topography change and to disentangle the dynamic from the static component. On the base of those and other examples, we introduce the concept of a Topographic Fingerprint: any combination of mantle, crustal and surface processes that will result in a distinctive, thus predictable, topographic expression.

  19. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography resources. Datasets hosted by other organizations, as well as lidar-specific software, can be registered into the OpenTopography catalog, providing users a "one-stop shop" for such information. With several thousand active users, OpenTopography is an excellent example of a mature Spatial Data Infrastructure system that is enabling access to challenging data for research, education and outreach. Ongoing OpenTopography design and development work includes the archive and publication of datasets using digital object identifiers (DOIs); creation of a more flexible and scalable high-performance environment for processing of large datasets; expanded support for satellite and terrestrial lidar; and creation of a "pluggable" infrastructure for third-party programs and algorithms. OpenTopography has successfully created a facility for sharing lidar data. In the project's next phase, we are working to enable equally easy and successful sharing of services for processing and analysis of these data.

  20. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  1. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution, present-day digital elevation model (DEM) was generated. A detailed terrain analysis yielded 15 different primary and secondary topographic indices of the present-day DEM. Then, a classification and regression model was generated combining the present-day topographic indices to predict the depth of the pre-AD 79 surface. This model was calibrated with the measured depth of the pre-AD 79 surface from the drilling data. To gain a pre-AD 79 digital elevation model (DEM) the modeled depth of the pre-AD 79 surface was subtracted from the present-day DEM. To reconstruct some paleo-environmental features, such as the paleo-coast and the paleo-river network and its flood plain, the modeled pre-AD 79 DEM was compared with the classified characteristic of the pre-AD 79 stratum, identified from the drilling documentation. It is the first time that the paleo-topography and paleo-environmental features of the Sarno River basin were systematically reconstructed using a detailed database of input variables and sophisticated data mining technologies. Keywords: Sarno River Basin, Roman paleo-topography, paleo-environment, stratigraphical core drillings, Classification and Regression Trees

  2. The role of fire on soil mounds and surface roughness in the Mojave Desert

    USGS Publications Warehouse

    Soulard, Christopher E.; Esque, Todd C.; Bedford, David R.; Bond, Sandra

    2013-01-01

    A fundamental question in arid land management centers on understanding the long-term effects of fire on desert ecosystems. To assess the effects of fire on surface topography, soil roughness, and vegetation, we used terrestrial (ground-based) LiDAR to quantify the differences between burned and unburned surfaces by creating a series of high-resolution vegetation structure and bare-earth surface models for six sample plots in the Grand Canyon-Parashant National Monument, Arizona. We find that 11 years following prescribed burns, mound volumes, plant heights, and soil-surface roughness were significantly lower on burned relative to unburned plots. Results also suggest a linkage between vegetation and soil mounds, either through accretion or erosion mechanisms such as wind and/or water erosion. The biogeomorphic implications of fire-induced changes are significant. Reduced plant cover and altered soil surfaces from fire likely influence seed residence times, inhibit seed germination and plant establishment, and affect other ecohydrological processes.

  3. The Research of Correlation of Water Surface Spectral and Sediment Parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Gong, G.; Fang, W.; Sun, W.

    2018-04-01

    In the method of survey underwater topography using remote sensing, and the water surface spectral reflectance R, which remote sensing inversion results were closely related to affects by the water and underwater sediment and other aspects, especially in shallow nearshore coastal waters, different sediment types significantly affected the reflectance changes. Therefore, it was of great significance of improving retrieval accuracy to explore the relation of sediment and water surface spectral reflectance. In this study, in order to explore relationship, we used intertidal sediment sand samples in Sheyang estuary, and in the laboratory measured and calculated the chroma indicators, and the water surface spectral reflectance. We found that water surface spectral reflectance had a high correlation with the chroma indicators; research result stated that the color of the sediment had an very important impact on the water surface spectral, especially in Red-Green chroma a*. Also, the research determined the sensitive spectrum bands of the Red-Green chroma a*, which were 636-617 nm, 716-747 nm and 770-792 nm.

  4. Welcome to Surface Topography: Metrology and Properties

    NASA Astrophysics Data System (ADS)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this field yields across an array of applications in the modern world. To this end, we have gathered leading experts from across our scope to form our inaugural editorial board. Their broad subject knowledge and experience will help to guide the journal and ensure we meet our goal of high-quality research, published quickly, across the breadth of the subject. We are committed to providing a rapid and yet rigorous peer review process. As a launch promotion, all STMP's published content will be free to readers during 2013. The editorial board and I hope you will be as excited by the possibilities of this new journal as we are, and that you will choose to both submit your research and read STMP in the months and years to come. We look forward to reading your papers!

  5. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  6. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  7. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  8. Growth and surface topography of WSe{sub 2} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  9. The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darkins, Robert; Sushko, Maria L.; Liu, Jun

    2015-02-11

    Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(100)- and Si(111)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(100) but hemispherical micelles on Si(111). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces. This reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.

  10. Techniques for improving material fidelity and contrast consistency in secondary electron mode helium ion microscope (HIM) imaging

    NASA Astrophysics Data System (ADS)

    Thompson, William; Stern, Lewis; Ferranti, Dave; Huynh, Chuong; Scipioni, Larry; Notte, John; Sanford, Colin

    2010-06-01

    Recent helium ion microscope (HIM) imaging studies have shown the strong sensitivity of HIM induced secondary electron (SE) yields [1] to the sample physical and chemical properties and to its surface topography. This SE yield sensitivity is due to the low recoil energy of the HIM initiated electrons and their resulting short mean free path. Additionally, a material's SE escape probability is modulated by changes in the material's work function and surface potential. Due to the escape electrons' roughly 2eV mean energy and their nanometer range mean free path, HIM SE mode image contrast has significant material and surface sensitivity. The latest generation of HIM has a 0.35 nanometer resolution specification and is equipped with a plasma cleaning process to mitigate the effects of hydrocarbon contamination. However, for surfaces that may have native oxide chemistries influencing the secondary electron yield, a new process of low energy, shallow angle argon sputtering, was evaluated. The intent of this work was to study the effect of removing pre-existing native oxides and any in-situ deposited surface contaminants. We will introduce the sputter yield predictions of two established computer models and the sputter yield and sample modification forecasts of the molecular dynamics program, Kalypso. We will review the experimental technique applied to copper samples and show the copper grain contrast improvement that resulted when argon cleaned samples were imaged in HIM SE mode.

  11. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  12. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  13. Space Weathering of Silicates Simulated by Successive Laser Irradiation: in Situ Reflectance Measurements of Fo90, Fo99+, and SiO2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2016-01-01

    Pulsed-laser irradiation causes the visible-near-infrared spectral slope of olivine (Fo90 and Fo99+) and SiO2 to increase (redden), while the olivine samples darken and the SiO2 samples brighten slightly. XPS analysis shows that irradiation of Fo90 produces metallic Fe. Analytical SEM and TEM measurements confirm that reddening in the Fo90 olivine samples correlates with the production of "nanophase" metallic Fe (npFe0) grains, 20-50 nm in size. The reddening observed in the SiO2 sample is consistent with the formation of SiO or other SiOx species that absorb in the visible. The weak spectral brightening induced by laser irradiation of SiO2 is consistent with a change in surface topography of the sample. The darkening observed in the olivine samples is likely caused by the formation of larger npFe0 particles, such as the 100-400 nm diameter npFe0 identified during our TEM analysis of Fo90 samples. The Fo90 reflectance spectra are qualitatively similar to those in previous experiments suggesting that in all cases formation of npFe0 is causing the spectral alteration. Finally, we find that the accumulation of successive laser pulses cause continued sample darkening in the Vis-NIR, which suggests that repeated surface impacts are an efficient way to darken airless body surfaces.

  14. Calibration of z-axis linearity for arbitrary optical topography measuring instruments

    NASA Astrophysics Data System (ADS)

    Eifler, Matthias; Seewig, Jörg; Hering, Julian; von Freymann, Georg

    2015-05-01

    The calibration of the height axis of optical topography measurement instruments is essential for reliable topography measurements. A state of the art technology for the calibration of the linearity and amplification of the z-axis is the use of step height artefacts. However, a proper calibration requires numerous step heights at different positions within the measurement range. The procedure is extensive and uses artificial surface structures that are not related to real measurement tasks. Concerning these limitations, approaches should to be developed that work for arbitrary topography measurement devices and require little effort. Hence, we propose calibration artefacts which are based on the 3D-Abbott-Curve and image desired surface characteristics. Further, real geometric structures are used as an initial point of the calibration artefact. Based on these considerations, an algorithm is introduced which transforms an arbitrary measured surface into a measurement artefact for the z-axis linearity. The method works both for profiles and topographies. For considering effects of manufacturing, measuring, and evaluation an iterative approach is chosen. The mathematical impact of these processes can be calculated with morphological signal processing. The artefact is manufactured with 3D laser lithography and characterized with different optical measurement devices. An introduced calibration routine can calibrate the entire z-axis-range within one measurement and minimizes the required effort. With the results it is possible to locate potential linearity deviations and to adjust the z-axis. Results of different optical measurement principles are compared in order to evaluate the capabilities of the new artefact.

  15. EAARL-B coastal topography: eastern New Jersey, Hurricane Sandy, 2012: first surface

    USGS Publications Warehouse

    Wright, C. Wayne; Fredericks, Xan; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for a portion of the New Jersey coastline beachface, acquired pre-Hurricane Sandy on October 26, and post-Hurricane Sandy on November 1 and November 5, 2012. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Web site.

  16. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations.

  17. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    NASA Astrophysics Data System (ADS)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  18. Relevance of detail in basal topography for basal slipperiness inversions: a case study on Pine Island Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2018-04-01

    Given high-resolution satellite-derived surface elevation and velocity data, ice-sheet models generally estimate mechanical basal boundary conditions using surface-to-bed inversion methods. In this work, we address the sensitivity of results from inversion methods to the accuracy of the bed elevation data on Pine Island Glacier. We show that misfit between observations and model output is reduced when high-resolution bed topography is used in the inverse model. By looking at results with a range of detail included in the bed elevation, we consider the separation of basal drag due to the bed topography (form drag) and that due to inherent bed properties (skin drag). The mean value of basal shear stress is reduced when more detailed topography is included in the model. This suggests that without a fully resolved bed a significant amount of the basal shear stress recovered from inversion methods may be due to the unresolved bed topography. However, the spatial structure of the retrieved fields is robust as the bed accuracy is varied; the fields are instead sensitive to the degree of regularisation applied to the inversion. While the implications for the future temporal evolution of PIG are not quantified here directly, our work raises the possibility that skin drag may be overestimated in the current generation of numerical ice-sheet models of this area. These shortcomings could be overcome by inverting simultaneously for both bed topography and basal slipperiness.

  19. Evaluation of methods for characterizing surface topography of models for high Reynolds number wind-tunnels

    NASA Technical Reports Server (NTRS)

    Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.

    1982-01-01

    Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.

  20. Quantitating Human Optic Disc Topography

    NASA Astrophysics Data System (ADS)

    Graebel, William P.; Cohan, Bruce E.; Pearch, Andrew C.

    1980-07-01

    A method is presented for quantitatively expressing the topography of the human optic disc, applicable in a clinical setting to the diagnosis and management of glaucoma. Pho-tographs of the disc illuminated by a pattern of fine, high contrast parallel lines are digitized. From the measured deviation of the lines as they traverse the disc surface, disc topography is calculated, using the principles of optical sectioning. The quantitators applied to express this topography have the the following advantages : sensitivity to disc shape; objectivity; going beyond the limits of cup-disc ratio estimates and volume calculations; perfect generality in a mathematical sense; an inherent scheme for determining a non-subjective reference frame to compare different discs or the same disc over time.

  1. A steep peripheral ring in irregular cornea topography, real or an instrument error?

    PubMed

    Galindo-Ferreiro, Alicia; Galvez-Ruiz, Alberto; Schellini, Silvana A; Galindo-Alonso, Julio

    2016-01-01

    To demonstrate that the steep peripheral ring (red zone) on corneal topography after myopic laser in situ keratomileusis (LASIK) could possibly due to instrument error and not always to a real increase in corneal curvature. A spherical model for the corneal surface and modifying topography software was used to analyze the cause of an error due to instrument design. This study involved modification of the software of a commercially available topographer. A small modification of the topography image results in a red zone on the corneal topography color map. Corneal modeling indicates that the red zone could be an artifact due to an instrument-induced error. The steep curvature changes after LASIK, signified by the red zone, could be also an error due to the plotting algorithms of the corneal topographer, besides a steep curvature change.

  2. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.

  3. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    PubMed

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The effect of aluminium nanocoating and water pH value on the wettability behavior of an aluminium surface

    NASA Astrophysics Data System (ADS)

    Ali, Naser; Teixeira, Joao A.; Addali, Abdulmajid; Al-Zubi, Feras; Shaban, Ehab; Behbehani, Ismail

    2018-06-01

    Experimental investigation was performed to highlight the influence of ionic bounding and surface roughness effects on the surface wettability. Nanocoating technique via e-beam physical vapor deposition process was used to fabricate aluminium (Al) film of 50, 100, and 150 nm on the surface of an Al substrate. Microstructures of the samples before and after deposition were observed using an atomic force microscopy. A goniometer device was later on used to examine the influence of surface topography on deionised water of pH 4, 7 and 9 droplets at a temperature ranging from 10 °C to 60 °C through their contact angles with the substrate surface, for both coated and uncoated samples. It was found that, although the coated layer has reduced the mean surface roughness of the sample from 10.7 nm to 4.23 nm, by filling part of the microstructure gaps with Al nanoparticles, the wettability is believed to be effected by the ionic bounds between the surface and the free anions in the fluid. As the deionised water of pH 4, and 9 gave an increase in the average contact angles with the increase of the coated layer thickness. On the other hand, the deionised water of pH 7 has showed a negative relation with the film thickness, where the contact angle reduced as the thickness of the coated layer was increased. The results from the aforementioned approach had showed that nanocoating can endorse the hydrophobicity (unwitting) nature of the surface when associated with free ions hosted by the liquid.

  5. Surface characterization of graphene based materials

    NASA Astrophysics Data System (ADS)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  6. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  7. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  8. Regulation of osteogenesis by micro/nano hierarchical titanium surfaces through a Rock-Wnt5a feedback loop.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Liu, Junjie; Hu, Yan; Ran, Qichun; Mu, Caiyun; Cai, Kaiyong

    2018-05-28

    Titanium substrates with micro/nano hierarchical features could positively mediate the osteogenesis of a titanium implant; nevertheless, the underlying molecular mechanism needs to be further revealed. In this work, we fabricated a micro/nano hierarchically structured Ti (MNT) sample and attempted to evaluate its topography-mediated biological effects and potential molecular mechanisms in vitro. The results proved that MNT could not only affect cell morphology and osteogenic differentiation, but also regulate ROCK activity cell biological functions of osteoblasts involved in ROCK activation, β-catenin accumulation, and high-Wnt5a expression in respect to topographical features. Moreover, blockade of ROCK activation resulted in significant inhibition of cell differentiation and Wnt5a expression. Furthermore, the anti-Wnt5a significantly down-regulated ROCK activity. In short, these results indicate the important role of ROCK-Wnt5a feedback loop in regulating cell differentiation by topographies. Copyright © 2018. Published by Elsevier B.V.

  9. Modelling of surface roughness effects on impurity erosion and deposition in TEXTOR with a code package SURO/ERO/SDPIC

    NASA Astrophysics Data System (ADS)

    Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen

    2014-12-01

    The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.

  10. SPCOLA: Combining laser altimetry and stereophotoclinometery to obtain topography for Bennu

    NASA Astrophysics Data System (ADS)

    Roberts, J. H.; Barnouin, O. S.; Palmer, E. E.; Gaskell, R. W.; Weirich, J. R.; Daly, M. G.; Seabrook, J.; Nair, H.; Espiritu, R. C.; Lauretta, D. S.; Perry, M. E.

    2017-12-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will return pristine samples of carbonaceous material from the surface of asteroid (101955) Bennu. Two instruments on OSIRIS-REx enable independent determination of topography: the OSIRIS-REx Laser Altimeter (OLA) and the OSIRIS-REx Camera Suite (OCAMS). OLA is a scanning lidar that ranges to the surface, returning altimetry information. OCAMS returns imaging data that are used to perform stereophotoclinometery (SPC) on these images to construct slope and albedo "maplets", small patches of the surface with central control points. Here we present a technique to combine topographic maplets generated using SPC with a compatible set of "mapolas" generated from OLA data. This "SPCOLA" process leverages the strengths of both while mitigating their respective weaknesses. A key advantage of SPC is that it allows a solution of the topography at accuracies similar to those of the best images used. SPC can make use of images at a wide range of viewing geometries and resolutions to simultaneously solve for slope and albedo. SPC also provides precise control point location from large stereo separation over multiple trajectories and can fill in gaps where point-based lidar data may not exist. Key strengths of lidar ranging include the ability to operate under any illumination conditions (including in the dark), insensitivity to albedo variations, robustness over large changes in slope, and provision of an absolute measurement of the range constraint to the surface. This range can be used to derive a control network for SPC, to improve the knowledge of the spacecraft position, to provide an independent scale for imagery and spectral data, and to provide constraints for any gravity solution obtained with radio science. Our goal in combining OLA data sets with image-based data is to generate Digital Elevation Models (DEMs) with higher accuracy than those using either data set alone. However, this combination requires careful coordination to ensure compatible formats, and some care in appropriately weighting them to achieve meaningful improvement of the DEMs.

  11. Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use.

    PubMed

    Fais, Laiza M G; Fernandes-Filho, Romeu B; Pereira-da-Silva, Marcelo A; Vaz, Luis G; Adabo, Gelson L

    2012-04-01

    To conduct a controlled study contrasting titanium surface topography after procedures that simulated 10 years of brushing using toothpastes with or without fluoride. Commercially pure titanium (cp Ti) and Ti-6Al-4V disks (6 mm Ø×4 mm) were mirror-polished and treated according to 6 groups (n=6) as a function of immersion (I) or brushing (B) using deionised water (W), fluoride-free toothpaste (T) and fluoride toothpaste (FT). Surface topography was evaluated at baseline (pretreatment) and post-treatment, using atomic force microscope in order to obtain three-dimensional images and mean roughness. Specimens submitted to immersion were submerged in the vehicles without brushing. For brushed specimens, procedures were conducted using a linear brushing machine with a soft-bristled toothbrush. Immersion and brushing were performed for 244 h. IFT and BFT samples were analysed under scanning electron microscope with Energy-Dispersive X-ray Spectroscopy (EDS). Pre and post-treatment values were compared using the paired Student T-test (α=.05). Intergroup comparisons were conducted using one-way ANOVA with Tukey post-test (α=.05). cp Ti mean roughness (in nanometers) comparing pre and post-treatment were: IW, 2.29±0.55/2.33±0.17; IT, 2.24±0.46/2.02±0.38; IFT, 2.22±0.53/1.95±0.36; BW, 2.22±0.42/3.76±0.45; BT, 2.27±0.55/16.05±3.25; BFT, 2.27±0.51/22.39±5.07. Mean roughness (in nanometers) measured in Ti-6Al-4V disks (pre/post-treatment) were: IW, 1.79±0.25/2.01±0.25; IT, 1.61±0.13/1.74±0.19; IFT, 1.92±0.39/2.29±0.51; BW, 2.00±0.71/2.05±0.43; BT, 2.37±0.86/11.17±2.29; BFT, 1.83±0.50/15.73±1.78. No significant differences were seen after immersions (p>.05). Brushing increased the roughness of cp Ti and of Ti-6Al-4V (p<.01); cp Ti had topographic changes after BW, BT and BFT treatments whilst Ti-6Al-4V was significantly different only after BT and BTF. EDS has not detected fluoride or sodium ions on metal surfaces. Exposure to toothpastes (immersion) does not affect titanium per se; their use during brushing affects titanium topography and roughness. The associated effects of toothpaste abrasives and fluorides seem to increase roughness on titanium brushed surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Validity of autorefractor based screening method for irregular astigmatism compared to the corneal topography- a cross sectional study.

    PubMed

    Galindo-Ferreiro, Alicia; De Miguel-Gutierrez, Julita; González-Sagrado, Manuel; Galvez-Ruiz, Alberto; Khandekar, Rajiv; Schellini, Silvana; Galindo-Alonso, Julio

    2017-01-01

    To present a method of screening for irregular astigmatism with an autorefractor and its determinants compared to corneal topography. This cross-sectional validity study was conducted in 2013 at an eye hospital in Spain. A tabletop autorefractor (test 1) was used to measure the refractive status of the anterior surface of the cornea at two corneal meridians of each eye. Then corneal topography (test 2) and Bogan's classification was used to group eyes into those with regular or no astigmatism (GRI) and irregular astigmatism (GRII). Test 1 provided a single absolute value for the greatest cylinder difference (Vr). The receiver operating characteristic (ROC) were plotted for the Vr values measured by test 1 for GRI and GRII eyes. On the basis a Vr value of 1.25 D as cut off, sensitivity, specificity were also calculated. The study sample was comprised of 260 eyes (135 patients). The prevalence of irregular astigmatism was 42% [95% confidence interval (CI): 36, 48]. Based on test 2, there were 151 eyes in GRI and 109 eyes in GRII. The median Vr was 0.75 D (25% quartile, 0.5 D) for GRI and 1.75 D (25% quartile, 1.25 D) for GRII. The area under curve was 0.171 for GRI and 0.83 for GRII. The sensitivity of test I was 78.1% and the specificity was 76.1%. A conventional autorefractor can be effective as a first level screening method to detect irregular corneal astigmatism in places where corneal topography facilities are not available.

  13. Fibrinogen adsorption on blocked surface of albumin.

    PubMed

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  15. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing.

    PubMed

    de Melo, Fabiana; do Nascimento, Cássio; Souza, Diogo Onofre; de Albuquerque, Rubens F

    2017-06-01

    To characterize the profile of microbial communities colonizing titanium implants with different surface treatments after exposure to the oral environment at the genus or higher taxonomic level. Sixteen titanium disks, machined or sandblasted large-grit and acid-etched (SLA), were mounted on removable intraoral splints worn by four patients. After 24 h of intraoral exposure, biofilm samples were collected from disks and supra/subgingival teeth areas. The 16S rDNA genes from each sample were amplified, sequenced with the Miseq Illumina instrument and analyzed. A total of 29 genera and seven more inclusive taxa, representing the phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria and candidate division TM7 were identified in both titanium surfaces and teeth. No differences were found in relation to the operational taxonomic units (OTUs) and microbial diversity, assessed by Chao 1 and Shannon indices, when comparing SLA and machined titanium surfaces. Machined and SLA surfaces are colonized by similar numbers of prokaryotic OTUs after 24 h of exposure to the oral environment. Higher complexity of the titanium surface topography in the initial phase of biofilm maturation does not seem to significantly influence the colonizing microbiota. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

    NASA Astrophysics Data System (ADS)

    Mahmoodian, Reza; Annuar, N. Syahira M.; Faraji, Ghader; Bahar, Nadia Dayana; Razak, Bushroa Abd; Sparham, Mahdi

    2017-11-01

    This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

  17. Phosphorus adlayers on Platinum (110)

    NASA Astrophysics Data System (ADS)

    Heikkinen, Olli; Riihimäki, Ari; Sainio, Jani; Lahtinen, Jouko

    2017-10-01

    Platinum is a metal utilized in many applications. Its catalytic activity can be decreased due to chemical poisoning caused e.g. by phosphorus. To gain more understanding of its poisoning, we present a study of phosphorus adsorption on a platinum (110) single crystal surface. Using X-ray photoelectron spectroscopy, we have found that the adsorbate coverage saturates at around 3 monolayers. Annealing the phosphorus-covered platinum surface at 750 °C gives rise to three different ordered adlayer structures, with symmetries of 2 × 3, 11 × 4 and √{ 2} × 1 , from the lowest to the highest coverage, detected with low-energy electron diffraction. We have studied the sample topography with scanning tunnelling microscopy. We also present a tentative model for the observed structures and their evolution.

  18. 3D interferometric microscope: color visualization of engineered surfaces for industrial applications

    NASA Astrophysics Data System (ADS)

    Schmit, Joanna; Novak, Matt; Bui, Son

    2015-09-01

    3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.

  19. Wear Behaviours and Oxidation Effects on Different UHMWPE Acetabular Cups Using a Hip Joint Simulator

    PubMed Central

    Jaber, Sami Abdel; Merola, Massimiliano

    2018-01-01

    Given the long-term problem of polyethylene wear, medical interest in the new improved cross-linked polyethylene (XLPE), with or without the adding of vitamin E, has risen. The main aim of this study is to gain further insights into the mutual effects of radiation cross-linking and addition of vitamin E on the wear performance of ultra-high-molecular-weight polyethylene (UHMWPE). We tested four different batches of polyethylene (namely, a standard one, a vitamin E-stabilized, and two cross-linked) in a hip joint simulator for five million cycles where bovine calf serum was used as lubricant. The acetabular cups were then analyzed using a confocal profilometer to characterize the surface topography. Moreover; the cups were analyzed by using Fourier Transformed Infrared Spectroscopy and Differential Scanning Calorimetry in order to assess the chemical characteristics of the pristine materials. Comparing the different cups’ configuration, mass loss was found to be higher for standard polyethylene than for the other combinations. Mass loss negatively correlated to the cross-link density of the polyethylenes. None of the tested formulations showed evidence of oxidative degradation. We found no correlation between roughness parameters and wear. Furthermore, we found significantly differences in the wear behavior of all the acetabular cups. XLPEs exhibited lower weight loss, which has potential for reduced wear and decreased osteolysis. However, surface topography revealed smoother surfaces of the standard and vitamin E stabilized polyethylene than on the cross-linked samples. This observation suggests incipient crack generations on the rough and scratched surfaces of the cross-linked polyethylene liners. PMID:29547536

  20. An Efficient Approach to Modeling the Topographic Control of Surface Hydrology for Regional and Global Climate Modeling.

    NASA Astrophysics Data System (ADS)

    Stieglitz, Marc; Rind, David; Famiglietti, James; Rosenzweig, Cynthia

    1997-01-01

    The current generation of land-surface models used in GCMs view the soil column as the fundamental hydrologic unit. While this may be effective in simulating such processes as the evolution of ground temperatures and the growth/ablation of a snowpack at the soil plot scale, it effectively ignores the role topography plays in the development of soil moisture heterogeneity and the subsequent impacts of this soil moisture heterogeneity on watershed evapotranspiration and the partitioning of surface fluxes. This view also ignores the role topography plays in the timing of discharge and the partitioning of discharge into surface runoff and baseflow. In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generation of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today's regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture.

Top