Sample records for samples collected upstream

  1. Occurrence of emerging contaminants in water and bed material in the Missouri River, North Dakota, 2007

    USGS Publications Warehouse

    Damschen, William C.; Lundgren, Robert F.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Standing Rock Sioux Tribe, conducted a reconnaissance study to determine the occurrence of emerging contaminants in water and bed sediment within the Missouri River upstream and downstream from the cities of Bismarck and Mandan, North Dakota, and upstream from the city of Fort Yates, North Dakota, during September-October 2007. At each site, water samples were collected twice and bed-sediment samples were collected once. Samples were analyzed for more than 200 emerging contaminants grouped into four compound classes - wastewater compounds, human-health pharmaceutical compounds, hormones, and antibiotics. Only sulfamethoxazole, an antibiotic, was present at a concentration higher than minimum detection limits. It was detected in a water sample collected downstream from the cities of Bismarck and Mandan, and in bed-sediment samples collected at the two sites downstream from the cities of Bismarck and Mandan and upstream from Fort Yates. Sulfamethoxazole is an antibiotic commonly used for treating bacterial infections in humans and animals.

  2. Occurrence and concentrations of selected trace elements and halogenated organic compounds in stream sediments and potential sources of polychlorinated biphenyls, Leon Creek, San Antonio, Texas, 2012–14

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2016-06-23

    Sediment samples collected from Leon Creek by the USGS during 2007–9 and 2012–14 at a total of eight sites following identical field and laboratory methods were evaluated to determine if potential PCB sources could be identified. Total PCB concentrations in the sediment samples collected upstream from the Joint Base site were low or nondetections; while concentrations in the samples collected on and downstream from the Joint Base site were greater. Congeners 180 and 138 constituted the greatest proportion of the PCB mixture in samples collected upstream from, on, and downstream from the Joint Base site. Upstream from the Joint Base site, congeners 180 and 138 constituted 50 percent and 35 percent respectively of the PCBs congeners found in the samples. On and downstream from the Joint Base site, congeners 180 and 138 constituted 80 percent and 13 percent respectively of the PCBs congeners found in the samples. Chi-square (C2) tests also indicate that samples collected from the Loop 410 site were statistically different from samples collected from the Joint Base site and sites downstream. The PCB congener pattern in the Leon Creek samples is most like the congener mixture in Aroclor 1260, which is chemically similar to the PCBs detected in the fish samples that resulted in the 2003 fish consumption advisory.

  3. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  4. Urban contributions of glyphosate and its degradate AMPA to streams in the United States

    USGS Publications Warehouse

    Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.

    2006-01-01

    Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).

  5. Effects of Hardened Low-Water Crossings on Periphyton and Water Quality in Selected Streams at the Fort Polk Military Reservation, Louisiana, 1998-99 and 2003-04

    USGS Publications Warehouse

    Bryan, Barbara W.; Bryan, C. Frederick; Lovelace, John K.; Tollett, Roland W.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS), at the request of the U.S. Army Joint Readiness Training Center and Fort Polk, began a follow-up study to determine whether installation and modification of hardened low-water crossings had short-term (less than 1 year) or long-term (greater than 1 year) effects on periphyton or water quality in five streams at the Fort Polk Military Reservation, Louisiana. Periphyton data were statistically analyzed for possible differences between samples collected at upstream and downstream sites and before and after low-water crossings were modified on three streams, Big Brushy Creek, Tributary to East Fork of Sixmile Creek, and Tributary to Birds Creek, during 2003?04. Periphyton data also were analyzed for possible differences between samples collected at upstream and downstream sites on two streams, Tributary to Big Brushy Creek and Little Brushy Creek, during 1998?99 and 2003. Variations in periphyton communities could not be conclusively attributed to the modifications. Most of the significant changes in percent frequency of occurrence and average cell density of the 10 most frequently occurring periphyton taxa were increases at downstream sites after the hardened low-water crossing installations or modifications. However, these changes in the periphyton community are not necessarily deleterious to the community structure. Water-quality data collected from upstream and downstream sites on the five streams during 2003?04 were analyzed for possible differences caused by the hardened crossings. Generally, average water-quality values and concentrations were similar at upstream and downstream sites. When average water-quality values or concentrations changed significantly, they almost always changed significantly at both the upstream and downstream sites. It is probable that observed variations in water quality at both upstream and downstream sites are related to differences in rainfall and streamflow during the sample collection periods rather than an effect of the hardened low-water crossing installations or modifications, but additional study is needed.

  6. Effects of Highway Road Salting on the Water Quality of Selected Streams in Chittenden County, Vermont, November 2005-2007

    USGS Publications Warehouse

    Denner, Jon C.; Clark, Stewart F.; Smith, Thor E.; Medalie, Laura

    2010-01-01

    A study of road-deicing chloride (Cl) concentrations and loads was conducted at three streams in Chittenden County, VT, from November 2005 to 2007. This study was done by the U.S. Geological Survey, in cooperation with the Vermont Agency of Transportation. The streams, Alder Brook, Allen Brook, and Mill Brook, were selected to represent different land uses in the upstream watershed, different road types and densities, and different geometric patterns of the roadway draining to the receiving stream to assess the relative contribution of and differences in state road-salt applications to stream Cl concentrations and loads. Water-quality samples were collected and specific conductance was measured continuously at paired stations upstream and downstream from State highways and related to Cl concentrations to assist in determining the effects of road-salting operations during winter maintenance on the levels of Cl in the streams. Mean concentrations of Cl ranged from 8.2 to 72 mg/L (milligrams per liter) in the water-quality samples collected at sampling stations upstream from State highway bridges and from 7.9 to 80 mg/L in those collected at sampling stations downstream of highway bridges. Mean Cl loads ranged from 1,100 to 4,090 lb/d (pounds per day) at upstream stations and from 1,110 to 4,200 lb/d at downstream stations. Estimated mean annual Cl loads ranged from 402,000 to 1,490,000 lb/yr (pounds per year) at upstream stations and from 405,000 to 1,530,000 lb/yr at downstream stations. Mean Cl concentrations in samples collected at the three paired stations were lowest at Mill Brook at VT 117 near Essex Junction, VT (7.9 mg/L) and highest at Allen Brook at VT 2A near Essex Junction, VT (80.7 mg/L). None of the monitored Cl concentrations in the water-quality samples collected at the three paired sampling stations exceeded either of the U.S. Environmental Protection Agency's (USEPA) recommended chronic and acute Cl toxicity criteria of 230 and 860 mg/L, respectively. A fourth stream site, a small tributary draining to Alder Brook between the upstream and downstream stations, was monitored from December 2006 to November 2007. This tributary collected runoff from a state highway and an interchange before flowing through a wetlands retention basin. The mean Cl concentration in water-quality samples collected at the tributary was 449 mg/L. The USEPA recommended chronic toxicity criterion of 230 mg/L was exceeded about 65 percent of the monitoring period. The USEPA recommended acute toxicity criterion of 860 mg/L was not exceeded. Estimated Cl loads below the State highway bridges exceeded loads above the bridges at all three paired stations during both years of the study. The differences in the annual loads between the upstream and downstream stations were 0.7, 3.0 and 14 percent at Mill, Allen, and Alder Brooks, respectively. Almost all of the difference (92 percent) at Alder Brook was due to the tributary. Cl applied by the State of Vermont for deicing purposes represented less than 20 percent of the annual estimated Cl load in all 3 streams below the state highways. The highest monthly Cl loads during the first year of the study were observed in January 2006 at all three stream stations because of an early snowmelt event. The highest monthly Cl loads during the second year of the study were observed in April 2007 at all three streams during spring snowmelt and were followed by decrease in Cl loading through the summer. Generally, the relation of Cl loads to runoff was similar at all three streams. In July and October 2007, loads increased slightly with an increase in runoff, indicating that Cl in the soils and groundwater may be contributing to the Cl levels during the summer and fall, well after the road-salting season. Cl loads in all three streams appear to be due primarily to sources in the watersheds upstream of the state highway bridge where road salt was applied and (or) Cl retained in soils and streambed

  7. Streamflow and Water-Quality Characteristics for Wind Cave National Park, South Dakota, 2002-03

    USGS Publications Warehouse

    Heakin, Allen J.

    2004-01-01

    A 2-year study of streamflow and water-quality characteristics in Wind Cave National Park was performed by the U.S. Geological Survey in cooperation with the National Park Service. During this study, streamflow and water-quality data were collected for three of the park's perennial streams (Cold Spring, Beaver, and Highland Creeks) from January 2002 through November 2003. The potential influence of parking lot runoff on cave drip within Wind Cave also was investigated by collecting and analyzing several time-dependent samples from a drainage culvert downstream from the parking lot and from Upper Minnehaha Falls inside the cave following a series of simulated runoff events. The primary focus of the report is on data collected during the 2-year study from January 2002 to November 2003; however, data collected previously also are summarized. Losing reaches occur on both Beaver and Highland Creeks as these streams flow across outcrops of bedrock aquifers within the park. No streamflow losses occur along Cold Spring Creek because its confluence with Beaver Creek is located upstream from the outcrop of the Madison aquifer, where most streamflow losses occur. Physical properties, major ions, trace elements, nutrients, bacteria, benthic macroinvertebrates, organic (wastewater) compounds, bottom sediment, and suspended sediment are summarized for samples collected from 2 sites on Cold Spring Creek, 2 sites on Beaver Creek, and 1 site on Highland Creek. None of the constituent concentrations for any of the samples collected during 2002-03 exceeded any of the U.S. Environmental Protection Agency drinking-water standards, with the exception of the Secondary Maximum Contaminant Level for pH, which was exceeded in numerous samples from Beaver Creek and Highland Creek. Additionally, the pH values in several of these same samples also exceeded beneficial-use criteria for coldwater permanent fisheries and coldwater marginal fisheries. Water temperature exceeded the coldwater permanent fisheries criterion in numerous samples from all three streams. Two samples from Highland Creek also exceeded the coldwater marginal fisheries criterion for water temperature. Mean concentrations of ammonia, orthophosphate, and phosphorous were higher for the upstream site on Beaver Creek than for other water-quality sampling sites. Concentrations of E. coli, fecal coliform, and total coliform bacteria also were higher at the upstream site on Beaver Creek than for any other site. Samples for the analysis of benthic macroinvertebrates were collected from one site on each of the three streams during July 2002 and May 2003. The benthic macroinvertebrate data showed that Beaver Creek had lower species diversity and a higher percentage of tolerant species than the other two streams during 2002, but just the opposite was found during 2003. However, examination of the complete data set indicates that the quality of water at the upstream site was generally poorer than the quality of water at the downstream site. Furthermore, the quality of water at the upstream site on Beaver Creek is somewhat degraded when compared to the quality of water from Highland and Cold Spring Creeks, indicating that anthropogenic activities outside the park probably are affecting the quality of water in Beaver Creek. Samples for the analysis of wastewater compounds were collected at least twice from four of the five water-quality sampling sites. Bromoform, phenol, caffeine, and cholesterol were detected in samples from Cold Spring Creek, but only phenol was detected at concentrations greater than the minimum reporting level. Concentrations of several wastewater compounds were estimated in samples collected from sites on Beaver Creek, including phenol, para-cresol, and para-nonylphenol-total. Phenol was detected at both sites on Beaver Creek at concentrations greater than the minimum reporting level. Bromoform; para-cresol; ethanol,2-butoxy-phosphate; and cholesterol were detected

  8. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    PubMed

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  9. Contaminants in ospreys from the Pacific Northwest: I. Trends and Patterns in polychlorinated dibenzo-p-dioxins and -dibenzofurans in eggs and plasma

    USGS Publications Warehouse

    Elliott, J.E.; Machmer, M.M.; Henny, Charles J.; Wilson, L.K.; Norstrom, R.J.

    1998-01-01

    Osprey (Pandion haliaetus) eggs were collected from 1991 to 1997 at nests (na??=a??121) upstream and downstream of bleached kraft pulp mills and at reference sites in the Fraser and Columbia River drainage systems of British Columbia, Washington, and Oregon. Blood samples were collected from nestling ospreys during the 1992 breeding season on the Thompson River. Samples were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs) and -dibenzofurans (PCDFs). Mean concentrations of 2,3,7,8-TCDD were significantly higher in eggs collected in 1991 at downstream compared to upstream nests near pulp mills at Kamloops and Castlegar, British Columbia. There were no significant temporal trends in 2,3,7,8-TCDD, -TCDF or other measured compounds at a sample of nests monitored between 1991 and 1994 downstream of the Castlegar pulp mill, despite changes in bleaching technology (CIO2 substitution). However, by 1997 concentrations of 2,3,7,8-TCDD and -TCDF were significantly lower than previous years in nests sampled downstream at both Castlegar and Kamloops. An unusual pattern of higher chlorinated PCDDs and PCDFs was found in many of the osprey eggs collected in this study, and considerable individual variation in the pattern existed among eggs from the same site. For example, eggs from four different nests at one study area (Quesnel) on the Fraser River had concentrations of 1,2,3,4,6,7,8-HpCDD ranging from <1 to 1,100 ng/kg and OCDD from <1 to 7,000 ng/kg wet weight. Higher mean concentrations of HpCDD and OCDD were found in eggs from the Thompson River, a tributary of the Fraser, compared to the Columbia River, and concentrations were generally higher at nests upstream of pulp mills. In plasma samples, 1,2,3,4,6,7,8-HpCDD and OCDD were the main compounds detected, with no significant differences measured between samples upstream versus downstream or earlier versus later in the breeding season. Use of chlorophenolic wood preservatives by lumber processors was considered the main source of higher chlorinated PCDD/Fs throughout the systems, based on patterns of trace PCDFs in eggs and significant correlations between egg concentrations of pentachlorophenol and both HpCDD (ra??=a??0.891, pa??

  10. Contaminants in ospreys from the Pacific Northwest: I. Trends and patterns in polychlorinated dibenzo-p-dioxins and -dibenzofurans in eggs and plasma.

    PubMed

    Elliott, J E; Machmer, M M; Henny, C J; Wilson, L K; Norstrom, R J

    1998-11-01

    Osprey (Pandion haliaetus) eggs were collected from 1991 to 1997 at nests (n = 121) upstream and downstream of bleached kraft pulp mills and at reference sites in the Fraser and Columbia River drainage systems of British Columbia, Washington, and Oregon. Blood samples were collected from nestling ospreys during the 1992 breeding season on the Thompson River. Samples were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs) and -dibenzofurans (PCDFs). Mean concentrations of 2,3,7,8-TCDD were significantly higher in eggs collected in 1991 at downstream compared to upstream nests near pulp mills at Kamloops and Castlegar, British Columbia. There were no significant temporal trends in 2,3,7,8-TCDD, -TCDF or other measured compounds at a sample of nests monitored between 1991 and 1994 downstream of the Castlegar pulp mill, despite changes in bleaching technology (CIO2 substitution). However, by 1997 concentrations of 2, 3,7,8-TCDD and -TCDF were significantly lower than previous years in nests sampled downstream at both Castlegar and Kamloops. An unusual pattern of higher chlorinated PCDDs and PCDFs was found in many of the osprey eggs collected in this study, and considerable individual variation in the pattern existed among eggs from the same site. For example, eggs from four different nests at one study area (Quesnel) on the Fraser River had concentrations of 1,2,3,4,6,7,8-HpCDD ranging from <1 to 1,100 ng/kg and OCDD from <1 to 7,000 ng/kg wet weight. Higher mean concentrations of HpCDD and OCDD were found in eggs from the Thompson River, a tributary of the Fraser, compared to the Columbia River, and concentrations were generally higher at nests upstream of pulp mills. In plasma samples, 1,2,3,4,6,7,8-HpCDD and OCDD were the main compounds detected, with no significant differences measured between samples upstream versus downstream or earlier versus later in the breeding season. Use of chlorophenolic wood preservatives by lumber processors was considered the main source of higher chlorinated PCDD/Fs throughout the systems, based on patterns of trace PCDFs in eggs and significant correlations between egg concentrations of pentachlorophenol and both HpCDD (r = 0.891, p < 0.01) and OCDD (r = 0.870, p < 0.01).

  11. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    USGS Publications Warehouse

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-value<0.001), where concentrations in 43 samples ranged from 62 to 240 milligrams per liter, compared to the downstream site where concentrations in 33 samples ranged from 77 to 141 milligrams per liter. Major-ion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National Forest and the downstream sites near the Snake River; however, variations in the major ions and dissolved solids existed between basins. Variations probably result from differences in geology between the tributary basins. Concentrations of dissolved ammonia, nitrite, and nitrate in all samples collected from the Snake River and the five eastern tributaries were less than water-quality criteria for surface waters in Wyoming. Concentrations of total nitrogen and total phosphorus in samples from the Snake River and the tributaries generally were less than median concentrations determined for undeveloped streams in the United States; however, concentrations in some samples did exceed ambient total-nitrogen and total-phosphorus criteria for forested mountain streams in the Middle Rockies ecoregion recommended by the U.S. Environmental Protection Agency to address cultural eutrophication. Sources for the excess nitrogen and phosphorus probably are natural because these basins have little development and cultivation. Concentrations of trace metals and pesticides were low and less than water-quality criteria for surface waters in Wyoming in samples collected from the Snake River and the five eastern tributaries. Atrazine, dieldrin, EPTC, or tebuthiuron were detected in estimated concentrations of 0.003 microgram per liter or less in 5 of 27 samples collected from the Snake River. An estimated concentration of 0.008 microgram per liter of metolachlor was detected in one sample from the Buffalo Fork. The estimated concentrations were less than the reporting levels for the pesticide analytical method. Suspended-sediment concentrations in 43 samples from the upstream site on the Snake River ranged from 1 to 604 milligrams per liter and were similar to suspended-sediment concentrations in 33 samples from the downstream site, which ranged from 1 to 648 milligrams per liter. Suspended-sediment concentrations in 38 samples collected from the tributary streams ranged from 1 t

  12. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions

    USGS Publications Warehouse

    Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

    2004-01-01

    During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.

  13. Effects of backpacker use, pack stock trail use, and pack stock grazing on water-quality indicators, including nutrients, E. coli, hormones, and pharmaceuticals, in Yosemite National Park, USA

    USGS Publications Warehouse

    Forrester, Harrison; Clow, David W.; Roche, James W.; Heyvaert, Alan C.; Battaglin, William A.

    2017-01-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012–2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL−1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL−1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL−1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  14. Effects of Backpacker Use, Pack Stock Trail Use, and Pack Stock Grazing on Water-Quality Indicators, Including Nutrients, E. coli, Hormones, and Pharmaceuticals, in Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Forrester, Harrison; Clow, David; Roche, James; Heyvaert, Alan; Battaglin, William

    2017-09-01

    We investigated how visitor-use affects water quality in wilderness in Yosemite National Park. During the summers of 2012-2014, we collected and analyzed surface-water samples for water-quality indicators, including fecal indicator bacteria Escherichia coli, nutrients (nitrogen, phosphorus, carbon), suspended sediment concentration, pharmaceuticals, and hormones. Samples were collected upstream and downstream from different types of visitor use at weekly to biweekly intervals and during summer storms. We conducted a park-wide synoptic sampling campaign during summer 2014, and sampled upstream and downstream from meadows to evaluate the mitigating effect of meadows on water quality. At pack stock stream crossings, Escherichia coli concentrations were greater downstream from crossings than upstream (median downstream increase in Escherichia coli of three colony forming units 100 mL-1), with the greatest increases occurring during storms (median downstream increase in Escherichia coli of 32 CFU 100 mL-1). At backpacker use sites, hormones, and pharmaceuticals (e.g., insect repellent) were detected at downstream sites, and Escherichia coli concentrations were greater at downstream sites (median downstream increase in Escherichia coli of 1 CFU 100 mL-1). Differences in water quality downstream vs. upstream from meadows grazed by pack stock were not detectable for most water-quality indicators, however, Escherichia coli concentrations decreased downstream, suggesting entrapment and die-off of fecal indicator bacteria in meadows. Our results indicate that under current-use levels pack stock trail use and backpacker use are associated with detectable, but relatively minor, effects on water quality, which are most pronounced during storms.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, David A.

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 21, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross betamore » analyses, and the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference, are tabulated. All DER values were less than 3 and results are consistent with low (e.g., background) concentrations.« less

  16. Logistic model of nitrate in streams of the upper-midwestern United States

    USGS Publications Warehouse

    Mueller, D.K.; Ruddy, B.C.; Battaglin, W.A.

    1997-01-01

    Nitrate in surface water can have adverse effects on aquatic life and, in drinking-water supplies, can be a risk to human health. As part of a regional study, nitrates as N (NO3-N) was analyzed in water samples collected from streams throughout 10 Midwestern states during synoptic surveys in 1989, 1990, and 1994. Data from the period immediately following crop planting at 124 sites were analyzed during logistic regression to relate discrete categories of NO3-N concentrations to characteristics of the basins upstream from the sites. The NO3-N data were divided into three categories representing probable background concentrations (10 mg L-1). Nitrate-N concentrations were positively correlated to streamflow, upstream area planted in corn (Zea mays L.), and upstream N- fertilizers application rates. Elevated NO3-N concentrations were associated with poorly drained soils and were weakly correlated with population density. Nitrate-N and streamflow data collected during 1989 and 1990 were used to calibrate the model, and data collected during 1994 were used for verification. The model correctly estimated NO3-N concentration categories for 79% of the samples in the calibration data set and 60% of the samples in the verification data set. The model was used to indicate where NO3-N concentrations might be elevated or exceed the NO3-N MCL in streams throughout the study area. The potential for elevated NO3-N concentrations was predicted to be greatest for streams in Illinois, Indiana, Iowa, and western Ohio.

  17. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    PubMed

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. © 2014 John Wiley & Sons Ltd.

  18. Characterization of sediment transport upstream and downstream from Lake Emory on the Little Tennessee River near Franklin, North Carolina, 2014–15

    USGS Publications Warehouse

    Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.

    2017-09-06

    Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.

  19. Evaluation of water-quality characteristics and sampling design for streams in North Dakota, 1970–2008

    USGS Publications Warehouse

    Galloway, Joel M.; Vecchia, Aldo V.; Vining, Kevin C.; Densmore, Brenda K.; Lundgren, Robert F.

    2012-01-01

    In response to the need to examine the large amount of historic water-quality data comprehensively across North Dakota and evaluate the efficiency of the State-wide sampling programs, a study was done by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Department of Health to describe the water-quality data collected for the various programs and determine an efficient State-wide sampling design for monitoring future water-quality conditions. Although data collected for the North Dakota State Water Commission High-Low Sampling Program, the North Dakota Department of Health Ambient Water-Quality Network, and other projects and programs provide valuable information on the quality of water in streams in North Dakota, the objectives vary among the programs, some of the programs overlap spatially and temporally, and the various sampling designs may not be the most efficient or relevant to the objectives of the individual programs as they have changed through time. One objective of a State-wide sampling program was to evaluate ways to describe the spatial variability of water-quality conditions across the State in the most efficient manner. Weighted least-squares regression analysis was used to relate the average absolute difference between paired downstream and upstream concentrations, expressed as a percent of the average downstream concentration, to the average absolute difference in daily flow between the downstream and upstream pairs, expressed as a percent of the average downstream flow. The analysis showed that a reasonable spatial network would consist of including the most downstream sites in large basins first, followed by the next upstream site(s) that roughly bisect the downstream flows at the first sites, followed by the next upstream site(s) that roughly bisect flows for the second sites. Sampling sites to be included in a potential State-wide network were prioritized into 3 design levels: level 1 (highest priority), level 2 (second priority), and level 3 (third priority). Given the spatial distribution and priority designation (levels 1–3) of sites in the potential spatial network, the next consideration was to determine the appropriate temporal sampling frequency to use for monitoring future water-quality conditions. The time-series model used to detect concentration trends for this report also was used to evaluate sampling designs to monitor future water-quality trends. Sampling designs were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three 4-month seasons—March through June, July through October, and November through February. For the 34 level-1 sites, samples would be collected for major ions, trace metals, nutrients, bacteria, and sediment eight times per year, with samples in January, April (2 samples),May, June, July, August, and October. For the 21 level-2 sites, samples would be collected for major ions, trace metals, and nutrients six times per year (January, April, May, June, August, and October), and for the 26 level-3 sites, samples would be collected for these constituents four times per year (April, June, August, and October).

  20. Effects of the H-3 Highway Stormwater Runoff on the Water Quality of Halawa Stream, Oahu, Hawaii, November 1998 to August 2004

    USGS Publications Warehouse

    Wolff, Reuben H.; Wong, Michael F.

    2008-01-01

    Since November 1998, water-quality data have been collected from the H-3 Highway Storm Drain C, which collects runoff from a 4-mi-long viaduct, and from Halawa Stream on Oahu, Hawaii. From January 2001 to August 2004, data were collected from the storm drain and four stream sites in the Halawa Stream drainage basin as part of the State of Hawaii Department of Transportation Storm Water Monitoring Program. Data from the stormwater monitoring program have been published in annual reports. This report uses these water-quality data to explore how the highway storm-drain runoff affects Halawa Stream and the factors that might be controlling the water quality in the drainage basin. In general, concentrations of nutrients, total dissolved solids, and total suspended solids were lower in highway runoff from Storm Drain C than at stream sites upstream and downstream of Storm Drain C. The opposite trend was observed for most trace metals, which generally occurred in higher concentrations in the highway runoff from Storm Drain C than in the samples collected from Halawa Stream. The absolute contribution from Storm Drain C highway runoff, in terms of total storm loads, was much smaller than at stations upstream and downstream, whereas the constituent yields (the relative contribution per unit drainage basin area) at Storm Drain C were comparable to or higher than storm yields at stations upstream and downstream. Most constituent concentrations and loads in stormwater runoff increased in a downstream direction. The timing of the storm sampling is an important factor controlling constituent concentrations observed in stormwater runoff samples. Automated point samplers were used to collect grab samples during the period of increasing discharge of the storm throughout the stormflow peak and during the period of decreasing discharge of the storm, whereas manually collected grab samples were generally collected during the later stages near the end of the storm. Grab samples were analyzed to determine concentrations and loads at a particular point in time. Flow-weighted time composite samples from the automated point samplers were analyzed to determine mean constituent concentrations or loads during a storm. Chemical analysis of individual grab samples from the automated point sampler at Storm Drain C demonstrated the ?first flush? phenomenon?higher constituent concentrations at the beginning of runoff events?for the trace metals cadmium, lead, zinc, and copper, whose concentrations were initially high during the period of increasing discharge and gradually decreased over the duration of the storm. Water-quality data from Storm Drain C and four stream sites were compared to the State of Hawaii Department of Health (HDOH) water-quality standards to determine the effects of highway storm runoff on the water quality of Halawa Stream. The geometric-mean standards and the 10- and 2-percent-of-the-time concentration standards for total nitrogen, nitrite plus nitrate, total phosphorus, total suspended solids, and turbidity were exceeded in many of the comparisons. However, these standards were not designed for stormwater sampling, in which constituent concentrations would be expected to increase for short periods of time. With the aim of enhancing the usefulness of the water-quality data, several modifications to the stormwater monitoring program are suggested. These suggestions include (1) the periodic analyzing of discrete samples from the automated point samplers over the course of a storm to get a clearer profile of the storm, from first flush to the end of the receding discharge; (2) adding an analysis of the dissolved fractions of metals to the sampling plan; (3) installation of an automatic sampler at Bridge 8 to enable sampling earlier in the storms; (4) a one-time sampling and analysis of soils upstream of Bridge 8 for base-line contaminant concentrations; (5) collection of samples from Halawa Stream during low-flow conditions

  1. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  3. Does biofilm contribute to diel cycling of Zn in High Ore Creek, Montana?

    USGS Publications Warehouse

    Morris, J.M.; Nimick, D.A.; Farag, A.M.; Meyer, J.S.

    2005-01-01

    Concentrations of metals cycle daily in the water column of some mining-impacted streams in the Rocky Mountains of the western USA. We hypothesized that biofilm in High Ore Creek, Montana, USA, sorbs and releases Zn on a diel cycle, and this uptake-and-release cycle controls the total and dissolved (0.45-??m filtered) Zn concentrations. We collected water samples from three sites (upstream, middle and downstream at 0, 350 and 650 m, respectively) along a 650-m reach of High Ore Creek during a 47-h period in August 2002 and from the upstream and downstream sites during a 24-h period in August 2003; we also collected biofilm samples at these sites. In 2002 and 2003, total and dissolved Zn concentrations did not exhibit a diel cycle at the upstream sampling site, which was ???30 m downstream from a settling pond through which the creek flows. However, total and dissolved Zn concentrations exhibited a diel cycle at the middle and downstream sampling sites, with the highest Zn concentrations occurring at dawn and the lowest Zn concentrations occurring during late afternoon (>2-fold range of concentrations at the downstream site). Based on (1) concentrations of Zn in biofilm at the three sites and (2) results of streamside experiments that demonstrated Zn uptake and release by nai??ve biofilm during the light and dark hours of a photocycle, respectively, we conclude that Zn uptake in photosynthetic biofilms could contribute a large percentage to the cycling of Zn concentrations in the water column in High Ore Creek. ?? Springer 2005.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on November 15, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses, andmore » the results are compared using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2012). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, all DER values were less than 3 and results are consistent with low (e.g., background) concentrations.« less

  5. Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.

    2009-01-01

    Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.

  6. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    PubMed

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p < 0.0001), suggesting that the abundance of CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry season. This finding was further supported by an elevated a(250)/a(365) of CDOM samples collected in the lake in the wet season than in the dry season. Significantly higher mean levels of C3 and a(350) were recorded for CDOM samples collected from River Yincun than those from rivers Dapu and Changdou, differing in seasons, suggesting the significance of terrestrial CDOM input from River Yincun.

  7. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration, made at a depth of 6.6 feet upstream and downstream of New Cumberland Dam. Continuous monitors were operated from May through October 1993.

  8. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and dissolved oxygen concentration that were made at a depth of 6.6 feet at the ends of the upstream and downstream wingwalls at Willow Island Dam. Continuous-record monitors were operated from May through October 1993.

  9. Effects of Packstock Use and Backpackers on Water Quality in Yosemite National Park, California

    NASA Astrophysics Data System (ADS)

    Forrester, H.; Clow, D. W.; Roche, J. W.; Heyvaert, A.

    2016-12-01

    Visitor use, primarily backpacker camping, packstock (horse and mule) trail use, and packstock grazing, in designated Wilderness, increases the potential for negative effects on water quality. To determine the effects of visitor use on water quality in Wilderness in Yosemite National Park, we collected and analyzed surface-water samples for water quality indicators, consisting of fecal indicator bacteria (Escherichia coli), nutrients (nitrogen, phosphorus), suspended sediment concentration (SSC), and hormones (e.g. estrogen compounds) during the summers of 2012-2014. We collected samples upstream and downstream from different types of visitor use at routine intervals (weekly or biweekly) and during storms. Additionally, we sampled upstream and downstream from meadows, and targeted different types of visitor use during a park-wide synoptic sampling campaign (n=63). At packstock stream crossings, statistically significant (P≤0.05) increases in Escherichia coli (E. coli) and SSC occurred downstream from crossings compared to upstream conditions during routine sampling (median difference: 3 CFU 100ml-1, and >0.3 mg l-1, respectively) and during storms (median difference: 32 CFU 100ml-1, and 2.9 mg l-1). At backpacker campsites, during routine sampling, significant increases occurred downstream from backpacker camping for E. coli (median difference: 1 CFU 100ml-1), and estrogen hormones were detected. At packstock grazing areas, which are located in meadows, no significant increases were detected for any of the measured water quality indicators downstream from grazing. Most synoptic sample concentrations were near or below detection limits. Our results indicate that under current use levels: 1) packstock trail use and backpacker camping are associated with detectable effects on water quality, which are most pronounced during storms; 2) increases in water quality indicators were not detected downstream from meadows where packstock were grazed; and 3) environmental processes in meadows provide a valuable ecosystem service by reducing human related sources of microbial contamination.

  10. Are catchment-wide erosion rates really "Catchment-Wide"? Effects of grain size on erosion rates determined from 10Be

    NASA Astrophysics Data System (ADS)

    Reitz, M. A.; Seeber, L.; Schaefer, J. M.; Ferguson, E. K.

    2012-12-01

    Early studies pioneering the method for catchment wide erosion rates by measuring 10Be in alluvial sediment were taken at river mouths and used the sand size grain fraction from the riverbeds in order to average upstream erosion rates and measure erosion patterns. Finer particles (<0.0625 mm) were excluded to reduce the possibility of a wind-blown component of sediment and coarser particles (>2 mm) were excluded to better approximate erosion from the entire upstream catchment area (coarse grains are generally found near the source). Now that the sensitivity of 10Be measurements is rapidly increasing, we can precisely measure erosion rates from rivers eroding active tectonic regions. These active regions create higher energy drainage systems that erode faster and carry coarser sediment. In these settings, does the sand-sized fraction fully capture the average erosion of the upstream drainage area? Or does a different grain size fraction provide a more accurate measure of upstream erosion? During a study of the Neto River in Calabria, southern Italy, we took 8 samples along the length of the river, focusing on collecting samples just below confluences with major tributaries, in order to use the high-resolution erosion rate data to constrain tectonic motion. The samples we measured were sieved to either a 0.125 mm - 0.710 mm fraction or the 0.125 mm - 4 mm fraction (depending on how much of the former was available). After measuring these 8 samples for 10Be and determining erosion rates, we used the approach by Granger et al. [1996] to calculate the subcatchment erosion rates between each sample point. In the subcatchments of the river where we used grain sizes up to 4 mm, we measured very low 10Be concentrations (corresponding to high erosion rates) and calculated nonsensical subcatchment erosion rates (i.e. negative rates). We, therefore, hypothesize that the coarser grain sizes we included are preferentially sampling a smaller upstream area, and not the entire upstream catchment, which is assumed when measurements are based solely on the sand sized fraction. To test this hypothesis, we used samples with a variety of grain sizes from the Shillong Plateau. We sieved 5 samples into three grain size fractions: 0.125 mm - 710 mm, 710 mm - 4 mm, and >4 mm and measured 10Be concentrations in each fraction. Although there is some variation in the grain size fraction that yields the highest erosion rate, generally, the coarser grain size fractions have higher erosion rates. More significant are the results when calculating the subcatchment erosion rates, which suggest that even medium sized grains (710 mm - 4 mm) are sampling an area smaller than the entire upstream area; this finding is consistent with the nonsensical results from the Neto River study. This result has numerous implications for the interpretations of 10Be erosion rates: most importantly, an alluvial sample may not be averaging the entire upstream area, even when using the sand size fraction - resulting erosion rates more pertinent for that sample point rather than the entire catchment.

  11. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff.

    PubMed

    Corsi, Steven R; Zitomer, Daniel H; Field, Jennifer A; Cancilla, Devon A

    2003-09-15

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  12. Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff

    USGS Publications Warehouse

    Corsi, Steven R.; Zitomer, Daniel H.; Field, Jennifer A.; Cancilla, Devon A.

    2003-01-01

    Samples of nine different formulations of aircraft deicer and antiicer fluids (ADAF) were screened for the presence of selected surfactants. Nonylphenol ethoxylates (NPnEO) were identified in three ADAF formulations, octylphenol ethoxylates were identified in two formulations, and six formulations contained alcohol ethoxylates. A preliminary field study was conducted at General Mitchell International Airport, Milwaukee, WI, to quantify NPnEO (n = 1-15) and one of its byproducts, nonylphenol (NP), in airport runoff. Samples were collected from two airport outfalls, from the receiving stream, and from an upstream reference site during intensive ADAF application events. NPnEO was measured at concentrations up to 1190microg/L in airport outfall samples, up to 77 ug/L in samples from the receiving stream and less than 5.0 microg/L from the upstream reference. Concentrations of glycol and other ADAF-related constituents, including NPnEO, were reduced by approximately 1 order of magnitude between the outfall sites and the receiving stream site; however, concentrations of NP in the receiving stream remained similar to those from the outfalls (< 0.04 microg/L at the upstream reference, 0.98 and 7.67 microg/L at outfalls, and 3.89 microg/L in the receiving stream). The field data suggest that NP is generated through degradation of NPnEO from airport runoff.

  13. In vivo and in vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern.

    EPA Science Inventory

    Fathead minnows (Pimephales promelas) were caged for four days at multiple locations upstream and downstream of a wastewater treatment plant (WWTP) discharge into the Maumee River (USA, OH). Grab water samples collected at the same location were extracted using several different ...

  14. Spatial and temporal patterns of micropollutants upstream and downstream of 24 WWTPs across Switzerland

    NASA Astrophysics Data System (ADS)

    Spycher, Barbara; Deuber, Fabian; Kistler, David; Burdon, Frank; Reyes, Marta; Alder, Alfredo C.; Joss, Adriano; Eggen, Rik; Singer, Heinz; Stamm, Christian

    2015-04-01

    Treated wastewater is an important source of micropollutants in many streams. These chemicals consist of very diverse set of compounds that may vary in space and time. In order to improve our understanding of such spatio-temporal patterns of micropollutants in surface waters, we compared upstream and downstream locations at 24 sites across the Swiss Plateau and Jura (12 sites in the 2013 campaign, 12 sites during the 2014 campaign). Each site represents the most upstream treatment plant in the corresponding catchment. This survey is part of the interdisciplinary, Eawag-wide research project EcoImpact that aims at elucidating the ecological effects of micropollutants on stream ecosystems. In 2013, a broad analytical screening was applied to samples collected during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 were analysed for a set of about 60 selected organic micropollutants and 10 heavy metals. The screening results demonstrate that generally pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest part of the organic micropollutants. Pesticides including biocides and plant protection products are also regularly found but at lower concentrations. This presentation will analyse the variability of the micropollutant patterns across the different sites and how upstream conditions and the wastewater composition changes with season.

  15. Detections, concentrations, and distributional patterns of compounds of emerging concern in the San Antonio River Basin, Texas, 2011-12

    USGS Publications Warehouse

    Opsahl, Stephen P.; Lambert, Rebecca B.

    2013-01-01

    The distributional patterns of detections and concentrations of individual compounds and compound classes show the influence of wastewater-treatment plant (WWTP) outfalls on the quality of water in the San Antonio River Basin. In the Medina River Subbasin, the minimal influence of wastewater is evident as far downstream as the Macdona site. Downstream from the Macdona site, the Medina River receives treated municipal wastewater from both the Medio Creek Water Recycling Center site from an unnamed tributary at the plant and the Leon Creek Water Recycling Center site from Comanche Creek at the plant, and corresponding increases in both the number of detections and the total concentrations of all measured compounds at all downstream sampling sites were evident. Similarly, the San Antonio River receives treated municipal wastewater as far upstream as the SAR Witte site (San Antonio River at Witte Museum, San Antonio, Tex.) and additional WWTP outfalls along the Medina River upstream from the confluence of the Medina and San Antonio Rivers. Consequently, all samples collected along the main stem of the San Antonio River had higher concentrations of CECs in comparison to sites without upstream WWTPs. Sites in urbanized areas without upstream WWTPs include the Leon 35 site (Leon Creek at Interstate Highway 35, San Antonio, Tex.), the Alazan site (Alazan Creek at Tampico Street, San Antonio, Tex.), and the San Pedro site (San Pedro Creek at Probandt Street, at San Antonio, Tex.). The large number of detections at sites with no upstream wastewater source demonstrated that CECs can be detected in streams flowing through urbanized areas without a large upstream source of treated municipal wastewater. A general lack of detection of pharmaceuticals in streams without upstream outfalls of treated wastewater appears to be typical for streams throughout the San Antonio River Basin and may be a useful indicator of point-source versus nonpoint-source contributions of these compounds in urban streams. Observations of lower concentrations of compounds at the furthest downstream sampling sites in the basin indicate some natural attenuation of these compounds during transport; however, a more focused assessment is needed to make this determination.

  16. Silver concentrations and selected hydrologic data in the Upper Colorado River basin, 1991-92

    USGS Publications Warehouse

    Johncox, D.A.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the Colorado River Water Conservation District and the Northern Colorado Water Conservancy District, collected water and sediment samples in May and September 1991 and 1992 from nine stream-sampling sites and three lake-sampling sites within the Upper Colorado River Basin upstream from Kremmling, Colorado. Data were collected to determine the present (1992) conditions of the Upper Colorado River Basin regarding silver concentrations in the water and sediment. Lake-water and stream-water samples were analyzed for concentrations of total recoverable silver, dissolved silver, and suspended solids. Lake- and stream-bottom material was analyzed for concentrations of total recoverable silver. Additional data collected were streamflow, specific conductance, pH, and water temperature. Transparency (Secchi-disk measurements) also was measured in the lakes.

  17. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen, caffeine, carbamazepine, and the four antibiotics tylosin, sulfadimethoxine, sulfamethoxazole, and oxytetracycline were detected in streamwater samples collected in 2006 from six paired stream sampling sites located upstream and downstream from animal-feeding operations. The highest reported concentration of these seven compounds was for the antibiotic sulfamethoxazole (157 ng/L), in a sample from the downstream site on Snitz Creek in Lancaster County, Pa. Twenty-one pharmaceutical compounds were detected in streamwater samples collected in 2006 from five paired stream sampling sites located upstream or downstream from a municipal wastewater-effluent-discharge site. The most commonly detected compounds and maximum concentrations were the anticonvulsant carbamazepine, 276 ng/L; the antihistamine diphenhydramine, 135 ng/L; and the antibiotics ofloxacin, 329 ng/L; sulfamethoxazole, 1,340 ng/L; and trimethoprim, 256 ng/L. A total of 51 different contaminants of emerging concern were detected in streamwater samples collected from 2007 through 2009 at 13 stream sampling sites located downstream from a wastewater-effluent-discharge site. The concentrations and numbers of compounds detected were higher in stream sites downstream from a wastewater-effluent-discharge site than in stream sites upstream from a wastewater-effluent-discharge site. This finding indicates that wastewater-effluent discharges are a source of contaminants of emerging concern; these contaminants were present more frequently in the streambed-sediment samples than in streamwater samples. Antibiotic compounds were often present in both the streamwater and streambed-sediment samples, but many OWCs were present exclusively in the streambed-sediment samples. Compounds with endocrine disrupting potential including detergent metabolites, pesticides, and flame retardants, were present in the streamwater and streambed-sediment samples. Killinger Creek, a stream where wastewater-effluent discharges contribute a large percentage of the total flow, stands out as a stream with particularly high numbers of compounds detected and detected at the highest concentrations measured in the reconnaissance sampling. Nineteen contaminants of emerging concern were detected in streamwater samples collected quarterly from 2007 through 2009 at 27 stream sites within 5 miles of a drinking-water intake. The number of contaminants and the concentrations detected at the stream sites within 5 miles of drinking-water intakes were generally very low (concentrations less than 50 ng/L), much lower than those at sites downstream from a wastewater-effluent discharge. The most commonly detected compounds and maximum concentrations were caffeine, 517 ng/L; carbamazepine, 95 ng/L; sulfamethoxazole, 146 ng/L; and estrone, 3.15 ng/L. The concentrations and frequencies of detection of some of the contaminants of emerging concern appear to vary by season, which could be explained by compound use, flow regime, or differences in degradation rates. Concentrations of some contaminants were associated with lower flows as a result of decreased in-stream dilution of wastewater effluents or other contamination sources. Twenty-two contaminants of emerging concern were detected once each in streamwater samples collected in 2007 and 2008 from 16 fish-health stream sites located statewide. The highest concentrations were for the OWCs, including flame retardants tri(2-butoxyethyl)phosphate (604 ng/L) and tri(2-chloroethyl)phosphate (272 ng/L) and the fragrance isoquinoline (330 ng/L). Far fewer numbers of contaminants of emerging concern were detected at the fish-health sites than at the wastewater-effluent-discharge sites. Most of the fish-health sites were not located directly downstream from a wastewater-effluent discharge, but there were multiple wastewater-effluent discharges in the drainage basins upstream from the sampling sites. No distinct pattern of contaminant occurrence could be discerned for the fish-health stream sites

  18. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination

    USGS Publications Warehouse

    Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.

    2005-01-01

    The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze for these bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 μg/L at the reference location to 97.7 μg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01−1.0 μg/L, in some samples, individual concentrations were in the range of 5−38 μg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend:  they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.

  19. Hydrologic characteristics of surface-mined land reclaimed by sludge irrigation, Fulton County, Illinois

    USGS Publications Warehouse

    Patterson, G.L.; Fuentes, R.F.; Toler, L.G.

    1982-01-01

    Analyses of water samples collected at four stream-monitoring stations, in an area surface mined for coal and being reclaimed by sludge irrigation, show the principal metals are sodium, calcium, and magnesium and principal non-metals are chloride, sulfate, and bicarbonate. Comparing yearly mean chemical concentrations shows no changing trends since reclamation began, nor are there differences between stations upstream and downstream from the site. Yearly suspended-sediment loads and discharge relations upstream and downstream from the site also show no differences. Discharge hydrographs of two streams draining the site show a delayed response to precipitation due to the storage capacity of several upstream strip-mine lakes. The water-table surface generally follows the irregular topography. Monthly water-level fluctuations were dependent on the surface material (mined or unmined) and proximity to surface discharge. The largest fluctuations were in unmined land away from discharge while the smallest were in mined land near discharge. The water table is closer to the surface in unmined land. Analyses of water samples from 70 wells within or adjacent to the reclamation site showed no differences in water quality which could be attributed to sludge or supernatant application. Samples from wells in mined land, however, had higher concentrations of dissolved sulfate, calcium, magnesium, chloride, iron, zinc, and manganese than samples from wells in unmined land. (USGS)

  20. Long-Term Behavior of Simulated Partial Lead Service Line Replacements

    PubMed Central

    St. Clair, Justin; Cartier, Clement; Triantafyllidou, Simoni; Clark, Brandi; Edwards, Marc

    2016-01-01

    Abstract In this 48-month pilot study, long-term impacts of copper:lead galvanic connections on lead release to water were assessed without confounding differences in pipe exposure prehistory or disturbances arising from cutting lead pipe. Lead release was tracked from three lead service line configurations, including (1) 100% lead, (2) traditional partial replacement with 50% copper upstream of 50% lead, and (3) 50% lead upstream of 50% copper as a function of flow rate, connection types, and sampling methodologies. Elevated lead from galvanic corrosion worsened with time, with 140% more lead release from configurations representing traditional partial replacement configurations at 14 months compared to earlier data in the first 8 months. Even when sampled consistently at moderate flow rate (8 LPM) and collecting all water passing through service lines, conditions representing traditional partial service line configurations were significantly worse (≈40%) when compared to 100% lead pipe. If sampled at a high flow rate (32 LPM) and collecting 2 L samples from service lines, 100% of samples collected from traditional partial replacement configurations exceeded thresholds posing an acute health risk versus a 0% risk for samples from 100% lead pipe. Temporary removal of lead accumulations near Pb:Cu junctions and lead deposits from other downstream plastic pipes reduced risk of partial replacements relative to that observed for 100% lead. When typical brass compression couplings were used to connect prepassivated lead pipes, lead release spiked up to 10 times higher, confirming prior concerns raised at bench and field scale regarding adverse impacts of crevices and service line disturbances on lead release. To quantify semirandom particulate lead release from service lines in future research, whole-house filters have many advantages compared to other approaches. PMID:26989344

  1. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, June-November 1992

    USGS Publications Warehouse

    Miller, Kimberly F.; Faulkenburg, C.W.; Chambers, D.B.; Waldron, M.C.

    1995-01-01

    This report contains water-quality data for the Ohio River, collected during the summer and fall of 1992, from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam). The data were collected to assess the effects of hydropower development on water quality. Water quality was determined by a combination of repeated synoptic field measurements and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water quality were measured at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. Water temperature, dissolved oxygen concentration, pH, and specific conductance were measured at each longitudinal-transect and back-channel sampling site. Longitudinal-transect and back-channel stations were sampled at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three or four detailed vertical pro- files of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phyto- plankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated seven times between June 25 and November 6, 1992.

  2. Characterization of nutrients and fecal indicator bacteria at a concentrated swine feeding operation in Wake County, North Carolina, 2009-2011

    USGS Publications Warehouse

    Harden, Stephen L.; Rogers, Shane W.; Jahne, Michael A.; Shaffer, Carrie E.; Smith, Douglas G.

    2012-01-01

    Study sites were sampled for laboratory analysis of nutrients, total suspended solids (TSS), and (or) fecal indicator bacteria (FIB). Nutrient analyses included measurement of dissolved ammonia, total and dissolved ammonia + organic nitrogen, dissolved nitrate + nitrite, dissolved orthophosphate, and total phosphorus. The FIB analyses included measurement of Escherichia coli and enterococci. Samples of wastewater at the swine facility were collected from a pipe outfall from the swine housing units, two storage lagoons, and the spray fields for analysis of nutrients, TSS, and FIB. Soil samples collected from a spray field were analyzed for FIB. Monitoring locations were established for collecting discharge and water-quality data during storm events at three in-field runoff sites and two sites on the headwater stream (one upstream and one downstream) next to the swine facility. Stormflow samples at the five monitoring locations were collected for four storm events during 2009 to 2010 and analyzed for nutrients, TSS, and FIB. Monthly water samples also were collected during base-flow conditions at all four stream sites for laboratory analysis of nutrients, TSS, and (or) FIB.

  3. Recovery of benthic-invertebrate communities in the White River near Indianapolis, Indiana, USA, following implementation of advanced treatment of municipal wastewater

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1992-01-01

    The City of Indianapolis, Indiana, USA, completed construction of advanced-wastewater-treatment systems to enlarge and upgrade existing secondary-treatment processes at the City’s two municipal wastewater-treatment plants in 1983. These plants discharge their effluent to the White River. A study was begun in 1981 to evaluate the effects of municipal wastewater on the quality of the White River near Indianapolis. As part of this study, benthic-invertebrate samples were collected from one riffle upstream and two riffles downstream from the treatment plants annually from 1981 through 1987 (2 times before and 5 times after the plant improvements became operational). Samples were collected during periods of late-summer or early-fall low streamflow with a Surber sampler. Upstream from the wastewater-treatment plants, mayflies and caddisflies were the predominant organisms in the benthic-invertebrate community (from 32 to 93 percent of all organisms; median value is 67 percent) with other insects and mollusks also present. Before implementation of advanced wastewater-treatment, the benthic-invertebrate community downstream from the wastewater treatment plants was predominantly chironomids and oligochaetes (more than 98 percent of all organisms)-organisms that generally are tolerant of organic wastes. Few intolerant species, such as mayflies or caddisflies were found. Following implementation of advanced wastewater treatment, mayflies and caddisflies became numerically dominant in samples collected downstream from the plants. By 1986, these organisms accounted for more than 90 percent of all organisms found at the two downstream sites. The diversity of benthic invertebrates found in these samples resembled that at the upstream site. The improvement in the quality of municipal wastewater effluent resulted in significant improvements in the water quality of the White River downstream from Indianapolis. These changes in river quality, in turn, have resulted in a shift from mostly pollution-tolerant to mostly pollution-intolerant organisms in the benthic-invertebrate community of the White River downstream from Indianapolis. The recovery was not immediate, however, with one of the downstream sites requiring 3 years before pollution-intolerant organisms became numerically dominant.

  4. Total Mercury and Methylmercury in Indiana Streams, August 2004-September 2006

    USGS Publications Warehouse

    Ulberg, Amanda L.; Risch, Martin R.

    2008-01-01

    Total mercury and methylmercury were determined by use of low (subnanogram per liter) level analytical methods in 225 representative water samples collected following ultraclean protocols at 25 Indiana monitoring stations in a statewide network, on a seasonal schedule, August 2004-September 2006. The highest unfiltered total mercury concentrations were at six monitoring stations - five that are downstream from urban and industrial wastewater discharges and that have upstream drainage areas more than 1,960 square miles and one that is downstream from active and abandoned mine lands and that has an upstream drainage area of 602 square miles. Total mercury concentrations in unfiltered samples ranged from 0.24 to 26.9 nanograms per liter (ng/L), with a median of 2.35 ng/L. The highest concentrations of total mercury, those in the 90th percentile and above, were more than 9.05 ng/L, and most were in samples collected during winter and spring 2006 during changing streamflow hydrograph conditions. Seasonal medians for unfiltered total mercury were highest during winter and spring. Instantaneous streamflow and turbidity at the time of sample collection also were highest in winter and spring and potentially indicate conditions for the most particulate mercury transport. Samples with the highest total mercury concentrations were from water that had the highest turbidity at the time of sample collection. Unfiltered total mercury concentrations were significantly lower in samples collected at five stations downstream from dams. Values for particulate total mercury and streamflow also were significantly lower at these five stations. Total mercury concentrations equaled or exceeded the 2007 Indiana chronic aquatic criterion of 12 ng/L in 5.8 percent of samples and at 10 monitoring stations. Most of the total mercury in these 13 samples was estimated to be particulate. Most of the samples with mercury concentrations that equaled or exceeded the 12 ng/L criterion were collected during winter and spring 2006 during changing streamflow hydrograph conditions and in streamflow that was high for 2004-2006. Methylmercury was detected in 83 percent of unfiltered samples; reported concentrations ranged from 0.04 to 0.57 ng/L, with a median of 0.09 ng/L. The highest concentrations of methylmercury, those in the 90th percentile and above, were more than 0.25 ng/L, and most were in samples collected during spring and summer. Methylation efficiency in most samples was less than 5.8 percent, but was as much as 24.6 percent. Seasonal medians for methylmercury were highest during spring and summer. Seasonal medians for water temperatures at the time of sample collection were highest during these seasons and potentially indicate conditions for the most formation of methylmercury. The low streamflow statistical category had the significantly highest methylation efficiency.

  5. Evidence of Asian carp spawning upstream of a key choke point in the Mississippi River

    USGS Publications Warehouse

    Larson, James H.; Knights, Brent C.; McCalla, S. Grace; Monroe, Emy; Tuttle-Lau, Maren T.; Chapman, Duane C.; George, Amy E.; Vallazza, Jon; Amberg, Jon J.

    2017-01-01

    Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix, and Grass Carp Ctenopharyngodon idella(collectively termed “Asian carp”) were introduced into North America during the 1960s and 1970s and have become established in the lower Mississippi River basin. Previously published evidence for spawning of these species in the upper Mississippi River has been limited to an area just downstream of Dam 22 (near Saverton, Missouri). In 2013 and 2014, we sampled ichthyoplankton at 18 locations in the upper Mississippi River main stem from Dam 9 through Dam 19 and in four tributaries of the Mississippi River (Des Moines, Skunk, Iowa, and Wisconsin rivers). We identified eggs and larvae by using morphological techniques and then used genetic tools to confirm species identity. The spawning events we observed often included more than one species of Asian carp and in a few cases included eggs that must have been derived from more than one upstream spawning event. The upstream extent of genetically confirmed Grass Carp ichthyoplankton was the Wisconsin River, while Bighead Carp and Silver Carp ichthyoplankton were observed in Pool 16. In all these cases, ichthyoplankton likely drifted downstream for several hours prior to collection. Higher water velocities (and, to a lesser extent, higher temperatures) were associated with an increased likelihood of observing eggs or larvae, although the temperature range we encountered was mostly above 17°C. Several major spawning events were detected in 2013, but no major spawning events were observed in 2014. The area between Dam 15 and Dam 19 appears to be the upstream edge of spawning activity for both Silver Carp and Bighead Carp, suggesting that this area could be a focal point for management efforts designed to limit further upstream movement of these species..

  6. Evaluation and trends of land cover, streamflow, and water quality in the North Canadian River Basin near Oklahoma City, Oklahoma, 1968–2009

    USGS Publications Warehouse

    Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod

    2011-01-01

    The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in

  7. Sediment loads and transport at constructed chutes along the Missouri River - Upper Hamburg Chute near Nebraska City, Nebraska, and Kansas Chute near Peru, Nebraska

    USGS Publications Warehouse

    Densmore, Brenda K.; Rus, David L.; Moser, Matthew T.; Hall, Brent M.; Andersen, Michael J.

    2016-02-04

    Comparisons of concentrations and loads from EWI samples collected from different transects within a study site resulted in few significant differences, but comparisons are limited by small sample sizes and large within-transect variability. When comparing the Missouri River upstream transect to the chute inlet transect, similar results were determined in 2012 as were determined in 2008—the chute inlet affected the amount of sediment entering the chute from the main channel. In addition, the Kansas chute is potentially affecting the sediment concentration within the Missouri River main channel, but small sample size and construction activities within the chute limit the ability to fully understand either the effect of the chute in 2012 or the effect of the chute on the main channel during a year without construction. Finally, some differences in SSC were detected between the Missouri River upstream transects and the chute downstream transects; however, the effect of the chutes on the Missouri River main-channel sediment transport was difficult to isolate because of construction activities and sampling variability.

  8. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    USGS Publications Warehouse

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples were collected in May and September of each year; samples were collected at the outlet of the control and treatment basins and at three upstream sites, two in the treatment basin and one in the control basin. For each benthic-macroinvertebrate sample: Stream riffles and pools were sampled using the kick-net method; habitat was characterized using Rapid Bioassessment Protocols (RBP); water-quality samples were collected for nutrients and suspended sediment; stream field parameters were measured; and multiple biological metrics were calculated. The experimental design to study the effects of fencing on the quality of near-stream shallow ground water involved a nested well approach. Two well nests were in the treatment basin, one each at surface-water sites T-1 and T-2. Within each well nest, the data from one deep well and three shallow wells (no greater than 12 ft deep) were used for regional characterization of ground-water quality. At each site, two of the shallow wells were inside the eventual fence (treated wells); the other shallow well was outside the eventual fence (control well). The wells were sampled monthly, primarily during periods with little to no recharge, for laboratory analysis of nutrients and fecal streptococcus; field parameters of water quality also were measured.

  9. Black liquor and the hangover effect: fish assemblage recovery dynamics following a pulse disturbance

    PubMed Central

    Piller, Kyle R; Geheber, Aaron D

    2015-01-01

    Anthropogenic perturbations impact aquatic systems causing wide-ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988–2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the “hangover effect” as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only demonstrates rapid recovery in an aquatic system, but further demonstrates the value of continuous, long-term, data collections which enhance our understanding of assemblage dynamics. PMID:26120432

  10. Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004

    USGS Publications Warehouse

    Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.

    2006-01-01

    The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one OWC was detected at a concentration greater than the study reporting level (metolachlor; 0.0040 ug/L). During base-flow conditions, Big Sioux River sites upstream from the WWTP discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for upstream sites than downstream sites during both base-flow and runoff conditions.discharge had OWC contributions that primarily were from nonpoint animal or crop agriculture sources or had OWC concentrations that were minimal. The influence of the WWTP discharge on OWCs at downstream river sites during base-flow conditions ranged from minimal influence to substantial influence depending on the sampling period. During runoff conditions, OWCs at sites upstream from the WWTP discharge probably were primarily contributed by nonpoint animal and/or crop agriculture sources and possibly by stormwater runoff from nearby roads. OWCs at sites downstream from the WWTP discharge probably were contributed by sources other than the WWTP effluent discharge, such as stormwater runoff from urban and/or agriculture areas and/or resuspension of OWCs adsorbed to sediment deposited in the Big Sioux River. OWC loads generally were substantially smaller for

  11. Polychlorinated Biphenyls (PCBs) in Catfish and Carp Collected from the Rio Grande Upstream and Downstream of Los Alamos National Laboratory: Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert J. Gonzales

    2008-05-12

    Concern has existed for years that the Los Alamos National Laboratory (LANL), a complex of nuclear weapons research and support facilities, has released polychlorinated biphenyls (PCBs) to the environment that may have reached adjacent bodies of water through canyons that connect them. In 1997, LANL's Ecology Group began measuring PCBs in fish in the Rio Grande upstream and downstream of ephemeral streams that cross LANL and later began sampling fish in Abiquiu and Cochiti reservoirs, which are situated on the Rio Chama and Rio Grande upstream and downstream of LANL, respectively. In 2002, we electroshocked channel catfish (Ictalurus punctatus) andmore » common carp (Carpiodes carpio) in the Rio Grande upstream and downstream of LANL and analyzed fillets for PCB congeners. We also sampled soils along the Rio Chama and Rio Grande drainages to discern whether a background atmospheric source of PCBs that could impact surface water adjacent to LANL might exist. Trace concentrations of PCBs measured in soil (mean = 4.7E-05 {micro}g/g-ww) appear to be from background global atmospheric sources, at least in part, because the bimodal distribution of low-chlorinated PCB congeners and mid-chlorinated PCB congeners in the soil samples is interpreted to be typical of volatilized PCB congeners that are found in the atmosphere and dust from global fallout. Upstream catfish (n = 5) contained statistically (P = 0.047) higher concentrations of total PCBs (mean = 2.80E-02 {micro}g/g-ww) than downstream catfish (n = 10) (mean = 1.50E-02 {micro}g/g-ww). Similarly, upstream carp (n = 4) contained higher concentrations of total PCBs (mean = 7.98E-02 {micro}g/g-ww) than downstream carp (n = 4) (3.07E-02 {micro}g/g-ww); however, the difference was not statistically significant (P = 0.42). The dominant PCB homologue in all fish samples was hexachlorobiphenyls. Total PCB concentrations in fish in 2002 are lower than 1997; however, differences in analytical methods and other uncertainties exist. A review of historical quantitative PCB data for fish from the Rio Grande and Abiquiu and Cochiti reservoirs does not indicate a distinct contribution of PCBs from LANL to fish in the Rio Grande or Cochiti. Analysis of homologue patterns for fish does not provide sufficient evidence of a LANL contribution. Nevertheless, concentrations of PCBs in fillets of fish sampled from the Rio Grande are indicative of potential adverse chronic health impact from consumption of these fish on a long-term basis.« less

  12. Risk assessment of imidacloprid use in forest settings on the aquatic macroinvertebrate community.

    PubMed

    Benton, Elizabeth P; Grant, Jerome F; Nichols, Rebecca J; Webster, R Jesse; Schwartz, John S; Bailey, Joseph K

    2017-11-01

    The isolated effects of a single insecticide can be difficult to assess in natural settings because of the presence of numerous pollutants in many watersheds. Imidacloprid use for suppressing hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae), in forests offers a rare opportunity to assess potential impacts on aquatic macroinvertebrates in relatively pristine landscapes. Aquatic macroinvertebrate communities were assessed in 9 streams in Great Smoky Mountains National Park (southern Appalachian Mountains, USA). The streams flow through hemlock conservation areas where imidacloprid soil drench treatments were applied for hemlock woolly adelgid suppression. Sites were located upstream and downstream of the imidacloprid treatments. Baseline species presence data (pre-imidacloprid treatment) were available from previous sample collections at downstream sites. Downstream and upstream sites did not vary in numerous community measures. Although comparisons of paired upstream and downstream sites showed differences in diversity in 7 streams, higher diversity was found more often in downstream sites. Macroinvertebrate functional feeding groups and life habits were similar between downstream and upstream sites. Downstream and baseline stream samples were similar. While some functional feeding group and life habit species richness categories varied, variations did not indicate poorer quality downstream communities. Imidacloprid treatments applied according to US Environmental Protection Agency federal restrictions did not result in negative effects to aquatic macroinvertebrate communities, which indicates that risks of imidacloprid use in forest settings are low. Environ Toxicol Chem 2017;36:3108-3119. © 2017 SETAC. © 2017 SETAC.

  13. [Residue Concentration and Distribution Characteristics of Perfluorinated Compounds in Surface Water from Qiantang River in Hangzhou Section].

    PubMed

    Zhang, Ming; Tang, Fang-liang; Yu, Ya-yun; Xu, Jian-fen; Li, Hua; Wu, Min-hua; Zhang, Wei; Pan, Jian-yang

    2015-12-01

    This study studied the pollution characteristics of perfluorinated compounds (PFCs) in Qiantang River in Hangzhou section (QR). Surface water samples, collected in July 2014 and January 2015 from 14 sites in QR were analyzed for 16 PFCs. All samples were prepared by solid-phase extraction with Oasis WAX cartridges and analyzed using the ultra performance liquid chromatography interfaced to tandem mass spectrometry ( UPLC-MS/MS). The results showed that 8 medium-and short-chain PFCs including C₄ and C₈ perfluorinated sulfonates (PFSAs) and C₄-C₉ perfluorinated carboxylic acids (PFCAs) were detected in the surface waters. The total concentrations of PFCs ranged from 0.98 to 609 ng · L⁻¹, while perfluorooctanoic acid (PFOA) dominated, with range of 0.59-538 ng L⁻¹, and perfluorooctane sulfonate (PFOS) was detected at lower levels, ranging from 0 to 2.48 ng · L⁻¹. The spatial distribution of PFCs varied, and the pollutant concentrations at the sampling sites located in upstream of the river such as Lanjiangkou and Jiangjunyan were relatively high, PFCs concentration showed a decreasing trend from the upstream to the downstream. According to the ratio of feature components, PFCs in surface water of QR originated largely from the input of direct sewage emissions. Taken together, the PFCs pollution was highly correlated with the upstream of Qiantang River valley's industry distribution, and most of the mass load in the investigated river was attributed to upstream running water with a minor influence from the wastewater discharges along the river basin. Overall, the results presented here indicated that greater attention should be given to the contamination of PFCs, especially for PFOA in water body of QR.

  14. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, June-October 1991

    USGS Publications Warehouse

    Chambers, D.B.; Miller, K.F.; Waldron, M.C.; Falkenburg, C.W.

    1994-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mi upstream from Willow Island Dam) to river mile 203.6 (0.3 mi upstream from Belleville Dam) during the summer of 1991. Water quality was determined by a combi- nation of synoptic field measurements and laboratory analyses. Synoptic sampling consisted of 8 cross-sectional transects and a longitudinal transect with 28 mid-channel stations. Each cross- sectional transect included five vertical profiles of water temperature, dissolved oxygen concen- tration, pH, and specific conductance. Longi- tudinal transect stations were sampled at three depths (near the surface, middle of the water column, and at or near the bottom) for the same characteristics. Sampling was completed in 3 days or less, and was repeated approximately every 2 weeks from June through October 1991. Beginning in August 1991, water samples were collected at selected locations and analyzed for chlorophyll-a and pheophytin concentrations, as measures of phytoplankton biomass and phytoplankton-degradation products, respectively. The depth of light penetration was estimated at all pigment-sampling locations.

  15. The effect of thiamine injection on upstream migration, survival, and thiamine status of putative thiamine-deficient coho salmon

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Amcoff, P.; Balk, L.; Pecor, C.; Ketola, H.G.; Hinterkopf, J.P.; Honeyfield, D.C.

    2005-01-01

    A diet containing a high proportion of alewives Alosa pseudoharengus results in a thiamine deficiency that has been associated with high larval salmonid mortality, known as early mortality syndrome (EMS), but relatively little is known about the effects of the deficiency on adults. Using thiamine injection (50 mg thiamine/kg body weight) of ascending adult female coho salmon Oncorhynchus kisutch on the Platte River, Michigan, we investigated the effects of thiamine supplementation on migration, adult survival, and thiamine status. The thiamine concentrations of eggs, muscle (red and white), spleen, kidney (head and trunk), and liver and the transketolase activity of the liver, head kidney, and trunk kidney of fish injected with thiamine dissolved in physiological saline (PST) or physiological saline only (PS) were compared with those of uninjected fish. The injection did not affect the number of fish making the 15-km upstream migration to a collection weir but did affect survival once fish reached the upstream weir, where survival of PST-injected fish was almost twice that of controls. The egg and liver thiamine concentrations in PS fish sampled after their upstream migration were significantly lower than those of uninjected fish collected at the downstream weir, but the white muscle thiamine concentration did not differ between the two groups. At the upper weir, thiamine levels in the liver, spleen, head kidney, and trunk kidney of PS fish were indistinguishable from those of uninjected fish (called "wigglers") suffering from a severe deficiency and exhibiting reduced equilibrium, a stage that precedes total loss of equilibrium and death. For PST fish collected at the upstream weir, total thiamine levels in all tissues were significantly elevated over those of PS fish. Based on the limited number of tissues examined, thiamine status was indicated better by tissue thiamine concentration than by transketolase activity. The adult injection method we used appears to be a more effective means of increasing egg thiamine levels than immersion of eggs in a thiamine solution. ?? Copyright by the American Fisheries Society 2005.

  16. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota.

    PubMed

    Cozzarelli, I M; Skalak, K J; Kent, D B; Engle, M A; Benthem, A; Mumford, A C; Haase, K; Farag, A; Harper, D; Nagel, S C; Iwanowicz, L R; Orem, W H; Akob, D M; Jaeschke, J B; Galloway, J; Kohler, M; Stoliker, D L; Jolly, G D

    2017-02-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4ML (million liters) of wastewater (300g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030mg/L) and bromide (7.8mg/L) downstream from the spill, compared to upstream levels (11mg/L and <0.4mg/L, respectively). Lithium (0.25mg/L), boron (1.75mg/L) and strontium (7.1mg/L) were present downstream at 5-10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects. Published by Elsevier B.V.

  17. Stress and recovery of aquatic organisms as related to highway construction along Turtle Creek, Boone County, West Virginia

    USGS Publications Warehouse

    Chisholm, James L.; Downs, Sanford C.

    1978-01-01

    During and after construction of Appalachian Corridor G, a divided, four-lane highway, five benthic invertebrate samples were collected at each of four sites on Turtle Creek, and, for comparative purposes, three samples were collected at each of two sites on Lick Creek, an adjacent undisturbed stream. Diversity index, generic count, and total count initially indicated severe depletion or destruction of the benthos of Turtle Creek, but, within 1 year after highway construction was completed, the benthic community of Turtle Creek was similar to that of Lick Creek. The greatest degradation occurred near the headwaters of Turtle Creek because of erratic movement of sediment resulting from high streamflow velocity. Diversity indices ranged from 0 to 3.41 near the headwaters in the original channel, but only from 0.94 to 2.42 farther downstream in a freshly cut channel. The final samples from Turtle Creek, which were similar to those taken from Lick Creek at the same time, had generic counts of 10 at the most upstream site and 16 near the mouth. A total of 147 organisms was found near the headwaters, whereas a total of 668 was found near the mouth of the stream. The total number of organisms collected at each site was proportional to the drainage area upstream from the site. As a result of tributary inflow from unaltered drainage areas and organism drift, rapid repopulation and stabilization of the benthic community occurred. Channel relocation, bank recontouring, and reseeding also accelerated the recovery of the benthic community.

  18. Mercury and Methylmercury Related to Historical Mercury Mining in Three Major Tributaries to Lake Berryessa, Upper Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Alpers, C. N.; Horner, T. C.; Cornwell, K.; Izzo, V.

    2016-12-01

    The relative contributions of total mercury (THg) and methylmercury (MeHg) from upstream historical mercury (Hg) mining districts were examined in the three largest tributaries to Lake Berryessa, a reservoir with water quality impaired by Hg. A fish consumption advisory has been issued for the reservoir; also, in a study of piscivorous birds at 25 California reservoirs, blood samples from Lake Berryessa grebes had the highest THg concentration state-wide. The third and fourth largest historical Hg-producing mining districts in California are within the study area. These mining districts are located within the Pope Creek, Upper Putah Creek, and Knoxville-Eticuera Creeks watersheds. Downstream of the reservoir, Lower Putah Creek drains into the Yolo Bypass, a major source of THg and MeHg to the Sacramento-San Joaquin Delta. Study objectives included: (1) determining if tributaries downstream of historical Hg mining districts and draining to the reservoir are continuing sources of THg and MeHg; (2) characterizing variability of water and streambed sediment parameters in upstream and downstream reaches of each creek; and (3) estimating loads of suspended sediment, THg, and MeHg entering the reservoir from each tributary. Water samples were collected from October 2012 to September 2014 during non-storm and storm events along each tributary and analyzed for general water quality field parameters; unfiltered THg and MeHg; total suspended solids; and total particulate matter. Discharge measurements were made at the time of sample collection; flow and concentration data were combined to compute daily loads. To determine spatial variability, 135 streambed sediment samples were analyzed for THg, organic content (loss on ignition), and grain-size distribution. All three tributaries contribute THg and MeHg to the reservoir. Some consistent spatial trends in THg (water) concentrations were observed over multiple sampling events; THg (water) decreased from upstream to downstream in all three tributaries. Tributary reaches with elevated THg in streambed sediment ("Hg hot spots") are near or downstream from historical Hg mines and Hg-enriched ore deposits. Future Hg load and cycling studies are needed to identify practical remediation approaches for decreasing THg and MeHg loads to Lake Berryessa.

  19. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    USGS Publications Warehouse

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and Salmonella, indicating that there are still risks even when the E. coli standard is not exceeded. River samples in which the secondary-contact recreational standard for E. coli was exceeded showed a higher percentage of the co-occurrence of pathogenic organisms than samples that met the standard. This indicates that in this study area, E. coli is a useful indicator of human health risk. Detections of hepatitis A virus tended to be associated with higher median concentrations of somatic coliphage, F-specific coliphage, and infectious enterovirus. In addition, geometric mean C. perfringens concentrations tended to be higher in samples where hepatitis A virus was present than in samples where hepatitis A virus was absent. Hepatitis A virus was not detected in samples collected upstream from the Akron WPCS; all downstream detections had coincident detections in the Akron WPCS effluent, suggesting that Akron WPCS was a principal source of hepatitis A virus at the downstream sites. Geometric mean concentrations of E. coli were calculated on the basis of analytical results from at least five samples collected at each river site during May, July, and September of 2000. In each case, the Ohio geometric-mean primary-contact recreational standard of 126 col/100 mL was exceeded. E. coli concentrations were significantly correlated with streamflow and increased with streamflow at sites upstream and downstream from the Akron WPCS. This indicates that E. coli loads from sources upstream from the Akron WPCS have the potential to appreciably influence the frequency of attainment of recreational water-quality standards at downstream locations.

  20. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  1. Organochlorine chemical residues in bluegills and common carp from the irrigated San Joaquin Valley floor, California

    USGS Publications Warehouse

    Saiki, Michael K.; Schmitt, Christopher J.

    1986-01-01

    Samples of bluegills (Lepomis macrochirus) and common carp (Cyprinus carpio) collected from the San Joaquin River and two tributaries (Merced River and Salt Slough) in California were analyzed for 21 organochlorine chemical residues by gas chromatography to determine if pesticide contamination was confined to downstream sites exposed to irrigated agriculture, or if nonirrigated upstream sites were also contaminated. Residues ofp,p′-DDE were detected in all samples of both species. Six other contaminants were also present in both species at one or more of the collection sites: chlordane (cis-chlordane +trans-nonachlor);p,p′-DDD;o,p′-DDT;p,p′-DDT; DCPA (dimethyl tetrachloroterephthalate); and dieldrin. Concentrations of most of these residues were generally higher in carp than in bluegills; residues of other compounds were found only in carp: α-BHC (α-benzenehexachloride), Aroclor® 1260, and toxaphene. Concentrations of most organochlorines in fish increased from upstream to downstream. Water quality variables that are influenced by irrigation return flows (e.g., conductivity, turbidity, and total alkalinity) also increased from upstream to downstream and were significantly correlated (P < 0.05) with organochlorine residue levels in the fish. In carp, concentrations of two residues-⌆DDT (p,p′-DDD +p,p′-DDE + +p,p′-DDT; 1.43 to 2.21 mg/kg wet weight) and toxaphene (3.12 mg/kg wet weight)-approached the highest levels reported by the National Pesticide Monitoring Program for fish from other intensively farmed watersheds of the United States in 1980 to 1981, and surpassed criteria for whole-body residue concentrations recomended by the National Academy of Sciences and National Academy of Engineers for the protection of piscivorous wildlife.

  2. Sediment deposition in the White River Reservoir, northwestern Wisconsin

    USGS Publications Warehouse

    Batten, W.G.; Hindall, S.M.

    1980-01-01

    The history of deposition in the White River Reservoir was reconstructed from a study of sediment in the reservoir. Suspended-sediment concentrations, particle size, and streamflow characteristics were measured at gaging stations upstream and downstream from the reservoir from November 1975 through September 1977. Characteristics of the sediments were determined from borings and samples taken while the reservoir was drained in September 1976. The sediment surface and the pre-reservoir topography were mapped. Sediment thickness ranged from less than 1 foot near the shore to more than 20 feet in the old stream channel. The original reservoir capacity and the volume of deposited sediment were calculated to be 815 acre-feet and 487 acre-feet, respectively. Sediment size ranged from clay and silt in the pool area to large cobbles and boulders at the upstream end of the reservoir. Analyses of all samples averaged 43 percent sand, 40 percent silt, and 17 percent clay, and particle size typically increased upstream. Cobbles, boulders, and gravel deposits were not sampled. The average density of the deposited sediment was about 80 pounds per cubic foot for the entire reservoir. The reservoir was able to trap about 80 percent of the sediment entering from upstream, early in its history. This trap efficiency has declined as the reservoir filled with sediment. Today (1976), it traps only sand and silt-sized sediment, or only about 20 percent of the sediment entering from upstream. Data collected during this study indicate that essentially all of the clay-sized sediment (<0.062 mm) passes through the reservoir. The gross rate of deposition was 7.0 acre-feet per year over the reservoir history, 1907-76. Rates during 1907-63 and 1963-76 were 7.4 and 5.7 acre-feet per year, respectively, determined by the cesium-137 method. Based on scant data, the average annual sediment yield of the total 279 square mile drainage area above the gaging station at the powerhouse was about 50 tons per square mile. Analysis of the drainage-basin characteristics indicates that most of this sediment was derived from less than 10 percent of the total drainage area and from steep unvegetated streambanks.

  3. Application of the high throughput Attagene Factorial TM ...

    EPA Pesticide Factsheets

    Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few pathways despite the fact that the chemicals in a mixture may exhibit a wide range of activities. High throughput toxicology approaches that can rapidly screen samples for a broad diversity of biological activities offer a means to provide a more comprehensive characterization of complex mixtures. To test this concept, twenty-four ambient water samples were collected, extracted, and screened for their ability to interact with or modulate over 80 different transcription factors using the Attagene FactorialTM platform utilized by the US EPA’s ToxCast Program. Samples evaluated included 10 water samples collected in varying proximity to a wastewater discharge into the St. Louis River, MN; water collected at five sites along a gradient centered on a wastewater discharge into the Maumee River, Ohio, USA; and eight samples collected in association with a nation-wide USGS surface streams study. For samples collected along the St. Louis River, the greatest number of biological activities were observed at locations closest to wastewater discharge with up to 13 endpoints responding. The Maumee River showed a gradient response in the number of observed activities, ranging from three positive responses observed far upstream of a wastewater discharge to 10

  4. Water-Quality Conditions of Chester Creek, Anchorage, Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Ourso, Robert T.

    2006-01-01

    Between October 1998 and September 2001, the U.S. Geological Survey's National Water-Quality Assessment Program evaluated the water-quality conditions of Chester Creek, a stream draining forest and urban settings in Anchorage, Alaska. Data collection included water, streambed sediments, lakebed sediments, and aquatic organisms samples from urban sites along the stream. Urban land use ranged from less than 1 percent of the basin above the furthest upstream site to 46 percent above the most downstream site. Findings suggest that water quality of Chester Creek declines in the downstream direction and as urbanization in the watershed increases. Water samples were collected monthly and during storms at a site near the stream's mouth (Chester Creek at Arctic Boulevard) and analyzed for major ions and nutrients. Water samples collected during water year 1999 were analyzed for selected pesticides and volatile organic compounds. Concentrations of fecal-indicator bacteria were determined monthly during calendar year 2000. During winter, spring, and summer, four water samples were collected at a site upstream of urban development (South Branch of South Fork Chester Creek at Tank Trail) and five from an intermediate site (South Branch of South Fork Chester Creek at Boniface Parkway). Concentrations of calcium, magnesium, sodium, chloride, and sulfate in water increased in the downstream direction. Nitrate concentrations were similar at the three sites and all were less than the drinking-water standard. About one-quarter of the samples from the Arctic Boulevard site had concentrations of phosphorus that exceeded the U.S. Environmental Protection Agency (USEPA) guideline for preventing nuisance plant growth. Water samples collected at the Arctic Boulevard site contained concentrations of the insecticide carbaryl that exceeded the guideline for protecting aquatic life. Every water sample revealed a low concentration of volatile organic compounds, including benzene, toluene, tetrachloroethylene, methyl tert-butyl ether, and chloroform. No water samples contained volatile organic compounds concentrations that exceeded any USEPA drinking-water standard or guideline. Fecal-indicator bacteria concentrations in water from the Arctic Boulevard site commonly exceeded Federal and State guidelines for water-contact recreation. Concentrations of cadmium, copper, lead, and zinc in streambed sediments increased in the downstream direction. Some concentrations of arsenic, chromium, lead, and zinc in sediments were at levels that can adversely affect aquatic organisms. Analysis of sediment chemistry in successive lakebed-sediment layers from Westchester Lagoon near the stream's mouth provided a record of water-quality trends since about 1970. Concentrations of lead have decreased from peak levels in the mid-1970s, most likely because of removing lead from gasoline and lower lead content in other products. However, concen-trations in recently-deposited lakebed sediments are still about 10 times greater than measured in streambed sediments at the upstream Tank Trail site. Zinc concentrations in lakebed sediments also increased in the early 1970s to levels that exceeded guidelines to protect aquatic life and have remained at elevated but variable levels. Pyrene, benz[a]anthracene, and phenanthrene in lakebed sediments also have varied in concentrations and have exceeded protection guidelines for aquatic life since the 1970s. Concentrations of dichloro-diphenyl-trichloroethane, polychlorinated biphenyls (PCBs), or their by-products generally were highest in lakebed sediments deposited in the 1970s. More recent sediments have concentrations that vary widely and do not show distinct temporal trends. Tissue samples of whole slimy sculpin (Cottus cognatus), a non-migratory species of fish, showed con-centrations of trace elements and organic contaminants. Of the constituents analyzed, only selenium concentra-tions showed levels of potential concern for

  5. Distribution of spawning activity by anadromous fishes in an atlantic slope drainage after removal of a low-head dam

    USGS Publications Warehouse

    Burdick, S.M.; Hightower, J.E.

    2006-01-01

    In 1998, the Quaker Neck Dam was removed from the Neuse River near Goldsboro, North Carolina, restoring access to more than 120 km of potential main-stem spawning habitat and 1,488 km of potential tributary spawning habitat to anadromous fishes. We used plankton sampling and standardized electrofishing to examine the extent to which anadromous fishes utilized this restored spawning habitat in 2003 and 2004. Evidence of spawning activity was detected upstream of the former dam site for three anadromous species: American shad Alosa sapidissima, hickory shad A. mediocris, and striped bass Morone saxatilis. The percentages of eggs and larvae collected in the restored upstream habitat were greater in 2003, when spring flows were high, than in 2004. River reaches where spawning occurred were estimated from egg stage and water velocity data. Spawning of American shad and striped bass occurred primarily in main-stem river reaches that were further upstream during the year of higher spring flows. Hickory shad generally spawned in downstream reaches and in tributaries above and below the former dam site. These results demonstrate that anadromous fishes will take advantage of upper basin spawning habitat restored through dam removal as long as instream flows are adequate to facilitate upstream migration.

  6. Hydrologic, water-quality, and meteorologic data from selected sites in the Upper Catawba River Basin, North Carolina, January 1993 through March 1994

    USGS Publications Warehouse

    Jaynes, M.L.

    1994-01-01

    Hydrologic, water-quality, and meteorologic data were collected from January 1993 through March 1994 as part of a water-quality investigation of the Upper Catawba River Basin, North Carolina. Specific objectives of the investigation were to characterize the water quality of Rhodhiss Lake, Lake Hickory, and three tributary streams, and to calibrate hydrodynamic water-quality models for the two reservoirs. Sampling locations included 11 sites in Rhodhiss Lake, 14 sites in Lake Hickory, and 3 tributary sites. Tributary sites were located at Lower Creek upstream from Rhodhiss Lake and at Upper Little River and Middle Little River upstream from Lake Hickory. During 21 sampling visits, specific conductance, pH, water temperature, dissolved-oxygen concentration, and water transparency were measured at all sampling locations. Water samples were collected for analysis of biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, suspended sediment, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium from three sites in each reservoir and from the three tributary sites. Chemical and particle-size analyses of bottom material from Rhodhiss Lake and Lake Hickory were performed once during the study. At selected locations, automated instruments recorded water level, streamflow, water temperature, solar radiation, and air temperature at 15-minute intervals throughout the study. Hydrologic data presented in the report include monthly water-level statistics and daily mean values of discharge. Diagrams, tables, and statistical summaries of water-quality data are provided. Meteorologic data in the report include monthly precipitation, and daily mean values of solar radiation and air temperature.

  7. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.

  8. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers and selected tributaries, Allegheny County, Pennsylvania, 2001-2005

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal-indicator bacteria concentrations and turbidity were correlated to the location of sample collection in the cross section. Most differences were between bank and composite samples; differences between right-bank and left-bank samples were rarely observed. The Allegheny River sites had more significant correlations than the Monongahela or Ohio River sites. Comparisons were made between fecal-indicator bacteria in composite samples collected during dry-weather, wet-weather day-one, wet-weather day-two (tributary sites only), and wet-weather day-three (Three Rivers sites only) events in the Three Rivers and selected tributary sites. The lowest median bacteria concentrations generally were observed in the dry-weather composite samples. All median bacteria concentrations in dry-weather composite samples in the five Three Rivers sites were below water-quality standards and criteria; bacteria concentrations in the upstream tributary sites rarely met all standards or criteria. Only Turtle Creek, Thompson Run, and Chartiers Creek had at least one median bacteria concentration below water-quality standards or criteria. Median bacteria concentrations in the composite samples generally were higher the day after a wet-weather event compared to dry-weather composite samples and other wet-weather composite samples collected. In the five Three Rivers sites, median bacteria concentrations 3 days after a wet-weather event in composite samples tended to fall below the water-quality standards and criteria; in the eight tributary sites, median bacteria concentrations in the dry-weather and wet-weather composite samples generally were above the water-quality standards or criteria. Composite samples collected at the upstream sites on the Three Rivers and selected tributaries generally had lower median bacteria concentrations than composite samples collected at the downstream sites during dry- and wet-weather events. Higher concentrations downstream may be because o

  9. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    USGS Publications Warehouse

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  10. Water Quality, Fish Tissue, and Bed Sediment Monitoring in Waterbodies of Fort Chaffee Maneuver Training Center, Arkansas, 2002-2004

    USGS Publications Warehouse

    Justus, B.G.; Stanton, Gregory P.

    2005-01-01

    The Fort Chaffee Maneuver Training Center is a facility used to train as many as 50,000 Arkansas National Guardsmen each year. Due to the nature of ongoing training and also to a poor understanding of environmental procedures that were practiced in the World War II era, areas within Fort Chaffee have the potential to be sources of a large number of contaminants. Because some streams flow on to Fort Chaffee, there is also the potential for sources that are off post to affect environmental conditions on post. This study evaluates constituent concentrations in water, fish tissue, and bed sediment collected from waterbodies on Fort Chaffee between September 2002 and July 2004. Constituent concentrations detected in the three media and measured at nine stream sites and four lake sites were compared to national and regional criteria when available. Two of the larger streams, Big and Vache Grasse Creeks, were sampled at multiple sites. All three sampled media were analyzed for insecticides, PCBs, explosives, and trace elements. Additionally, water samples were analyzed for nutrients and herbicides. The different constituents detected in the three sample media (water, fish tissue, and bed sediment) indicate that land-use activities both on and off post are influencing environmental conditions. Contaminants such as explosives that were sometimes detected in water samples have an obvious relation to military training; however, the occurrence and locations of some nutrients, insecticides, and trace elements suggest that land use both on and off post also could be influencing environmental conditions to some degree. Constituent concentrations at sites on Vache Grasse Creek, and particularly the most upstream site, which was located immediately downstream from an off-post wastewater-treatment facility, indicate that environmental conditions were being influenced by an off-post source. The most upstream site on Vache Grasse Creek had both the highest number of detections and the highest concentrations detected of all sites sampled. Event-mean storm concentrations and storm loads calculated from storm-flow samples at two sites each for Big and Vache Grasse Creeks indicate that storm loads were highest at the two Vache Grasse Creek sites for 24 of the 25 constituents detected. Further evaluation by normalizing storm loads at Big Creek to storm loads at Vache Grasse Creek by stream flow indicate that event loads at Vache Grasse Creek were about two or more times higher than those on Big Creek for 15 of the 25 constituents measured. Low concentrations of arsenic and lead were detected in water samples, but all detections for the two trace elements occurred in samples collected at the upstream site on Vache Grasse Creek. The nickel concentration in fish livers collected from the upstream site on Vache Grasse Creek was 45 percent higher than the median of a national study of 145 sites. Mercury concentrations in edible fish tissue, which are a widespread concern in the United States, exceeded an USEPA criterion for methylmercury of 300 ?g/kg in four of nine samples; however, concentrations are typical of mercury concentrations in fish tissues for the State of Arkansas. Constituent concentrations at some sites indicate that environmental conditions are being influenced by on-post activities. Of the 55 (excluding total organic carbon) organic constituents analyzed in water samples, only 10 were detected above the minimum detection limit but four of those were explosives. Bed-sediment samples from one site located on Grayson Creek, and nearest the administrative and residential (cantonment) area, had detections for arsenic, copper, lead, manganese, nickel, and zinc that were above background concentrations, and concentrations for arsenic and nickel at this site exceeded lowest effect level criteria established by the U.S. Environmental Protection Agency. The site on Grayson Creek also had the only detections of DDT metabolites in bed sedi

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King, CHP, PMP

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on August 22, 2012. Representatives from the U.S. Nuclear Regulatory Commission and Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses. Themore » comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates that, at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty. The NFS split sample report does not specify the confidence level of reported uncertainties. Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. A comparison of split sample results, using the DER equation, indicates one set with a DER greater than 3. A DER of 3.1 is calculated for gross alpha results from ORAU sample 5198W0003 and NFS sample MCU-310212003. The ORAU result is 0.98 ± 0.30 pCi/L (value ± 2 sigma) compared to the NFS result of -0.08 ± 0.60 pCi/L. Relatively high DER values are not unexpected for low (e.g., background) analyte concentrations analyzed by separate laboratories, as is the case here. It is noted, however, NFS uncertainties are at least twice the ORAU uncertainties, which contributes to the elevated DER value. Differences in ORAU and NFS minimum detectable activities are even more pronounced. comparison of ORAU and NFS split samples produces reasonably consistent results for low (e.g., background) concentrations.« less

  12. Evaluation of Streamflow Gain-Loss Characteristics of Hubbard Creek, in the Vicinity of a Mine-Permit Area, Delta County, Colorado, 2007

    USGS Publications Warehouse

    Ruddy, Barbara C.; Williams, Cory A.

    2007-01-01

    In 2007, the U.S. Geological Survey, in cooperation with Bowie Mining Company, initiated a study to characterize the streamflow and streamflow gain-loss in a reach of Hubbard Creek in Delta County, Colorado, in the vicinity of a mine-permit area planned for future coal mining. Premining streamflow characteristics and streamflow gain-loss variation were determined so that pre- and postmining gain-loss characteristics could be compared. This report describes the methods used in this study and the results of two streamflow-measurement sets collected during low-flow conditions. Streamflow gain-loss measurements were collected using rhodamine WT and sodium bromide tracers at four sites spanning the mine-permit area on June 26-28, 2007. Streamflows were estimated and compared between four measurement sites within three stream subreaches of the study reach. Data from two streamflow-gaging stations on Hubbard Creek upstream and downstream from the mine-permit area were evaluated. Streamflows at the stations were continuous, and flow at the upstream station nearly always exceeded the streamflow at the downstream station. Furthermore, streamflow at both stations showed similar diurnal patterns with traveltime offsets. On June 26, streamflow from the gain-loss measurements was greater at site 1 (most upstream site) than at site 4 (most downstream site); on June 27, streamflow was greater at site 4 than at site 2; and on June 27, there was no difference in streamflow between sites 2 and 3. Data from streamflow-gaging stations 09132940 and 09132960 showed diurnal variations and overall decreasing streamflow over time. The data indicate a dynamic system, and streamflow can increase or decrease depending on hydrologic conditions. The streamflow within the study reach was greater than the streamflows at either the upstream or downstream stations. A second set of gain-loss measurements was collected at sites 2 and 4 on November 8-9, 2007. On November 8, streamflow was greater at site 4 than at site 2, and on the following day, November 9, streamflow was greater at site 2 than at site 4. Data collection on November 8 occurred while the streamflow was increasing due to contributions from stream ice melting throughout different parts of the basin. Data collection on November 9 occurred earlier in the day with less stream ice melting and more steady-state conditions, so the indication that streamflow decreased between sites 2 and 4 may be more accurate. Diurnal variations in streamflow are common at both the upper and the lower streamflow-gaging stations. The upper streamflow-gaging station shows a melt-freeze influence from tributaries to Hubbard Creek during the winter season. Downstream from the study reach, observed diurnal variation is likely due to evapotranspiration associated with dense flood-plain vegetation, which consumes water from the creek during the middle of the day. Varying diurnal patterns in streamflow, combined with possible variations in tributary inflows to Hubbard Creek in the study reach, probably account for the observed variations in streamflow at the tracer measurement sites. During both sampling periods in June and November 2007, conditions were less than ideal and not steady state. The June 27 sampling indicates that the streamflow was increasing between measurement sites 2 and 4, and the November 9 sampling indicates that the streamflow was decreasing between measurement sites 2 and 4. The data collected during the diurnal and day-to-day variations in streamflow indicated that the streamflow reach is dynamic and can be gaining, losing, or constant.

  13. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges.

    PubMed

    Lekunberri, Itziar; Balcázar, José Luis; Borrego, Carles M

    2018-03-01

    Mobile genetic elements (MGEs) are key agents in the spread of antibiotic resistance genes (ARGs) across environments. Here we used metagenomics to compare the river resistome (collection of all ARGs) and mobilome (e.g., integrases, transposases, integron integrases and insertion sequence common region "ISCR" elements) between samples collected upstream (n = 6) and downstream (n = 6) of an urban wastewater treatment plant (UWWTP). In comparison to upstream metagenomes, downstream metagenomes showed a drastic increase in the abundance of ARGs, as well as markers of MGEs, particularly integron integrases and ISCR elements. These changes were accompanied by a concomitant prevalence of 16S rRNA gene signatures of bacteria affiliated to families encompassing well-known human and animal pathogens. Our results confirm that chronic discharges of treated wastewater severely impact the river resistome affecting not only the abundance and diversity of ARGs but also their potential spread by enriching the river mobilome in a wide variety of MGEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Water quality in the Little Sac River basin near Springfield, Missouri, 1999-2001

    USGS Publications Warehouse

    Smith, Brenda J.

    2002-01-01

    The Little Sac River, north of Springfield, Missouri, flows through mainly agricultural and forest land. However, the quality of the river water is a concern because the river flows into Stockton Lake, which is a supplemental drinking water source for Springfield. Large bacterial densities and nutrient concentrations are primary concerns to the water quality of the river.A 29-river mile reach of the Little Sac River is on the 1998 list of waters of Missouri designated under section 303(d) of the Federal Clean Water Act because of fecal coliform densities larger than the Missouri Department of Natural Resources standard (hereinafter referred to as Missouri standard) of 200 colonies per 100 milliliters for whole-body contact recreation. During an investigation of the water quality in the Little Sac River by the U.S. Geological Survey, in cooperation with the Watershed Committee of the Ozarks, fecal coliform bacteria densities exceeded the Missouri standard (the standard applies from April 1 through October 31) in one sample from a site near Walnut Grove. At other sites on the Little Sac River, the Missouri standard was exceeded in two samples and equalled in one sample upstream from the Northwest Wastewater Treatment Plant (NW WTP) and in one sample immediately downstream from the NW WTP.Effluent from the NW WTP flows into the Little Sac River. Annually from April 1 through October 31, the effluent is disinfected to meet the Missouri standard for whole-body contact recreation. Fecal coliform bacteria densities in samples collected during this period generally were less than 100 colonies per 100 milliliters. For the rest of the year when the effluent was not disinfected, the bacteria densities in samples ranged from 50 (sample collected on November 1, 2000) to 10,100 colonies per 100 milliliters (both counts were non-ideal). When the effluent was disinfected and the fecal coliform bacteria density was small, samples from sites upstream and downstream from the NW WTP had a bacteria density larger than the density in the effluent. Other sources of bacteria are likely to be present in the study area in addition to the NW WTP. These potential sources include effluent from domestic septic systems and animal wastes.Nutrient concentrations in the Little Sac River immediately downstream from the NW WTP were affected by effluent from the NW WTP and possibly other sources. At two sites upstream from the NW WTP, median nitrite plus nitrate concentrations were 1.1 and 1.4 milligrams per liter. The median nitrite plus nitrate concentration for the effluent from the NW WTP was 6.4 milligrams per liter, and the median concentration decreased downstream in the Little Sac River to 2.2, 1.2, and 0.56 milligrams per liter.The effects of the effluent from the NW WTP on the water quality of the Little Sac River downstream from the NW WTP were reflected in an increase in discharge (effluent from the NW WTP can be as much as 50 percent of the flow at the site about 1.5 river miles downstream from the NW WTP), an increase in specific conductance values, an increase in several inorganic constituent concentrations, including calcium, magnesium, and sulfate, and a large increase in sodium and chloride concentrations. The effluent from the NW WTP seemed to have no effect on the pH value, temperature, and dissolved oxygen concentrations in the Little Sac River.Results of repetitive element polymerase chain reaction (rep-PCR) pattern analysis indicated that most Escherichia coli (E. coli) bacteria in water samples probably were from nonhuman sources, such as horses and cattle. The rep-PCR pattern analysis indicated that horses were an important source of E. coli downstream from the NW WTP, which was consistent with horses pastured adjacent to the sampling site. Fecal coliform bacteria loads increased upstream from the NW WTP from the most upstream site to the site immediately upstream from the NW WTP. Loads in the effluent from the NW WTP and also tho

  15. A new sampler design for measuring sedimentation in streams

    USGS Publications Warehouse

    Hedrick, Lara B.; Welsh, S.A.; Hedrick, J.D.

    2005-01-01

    Sedimentation alters aquatic habitats and negatively affects fish and invertebrate communities but is difficult to quantify. To monitor bed load sedimentation, we designed a sampler with a 10.16-cm polyvinyl chloride coupling and removable sediment trap. We conducted a trial study of our samplers in riffle and pool habitats upstream and downstream of highway construction on a first-order Appalachian stream. Sediment samples were collected over three 6-week intervals, dried, and separated into five size-classes by means of nested sieves (U.S. standard sieve numbers 4, 8, 14, and 20). Downstream sediment accumulated in size-classes 1 and 2, and the total amount accumulated was significantly greater during all three sampling periods. Size-classes 3 and 4 had significantly greater amounts of sediment for the first two sampling periods at the downstream site. Differences between upstream and downstream sites narrowed during the 5-month sampling period. This probably reflects changes in site conditions, including the addition of more effective sediment control measures after the first 6-week period of the study. The sediment sampler design allowed for long-term placement of traps without continual disturbance of the streambed and was successful at providing repeat measures of sediment at paired sites. ?? Copyright by the American Fisheries Society 2005.

  16. Anthropogenic tritium in the Loire River estuary, France

    NASA Astrophysics Data System (ADS)

    Péron, O.; Gégout, C.; Reeves, B.; Rousseau, G.; Montavon, G.; Landesman, C.

    2016-12-01

    This work is carried out in the frame of a radioecological monitoring of anthropogenic tritium from upstream and downstream of several nuclear power plants along the Loire River to its estuary. This paper studies the variation of anthropogenic tritium species in the Loire River system from upstream to the mouth of the estuary. Tritiated water (HTO and HTO in sediment pore water) and organically bound tritium (OBT) forms were analysed after dedicated pre-treatments. The collected environmental samples consist in (i) surface-sediment and core samples from the river floor, (ii) surface and water column samples. A maximum 3H activity concentration of 26 ± 3 Bq·L- 1 in the Loire River estuary is obtained whereas an environmental background level around 1 Bq·L- 1 is determined for a non influenced continental area by anthropogenic activities. The European follow-up indicator used as a screening value is 100 Bq·L- 1. The conservative tritium behaviour was used in order to characterize the tidal regime and river flow influences in the mixing zone of the Loire River estuary. Furthermore, OBT levels and total organically carbon (TOC) content are explored. Finally, ratios of OBT relative to HTO in sediment pore water in surface-sediment and core samples are also discussed.

  17. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Skalak, Katherine; Kent, D.B.; Engle, Mark A.; Benthem, Adam J.; Mumford, Adam; Haase, Karl B.; Farag, Aïda M.; Harper, David; Nagel, S. C.; Iwanowicz, Luke R.; Orem, William H.; Akob, Denise M.; Jaeschke, Jeanne B.; Galloway, Joel M.; Kohler, Matthias; Stoliker, Deborah L.; Jolly, Glenn D.

    2017-01-01

    Wastewaters from oil and gas development pose largely unknown risks to environmental resources. In January 2015, 11.4 M L (million liters) of wastewater (300 g/L TDS) from oil production in the Williston Basin was reported to have leaked from a pipeline, spilling into Blacktail Creek, North Dakota. Geochemical and biological samples were collected in February and June 2015 to identify geochemical signatures of spilled wastewaters as well as biological responses along a 44-km river reach. February water samples had elevated chloride (1030 mg/L) and bromide (7.8 mg/L) downstream from the spill, compared to upstream levels (11 mg/L and < 0.4 mg/L, respectively). Lithium (0.25 mg/L), boron (1.75 mg/L) and strontium (7.1 mg/L) were present downstream at 5–10 times upstream concentrations. Light hydrocarbon measurements indicated a persistent thermogenic source of methane in the stream. Semi-volatile hydrocarbons indicative of oil were not detected in filtered samples but low levels, including tetramethylbenzenes and di-methylnaphthalenes, were detected in unfiltered water samples downstream from the spill. Labile sediment-bound barium and strontium concentrations (June 2015) were higher downstream from the Spill Site. Radium activities in sediment downstream from the Spill Site were up to 15 times the upstream activities and, combined with Sr isotope ratios, suggest contributions from the pipeline fluid and support the conclusion that elevated concentrations in Blacktail Creek water are from the leaking pipeline. Results from June 2015 demonstrate the persistence of wastewater effects in Blacktail Creek several months after remediation efforts started. Aquatic health effects were observed in June 2015; fish bioassays showed only 2.5% survival at 7.1 km downstream from the spill compared to 89% at the upstream reference site. Additional potential biological impacts were indicated by estrogenic inhibition in downstream waters. Our findings demonstrate that environmental signatures from wastewater spills are persistent and create the potential for long-term environmental health effects.

  18. The effects of land use on fluvial sediment chemistry for the conterminous U.S. - Results from the first cycle of the NAWQA Program: Trace and major elements, phosphorus, carbon, and sulfur

    USGS Publications Warehouse

    Horowitz, A.J.; Stephens, V.C.

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began the first cycle of its National Water Quality Assessment (NAWQA) Program. The Program encompassed 51 river basins that collectively accounted for more than 70% of the total water use (excluding power generation), and 50% of the drinking water supply in the U.S. The basins represented a variety of hydrologic settings, rock types (geology), land-use categories, and population densities. One aspect of the first cycle included bed sediment sampling; sites were chosen to represent baseline and important land-use categories (e.g., agriculture, urban) in each basin. In total, over 1200 bed sediment samples were collected. All samples were size-limited (< 63????m) to facilitate spatial and/or temporal comparisons, and subsequently analyzed for a variety of chemical constituents including major (e.g., Fe, Al,) and trace elements (e.g., Cu, Zn, Cd), nutrients (e.g., P), and carbon. The analyses yielded total (??? 95% of the concentrations present), rather than total-recoverable chemical data. Land-use percentages, upstream underlying geology, and population density were determined for each site and evaluated to asses their relative influence on sediment chemistry. Baseline concentrations for the entire U.S. also were generated from a subset of all the samples, and are based on material collected from low population (??? 27??p km- 2) density, low percent urban (??? 5%), agricultural or undeveloped areas. The NAWQA baseline values are similar to those found in other national and global datasets. Further, it appears that upstream/underlying rock type has only a limited effect (mostly major elements) on sediment chemistry. The only land-use category that appears to substantially affect sediment chemistry is percent urban, and this result is mirrored by population density; in fact, the latter appears more consistent than the former.

  19. Characterizing the bioactivity of complex environmental ...

    EPA Pesticide Factsheets

    Bioassays can be employed to evaluate the integrated effects of complex mixtures of both known and unidentified contaminants present in environmental samples. However, such methods have typically focused on one or a few bioactivities despite the fact that the chemicals in a mixture may exhibit a wide range of activities. High throughput toxicology approaches that can rapidly screen samples for a broad diversity of biological activities offer a means to provide a more comprehensive characterization. To test this concept, twenty-four ambient water samples were collected, extracted, and screened for their ability to interact with or modulate over 80 different transcription factors using the Attagene subset of assays utilized by the US EPA’s ToxCast Program. Samples evaluated included water collected at five sites along a spatial gradient centered around a wastewater discharge into the Maumee River, Ohio, USA; 10 samples were collected in varying proximity to a wastewater discharge within the St. Louis River Area of Concern (AOC), MN; and eight samples were associated with a nation-wide US Geological Survey Mixture Study. Samples collected along the Maumee River showed a gradient response in the number of observed activities, ranging from three positive assay responses observed far upstream of discharge to seven positive responses in water from the mixing zone. TGFb signaling and the aryl hydrocarbon receptor (AhR) activation were the biological activities obser

  20. Tracing Causes of Hypoxia in the San Joaquin River Using Isotopic Techniques

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Doctor, D. H.; Chang, C. C.; Fleenor, W. E.

    2005-05-01

    Fish migration through the deep-water shipping channel in the San Joaquin River near the city of Stockton CA is inhibited by periodic low dissolved oxygen (DO) concentrations during low flow conditions. There is considerable controversy regarding the relative roles of two mechanisms that can contribute to DO depletion: decomposition of algae from upstream locations and nitrification of ammonium from a nearby waste water treatment facility. Development of a successful remediation plan requires knowledge of the controls on spatial and temporal differences in oxygen-consuming mechanisms. To better understand the timing and relative importance of the mechanisms responsible for oxygen depletion, samples were collected for isotopic and chemical analysis during two intensive two-day sampling trips in August 2004. Samples were taken from a stationary houseboat in the channel, and from upstream and downstream traveling boats. Water samples at the houseboat were collected at five depths at 2-4 h intervals, and samples from 1 m were collected at about 4 h intervals from the traveling boats. All samples were analyzed for DO-d18O, seston-d15N/d13C, nitrate-d15N/d18O, DIC-d13C, water-d18O/d2H, DO, ammonium, and nitrate concentrations. Of all the measured parameters, ammonium, DO, and DO-d18O showed the strongest diurnal fluctuations, as well as significant changes with depth. Physico-chemical parameters indicated diurnal stratification and overturn of the channel. The general increase in the DO-d18O coincident with decreases in DO suggests that the night-time decrease in DO is caused largely by O2 consumption, either by respiration of organic matter or by nitrification. The DIC-d13C and nitrate-d15N data indicate that nitrification may affect DO concentrations as much or more than respiration. Preliminary principle components analysis indicates that photosynthesis is the main control over DO concentrations during this period of DO depletion, and that both nitrification and respiration are significant causes of DO depletion in this channel. Future work will focus on the transition between normal DO conditions and periods of DO depletion.

  1. Ground-water-quality assessment of the Carson River basin, Nevada and California; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.

    1989-01-01

    Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)

  2. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    PubMed

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  3. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase, less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  4. Effects of urbanization on water quality in the Kansas River, Shunganunga Creek Basin, and Soldier Creek, Topeka, Kansas, October 1993 through September 1995

    USGS Publications Warehouse

    Pope, L.M.; Putnam, J.E.

    1997-01-01

    A study of urban-related water-qulity effects in the Kansas River, Shunganunga Creek Basin, and Soldier Creek in Topeka, Kansas, was conducted from October 1993 through September 1995. The purpose of this report is to assess the effects of urbanization on instream concentrations of selected physical and chemical constituents within the city of Topeka. A network of seven sampling sites was established in the study area. Samples principally were collected at monthly intervals from the Kansas River and from the Shunganunga Creek Basin, and at quarterly intervals from Soldier Creek. The effects of urbanization werestatistically evaluated from differences in constituent concentrations between sites on the same stream. No significant differences in median concentrations of dissolved solids, nutrients, or metals and trace elements, or median densities offecal bacteria were documented between sampling sites upstream and downstream from the major urbanized length of the Kansas River in Topeka.Discharge from the city's primary wastewater- treatment plant is the largest potential source of contamination to the Kansas River. This discharge increased concentrations of dissolved ammonia, totalphosphorus, and densities of fecal bacteria.Calculated dissolved ammonia as nitrogen concentrations in water from the Kansas River ranged from 0.03 to 1.1 milligrams per liter after receiving treatment-plant discharge. However, most of the calculated concentrations wereconsiderably less than 50 percent of Kansas Department of Health and Environment water- quality criteria, with a median value of 20 percent.Generally, treatment-plant discharge increased calculated total phosphorus concentrations in water from the Kansas River by 0.01 to 0.04 milligrams per liter, with a median percentage increase of 7.6 percent. The calculated median densities of fecal coliform and fecal Streptococci bacteria in water from the Kansas River increased from 120 and 150colonies per 100 milliliters of water, respectively, before treatment-plant discharge to a calculated 4,900 and 4,700 colonies per 100 milliliters of water, respectively, after discharge. Median concentrations of dissolved solids were not significantly different between three sampling sites in the Shunganunga Creek Basin. Median concentrations of dissolved nitrate as nitrogen, total phosphorus, and dissolved orthophosphate were significantly larger in water from the upstream- most Shunganunga Creek sampling site than in water from either of the other sampling sites in the Shunganunga Creek Basin probably because of the site's proximity to a wastewater-treatment plant.Median concentrations of dissolved nitrate as nitrogen and total phosphorus during 1993-95 at upstream sampling sites were either significantlylarger than during 1979-81 in response to increase of wastewater-treatment plant discharge or smaller because of the elimination of wastewater-treatment plant discharge. Median concentrations of dissolved ammonia as nitrogen were significantly less during 1993-95 than during 1979-81. Median concentrations of total aluminum, iron, maganese, and molybdenum were significantly larger in water from the downstream-mostShunganunga Creek sampling site than in water from the upstream-most sampling site. This probably reflects their widespread use in the urbanenvironment between the upstream and downstream Shunganunga Creek sampling sites. Little water-quality effect from the urbanization was indicated by results from the Soldier Creek sampling site. Median concentrations of most water-quality constituents in water from this sampling site were the smallest in water from any sampling site in the study area. Herbicides were detected in water from all sampling sites. Some of the more frequently detected herbicides included acetochlor, alachlor,atrazine, cyanazine, EPTC, metolachlor, prometon, simazine, and tebuthiuron. Detected insecticides including chlordane,

  5. Data for calibrating unsteady-flow sediment-transport models, East Fork River, Wyoming, 1975

    USGS Publications Warehouse

    Mahoney, Holly A.; Andrews, Edmund D.; Emmett, William W.; Leopold, Luna Bergere; Meade, Robert H.; Myrick, Robert M.; Nordin, Carl F.

    1976-01-01

    In 1975, data to calibrate a one-dimensional unsteady-flow and sediment-transport routing model were collected on a reach of the East Fork River of western Wyoming. The reach, 3.1 miles (5 kilometers) in length, wan immediately upstream from a previously established bedload sampling station. Nineteen channel cross sections were sounded at regular intervals during the spring-runoff period. Four stage recorders provided continuous records of water-surface elevations. Samples of bed material at most of the cross sections were obtained prior to high water. Streamflow and sediment-discharge measurements were collected at four of the sections.The physiography and hydrology of the contributing watershed, the study reach, and the equipment and techniques used in data collection are described briefly. The bulk of the report is a presentation of data for the several-week period of late May to early June 1975, for which concurrent water discharge data, bedload transport and size data, and cross-section depth measurements were collected. In addition, some data collected in 1973 and 1974 and before and after the calibration period in 1975 are included for completeness.

  6. Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons.

    PubMed

    Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C

    2015-02-01

    The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids concentration. This study shows that chronic in situ exposure to environmental metal concentrations has a significant impact on natural biofilms. Biofilm tolerance to metals and biofilm metal bioaccumulation both reflect metal exposure levels although they remain low when compared to Environmental Quality Standards from the European Water Framework Directive. Yet temperature appears as an important environmental variable shaping community structure and response to toxic exposure which shows that the sampling date is an important parameter to consider when using natural river biofilms to assess the impacts of urban pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations from the water samples collected from Perdido Bay indicated a significant amount of mixing of saltwater and freshwater. Mixing effects could greatly reduce the accuracy of estimates of net loads of nutrients or other substances. The study results indicate that acoustical techniques can yield acceptable estimates of instantaneous loads in Perdido Bay. However, estimates of net loads should be interpreted with great caution and may have unacceptably large errors, especially when saltwater and freshwater concentrations differ greatly.

  8. Occurrence of phosphorus, nitrate, and suspended solids in streams of the Cheney Reservoir Watershed, south-central Kansas, 1997-2000

    USGS Publications Warehouse

    Milligan, Chad R.; Pope, Larry M.

    2001-01-01

    Improving water quality of Cheney Reservoir in south-central Kansas is an important objective of State and local water managers. The reservoir serves as a water supply for about 350,00 people in the Wichita area and an important recreational resource for the area. In 1992, a task force was formed to study and prepare a plan to identify and mitigate potential sources of stream contamination in the Cheney Reservoir watershed. This task force was established to develop stream-water-quality goals to aid in the development and implementation of best-management practices in the watershed. In 1996, the U.S. Geological Survey entered into a cooperative study with the city of Wichita to assess the water quality in the Cheney Reservoir watershed. Water-quality constituents of particular concern in the Cheney Reservoir watershed are phosphorus, nitrate, and total suspended solids. Water-quality samples were collected at five streamflow-gaging sites upstream from the reservoir and at the outflow of the reservoir. The purpose of this report is to present the results of a 4-year (1997-2000) data-collection effort to quantify the occurrence of phosphorus, nitrate, and suspended solids during base-flow, runoff, and long-term streamflow conditions (all available data for 1997-2000) and to compare these results to stream-water-quality goals established by the Cheney Reservoir Task Force. Mean concentrations of each of the constituents examined during this study exceeded the Cheney Reservoir Task Force stream-water-quality goal for at least one of the streamflow conditions evaluated. Most notably, mean base-flow and mean long-term concentrations of total phosphorus and mean base-flow concentrations of dissolved nitrate exceeded the goals of 0.05, 0.10, and 0.25 milligram per liter, respectively, at all five sampling sites upstream from the reservoir. Additionally, the long-term stream-water-quality goal for dissolved nitrate was exceeded by the mean concentration at one upstream sampling site, and the base-flow total suspended solids goal (20 milligrams per liter) and long-term total suspended solids goal (100 milligrams per liter) were each exceeded by mean concentrations at three upstream sampling sites. Generally, it seems unlikely that water-quality goals for streams in the Cheney Reservoir watershed will be attainable for mean base-flow and mean long-term total phosphorus and total suspended solids concentrations and for mean base-flow dissolved nitrate concentrations as long as current (2001) watershed conditions and practices persist. However, future changes in these conditions and practices that mitigate the transport of these consitutents may modify this conclusion.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on June 12, 2013. Representatives from the U.S. Nuclear Regulatory Commission (NRC) and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross betamore » analyses, and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER ≤ 3 indicates at a 99% confidence interval that split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report specifies 95% confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0014 was the exception. The ORAU gross beta result of 6.30 ± 0.65 pCi/L from location NRD is well above NFS's non-detected result of 1.56 ± 0.59 pCi/L. NFS's data package includes no detected result for any radionuclide at location NRD. At NRC's request, ORAU performed gamma spectroscopic analysis of sample 5198W0014 to identify analytes contributing to the relatively elevated gross beta results. This analysis identified detected amounts of naturally-occurring constituents, most notably Ac-228 from the thorium decay series, and does not suggest the presence of site-related contamination.« less

  10. Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia

    PubMed Central

    Stephens, Sarah H.; Logel, Judith; Barton, Amanda; Franks, Alexis; Schultz, Jessica; Short, Margaret; Dickenson, Jane; James, Benjamin; Fingerlin, Tasha E.; Wagner, Brandie; Hodgkinson, Colin; Graw, Sharon; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    Background The α7 neuronal nicotinic acetylcholine receptor subunit gene (CHRNA7) is localized in a chromosomal region (15q14) linked to schizophrenia in multiple independent studies. CHRNA7 was selected as the best candidate gene in the region for a well-documented endophenotype of schizophrenia, the P50 sensory processing deficit, by genetic linkage and biochemical studies. Methods Subjects included Caucasian-Non Hispanic and African-American case-control subjects collected in Denver, and schizophrenic subjects from families in the NIMH Genetics Initiative on Schizophrenia. Thirty-five single nucleotide polymorphisms (SNPs) in the 5′-upstream regulatory region of CHRNA7 were genotyped for association with schizophrenia, and for smoking in schizophrenia. Results The rs3087454 SNP, located at position −1831 bp in the upstream regulatory region of CHRNA7, was significantly associated with schizophrenia in the case-control samples after multiple-testing correction (P = 0.0009, African American; P = 0.013, Caucasian-Non Hispanic); the association was supported in family members. There was nominal association of this SNP with smoking in schizophrenia. Conclusions The data support association of regulatory region polymorphisms in the CHRNA7 gene with schizophrenia. PMID:19181484

  11. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan.

    PubMed

    Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M

    2012-01-01

    Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.

  12. Streamflow transport of radionuclides and other chemical constituents in the Puerco and the Little Colorado river basins, Arizona and New Mexico

    USGS Publications Warehouse

    Graf, Julia B.; Wirt, Laurie; Swanson, E.K.; Fisk, G.G.; Gray, J.R.

    1996-01-01

    Samples collected at streamflow-gaging stations in the Puerco and Little Colorado rivers show that radioactivity of suspended sediment at gaging stations downstream from inactive uranium mines was not significantly higher than at gaging stations where no mining has occurred upstream. Drinking-water standards for many constituents, however, commonly are exceeded during runoff because concentration of these constituents on sediment from natural processes is high and suspended-sediment loads are high during runoff.

  13. Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio

    USGS Publications Warehouse

    Tertuliani, J.S.; Alvarez, D.A.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Koltun, G.F.

    2008-01-01

    The U.S. Geological Survey - in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; and Portage and Summit Counties - and in collaboration with the Ohio Environmental Protection Agency, did a study to determine the occurrence and distribution of organic wastewater compounds (OWCs) in the Tinkers Creek watershed in northeastern Ohio. In the context of this report, OWCs refer to a wide range of compounds such as antibiotics, prescription and nonprescription pharmaceuticals, personal-care products, household and industrial compounds (for example, antimicrobials, fragrances, surfactants, fire retardants, and so forth) and a variety of other chemicals. Canisters containing polar organic integrative sampler (POCIS) and semipermeable membrane device (SPMD) media were deployed instream for a 28-day period in Mayand June 2006 at locations upstream and downstream from seven wastewater-treatment-plant (WWTP) outfalls in the Tinkers Creek watershed, at a site on Tinkers Creek downstream from all WWTP discharges, and at one reference site each in two nearby watersheds (Yellow Creek and Furnace Run) that drain to the Cuyahoga River. Streambed-sediment samples also were collected at each site when the canisters were retrieved. POCIS and SPMDs are referred to as 'passive samplers' because they sample compounds that they are exposed to without use of mechanical or moving parts. OWCs detected in POCIS and SPMD extracts are referred to in this report as 'detections in water' because both POCIS and SPMDs provided time-weighted measures of concentration in the stream over the exposure period. Streambed sediments also reflect exposure to OWCs in the stream over a long period of time and provide another OWC exposure pathway for aquatic organisms. Four separate laboratory methods were used to analyze for 32 antibiotic, 20 pharmaceutical, 57 to 66 wastewater, and 33 hydrophobic compounds. POCIS and streambed-sediment extracts were analyzed by both the pharmaceutical and wastewater methods. POCIS extracts also were analyzed by the antibiotic method, and SPMD extracts were analyzed by the hydrophobic-compound method. Analytes associated with a given laboratory method are referred to in aggregate by the method name (for example, antibiotic-method analytes are referred to as 'antibiotic compounds') even though some analytes associated with the method may not be strictly classified as such. In addition, some compounds were included in the analyte list for more than one laboratory method. For a given sample matrix, individual compounds detected by more than one analytical method are included independently in counts for each method. A total of 12 antibiotic, 20 pharmaceutical, 41 wastewater, and 22 hydrophobic compounds were detected in water at one or more sites. Eight pharmaceutical and 37 wastewater compounds were detected in streambed sediments. The numbers of detections at reference sites tended to be in the low range of detection counts observed in the Tinkers Creek watershed for a given analytical method. Also, the total numbers of compounds detected in water and sediment at the reference sites were less than the total numbers of compounds detected at sites in the Tinkers Creek watershed. With the exception of hydrophobic compounds, it was common at most sites to have more compounds detected in samples collected downstream from WWTP outfalls than in corresponding samples collected upstream from the outfalls. This was particularly true for antibiotic, pharmaceutical, and wastewater compounds in water. In contrast, it was common to have more hydrophobic compounds detected in samples collected upstream from WWTP outfalls than downstream. Caffeine, fluoranthene, N,N-diethyl-meta-toluamide (DEET), phenanthrene, and pyrene were detected in water at all sites in the Tinkers Creek watershed, irrespective of whether the site was upstream or downs

  14. Limnology of Blue Mesa, Morrow Point, and Crystal Reservoirs, Curecanti National Recreation area, during 1999, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir, Colorado

    USGS Publications Warehouse

    Bauch, Nancy J.; Malick, Matt

    2003-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher in Blue Mesa Reservoir than Morrow Point or Crystal Reservoirs. Blue Mesa Reservoir was mesotrophic in upstream areas and oligotrophic downstream. Both Morrow Point and Crystal Reservoirs were oligotrophic. Trophic-state index values were determined for total phosphorus, chlorophyll-a, and Secchi depth for each reservoir by the Carlson method; all values ranged between 29 and 55. Only the upstream areas in Blue Mesa Reservoir had total phosphorus and chlorophyll-a indices above 50, reflecting mesotrophic conditions. Nutrient inflows to Blue Mesa Reservoir, which were derived primarily from the Gunnison River, varied on a seasonal basis, whereas nutrient inflows to Morrow Point and Crystal Reservoirs, which were derived primarily from deep water releases from the respective upstream reservoir, were steady throughout the sampling period. Total phosphorus concentrations were elevated in many stream inflows. A comparison of current (as of 1999) and historical nutrient, chlorophyll-a, and trophic conditions in Blue Mesa Reservoir and its tributaries indicated that the trophic status in Blue Mesa Reservoir has not changed over the last 25 years, and more recent nutrient enrichment has not occurred.

  15. Evaluation of sampling and analytical methods for nicotine and polynuclear aromatic hydrocarbon in indoor air. Final report, 1 February 1987-30 March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.C.; Kuhlman, M.R.; Hannan, S.W.

    1987-11-01

    The objective of this project was to evaluate a potential collection medium, XAD-4 resin, for collecting nicotine and polynuclear aromatic hydrocarbon (PAH) and to determine whether one collection system and one analytical method will allow quantification of both compound classes in air. The extraction efficiency study was to determine the extraction method to quantitatively remove nicotine and PAH from XAD-4 resin. The results showed that a two-step Soxhlet extraction consisting of dichloromethane followed by ethyl acetate resulted in the best recoveries for both nicotine and PAH. In the sampling efficiency study, XAD-2 and XAD-4 resin were compared, in parallel, formore » collection of PAH and nicotine. Quartz fiber filters were placed upstream of both adsorbents to collect particles. Prior to sampling, both XAD-2 and XAD-4 traps were spiked with known amounts (2 microgram) of perdeuterated PAH and D3-nicotine. The experiments were performed with cigarette smoking and nonsmoking conditions. The spiked PAH were retained well in both adsorbents after exposure to more than 300 cu. m. of indoor air. The spiked XAD-4 resin gave higher recoveries for D3-nicotine than did the spiked XAD-2 resin. The collection efficiency for PAH for both adsorbents is very similar but higher levels of nicotine were collected on XAD-4 resin.« less

  16. Levels of pesticides residues in the White Nile water in the Sudan.

    PubMed

    Nesser, Gibreel A A; Abdelbagi, Azhari O; Hammad, Ahmed Mohammed Ali; Tagelseed, Mirghani; Laing, Mark D

    2016-06-01

    Twenty-two commonly used pesticides were monitored during autumn, winter, and summer of 2004-2005 in 27 water samples from three sites along the White Nile in Sudan (former Sudan). Sites were selected to reflect pesticides gathered from drainage canals in central Sudan and from upstream sources. Collected samples were extracted and subjected to gas chromatographic analysis. Pesticides levels were measured in nanograms per liter. Pesticides residues were detected in 96 % of the samples with a total residue burden of 4132.6 ng L(-1), and an overall mean concentration and range of 50.99 and not detected-1570 ng L(-1), respectively. Ororganochlorines were the most frequently detected contaminants, which were found in 70 % of the samples, causing a total burden of 2852.8 ng L(-1), followed by pyrethroids 15 % of the samples, with a total burden of 926.5 ng L(-1). The tested herbicides were detected in ˂4 % of the samples with a total burden of 353.3 ng L(-1), while organophosphorus levels were below the detection limit. The most frequent contaminants were the following: heptachlor and its epoxide (52 % of samples), followed by DDTs (dichlorodiphenyltrichloroethanes) (DDT and DDE, in 19 % of the samples), cypermethrin and fenvalerate (in 11 % of the samples), and pendimethalin (in <4 % of the samples). Residues of hexachlorocyclohexane (HCH) isomers (α, β, γ and δ), endosulfan (α and β), p, p-DDD, λ cyhalothrin, deltamethrin, and oxyfluorfen were not detected in the analyzed samples. Generally, levels were least in autumn, and followed by summer and winter. Sources of contamination might include agricultural lands in central Sudan and upstream sources. Both recent and old contaminations were indicated.

  17. Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004

    USGS Publications Warehouse

    Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

    2005-01-01

    The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

  18. Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity

    NASA Technical Reports Server (NTRS)

    Mell, W. E.; Olson, S. L.; Kashiwagi, T.

    2000-01-01

    The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.

  19. Effect of low-head lock and dam structures on migration and spawning of American shad and striped bass in the Cape Fear River, North Carolina

    USGS Publications Warehouse

    Smith, Joseph A.; Hightower, Joseph E.

    2012-01-01

    Anadromous fish populations within the Cape Fear River, North Carolina, have declined substantially since the late 1800s. Three low-head lock-and-dam (LD) structures on the river (LD-1–3) contributed to this decline by limiting access to upstream spawning habitat. We used egg sampling and sonic telemetry to examine the effects of the LD structures on migration and spawning activity of American shad Alosa sapidissima and striped bassMorone saxatilis. Egg distribution and stage of development suggested that most of the American shad spawning took place downstream from the lowermost structure, LD-1. The predicted mean density of stage-1 American shad eggs at a water temperature of 21°C was 895 eggs/1,000 m3 (95% credible interval [CI] = 800–994) below LD-1; 147 eggs/1,000 m3 (95% CI = 103–197) below LD-2; and 32 eggs/1,000 m3 (95% CI = 17–49) below the uppermost structure, LD-3. The probability of capturing a stage-1 American shad egg was strongly dependent on water temperature and hour of egg collection. Transmitter detections for 20 sonic-tagged American shad and 20 striped bass in 2008 showed that for both species, the majority of fish moved upstream of LD-1; 35% of American shad and 25% of striped bass migrated upstream of LD-3. Based on passage rates at the three LD structures, American shad would be expected to be most abundant downstream of LD-1 and upstream of LD-3. For striped bass, the river section between LD-2 and LD-3 had the highest egg collections and highest predicted proportion of the run. In combination, these results demonstrate that the locking program provides some access to historical spawning habitat, although further improvements in fish passage could benefit both species.

  20. Movement Patterns of American Shad Transported Upstream of Dams on The Roanoke River, North Carolina and Virginia

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, J.E.

    2011-01-01

    American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.

  1. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality standard for total arsenic of 50 micrograms per liter. All concentrations of dissolved copper, selenium, and zinc measured in samples were below the water-quality standard.Concentrations of dissolved nitrate plus nitrite generally increased from upstream to downstream during all flow periods. The largest downstream increase in dissolved nitrate plus nitrite concentration was measured between sites 07103970 and 07104905 on Monument Creek. All but one tributary that drain into Monument Creek between the two sites had higher median nitrate plus nitrite concentrations than the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). Increases in the concentration of dissolved nitrate plus nitrite were also evident below wastewater treatment plants located on Fountain Creek.Most stormflow concentrations of dissolved trace elements were smaller than concentrations from cold-season flow or warm-season samples. However, median concentrations of total arsenic, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during cold-season flow or warm-season fl. Median concentrations of total arsenic, total copper, total lead, dissolved and total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc concentrations increased from 1.5 to 28.5 times from site 07103700 (FoCr_Manitou) to 07103707 (FoCr_8th) during cold-season and warm-season flows, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek.Median suspended-sediment concentrations and median suspended-sediment loads increased in the downstream direction during all streamflow regimes between Monument Creek sites 07103970 (MoCr_Woodmen) and 07104905 (MoCr_Bijou); however, statistically significant increase (p-value less than 0.05) were only present during warm-season flow and stormflow. Significant increases in median suspended sediment concentrations were measured during cold-season flow and warm-season flow between Upper Fountain Creek site 07103707 (FoCr_8th) and Lower Fountain Creek site 07105500 (FoCr_Nevada) because of inflows from Monument Creek with higher suspended-sediment concentrations. Median suspended-sediment concentrations between sites 07104905 (MoCr_Bijou) and 07105500 (FoCr_Nevada) increased significantly during warm-season flow but showed no significant differences during cold-season flow and stormflow. Significant decreases in median suspended-sediment concentrations were measured between sites 07105500 (FoCr_Nevada) and 07105530 (FoCr_Janitell) during all flow regimes.Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with warm-season flow. Although large spatial variations in suspended-sediment yields occurred during warm-season flows, the suspended-sediment yield associated with stormflow were as much as 1,000 times larger than the suspended-sediment yields that occurred during warm-season flow. 

  2. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    NASA Astrophysics Data System (ADS)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  3. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected as much as collected in flask. Stream water and groundwater samples were collected for 40 L each. All the water samples were filtered through 0.45 μm pore-size membrane. Water samples with less than few L were concentrated by evaporative concentration. Water samples with more than 40 L were concentrated using the ammonium molybdophosphate (AMP)/Cs compound method. The Cs-137 concentration was determined using gamma-ray spectrometry with a germanium semiconductor detector. Spatial distribution of dissolved Cs-137 concentration in the slope was obtained and the source of Cs-137 concentration in stream water was examined. The Cs-137 concentration in groundwater showed low value of 0.0004-0.001 Bq/L. The Cs-137 concentration of soil water showed 0.01-0.1 Bq/L. And Cs-137 concentrations of stream water were 0.007-0.03 Bq/L at steady state condition. Also Cs-137 concentrations in stream water showed temporary increase during rainfall event. The source of dissolved Cs-137 was suggested to be shallow soil water under saturated condition or leaching from the litter might be affecting.

  4. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    USGS Publications Warehouse

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.

  5. Estimated sediment thickness, quality, and toxicity to benthic organisms in selected impoundments in Massachusetts

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2013-01-01

    The U.S. Geological Survey and the Massachusetts Department of Fish and Game, Division of Ecological Restoration, collaborated to collect baseline information on the quantity and quality of sediment impounded behind selected dams in Massachusetts, including sediment thickness and the occurrence of contaminants potentially toxic to benthic organisms. The thicknesses of impounded sediments were measured, and cores of sediment were collected from 32 impoundments in 2004 and 2005. Cores were chemically analyzed, and concentrations of 32 inorganic elements and 108 organic compounds were quantified. Sediment thicknesses varied considerably among the 32 impoundments, with an average thickness of 3.7 feet. Estimated volumes also varied greatly, ranging from 100,000 cubic feet to 81 million cubic feet. Concentrations of toxic contaminants as well as the number of contaminants detected above analytical quantification levels (also known as laboratory reporting levels) varied greatly among sampling locations. Based on measured contaminant concentrations and comparison to published screening thresholds, bottom sediments were predicted to be toxic to bottom-dwelling (benthic) organisms in slightly under 30 percent of the impoundments sampled. Statistically significant relations were found between several of the contaminants and individual indicators of urban land use and industrial activity in the upstream drainage areas of the impoundments. However, models developed to estimate contaminant concentrations at unsampled sites from upstream landscape characteristics had low predictive power, consistent with the long and complex land-use history that is typical of many drainage areas in Massachusetts.

  6. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  7. Water quality monitoring of an international wetland at Harike, Punjab and its impact on biological systems

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmit; Walia, Harpreet; Mabwoga, Samson Okongo; Arora, Saroj

    2017-06-01

    The present study entails the investigation of mutagenic and genotoxic effect of surface water samples collected from 13 different sites of the Harike wetland using the histidine reversion point mutation assay in Salmonella typhimurium (TA98) strain and plasmid nicking assay using pBR322, respectively. The physicochemical characterization of water samples using different parameters was conducted for water quality monitoring. Heavy metal analysis was performed to quantify the toxic components present in water samples. It was observed that although the water samples of all the sites demonstrated mutagenic as well as genotoxic activity, the effect was quite significant with the water samples from sites containing water from river Satluj, i.e., site 1 (upstream Satluj river), site 2 (Satluj river) and site 3 (reservoir Satluj). The high level of pollution due to industrial effluents and agricultural run-off at these sites may engender the genotoxicity and mutagenicity of water samples.

  8. Significance of microcystin production by benthic communities in water treatment systems of arid zones.

    PubMed

    Hurtado, I; Aboal, M; Zafra, E; Campillo, D

    2008-02-01

    The study of the dynamics of phytobenthic and phytoplankton communities was undertaken, during a year, in the regulation reservoir associated with a water treatment plant (WTP), which provides the city of Murcia (Spain) with drinking water. Water samples were collected in different stages of the treatment. In the reservoir, the presence of dissolved and intracellular microcystins is constant, both in benthos and in plankton. The collected samples show a positive correlation between the dissolved microcystins and the benthic ones in the reservoir itself, as well as in an upstream reservoir (Ojós Reservoir). The treatment process (ozone+clarification+ozone+activated carbon) is very effective in the removal of toxins, and the drinking water produced is totally free of microcystins. The incorporation of the benthic communities in the routine check for the presence of microcystins is recommended, since it is not compulsory according to the current legislation.

  9. Water- and Bed-Sediment Quality of Seguchie Creek and Selected Wetlands Tributary to Mille Lacs Lake in Crow Wing County, Minnesota, October 2003 to October 2006

    USGS Publications Warehouse

    Fallon, James D.; Yaeger, Christine S.

    2009-01-01

    Mille Lacs Lake and its tributaries, located in east-central Minnesota, are important resources to the public. In addition, many wetlands and lakes that feed Mille Lacs Lake are of high resource quality and vulnerable to degradation. Construction of a new four-lane expansion of U.S. Highway 169 has been planned along the western part of the drainage area of Mille Lacs Lake in Crow Wing County. Concerns exist that the proposed highway could affect the resource quality of surface waters tributary to Mille Lacs Lake. Baseline water- and bed-sediment quality characteristics of surface waters tributary to Mille Lacs Lake were needed prior to the proposed highway construction. The U.S. Geological Survey, in cooperation with the Minnesota Department of Transportation, characterized the water- and bed-sediment quality at selected locations that the proposed route intersects from October 2003 to October 2006. Locations included Seguchie Creek upstream and downstream from the proposed route and three wetlands draining to Mille Lacs Lake. The mean streamflow of Seguchie Creek increased between the two sites: flow at the downstream streamflow-gaging station of 0.22 cubic meter per second was 5.6 percent greater than the mean streamflow at the upstream streamflow-gaging station of 0.21 cubic meter per second. Because of the large amount of storage immediately upstream from both gaging stations, increases in flow were gradual even during intense precipitation. The ranges of most constituent concentrations in water were nearly identical between the two sampling sites on Seguchie Creek. No concentrations exceeded applicable water-quality standards set by the State of Minnesota. Dissolved-oxygen concentrations at the downstream gaging station were less than the daily minimum standard of 4.0 milligrams per liter for 6 of 26 measurements. Constituent loads in Seguchie Creek were greater at the downstream site than the upstream site for all measured, including dissolved chloride (1.7 percent), ammonia plus organic nitrogen (13 percent), total phosphorus (62 percent), and suspended sediment (11 percent) during the study. All constituents had seasonal peaks in spring and fall. The large loads during the fall resulted from unusually large precipitation and streamflow patterns. This caused the two greatest streamflow peaks at both sites to occur during October (2004 and 2005). In Seguchie Creek, bed-sediment concentrations of five metals and trace elements (arsenic, cadmium, chromium, lead, and zinc) exceeded the Interim Sediment Quality Guidelines (ISQG) set by the Canadian Council of Ministers of the Environment. Bed-sediment samples from the upstream site had more exceedances of ISQGs for metals and trace elements than did samples from the downstream site (seven and two exceedances, respectively). Bed-sediment samples from the downstream site had more exceedances of ISQGs (20 exceedances) for semivolatile organic compounds than did samples from the upstream site (8 exceedances), indicating different sources for organic compounds than for metals and trace elements. Concentrations of 11 semivolatile organic compounds exceeded ISQGs: ancenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. In bed-sediment samples collected from three wetlands, concentrations of all six metals exceeded ISQGs: arsenic, cadmium, chromium, copper, lead, and zinc. Concentrations of three semivolatile organic compounds exceeded ISQGs: flouranthene, phenanthrene, and pyrene. Results indicate that areas appearing relatively undisturbed and of high resource value can have degraded quality from previous unknown land use.

  10. Hydrologic Data Summary for the Northeast Creek/Fresh Meadow Estuary, Acadia National Park, Maine, 2000-2001

    USGS Publications Warehouse

    Caldwell, James M.; Culbertson, Charles W.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, collected data in Northeast Creek estuary, Mt. Desert Island, Maine, to establish baseline water-quality conditions including estuarine nutrient concentrations. Five sampling sites in Northeast Creek were established and monitored continuously for temperature and specific conductance during May to November, 2000 and 2001. Stream stage, which was affected by ocean tidal dynamics, was recorded at the most downstream site and at one upstream site. Discrete water samples for nutrient concentrations were collected biweekly during May to November, 2000 and 2001, at the five sampling sites, and an additional site seaward of the estuary mouth. Results indicated that the salinity regime of Northeast Creek estuary is dynamic and highly regulated by strong seasonal variations in freshwater runoff, as well as limited seawater exchange caused by a constriction at the bridge, at the downstream end of the estuary. Oligohaline conditions (0.5-5 practical salinity units) occasionally extend to the estuary mouth. During other periods oligohaline and mesohaline (5-20 practical salinity units) conditions exist in some areas of the estuary; polyhaline/marine (20-35 practical salinity units) conditions occasionally exist near the mouth. A saltwater wedge in the bottom water, due to density stratification, was observed to migrate upstream as fresh surface-water inputs diminished during the onset of summer low-flow conditions. Although specific conductance ranged widely at most sites because of tidal influences, other water-quality constituents, including nutrient and chlorophyll-a concentrations, exhibited seasonal distribution patterns in which maximum levels generally occurred in early to mid-summer and again in the fall over both field seasons.

  11. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA.

    PubMed

    Peters, Colleen A; Bratton, Susan P

    2016-03-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spatial and temporal patterns of micropollutants in streams and effluent of 24 WWTPs across Switzerland

    NASA Astrophysics Data System (ADS)

    Schönenberger, Urs; Spycher, Barbara; Kistler, David; Burdon, Frank; Reyes, Marta; Eggen, Rik; Joss, Adriano; Singer, Heinz; Stamm, Christian

    2016-04-01

    Treated municipal wastewater is an important source of micropollutants entering the environment. Micropollutants are a diverse range of chemicals of which concentrations vary strongly in space and time. To better quantitatively understand the spatio-temporal patterns of micropollutants in streams, we compared upstream and downstream locations at 24 wastewater treatment plants (WWTPs) across the Swiss Plateau and Jura regions. Each site represents the most upstream treatment plant in the corresponding catchment. In 2013, a broad analytical screening was applied to samples collected at 12 sites during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 at 12 additional sites were analysed for a group of approximately 60 selected organic micropollutants. The screening results demonstrate that generally, pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest share of the organic micropollutants in wastewater. Pesticides including biocides and plant protection products are also regularly found, but at lower concentrations. The opposite holds true for the concentration variability: pesticides vary the most across time and space, while pharmaceuticals exhibit more stable concentrations. Heavy metals fluctuate to a similar degree as pharmaceuticals. Principal component analyses suggest that pesticide and pharmaceutical levels at both upstream locations and in the wastewater vary independently of each other. At the upstream locations, the pesticide levels increased with the proportion of arable land in the watershed, whilst decreasing with greater cover of pasture and forest. Interestingly, the same patterns hold true for the composition of wastewater when considering land use in the catchments of the WWTPs. This suggests that pesticide-intensive agricultural crops not only impact surface water quality via diffuse pollution but also increase levels of pesticides in wastewater discharged to the streams. As a consequence, catchment land uses and effluent composition appear to be inextricably bound.

  13. Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado

    2014-05-01

    In the Mediterranean region, water catchment sediment yield as a result of erosion is higher than in many other regions in Europe due to the climatic conditions, topography, lithology and land-use. Modelling sediment transport is difficult due to intermittent stream flow and highly irregular rainfall conditions in this region. The objective of this study is to quantify sediment yield of a highly sloping Mediterranean environment. This study is conducted in the Peristerona Watershed in Cyprus, which has ephemeral water flow. In the downstream area a series of check dams have been placed across the stream to slow the flow and increase groundwater recharge. The surface area of the watershed, upstream of the check dams, is 103 km2 with elevation changing between 1540 m and 280 m and a mean local slope higher than 40% for the mountainous part and lower than 8% for the plain. The long-term average annual precipitation ranges from 755 mm in the upstream area to 276 mm in the plain. The surface extent of the sediment that was deposited at the most upstream check dam during two seasons was measured with a Differential Global Positioning System. The depth of the sediment was measured with utility poles and bulk density samples from the sediment profile were collected. The sediment had a surface area of 12600 m2 and an average depth of 0.23 m. The mean of the sediment dry bulk density samples was 1.05 t m-3 with a standard deviation of 0.11. Based on these values, area specific sediment yield was computed as 1 t ha-1 per year for the entire catchment area upstream of the check dam, assuming a check dam sediment trap efficiency of 15%. Erosion in the watershed is currently modeled with PESERA using detailed watershed data.

  14. Characterization of organic composition in snow and surface waters in the Athabasca Oil Sands Region, using ultrahigh resolution Fourier transform mass spectrometry.

    PubMed

    Yi, Y; Birks, S J; Cho, S; Gibson, J J

    2015-06-15

    This study was conducted to characterize the composition of dissolved organic compounds present in snow and surface waters in the Athabasca Oil Sands Region (AOSR) with the goal of identifying whether atmospherically-derived organic compounds present in snow are a significant contributor to the compounds detected in surface waters (i.e., rivers and lakes). We used electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to characterize the dissolved organic compound compositions of snow and surface water samples. The organic profiles obtained for the snow samples show compositional differences between samples from near-field sites (<5 km from oil sands activities) and those from more distant locations (i.e., far-field sites). There are also significant compositional differences between samples collected in near-field sites and surface water samples in the AOSR. The composition of dissolved organic compounds at the upstream Athabasca River site (i.e., Athabasca River at Athabasca) is found to be different from samples obtained from downstream sites in the vicinity of oil sands operations (i.e., Athabasca River at Fort McMurray and Athabasca River at Firebag confluence). The upstream Athabasca River sites tended to share some compositional similarities with far-field snow deposition, while the downstream Athabasca River sites are more similar to local lakes and tributaries. This contrast likely indicates the relative role of regional snowmelt contributions to the Athabasca River vs inputs from local catchments in the reach downstream of Fort McMurray. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of an oil spill on leafpack-inhabiting macroinvertebrates in the Chariton river, Missouri

    USGS Publications Warehouse

    Poulton, B.C.; Callahan, E.V.; Hurtubise, R.D.; Mueller, B.G.

    1998-01-01

    Artificial leaf packs were used to determine the effects of an oil spill on stream macroinvertebrate communities in the Chariton River, Missouri. Plastic mesh leaf retainers with approximately 10 g of leaves from five tree species were deployed at five sites (two upstream of the spill and three downstream) immediately after the spill and one year later. Four macroinvertebrate species dominating the community at upstream sites were virtually eliminated below the spill, including the stonefly Isoperla bilineata, the caddisfly Potamyia flava, the midge Thienemanniella xena, and blackfly larvae (Simulium sp.). Density of collector and shredder functional groups, and number of shredder taxa differed between upstream sites and the two furthest downstream sites during the 1990 sample period (Kruskal-Wallis w/Bonferroni paired comparisons, experiment wise error rate = 0.05). With one exception, no differences between sites were detected in the 1991-1992 sample period, indicating that the benthic community had at least partially recovered from the oil spill after one year. The odds of obtaining a sample with a small abundance of shredders (abundance < median) in 1990 was significantly greater downstream of the spill than upstream, and the odds of obtaining a sample with a small abundance of shredders at downstream sites was greater in 1990 than in 1991-1992. A similar pattern was observed in abundance and taxa richness of the collector functional group. No significant differences between the two sampling periods were detected at upstream sites. Observed effects appeared to be associated with oil sorption and substrate coating, creating conditions unsuitable for successful colonization.

  16. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    USGS Publications Warehouse

    Mau, David P.; Stogner, Sr., Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median concentrations of dissolved nitrite plus nitrate ranged from 5.1 to 6.1 mg/L and were 4 to 7 times larger than concentrations at the nearest upstream site on Monument Creek, site 07103970 (MoCr_Woodmen). The source of these larger dissolved nitrite plus nitrate concentrations has not been identified, but the fact that all measurements had elevated dissolved nitrite plus nitrate concentrations indicates a relatively constant source. Most stormflow concentrations of dissolved trace elements were smaller than concentrations from base-flow or normal-flow samples. However, median concentrations of total arsenic, copper, lead, manganese, nickel, and zinc generally were much larger during periods of stormflow than during base flow or normal flow. Concentrations of dissolved and total copper, total manganese, total nickel, dissolved and total selenium, and dissolved and total zinc ranged from 3 to 27 times larger at site 07103707 (FoCr_8th) than site 07103700 (FoCr_Manitou) during base flow, indicating a large source of trace elements between these two sites. Both of these sites are located on Fountain Creek, upstream from the confluence with Monument Creek. The likely source area is Gold Hill Mesa, a former tailings pile for a gold refinery located just upstream from the confluence with Monument Creek, and upstream from site 07103707 (FoCr_8th). Farther downstream in Fountain Creek, stormflow samples for total copper, manganese, lead, nickel, and zinc were larger at the downstream site near the city of Security, site 07105800 (FoCr_Security), than at the upstream site near Janitell Road, site 07105530 (FoCr_Janitell), compared with other main-stem sites and indicated a relatively large source of these metals between the two sites. Nitrogen, phosphorus, and trace-element loads substantially increased during stormflow. Suspended-sediment concentrations, discharges, and yields associated with stormflow were significantly larger than those associated with normal flow. The Apr

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, collected split surface water samples with Nuclear Fuel Services (NFS) representatives on March 20, 2013. Representatives from the U.S. Nuclear Regulatory Commission and the Tennessee Department of Environment and Conservation were also in attendance. Samples were collected at four surface water stations, as required in the approved Request for Technical Assistance number 11-018. These stations included Nolichucky River upstream (NRU), Nolichucky River downstream (NRD), Martin Creek upstream (MCU), and Martin Creek downstream (MCD). Both ORAU and NFS performed gross alpha and gross beta analyses,more » and Table 1 presents the comparison of results using the duplicate error ratio (DER), also known as the normalized absolute difference. A DER {<=} 3 indicates that at a 99% confidence interval, split sample results do not differ significantly when compared to their respective one standard deviation (sigma) uncertainty (ANSI N42.22). The NFS split sample report does not specify the confidence level of reported uncertainties (NFS 2013). Therefore, standard two sigma reporting is assumed and uncertainty values were divided by 1.96. In conclusion, most DER values were less than 3 and results are consistent with low (e.g., background) concentrations. The gross beta result for sample 5198W0012 was the exception. The ORAU result of 9.23 ± 0.73 pCi/L from location MCD is well above NFS's result of -0.567 ± 0.63 pCi/L (non-detected). NFS's data package included a detected result for U-233/234, but no other uranium or plutonium detection, and nothing that would suggest the presence of beta-emitting radionuclides. The ORAU laboratory reanalyzed sample 5198W0012 using the remaining portion of the sample volume and a result of 11.3 ± 1.1 pCi/L was determined. As directed, the laboratory also counted the filtrate using gamma spectrometry analysis and identified only naturally occurring or ubiquitous man-made constituents, including beta emitters that are presumably responsible for the elevated gross beta values.« less

  18. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  19. Rainfall, discharge, and water-quality data during stormwater monitoring, H-1 storm drain, Oahu, Hawaii, July 1, 2009, to June 30, 2010

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.

    2010-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff collected by the H-1 storm drain on the Manoa-Palolo Drainage Canal. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2009, and June 30, 2010. As part of this program, rainfall and continuous discharge data were collected at the H-1 storm drain. During the year, sampling strategy and sample processing methods were modified to improve the characterization of the effects of discharge from the storm drain on the Manoa-Palolo Drainage Canal. During July 1, 2009, to February 1, 2010, samples were collected from only the H-1 storm drain. Beginning February 2, 2010, samples were collected simultaneously from the H-1 storm drain and the Manoa-Palolo Drainage Canal at a location about 50 feet upstream of the discharge point of the H-1 storm drain. Three storms were sampled during July 1, 2009, to June 30, 2010. All samples were collected using automatic samplers. For the storm of August 12, 2009, grab samples (for oil and grease, and total petroleum hydrocarbons) and a composite sample were collected. The composite sample was analyzed for total suspended solids, nutrients, and selected dissolved and total (filtered and unfiltered) trace metals (cadmium, chromium, nickel, copper, lead, and zinc). Two storms were sampled in March 2010 at the H-1 storm drain and from the Manoa-Palolo Drainage Canal. Two samples were collected during the storm of March 4, 2010, and six samples were collected during the storm of March 8, 2010. These two storms were sampled using the modified strategy, in which discrete samples from the automatic sampler were processed and analyzed individually, rather than as a composite sample, using the simultaneously collected samples from the H-1 storm drain and from the Manoa-Palolo Drainage Canal. The discrete samples were analyzed for some or all of the following constituents: total suspended solids, nutrients, oil and grease, and selected dissolved (filtered) trace metals (cadmium, chromium, nickel, copper, lead, and zinc). Five quality-assurance/quality-control samples were analyzed during the year. These samples included one laboratory-duplicate, one field-duplicate, and one matrix-spike sample prepared and analyzed with the storm samples. In addition, two inorganic blank-water samples, one sample at the H-1 storm drain and one sample at the Manoa-Palolo Drainage Canal, were collected by running the blank water (water purified of all inorganic constituents) through the sampling and processing systems after cleaning automatic sampler lines to verify that the sampling lines were not contaminated.

  20. A benthic-macroinvertebrate index of biotic integrity and assessment of conditions in selected streams in Chester County, Pennsylvania, 1998-2009

    USGS Publications Warehouse

    Reif, Andrew G.

    2012-01-01

    The Stream Conditions of Chester County Biological Monitoring Network (Network) was established by the U.S. Geological Survey and the Chester County Water Resources Authority in 1969. Chester County encompasses 760 square miles in southeastern Pennsylvania and has a rapidly expanding population. Land-use change has occurred in response to this continual growth, as open space, agricultural lands, and wooded lands have been converted to residential and commercial lands. In 1998, the Network was modified to include 18 fixed-location sites and 9 flexible-location sites. Sites were sampled annually in the fall (October-November) during base-flow conditions for water chemistry, instream habitat, and benthic macroinvertebrates. A new set of 9 flexible-location sites was selected each year. From 1998 to 2009, 213 samples were collected from the 18 fixed-location sites and 107 samples were collected from the 84 flexible-location sites. Eighteen flexible-location sites were sampled more than once over the 12-year period; 66 sites were sampled only once. Benthic-macroinvertebrate data from samples collected during 1998-2009 were used to establish the Chester County Index of Biotic Integrity (CC-IBI). The CC-IBI was based on the methods and metrics outlined in the Pennsylvania Department of Environmental Protection's "A Benthic Index of Biotic Integrity for Wadeable Freestone Streams in Pennsylvania." The resulting CC-IBI consists of scores for benthic-macroinvertebrate samples collected from sites in the Network that related to reference conditions in Chester County. Mean CC-IBI scores for 18 fixed-location sites ranged from 37.21 to 88.92. Thirty-nine percent of the 213 samples collected at the 18 fixed-location sites had a CC-IBI score less than 50; 33 percent, 50 to 70; 28 percent, greater than 70. CC-IBI scores from the 107 flexible-location samples ranged from 23.48 to 99.96. Twenty-five percent of the 107 samples collected at the flexible-location sites had a CC-IBI score less than 50; 33 percent, 50 to 70; and 42 percent, greater than 70. Factors that were found to affect CC-IBI scores are nutrient concentrations, habitat conditions, and percent of wooded and urban land use. A positive relation was determined between mean CC-IBI scores and mean total habitat scores for the 18 fixed-location sites. CC-IBI scores were most strongly affected by stream bank vegetative protection, embeddedness, riparian zone width, and sediment deposition. The highest CC-IBI scores were associated with sites that had greater than 28 percent wooded-wetland-water land use, less than 5 percent urban land use, and no municipal wastewater discharges within 10 miles upstream from the sampling site. The lowest CC-IBI scores were associated with sites where urban land use was greater than 15 percent or a municipal wastewater discharge was within 10 miles upstream from the sampling reach. The Mann Kendall test for trends was used to determine trends in CC-IBI scores and concentrations of nitrate, orthophosphate, and chloride for the 18 fixed-location sites. A positive trend in CC-IBI was determined for six sites, and a negative trend was determined for one site. Positive trends in nitrate concentrations were determined for 4 of the 18 fixed-location sites, and a negative trend in orthophosphate concentrations was determined for 1 of the 18 fixed-location sites. Positive trends in chloride concentrations were determined for 16 of the 18 fixed-location sites.

  1. Dissolved pesticide concentrations detected in storm-water runoff at selected sites in the San Joaquin River basin, California, 2000-2001

    USGS Publications Warehouse

    Orlando, James L.; Kuivila, Kathryn; Whitehead, Andrew

    2003-01-01

    As part of a collaborative study involving the United States Geological Survey Toxics Substances Hydrology Project (Toxics Project) and the University of California, Davis, Bodega Marine Laboratory (BML), water samples were collected at three sites within the San Joaquin River Basin of California and analyzed for dissolved pesticides. Samples were collected during, and immediately after, the first significant rainfall (greater than 0.5 inch per day) following the local application of dormant spray, organophosphate insecticides during the winters of 2000 and 2001. All samples were collected in conjunction with fish-caging experiments conducted by BML researchers. Sites included two locations potentially affected by runoff of agricultural chemicals (San Joaquin River near Vernalis, California, and Orestimba Creek at River Road near Crows Landing, California, and one control site located upstream of pesticide input (Orestimba Creek at Orestimba Creek Road near Newman, California). During these experiments, fish were placed in cages and exposed to storm runoff for up to ten days. Following exposure, the fish were examined for acetylcholinesterase concentrations and overall genetic damage. Water samples were collected throughout the rising limb of the stream hydrograph at each site for later pesticide analysis. Concentrations of selected pesticides were measured in filtered water samples using solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC/MS) at the U.S. Geological Survey organic chemistry laboratory in Sacramento, California. Results of these analyses are presented.

  2. Assessment of hydrologic and water quality data collected in Abbotts Lagoon watershed, Point Reyes National Seashore, California, during water years 1999 and 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Saleh, Dina K.; Zamora, Celia

    2006-01-01

    Abbotts Lagoon is part of Point Reyes National Seashore, located about 40 miles northwest of San Francisco and about 20 miles south of Bodega Bay. Water-quality samples were collected quarterly during water year 1999 at a site in each of three connected lagoons that make up Abbotts Lagoon and at a site in its most significant tributary. The quarterly samples were analyzed for major ions, nutrients, and chlorophyll-a. A bed-sediment sample was collected in each lagoon during August 1999 and was analyzed for organic carbon, iron, and total phosphorus. Seven tributaries were sampled during a February 1999 storm and four during an April 1999 storm. These samples were analyzed only for nutrients. One storm sample collected in April 1999 from a tributary downstream of the I Ranch dairy was analyzed for a suite of 47 compounds indicative of wastewater. Continuous water-level recorders were installed in the most significant tributary and the two largest lagoons for portions of the study. A water budget analysis for an April 2000 storm indicated that the main tributary accounted for 85 percent of surface inflows to Abbotts Lagoon. The portion of the surface inflow from the main tributary was lower in the February 1999 storms and is a function of upstream storage and vegetative growth in the tributary basins. Another water budget analysis for a period of no surface inflow (June and July 2000) indicated that the net ground-water contribution was an outflow (seepage) from Abbotts Lagoon of about 0.3 ft3/s. Salinity increased and nutrient concentrations decreased from upstream to downstream in the chain of lagoons. The lower lagoon, nearest the ocean, had less organic carbon and total phosphorus in the bed sediment than the upper lagoons. The two tributaries originating in the I Ranch dairy had the highest concentrations of nutrients in storm runoff, and the highest loading rates and yields of ammonia and phosphorus. These tributaries account for only 10.3 percent of the area drained by the sampled tributaries, but contributed 83 percent of the ammonia load and 79 percent of the orthophosphate load. The basins with the highest nutrient loading rates and yields had the highest percentage of dairy and (or) ranching impacted land use and, to a lesser extent, grazing land use. The ratios of inorganic nitrogen to phosphorus in the lagoons ranged from 0.1 to 9.5 in the upper lagoon, 0.10 to 0.15 in the middle lagoon, and 0.05 to 0.10 in the lower lagoon. Thus, there is an abundance of phosphorus in the lagoons, and nitrogen appears to be limiting the growth of phytoplankton. Two sterols indicative of fecal material were among 11 compounds detected in the sample collected for analysis of wastewater indicators from a tributary downstream of the I Ranch dairy.

  3. Toxicity assessment of sediments collected upstream and downstream from the White Dam in Clarke County, Georgia

    USGS Publications Warehouse

    Lasier, Peter J.

    2018-06-06

    The White Dam in Clarke County, Georgia, has been proposed for breaching. Efforts to determine potential risks to downstream biota included assessments of sediment collected in the vicinity of the dam. Sediments collected from sites upstream and downstream from the dam were evaluated for toxicity in 42-day exposures using the freshwater amphipod Hyalella azteca. Endpoints of the study were survival, growth, and reproduction of H. azteca. Results indicated no significant differences between the collected sediments and the water-only treatment used for comparison of the test endpoints. Therefore, based on the laboratory experiments in this study, sediment migration downstream from a breach of the Dam may not pose a toxicity risk to downstream biota.

  4. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    PubMed

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  5. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature. Published by Elsevier B.V.

  6. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and ofloxacin. Generally, there was good agreement between the decreasing order of the pseudo-partition coefficients in this study and the order reported in the literature.

  7. An assessment of stream water quality of the Rio San Juan, Nuevo Leon, Mexico, 1995-1996.

    PubMed

    Flores Laureano, José Santos; Návar, José

    2002-01-01

    Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.

  8. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  9. Surface-water quality assessment of the North Fork Red River basin upstream from Lake Altus, Oklahoma, 2002

    USGS Publications Warehouse

    Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.

    2003-01-01

    Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.

  10. Trend analyses of sediment data for the DEC project

    USGS Publications Warehouse

    Rebich, Richard Allen

    1995-01-01

    Daily stream discharge, suspended-sediment concentration, and suspended-sediment discharge data were collected at eight sites in six watersheds of the Demonstration Erosion Control project in the Yazoo River Basin in north-central Mississippi during the period July 1985 through September 1991. The project is part of an ongoing interagency program of planning, design, construction, monitoring, and evaluation to alleviate flooding, erosion, sedimentation, and water-quality problems for watersheds located in the bluff hills upstream of the Mississippi River alluvial plain. This paper presents preliminary results of trend analyses for stream discharge and sediment data for the eight project sites. More than 550 stream discharge measurements and 20,000 suspended-sediment samples have been collected at the eight sites since 1985.

  11. Estimating bioaccessibility of trace elements in particles suspended in the Athabasca River using sequential extraction.

    PubMed

    Javed, Muhammad Babar; Shotyk, William

    2018-05-10

    Employing protocols developed for polar snow and ice, water samples were collected upstream, midstream and downstream of open pit bitumen mines and upgraders along the Lower Athabasca River (AR). The purpose was to: i) estimate the bioaccessibility of trace elements associated with particulate matter in the AR using sequential extraction, and ii) determine whether their forms have been measurably impacted by industrial activities. Of the trace metals known to be enriched in bitumen (V, Ni, Mo and Re), a substantial proportion of V (78-93%) and Ni (35-81%) was found in the residual fraction representing stable minerals. In contrast, Mo and Re were partitioned mainly into more reactive forms (water soluble, acid extractable, reducible and oxidisable). Comparing the non-residual fractions in upstream versus downstream sites, only water soluble Re was significantly (P = 0.005) greater downstream of industry. In respect to the potentially toxic chalcophile elements (Cu, Pb and Tl), no measurable change was observed in Cu and Pb distribution in upstream versus downstream sites. Only residual Tl was found at upstream and midstream sites, whereas a significant proportion of Tl was also present in the reducible fraction in downstream sites. Overall, a greater proportion of trace metals in the residual fraction at midstream sites appears to be due to inputs of atmospheric dust, clearly evident in microscopic images: energy dispersive spectroscopy and x-ray diffraction analyses showed that these particles were predominantly silicates, which are assumed to have limited bioaccessibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biological assessment of aquaculture effects on effluent-receiving streams in Ghana using structural and functional composition of fish and macroinvertebrate assemblages.

    PubMed

    Ansah, Yaw Boamah; Frimpong, Emmanuel A; Amisah, Stephen

    2012-07-01

    Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P = 0.0214) and upstream (P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P = 0.0222) and marginally less in downstream locations (P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.

  13. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    USGS Publications Warehouse

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed criterion in all but four stream samples (266 of 270). Similarly, only 2 of 84 Missouri River samples had total phosphorus concentrations less than the proposed criterion. The proposed total nitrogen criterion for the Corn Belt and Northern Great Plains ecoregion was surpassed in 80 percent of the water samples collected from the stream sites. Samples with total nitrogen concentrations greater than the proposed criterion were most common at Papillion Creek and Big Papillion Creek sites, where the proposed criterion was surpassed in 90 and 96 percent of the samples collected, respectively. Elevated concentrations of total nitrogen were less common at the Missouri River sites, with 33 percent of the samples analyzed having concentrations that surpassed the proposed nutrient criterion for total nitrogen. The three constituents with measured concentrations greater than their respective health-based screening levels were nickel, zinc, and dichlorvos. Differences in water quality during the beginning, middle, and end of the combined sewer overflow discharge and the stream hydrograph rise, peak, and recession were investigated. Concentrations from the ending part of the combined sewer overflow hydrograph were significantly different than those from the beginning and middle parts for 3 and 11 constituents, respectively. No constituents were significantly different between the beginning and middle parts of the combined sewer overflow discharge hydrograph. For the stream site upstream from combined sewer overflow outfalls on Cole Creek, the constituents with geometric mean values for the hydrograph rise that were at least twice those for the values of the peak and recession were specific conductance, magnesium, nitrite, N,N-diethyl-meta-toluamide (DEET), methyl salicylate, p-cresol, and Escherichia coli. Similarly, the constituents where the hydrograph peak was at least twice that for the rise and recession at the upstream Cole Creek site were total suspended solids, silver, an

  14. Questa baseline and pre-mining ground-water quality investigation. 20. Water chemistry of the Red River and selected seeps, tributaries, and precipitation, Taos County, New Mexico, 2000-2004

    USGS Publications Warehouse

    Verplanck, P.L.; McCleskey, R. Blaine; Nordstrom, D. Kirk

    2006-01-01

    As part of a multi-year project to infer the pre-mining ground-water quality at Molycorp's Questa mine site, surface-water samples of the Red River, some of its tributaries, seeps, and snow samples were collected for analysis of inorganic solutes and of water and sulfate stable isotopes in selected samples. The primary aim of this study was to document diel, storm event, and seasonal variations in water chemistry for the Red River and similar variations in water chemistry for Straight Creek, a natural analog site similar in topography, hydrology, and geology to the mine site for inferring pre-mining water-quality conditions. Red River water samples collected between 2000 and 2004 show that the largest variations in water chemistry occur during late summer rainstorms, often monsoonal in nature. Within hours, discharge of the Red River increased from 8 to 102 cubic feet per second and pH decreased from 7.80 to 4.83. The highest concentrations of metals (iron, aluminum, zinc, manganese) and sulfate also occur during such events. Low-pH and high-solute concentrations during rainstorm runoff are derived primarily from alteration 'scar' areas of naturally high mineralization combined with steep topography that exposes continually altered rock because erosion is too rapid for vegetative growth. The year 2002 was one of the driest on record, and Red River discharge reflected the low seasonal snow pack. No snowmelt peak appeared in the hydrograph record, and a late summer storm produced the highest flow for the year. Snowmelt was closer to normal during 2003 and demonstrated the dilution effect of snowmelt on water chemistry. Two diel sampling events were conducted for the Red River, one during low flow and the other during high flow, at two locations, at the Red River gaging station and just upstream from Molycorp's mill site. No discernible diel trends were observed except for dissolved zinc and manganese at the upstream site during low flow. Straight Creek drainage water was sampled periodically from 2001 to 2004 at the down stream end of surface drainage near the point at which it disappeared into the debris fan. This water has a minimal range in pH (2.7 to 3.2) but a substantial concentration range in many solutes; for example, sulfate concentrations varied from 525 to 2,660 mg/L. Many elements covary with sulfate suggesting that dilution is the primary control of the range in solute concentrations. A transect of water samples higher in the scar area were collected in October of 2003. They had a lower range in pH (2.44 to 3.05) and higher solute concentrations than those collected periodically from lower in the catchment. Water isotopes for the upper transect samples indicated slight evaporation, and in part, may account for the higher solute concentrations. Drainage waters also were collected from Hottentot, Junebug, Hansen, Little Hansen, and Goat Hill Gulch drainages. Most constituents from other scar drainage waters showed ranges of concentration similar to those of the Straight Creek waters. An exception was water collected from Goat Hill Gulch, which has some of the highest concentrations of any surface-water sample collected but also contained waste-rock leachates.

  15. Identification of American shad spawning sites and habitat use in the Pee Dee River, North Carolina and South Carolina

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2011-01-01

    We examined spawning site selection and habitat use by American shad Alosa sapidissima in the Pee Dee River, North Carolina and South Carolina, to inform future management in this flow-regulated river. American shad eggs were collected in plankton tows, and the origin (spawning site) of each egg was estimated; relocations of radio-tagged adults on spawning grounds illustrated habitat use and movement in relation to changes in water discharge rates. Most spawning was estimated to occur in the Piedmont physiographic region within a 25-river-kilometer (rkm) section just below the lowermost dam in the system; however, some spawning also occurred downstream in the Coastal Plain. The Piedmont region has a higher gradient and is predicted to have slightly higher current velocities and shallower depths, on average, than the Coastal Plain. The Piedmont region is dominated by large substrates (e.g., boulders and gravel), whereas the Coastal Plain is dominated by sand. Sampling at night (the primary spawning period) resulted in the collection of young eggs (≤1.5 h old) that more precisely identified the spawning sites. In the Piedmont region, most radio-tagged American shad remained in discrete areas (average linear range = 3.6 rkm) during the spawning season and generally occupied water velocities between 0.20 and 0.69 m/s, depths between 1.0 and 2.9 m, and substrates dominated by boulder or bedrock and gravel. Tagged adults made only small-scale movements with changes in water discharge rates. Our results demonstrate that the upstream extent of migration and an area of concentrated spawning occur just below the lowermost dam. If upstream areas have similar habitat, facilitating upstream access for American shad could increase the spawning habitat available and increase the population's size.

  16. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  17. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc.more » for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.« less

  18. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  19. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  20. Water quality in the Withers Swash Basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991-93

    USGS Publications Warehouse

    Guimaraes, W.B.

    1995-01-01

    Water samples were collected in 1991-93 from Withers Swash and its two tributaries (the Mainstem and KOA Branches) in Myrtle Beach, S.C., and analyzed for physical properties, organic and inorganic constituents, and fecal coliform and streptococcus bacteria. Samples were collected during wet- and dry-weather conditions to assess the water quality of the streams before and after storm runoff. Water samples were analyzed for over 200 separate physical, chemical, and biological constituents. Concentrations of 11 constituents violated State criteria for shellfish harvesting waters, and State Human Health Criteria. The 11 constituents included concentrations of dissolved oxygen, arsenic, lead, cadmium, mercury, chlordane, dieldrin, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and fecal coliform bacteria. Water samples were examined for the presence of enteric bacteria (fecal coliform and fecal streptococcus) at 46 sites throughout the Withers Swash Basin and 5 sites on the beach and in the Atlantic Ocean. Water samples were collected just upstream from all confluences in order to determine sources of bacterial contamination. Temporally and spatially high concentrations of enteric bacteria were detected throughout the Withers Swash Basin; however, these sporadic bacteria concentrations made it difficult to determine a single source of the contamination. These enteric bacteria concentrations are probably derived from a number of sources in the basin including septic tanks, garbage containers, and the feces of waterfowl and domestic animals.

  1. Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania.

    PubMed

    Burgos, William D; Castillo-Meza, Luis; Tasker, Travis L; Geeza, Thomas J; Drohan, Patrick J; Liu, Xiaofeng; Landis, Joshua D; Blotevogel, Jens; McLaughlin, Molly; Borch, Thomas; Warner, Nathaniel R

    2017-08-01

    Combining horizontal drilling with high volume hydraulic fracturing has increased extraction of hydrocarbons from low-permeability oil and gas (O&G) formations across the United States; accompanied by increased wastewater production. Surface water discharges of O&G wastewater by centralized waste treatment (CWT) plants pose risks to aquatic and human health. We evaluated the impact of surface water disposal of O&G wastewater from CWT plants upstream of the Conemaugh River Lake (dam controlled reservoir) in western Pennsylvania. Regulatory compliance data were collected to calculate annual contaminant loads (Ba, Cl, total dissolved solids (TDS)) to document historical industrial activity. In this study, two CWT plants 10 and 19 km upstream of a reservoir left geochemical signatures in sediments and porewaters corresponding to peak industrial activity that occurred 5 to 10 years earlier. Sediment cores were sectioned for the collection of paired samples of sediment and porewater, and analyzed for analytes to identify unconventional O&G wastewater disposal. Sediment layers corresponding to the years of maximum O&G wastewater disposal contained higher concentrations of salts, alkaline earth metals, and organic chemicals. Isotopic ratios of 226 Ra /228 Ra and 87 Sr /86 Sr identified that peak concentrations of Ra and Sr were likely sourced from wastewaters that originated from the Marcellus Shale formation.

  2. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analytemore » levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.« less

  3. Bridging the energy gap: Anadromous blueback herring feeding in the Hudson and Mohawk rivers, New York

    USGS Publications Warehouse

    Simonin, P.W.; Limburg, K.E.; Machut, L.S.

    2007-01-01

    Adult blueback herring Alosa aestivalis (N = 116) were collected during the 1999, 2000, and 2002-2004 spawning runs from sites on the Hudson and Mohawk rivers, and gut contents were analyzed. Thirty-four fish (33% of those examined) were found to contain food material. Food items were present in 41% of Mohawk River samples and 11% of Hudson River samples; all Hudson River fish containing food were captured in small tributaries above the head of tide. Hudson River fish predominantly consumed zooplankton, while Mohawk River fish consumed benthic aquatic insects in large quantities, including Baetidae, Ephemeridae, and Chironomidae. Using stable isotope analysis and a mixing model, we found that fish collected later in the season had significantly decreased marine-derived C. Condition indices of later-season fish were equal to or greater than those of fish collected earlier in the season. Blueback herring in this system may face increased energy requirements as they migrate farther upstream during spawning runs, and feeding may provide energy subsidies needed to maintain fitness over their expanded migratory range. ?? Copyright by the American Fisheries Society 2007.

  4. Staged electrostatic precipitator

    DOEpatents

    Miller, Stanley J.; Almlie, Jay C.; Zhuang, Ye

    2016-03-01

    A device includes a chamber having an air inlet and an air outlet. The device includes a plurality of stages including at least a first stage adjacent a second stage. The plurality of stages are disposed in the chamber and each stage has a plurality of discharge electrodes disposed in an interior region and is bounded by an upstream baffle on an end proximate the air inlet and bounded by a downstream baffle on an end proximate the air outlet. Each stage has at least one sidewall between the upstream baffle and the downstream baffle. The sidewall is configured as a collection electrode and has a plurality of apertures disposed along a length between the upstream baffle and the downstream baffle. The upstream baffle of the first stage is positioned in staggered alignment relative to the upstream baffle of the second stage and the downstream baffle of the first stage are positioned in staggered alignment relative to the downstream baffle of the second stage.

  5. Mobilization and degradation of particulate organic carbon from retrogressive thaw slumps in the western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Shakil, S.; Tank, S. E.; Kokelj, S.

    2016-12-01

    Rapid arctic climate warming has contributed to a significant intensification in the rate and occurrence of thermokarst features which can cause large quantities of frozen organic carbon to suddenly become an active part of the contemporary carbon cycle. Mobilized organic carbon becomes susceptible to bacterial decomposition to CO2, which can then act as a significant positive feedback to climate change. Increasingly, studies are showing dissolved organic carbon (DOC) released from thawing permafrost is highly biodegradable, however, we know little about the biodegradability of permafrost-derived particulate organic carbon (POC). On the Peel Plateau, NWT, Canada, where a warming and wetting climate has intensified the activity of massive retrogressive thaw slumps (RTS), and where some of the Arctic's largest RTS features occur, POC can be more than an order of magnitude greater in streams impacted by an RTS feature when compared to upstream, un-impacted locations, and this mobilization causes POC concentrations to be more than 200 times greater than DOC downstream of slumps. Furthermore, POC released from RTS features can be 6,000 to 13,000 years older than POC in un-impacted streams, indicating a significant mobilization of permafrost carbon in the particulate form. To determine the biodegradability of RTS-released POC in this region, incubations using water samples collected upstream, at, and downstream of RTS sites were conducted during the summer of 2015. Dissolved oxygen measurements were taken 1-2 times per day, and samples for POC and DOC concentration, SUVA254, and bacterial abundance were collected at 0 days, 7 days, and 11 days. Treatments containing a spike of RTS-runoff in filtered water declined in oxygen at a rate as much as 10 times greater than treatments containing filtered DOC controls and unfiltered upstream water indicating that the released of RTS-derived POC substantially increases carbon mineralization in impacted streams. This pool of organic carbon could therefore substantially contribute to the transfer of organic carbon from permafrost soils to the atmospheric carbon pool. Ongoing work is examining the balance between POC decomposition during downstream transport and re-sequestration into streambed sediments.

  6. Persistence of Episodic Extreme Events: Sustained Colluvial Contributions of Fine Sediment to Vermont Rivers Post-Irene

    NASA Astrophysics Data System (ADS)

    Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Sinclair, D.

    2014-12-01

    Tropical Storm Irene generated devastating floods in New England in 2011, causing more than $500 million of damage. In intervening years, many geomorphic signs of disturbance have attenuated, suggesting that impacts may be ephemeral. Yet persistent impact continues: channel-proximal landslide scars linger as point sources of fine sediment 3 yrs post-Irene. We evaluate the legacy of this major disturbance while also testing conceptual models of hillslope-channel connectivity and subsequent downstream sediment routing. We measure sustained landslide erosion by comparing DEMs generated by a Terrestrial Laser Scanner and trace sediment mobility using in-channel measurements of embeddedness, sediment concentration, and fallout radionuclide activity. We augmented detailed temporal sampling of an 850 m2 landslide along a 2nd-order stream with a spatially robust summer 2014 field campaign, scanning an additional 12 landslides. The initially sampled landslide eroded 250 m3 of sediment between fall 2013 and May 2014, averaging 0.3 m of erosion with nearly all erosion occurring during a two-week spring snowmelt. Landslide sediments had high measured 7Be activity (t1/2=53.4 d), caused by subaerial exposure; sediment collected downstream of the landslide had higher 7Be activity than that collected upstream, suggesting landslide provenance. Channel sediment upstream of the landslide had remained in the channel long enough for 7Be to decay below detectable activity. Embeddedness, a measure of fine sediment on a channel bed, was higher downstream of the landslide than upstream. Remote sensing reveals >50 similar landslides within the White River alone, and hundreds more in Vermont. Thus, landslide scar inputs may continue to influence the regional fine sediment budget. Ongoing successive scans in multiple watersheds show erosion continues in summer, an observation corroborated by elevated suspended sediment concentrations downstream of landslides after rain events. Summertime erosion has generally been low, but one extreme storm triggered >4000 m3 of erosion on a 3500 m2 landslide along the 5th-order Williams River, averaging 1.3 m erosion across the landslide. Understanding the loci of affected reaches and the magnitude of the continued effect is critical in assessing the long-term legacy of extreme events.

  7. Formation of halogenated organics during waste-water disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, P.C.; Brown, R.A.; Wiseman, J.F.

    The research examined the formation of trihalomethanes (THMs) and total organic halides (TOX) during wastewater chlorination at three wastewater treatment plants in the central Piedmont of North Carolina. Secondary effluent samples were collected before and after the addition of chlorine at each of the three treatment facilities; chlorinated samples were taken from various locations within the chlorine contact chambers and at the plant discharge. Water samples were also collected upstream and downstream from two of the plant outfalls to determine the increase and persistence of THMs and TOX below each plant. TOX and THM formation was evaluated in terms ofmore » effluent wastewater quality (e.g., residual chemical oxygen demand, total organic carbon and ammonia concentration), chlorine dose, chlorine contacting system, methods of chlorine addition, and chlorine-to-ammonia ratio. The results showed that TOX was present in the unchlorinated wastewater and that additional TOX was formed immediately after chlorine addition. Small to insignificant amounts of THMS were detected. TOX formation did not increase with increasing contact time, due to the rapid depletion of free chlorine and the formation of combined chlorine in the chlorine contact chamber.« less

  8. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  9. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001-2002

    USGS Publications Warehouse

    Schumacher, John G.

    2003-01-01

    Densities of fecal coliform bacteria along a 5.7-mi (mile) reach of Shoal Creek extending upstream from State Highway 97 (site 3) to State Highway W (site 2) and in two tributaries along this reach exceeded the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. A combination of techniques was used in this report to provide information on the source, transport, and survival of fecal bacteria along this reach of Shoal Creek. Results of water-quality samples collected during dye-trace and seepage studies indicated that at summer low base-flow conditions, pastured cattle likely were a substantial source of fecal bacteria in Shoal Creek at the MDNR monitoring site (site 3) at State Highway 97. Using repeat element Polymerase Chain Reaction (rep-PCR), cattle were the presumptive source of about 50 percent of the Escherichia coli (E. coli) isolates in water samples from site 3. Cattle, horses, and humans were the most common presumptive source of E. coli isolates at sites further upstream. Poultry was identified by rep-PCR as a major source of E. coli in Pogue Creek, a tributary in the upper part of the study area. Results of the rep-PCR were in general agreement with the detection and distribution of trace concentrations of organic compounds commonly associated with human wastewater, such as caffeine, the antimicrobial agent triclosan, and the pharmaceutical compounds acetaminophen and thiabendazole (a common cattle anthelmintic). Significant inputs of fecal bacteria to Shoal Creek occurred along a 1.6-mi reach of Shoal Creek immediately upstream from site 3. During a 36-hour period in July 2001, average densities of fecal coliform and E. coli bacteria increased from less than or equal to 500 col/100 mL upstream from this stream reach (sample site 2c) to 2,100 and 1,400 col/100 mL, respectively, at the MDNR sampling site. Fecal bacteria densities exhibited diurnal variability at all five sampling sites along the 5.7-mi study reach of Shoal Creek, but the trends at successive downstream sites were out of phase and could not be explained by simple advection and dispersion. At base-flow conditions, the travel time of bacteria in Shoal Creek along the 5.7-mi reach between State Highway W (site 2) and the MDNR sampling site (site 3) was about 26 hours. Substantial dispersion and dilution occurs along the upper 4.1 mi of this reach because of inflows from a number of springs and tributaries and the presence of several long pools and channel meanders. Minimal dispersion and dilution occurs along the 1.6-mi reach immediately upstream from the MDNR sampling site. Measurements of fecal bacteria decay in Shoal Creek during July 2001 indicated that about 8 percent of fecal coliform and E. coli bacteria decay each hour with an average first-order decay constant of 0.084 h-1 (per hour). Results of field test plots indicated that substantial numbers of fecal bacteria present in poul try litter can survive in fields for as much as 8 weeks after the application of the litter to the land surface. Median densities of fecal coliform and E. coli in slurry-water samples collected from fields increased from less than 60 col/100 mL before the application of turkey and broiler litter, to as large as 420,000 and 290,000 col/100 mL after the application of litter. Bacteria densities in the test plots generally decreased in a exponential manner over time with decay rates ranging from 0.085 to 0.185 d-1 (per day) for fecal coliform to between 0.100 and 0.250 d-1 for E. coli. The apparent survival of significant numbers of fecal bacteria on fields where poultry litter has been applied indicates that runoff from these fields is a potential source of fecal bacteria to vicinity streams for many weeks following litter application.

  11. Water-quality conditions and streamflow gain and loss of the South Prong of Spavinaw Creek basin, Benton County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.

  12. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage.

    PubMed

    Sun, Weimin; Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Chen, Haiyan; Xiao, Qingxiang

    2016-10-01

    A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities, suggesting that the microbial communities are shaped by three major environmental parameters (i.e., Fe, pH, and TOC). These findings were beneficial to a better understanding of natural attenuation of AMD.

  13. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.

    PubMed

    Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark

    2008-09-01

    The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.

  14. Alkylphenols, Other Endocrine-Active Chemicals, and Fish Responses in Three Streams in Minnesota - Study Design and Data, February-September 2007

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Jahns, Nathan D.; Brown, Greg K.; Barber, Larry B.

    2008-01-01

    This report presents the study design and environmental data for an integrated chemical and biological study of three streams (South Fork Crow River, Redwood River, and Grindstone River) that receive wastewater in Minnesota. The objective of the study was to identify distribution patterns of endocrine-active chemicals and other organic chemicals indicative of wastewater, and to identify fish responses in the same streams. Endocrine-active chemicals are a class of chemicals that interfere with the natural regulation of endocrine systems, and an understanding of their distribution in aquatic systems is important so that aquatic organism exposure can be evaluated. This study was a cooperative effort of the U.S. Geological Survey (USGS), the Minnesota Pollution Control Agency, and St. Cloud State University (St. Cloud, Minn.). The USGS collected and analyzed water and quality-assurance samples and measured streamflow during six sampling events in each of three streams. Water samples were collected upstream from and at two successive points downstream from wastewater-treatment plant (WWTP) effluent discharge and from treated effluent from February through September 2007. Bed-sediment samples were collected during one sampling period at each of the stream locations. Water and bed-sediment samples were analyzed for endocrine-active chemicals including alkylphenols, alkylphenol polyethoxylates, and nonylphenol ethoxycarboxlylates (NPECs). Water samples also were analyzed for major ions, nutrients, and organic carbon. In addition, as part of an intensive time-series investigation, the USGS staff collected daily water samples for 8 weeks from the Redwood River near Marshall, Minn., for analyses of total alkylphenols and atrazine. St. Cloud State University staff collected and analyzed fish to determine male fish responses at all water sampling sites and at an additional site near the discharge of wastewater-treatment plant effluent to these streams. Male fish responses included the presence and concentration of vitellogenin in plasma, gonadosomatic indices, and histological characterizations of liver and testes tissue. Hydrologic, chemical and biological characteristics were different among sites. The percentage of streamflow contributed by WWTP effluent (ranging from less than 1 to 79 percent) was greatest at the South Fork Crow River and least at the Grindstone River. WWTP effluent generally contributed the greatest percentage of streamflow during winter and late summer when streamflows were low. A wide variety of chemicals were detected. More chemicals were detected in WWTP effluent samples than in stream samples during most time periods. The most commonly detected chemicals in samples collected monthly and analyzed at the USGS National Research Program Laboratory were 2,6-di-tert-butyl-1,4-benzoquinone, 2,6-di-tert-butyl-4-methylphenol, 3-beta-coprostanol, 4-methylphenol, 4-nonylphenol (NP), 4-tert-octylphenol, bisphenol A, cholesterol, ethylenediaminetetraacetic acid, and triclosan. The chemicals 4-nonylphenolmonoethoxycarboxylate (NP1EC), 4-nonylphenoldiethoxycarboxylate (NP2EC), and 4-nonylphenoltriethoxycarboxylate (NP3EC) also were detected. Excluding nondetections, the sum of NP1EC through NP3EC concentrations ranged from 5.1 to 260 ug/L among all samples. NP was detected in upstream, effluent, and downstream samples in each stream during at least one time period. NP was detected in 49 percent of environmental samples. Excluding nondetections, concentrations of NP ranged from 100 to 880 nanograms per liter among all samples. NP was also detected in more than one-half of the bed-sediment samples. The most commonly detected wastewater indicator chemicals in samples analyzed by schedule 4433 at the USGS National Water Quality Laboratory were 3,4-dichlorophenyl isocyanate, acetyl-hexamethyl-tetrahydronaphthalene, benzophenone, cholesterol, hexahydrohexamethyl-cyclopenta-benzopyran, N,N-diethyl-meta-toluamide, and

  15. Landscape controls on mercury in streamwater at Acadia National Park, USA

    USGS Publications Warehouse

    Peckenham, J.M.; Kahl, J.S.; Nelson, S.J.; Johnson, K.B.; Haines, T.A.

    2007-01-01

    Fall and spring streamwater samples were analyzed for total mercury (Hg) and major ions from 47 locations on Mount Desert Island in Maine. Samples were collected in zones that were burned in a major wildfire in 1947 and in zones that were not burned. We hypothesized that Hg concentrations in streamwater would be higher from unburned sites than burned watersheds, because fire would volatilize stored Hg. The Hg concentrations, based on burn history, were not statistically distinct. However, significant statistical associations were noted between Hg and the amount of wetlands in the drainage systems and with streamwater dissolved organic carbon (DOC). An unexpected result was that wetlands mobilized more Hg by generating more DOC in total, but upland DOC was more efficient at transporting Hg because it transports more Hg per unit DOC. Mercury concentrations were higher in samples collected at lower elevations. Mercury was positively correlated with relative discharge, although this effect was not distinguished from the DOC association. In this research, sample site elevation and the presence of upstream wetlands and their associated DOC affected Hg concentrations more strongly than burn history. ?? Springer Science + Business Media B.V. 2007.

  16. The monitoring of organic waste pollution in the sibelis river

    NASA Astrophysics Data System (ADS)

    Huda, Thorikul; Jannah, Wirdatul

    2017-03-01

    Has conducted monitoring of organic waste pollution in the River Sibelis of Tegal City of Central Java. Organic wastes that pollute River Sibelis can degrade the quality of well water along the river. Monitoring carried out in the upstream and downstream by chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. COD test methods by titration and the results are used to determine the test sample comparison with the volume of diluent required for analysts BOD. COD test results on the upstream and downstream Sibelis River respectively 58.13 mg/L and 73.97 mg / L so that the ratio of the test sample with diluent volume for BOD analysis is 20: 280 (Sawyer, 1978). BOD test principle is based on the reduction of dissolved oxygen zero day (DO0) and five days (DO5). The result of observation BOD samples at upstream and downstream Sibelis Rivers are 10.7212 mg / L and 5.3792 mg / L respectively. Quality control of BOD testing conducted with measurement accuracy and precision and obtained result are 85.36% and 0.27% respectively. The result of uncertainty measurement for BOD testing at upstream and downstream are ±0.4469 mg/L and ±0.22188 mg/L.

  17. Factors affecting food chain transfer of mercury in the vicinity of the Nyanza site, Sudbury River, Massachusetts

    USGS Publications Warehouse

    Haines, T.A.; May, T.W.; Finlayson, R.T.; Mierzykowski, S.E.

    2003-01-01

    The influence of the Nyanza Chemical Waste Dump Superfund Site on the Sudbury River, Massachusetts, was assessed by analysis of sediment, fish prey organisms, and predator fish from four locations in the river system. Whitehall Reservoir is an impoundment upstream of the site, and Reservoir #2 is an impoundment downstream of the site. Cedar Street is a flowing reach upstream of the site, and Sherman Bridge is a flowing reach downstream of the site. Collections of material for analysis were made three times, in May, July, and October. Sediment was analyzed for acid-volatile sulfide (AVS), simultaneously-extracted (SEM) metals (As, Cd, Cr, Hg, Pb, Sb, Zn), and total recoverable Hg. The dominant predatory fish species collected at all sites, largemouth bass (Micropterus salmoides), was analyzed for the same suite of metals as sediment. Analysis of stomach contents of bass identified small fish (yellow perch Perca flavescens, bluegill Lepomis macrochirus, and pumpkinseed Lepomis gibbosus), crayfish, and dragonfly larvae as the dominant prey organisms. Samples of the prey were collected from the same locations and at the same times as predator fish, and were analyzed for total and methyl mercury. Results of AVS and SEM analyses indicated that sediments were not toxic to aquatic invertebrates at any site. The SEM concentrations of As, Cd, and Cr were significantly higher at Reservoir #2 than at the reference sites, and SEM As and Cd were significantly higher at Sherman Bridge than at Cedar St. Sediment total Hg was elevated only at Reservoir #2. Hg was higher at site-influenced locations in all fish species except brown bullhead (Ameiurus nebulosus). Cd was higher in bluegill, black crappie (Pomoxis nigromaculatus), and brown bullhead, and Cr was higher in largemouth bass fillet samples but not in whole-body samples. There were no seasonal differences in sediment or prey organism metals, but some metals in some fish species did vary over time in an inconsistent manner. Predator fish Hg concentration was significantly linearly related to weighted prey organism methyl Hg concentration. Largemouth bass Hg was significantly lower at Reservoir #2 in our study than in previous investigations in 1989 and 1990. High concentrations of inorganic Hg remain in river sediment as a result of operation of the Nyanza site, and fish Hg concentrations in river reaches downstream of the site are elevated compared to upstream reference sites. However, the differences are relatively small and Hg concentrations in largemouth bass from the site-influenced locations are no higher than those from some other, nearby uncontaminated sites. We hypothesize that this results from burial of contaminated sediment with cleaner material, which reduces bioavailability of contaminants and possibly reduces methylation of mercury.

  18. Reproductive success of belted kingfishers on the upper Hudson River.

    PubMed

    Bridge, Eli S; Kelly, Jeffrey F

    2013-08-01

    Belted kingfishers (Megaceryle alcyon) are predators in many North American aquatic ecosystems; as such, they are prone to bioaccumulation of certain environmental contaminants. In 2002 and 2004, kingfisher eggs collected near the upper Hudson River in New York had elevated concentrations of polychlorinated biphenyls (PCBs), and the kingfisher population in this area was reported to be at risk because of PCB exposure. From 2007 to 2009, the authors monitored 69 kingfisher nests on the Hudson River to track both nest success and survival of individual nestlings. The study site consisted of 2 adjacent sections of the Hudson River, 1 upstream and 1 downstream of a historic PCB source. The authors compared models of nest success that differentially incorporated the following 4 variables that they deemed most likely to affect reproductive output: 1) river section (upstream vs downstream of PCB source), 2) year, 3) hatch date, and 4) abandonment by 1 parent. After ranking models according to Akaike's information criterion for small sample sizes, it was clear that parental abandonment was the most important of the factors examined. River section was not an important parameter, and overall nesting success was slightly higher in the PCB-contaminated section than in the upstream area. These findings support the conclusion that kingfisher productivity is not adversely impacted by PCB contamination in the upper Hudson River. Copyright © 2013 SETAC.

  19. Monitoring to assess progress toward meeting the total maximum daily load for phosphorus in the Assabet River, Massachusetts: phosphorus loads, 2008 through 2010

    USGS Publications Warehouse

    Zimmerman, Marc J.; Savoie, Jennifer G.

    2013-01-01

    Wastewater discharges to the Assabet River contribute substantial amounts of phosphorus, which support accumulations of nuisance aquatic plants that are most evident in the river’s impounded reaches during the growing season. To restore the Assabet River’s water quality and aesthetics, the U.S. Environmental Protection Agency required the major wastewater-treatment plants in the drainage basin to reduce the amount of phosphorus discharged to the river by 2012. From October 2008 to December 2010, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection and in support of the requirements of the Total Maximum Daily Load for Phosphorus, collected weekly flow-proportional, composite samples for analysis of concentrations of total phosphorus and orthophosphorus upstream and downstream from each of the Assabet River’s two largest impoundments: Hudson and Ben Smith. The purpose of this monitoring effort was to evaluate conditions in the river before enhanced treatment-plant technologies had effected reductions in phosphorus loads, thereby defining baseline conditions for comparison with conditions following the mandated load reductions. The locations of sampling sites with respect to the impoundments enabled examination of the impoundments’ effects on phosphorus sequestration and on the transformation of phosphorus between particulate and dissolved forms. The study evaluated the differences between loads upstream and downstream from the impoundments throughout the sampling period and compared differences during two seasonal periods of relevance to aquatic plants: April 1 through October 31, the growing season, and November 1 through March 31, the nongrowing season, when existing permit limits allowed average monthly wastewater-treatment-plant-effluent concentrations of 0.75 milligram per liter (growing season) or 1.0 milligram per liter (nongrowing season) for total phosphorus. At the four sampling sites during the growing season, median weekly total phosphorus loads ranged from 110 to 190 kilograms (kg) and median weekly orthophosphorus loads ranged from 17 to 41 kg. During the nongrowing season, median weekly total phosphorus loads ranged from 240 to 280 kg and median weekly orthophosphorus loads ranged from 56 to 66 kg. During periods of low and moderate streamflow, estimated loads of total phosphorus upstream from the Hudson impoundment generally exceeded those downstream during the same sampling periods throughout the study; orthophosphorus loads downstream from the impoundment were typically larger than those upstream. When storm runoff substantially increased the streamflow, loads of total phosphorus and orthophosphorus both tended to be larger downstream than upstream. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads were generally larger downstream than upstream during low and moderate streamflow, but the differences were not as pronounced as they were at the Hudson impoundment. High flows were also associated with substantially larger total phosphorus and orthophosphorus loads downstream than those entering the impoundment from upstream. In comparing periods of growing- and nongrowing-season loads, the same patterns of loads entering and leaving were observed at both impoundments. That is, at the Hudson impoundment, total phosphorus loads entering the impoundment were greater than those leaving it, and orthophosphorus loads leaving the impoundment were greater than those entering it. At the Ben Smith impoundment, both total phosphorus and orthophosphorus loads leaving the impoundment were greater than those entering it. However, the loads were greater during the nongrowing seasons than during the growing seasons, and the net differences between upstream and downstream loads were about the same. The results indicate that some of the particulate fraction of the total phosphorus loads is sequestered in the Hudson impoundment, where particulate phosphorus probably undergoes some physical and biogeochemical transformations to the dissolved form orthophosphorus. The orthophosphorus may be taken up by aquatic plants or transported out of the impoundments. The results for the Ben Smith impoundment are less clear and suggest net export of total phosphorus and orthophosphorus. Differences between results from the two impoundments may be attributable in part to differences in their sizes, morphology, unmonitored tributaries, riparian land use, and processes within the impoundments that have not been quantified for this study.

  20. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.

    PubMed

    Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri

    2016-07-28

    The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.

  1. Movement and spawning of American shad transported above dams on the Roanoke River, North Carolina and Virginia

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2011-01-01

    American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.

  2. Biodegradation of 17β-Estradiol, Estrone and Testosterone in Stream Sediments

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Chapelle, F. H.; Barber, L. B.; McMahon, P. B.; Gray, J. L.; Kolpin, D. W.

    2009-12-01

    The potentials for in situ biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the “A” ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant “A” ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for non-conservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  3. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry.

    PubMed

    Sapkota, Amir; Heidler, Jochen; Halden, Rolf U

    2007-01-01

    The antimicrobial compound triclocarban (TCC; 3,4,4'-trichlorocarbanilide; CAS# 101-20-2) is a high-production-volume chemical, recently suggested to cause widespread contamination of US water resources. To test this hypothesis, we developed an isotope dilution liquid chromatography electrospray ionization tandem mass spectrometry method for ultratrace analysis of TCC (0.9 ng/L detection limit) and analyzed low-volume water samples (200 mL) along with primary sludge samples from across the United States. All river water samples (100%) collected downstream of wastewater treatment plants had detectable levels of TCC, as compared to 56% of those taken upstream. Concentrations of TCC (mean+/-standard deviation) downstream of sewage treatment plants (84+/-110 ng/L) were significantly higher (P<0.05; Wilcoxon rank sum test) than those of samples taken upstream (12+/-15 ng/L). Compared to surface water, mean TCC concentrations found in dried, primary sludge obtained from municipal sewage treatment plants in five states were six orders of magnitude greater (19,300+/-7100 microg/kg). Several river samples contained a co-contaminant, identified based on its chromatographic retention time, molecular base ion, and MS/MS fragmentation behavior as 4,4'-dichlorocarbanilide (DCC; CAS# 1219-99-4). In addition to TCC and DCC, municipal sludge contained a second co-contaminant, 3,3',4,4'-tetrachlorocarbanilide (TetraCC; CAS# 4300-43-0). Both newly detected compounds were present as impurities (0.2%(w/w) each) in technical grade TCC (99%). Application of the new method for chlorocarbanilide analysis yielded TCC occurrence data for 13 US states, confirmed the role of sewage treatment plants as environmental inputs of TCC, and identified DCC and TetraCC as previously unrecognized pollutants released into the environment alongside TCC.

  4. Predicting Recreational Water Quality Using Turbidity in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2004-7

    USGS Publications Warehouse

    Brady, Amie M.G.; Bushon, Rebecca N.; Plona, Meg B.

    2009-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) in Ohio is often impaired for recreational use because of elevated concentrations of bacteria, which are indicators of fecal contamination. During the recreational seasons (May through August) of 2004 through 2007, samples were collected at two river sites, one upstream of and one centrally-located within CVNP. Bacterial concentrations and turbidity were determined, and streamflow at time of sampling and rainfall amounts over the previous 24 hours prior to sampling were ascertained. Statistical models to predict Escherichia coli (E. coli) concentrations were developed for each site (with data from 2004 through 2006) and tested during an independent year (2007). At Jaite, a sampling site near the center of CVNP, the predictive model performed better than the traditional method of determining the current day's water quality using the previous day's E. coli concentration. During 2007, the Jaite model, based on turbidity, produced more correct responses (81 percent) and fewer false negatives (3.2 percent) than the traditional method (68 and 26 percent, respectively). At Old Portage, a sampling site just upstream from CVNP, a predictive model with turbidity and rainfall as explanatory variables did not perform as well as the traditional method. The Jaite model was used to estimate water quality at three other sites in the park; although it did not perform as well as the traditional method, it performed well - yielding between 68 and 91 percent correct responses. Further research would be necessary to determine whether using the Jaite model to predict recreational water quality elsewhere on the river would provide accurate results.

  5. Organic Compounds in Potomac River Water Used for Public Supply near Washington, D.C., 2003-05

    USGS Publications Warehouse

    Brayton, Michael J.; Denver, Judith M.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. A total of 85 of 277 compounds were detected at least once among the 25 samples collected approximately monthly during 2003-05 at the intake of the Washington Aqueduct, one of several community water systems on the Potomac River upstream from Washington, D.C. The diversity of compounds detected indicate a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including treated wastewater outfalls located upstream, overland runoff, and ground-water discharge) to drinking-water supplies. Seven compounds were detected year-round in source-water intake samples, including selected herbicide compounds commonly used in the Potomac River Basin and in other agricultural areas across the United States. Two-thirds of the 26 compounds detected most commonly in source water (in at least 20 percent of the samples) also were detected most commonly in finished water (after treatment but prior to distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).

  6. Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels.

    PubMed

    Marques, Catarina R; Pereira, Ruth; Gonçalves, Fernando

    2011-09-01

    An ecotoxicological screening of environmental samples collected in the vicinity of rice fields followed a combination of physical and chemical measurements and chronic bioassays with two freshwater trophic levels (microalgae: Pseudokirchneriella subcapitata and Chlorella vulgaris; daphnids: Daphnia longispina and Daphnia magna). As so, water and sediment/soil elutriate samples were obtained from three sites: (1) in a canal reach crossing a protected wetland upstream, (2) in a canal reach surrounded by rice fields and (3) in a rice paddy. The sampling was performed before and during the rice culture. During the rice cropping, the whole system quality decreased comparatively to the situation before that period (e.g. nutrient overload, the presence of pesticides in elutriates from sites L2 and L3). This was reinforced by a significant inhibition of both microalgae growth, especially under elutriates. Contrary, the life-history traits of daphnids were significantly stimulated with increasing concentrations of water and elutriates, for both sampling periods.

  7. Analysis of chemical contamination within a canal in a Mexican border colonia.

    PubMed

    Owens, Janel E; Niemeyer, Emily D

    2006-04-01

    This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (> 10(4) colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted.

  8. Tritium as tracer of groundwater pollution extension: case study of Andralanitra landfill site, Antananarivo-Madagascar

    NASA Astrophysics Data System (ADS)

    Ramaroson, Voahirana; Rakotomalala, Christian Ulrich; Rajaobelison, Joel; Fareze, Lahimamy Paul; Razafitsalama, Falintsoa A.; Rasolofonirina, Mamiseheno

    2018-05-01

    This study aims to understand the extension of groundwater pollution downstream of a landfill, Andralanitra-Antananarivo-Madagascar. Twenty-one samples, composed of dug well waters, spring waters, river, and lake, were measured in stable isotopes ( δ 2H, δ 18O) and tritium. Results showed that only two dug well waters, collected at the immediate vicinity of the landfill, have high tritium activities (22.82 TU and 10.43 TU), probably of artificial origin. Both upstream and further downstream of the landfill, tritium activities represent natural source, with values varying from 0.17 TU to 1.46 TU upstream and from 0.88 TU to 1.88 TU further downstream. Stable isotope data suggest that recharge occurs through infiltration of slightly evaporated rainfall. Using the radioactive decay equation, the calculated tracer ages related to two recent ground water samples collected down gradient of the landfill lay between [8-15] years and [4-7] years, taking into account the uncertainty of tritium measurements. For the calculation, a value of 2.36 TU was taken as A o. The latter was estimated based on similarity between stable isotope compositions of nearby spring and dug well waters as well as tritium activities of the local precipitation. Calculation of the tritium activities from the contaminated water point having 22.82 TU to further downstream using the calculated tracer ages showed values of one order of magnitude higher than the measured values. The absence of hydrological connection from the contaminated water point to further downstream the landfill would explain the lower tritium activities measured. Groundwater pollution seems to be limited to the closest proximity of the landfill.

  9. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    USGS Publications Warehouse

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water-quality sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed. Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek. Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to rangeland-fish-index scores calculated for the Boise River near Middleton, indicating intermediate biotic condition.

  10. Streamflow gains and losses and selected water-quality observations in five subreaches of the Rio Grande/Rio Bravo del Norte from near Presidio to Langtry, Texas, Big Bend area, United States and Mexico, 2006

    USGS Publications Warehouse

    Raines, Timothy H.; Turco, Michael J.; Connor, Patrick J.; Bennett, Jeffery B.

    2012-01-01

    Few historical streamflow and water-quality data are available to characterize the segment of the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) extending from near Presidio to near Langtry, Texas. The U.S. Geological Survey, in cooperation with the National Park Service and the Texas Commission on Environmental Quality, collected water-quality and streamflow data from the Rio Grande from near Presidio to near Langtry, Texas, to characterize the streamflow gain and loss and selected constituent concentrations in a 336.3-mile reach of the Rio Grande from near Presidio to near Langtry, Texas. Streamflow was measured at 38 sites and water-quality samples were collected at 20 sites along the Rio Grande in February, March, and June 2006. Streamflow gains and losses over the course of the stream were measured indirectly by computing the differences in measured streamflow between sites along the stream. Water-quality data were collected and analyzed for salinity, dissolved solids, major ions, nutrients, trace elements, and stable isotopes. Selected properties and constituents were compared to available Texas Commission on Environmental Quality general use protection criteria or screening levels. Summary statistics of selected water-quality data were computed for each of the five designated subreaches. Streamflow gain and loss and water-quality constituent concentration were compared for each subreach, rather than the entire segment because of the temporal variation in sample collection caused by controlled releases upstream. Subreach A was determined to be a losing reach, and subreaches B, C, D, and E were determined to be gaining reaches. Compared to concentrations measured in upstream subreaches, downstream subreaches exhibited evidence of dilution of selected constituent concentrations. Subreaches A and B had measured total dissolved solids, chloride, and sulfate exceeding the Texas Commission on Environmental Quality general use protection criteria. Subreaches C, D, and E did not exceed the general use protection criteria for any constituent concentration criteria, but dissolved oxygen concentrations did not meet the general use criteria in these subreaches.

  11. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats.

    PubMed

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Ahmed, Z; Mahboob, Shahid

    2018-05-01

    This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs) profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream) and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively). The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01%) was recorded in C. catla procured from non-polluted (upstream) wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed) and C. mrigala (polluted area), respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream) major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream) and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the human population.

  12. Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery

    USGS Publications Warehouse

    Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.

    2001-01-01

    This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.

  13. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    USGS Publications Warehouse

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  14. DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants

    PubMed Central

    Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B.; Tóth, Gábor; Ortutay, Csaba P.; Patthy, László

    2005-01-01

    DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21 061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically. PMID:15608291

  15. DoOP: Databases of Orthologous Promoters, collections of clusters of orthologous upstream sequences from chordates and plants.

    PubMed

    Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B; Tóth, Gábor; Ortutay, Csaba P; Patthy, László

    2005-01-01

    DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21,061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically.

  16. Water Quality and Biological Characteristics of the Middle Fork of the Saline River, Arkansas, 2003-06

    USGS Publications Warehouse

    Galloway, Joel M.; Petersen, James C.; Shelby, Erica L.; Wise, Jim A.

    2008-01-01

    The Middle Fork of the Saline River has many qualities that have been recognized by State and Federal agencies. The Middle Fork provides habitat for several rare aquatic species and is part of a larger stream system (the Upper Saline River) that is known for relatively high levels of species richness and relatively high numbers of species of concern. Water-quality samples were collected and streamflow was measured by the U.S. Geological Survey at three sites in the Middle Fork Basin between October 2003 and October 2006. The Arkansas Department of Environmental Quality collected discrete synoptic water-quality samples from eight sites between January 2004 and October 2006. The Arkansas Department of Environmental Quality also sampled fish (September-October 2003) and benthic macroinvertebrate communities (September 2003-December 2005) at five sites. Streamflow varied annually among the three streamflow sites from October 2003 to October 2006. The mean annual streamflow for Brushy Creek near Jessieville (MFS06) was 0.72 cubic meters per second for water years 2004-2006. The Middle Fork below Jessieville (MFS05) had a mean annual streamflow of 1.11 cubic meters per second for water years 2004-2006. The Middle Fork near Owensville (MFS02), the most downstream site, had a mean annual streamflow of 3.01 cubic meters per second. The greatest streamflows at the three sites generally occurred in the winter and spring and the least in the summer. Nutrient dynamics in the Middle Fork are controlled by activities in the basin and processes that occur in the stream. Point sources and nonpoint sources of nutrients occur in the Middle Fork Basin that could affect the water-quality. Nitrogen and phosphorus concentrations generally were greatest in Mill Creek (MFS04E) and in the Middle Fork immediately downstream from the confluence with Mill Creek (MFS04) with decreasing concentrations at sites farther downstream in Middle Fork. The site in Mill Creek is located downstream from a wastewater-treatment plant discharge and concentrations at sites farther downstream probably had lesser concentrations because of dilution effects and from algal uptake. Nutrient concentrations generally were significantly greater during high-flow conditions compared to base-flow conditions. Flow-weighted nutrient concentrations were computed for the three streamflow sites and were compared to 82 relatively undeveloped sites identified across the Nation, to the Alum Fork of the Saline River near Reform, Arkansas, and to the Illinois River south of Siloam Springs, Arkansas, a site influenced by numerous point and nonpoint sources of nutrients. Annual flow-weighted nutrient concentrations for MFS06, MFS05, and MFS02 were greater than relatively undeveloped sites, but were substantially less than the Illinois River south of Siloam Springs. Fecal indicator bacteria concentrations were slightly greater at MFS06 and MFS05 compared to concentrations at MFS02 for October 2003 to October 2006. MFS05 had the greatest E.coli concentrations and MFS06 had the greatest fecal coliform concentrations. Overall, fecal indicator bacteria concentrations were significantly greater for samples collected during high-flow conditions compared to samples collected during low-flow conditions at all three sites. Suspended-sediment concentrations did not vary significantly among MFS06, MFS05, and MFS02 for all the samples collected from October 2003 to October 2006. Suspended-sediment concentrations were significantly greater in samples collected during high-flow conditions compared to samples collected during base-flow conditions. Synoptic samples indicated varied total suspended-solids distributions from upstream to downstream in the Middle Fork between January 2004 and October 2006. Overall, total suspended-solids values were the greatest at site MFS02 and decreased at sites upstream and downstream. Turbidity measured when water-quality samples were

  17. USING REGIONAL EXPOSURE CRITERIA AND UPSTREAM REFERENCE DATA TO CHARACTERIZE SPATIAL AND TEMPORAL EXPOSURES TO CHEMICAL CONTAMINANTS

    EPA Science Inventory

    Analyses of biomarkers in fish were used to evaluate exposures among locations and across time. Two types of references were used for comparison, an upstream reference sample remote from known point sources and regional exposure criteria derived from a baseline of fish from refer...

  18. USING REGIONAL EXPOSURE CRITERIA AND UPSTREAM REFERENCE DATA TO CHARACTERIZE SPATIAL AND TEMPORAL EXPOSURES TO CHEMICAL CONTAMINANTS

    EPA Science Inventory

    Analyses of biomarkers in fish were used to evaluate exposures among locations and across time. Two types of references were used for comparison, an upstream reference sample remote from known point sources and regional exposure criteria derived from a basline of fish from refere...

  19. Water quality and the composition of fish and macroinvertebrate communities in the Devils and Pecos Rivers within and upstream from the Amistad National Recreation Area, Texas, 2005-7

    USGS Publications Warehouse

    Moring, J. Bruce

    2012-01-01

    The total number of fish species collected was the same in the Devils River and Pecos River, but the species found in the two rivers varied slightly. The number of fish species generally increased from the site farthest upstream to the site farthest downstream in the Devils River, and decreased between the site farthest upstream and site farthest downstream in the Pecos River. The redbreast sunfish was the most abundant species collected in the Devils River, and the blacktail shiner was the most abundant species collected in the Pecos River. Comparing the species from each river, the percentage of omnivorous fish species was larger at the more downstream sites closer to Amistad Reservoir, and the percentage of species tolerant of environmental stressors was larger in the Pecos River. The fish community, assessed on the basis of the number of shared species among the sites sampled, was more similar to the fish community at the other sites on the same river than it was to the fish community from any other site in the other river. More macroinvertebrate taxa were collected in the Devils River than in the Pecos River. The largest number of macroinvertebrate taxa were from the site second farthest downstream on the Devils River, and the smallest numbers of macroinvertebrate taxa were from the farthest downstream site on the Pecos River. Mayflies were more common in the Devils River, and caddisflies were less common than mayflies at most sites. Net-spinning caddisflies were more common at the Devils River sites. The combined percent of mayfly, caddisfly, and stonefly taxa was generally larger at the Pecos River sites. Riffle beetles were the most commonly collected beetle taxon among all sites, and water-penny beetles were only collected at the Pecos River sites. A greater number of true midge taxa were collected more than any other taxa at the genus and species taxonomic level. Non-insect macroinvertebrate taxa were more common at the Devils River sites. Corbicula sp. (presumably the introduced Asian clam) was found at sites in both rivers, and amphipods were more abundant in the Devils River. The Margalef species richness index, based on aquatic insect taxa only, was larger at the Devils River sites than at the Pecos River sites. The Hilsenhoff's biotic index was largest at the site farthest downstream in the Devils River and smallest at the site second farthest downstream in the Pecos River. Overall similarity among sites based on the number of shared macroinvertebrate taxa indicated that each site is more similar to other sites on the same river than to sites on the other river.

  20. Method of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, R.L.

    1985-05-07

    A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.

  1. Method of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, Raymond L [Richland, WA

    1985-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  2. Methods of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, R.L.

    1984-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstram upstream and downstream of such filter stage. Samples of the particel concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  3. Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06

    USGS Publications Warehouse

    Lico, Michael S.; Johnson, B. Thomas

    2007-01-01

    The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream reaches. Concentrations of PAH compounds were low in water and sediment samples collected farther downstream, thus the bottom sediment in the upstream part of the wash may be an effective trap for these compounds. Bioavailable PAH compounds were present in all samples as determined using the Fluoroscan method. Microtox acute toxicity profiles indicated that Callville Bay in Lake Mead and the two Lake Mohave sites had only minor evidence that toxic compounds are present.

  4. Pharmaceutical compounds in Merrimack River water used for public supply, Lowell, Massachusetts, 2008-09

    USGS Publications Warehouse

    Massey, Andrew J.; Waldron, Marcus C.

    2011-01-01

    This report presents results of a study conducted by the U.S. Geological Survey (USGS), in cooperation with the Massachusetts Department of Environmental Protection, to determine the occurrence of 14 commonly used human-health pharmaceutical compounds and fecal-indicator bacteria in Merrimack River water used as a drinking-water source by 135,000 residents in eastern Massachusetts. The study was designed to complement the USGS National Water-Quality Assessment Program's Source Water-Quality Assessment, which identifies patterns of occurrence of 280 primarily unregulated organic wastewater contaminants in source water used by community water systems and determines whether these patterns also occur in treated drinking water prior to distribution. The study involved periodic collection and analysis of raw Merrimack River water and treated drinking water over the course of 1 year. Water samples were collected periodically without regard to flow regime or antecedent weather conditions at the Lowell Regional Water Utility's Merrimack River intake upstream from Lowell, Mass. The same parcel of water was then sampled as finished water following treatment. Despite the presence of many potential sources of contamination in the drinking-water source area, only 2 of the 14 pharmaceutical analytes were detected at reportable concentrations in the source-water samples, and these occurred in only one set of periodic samples. Acetaminophen, a nonprescription analgesic, and caffeine were detected in the September source-water samples at concentrations of 0.084 and 0.068 micrograms per liter, respectively. Three other compounds-carbamazepine, an antiepileptic; cotinine, a metabolite of nicotine; and diphenhydramine, a nonprescription antihistamine-were detected in source-water samples, but at concentrations too low to be reliably quantified. None of the 14 pharmaceuticals was found in the finished water at a reportable concentration, defined as two times the long-term detection limit used by the analytical laboratory. In addition to the pharmaceutical analyses, measurements of fecal-indicator bacteria (Escherichia coli) concentrations and several physical characteristics were made on all source-water samples. Values for these constituents were consistently within State standards. It is possible that the monthly sampling schedule missed hydrologic events that would have transported greater concentrations of sewage contaminants to the sampling site, or that the large flow volume of the river at the study site effectively diluted the contaminant signal, but it is also likely that recent efforts to separate stormwater- and wastewater-discharge systems in the reaches upstream from the Lowell Regional Water Utility have greatly reduced the potential for sewage contamination at the intake.

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a meanmore » of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.« less

  6. Organic Compounds in Truckee River Water Used for Public Supply near Reno, Nevada, 2002-05

    USGS Publications Warehouse

    Thomas, Karen A.

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. Of 258 compounds measured, 28 were detected in at least 1 source water sample collected approximately monthly during 2002-05 at the intake of the Chalk Bluff Treatment Plant, on the Truckee River upstream of Reno, Nevada. The diversity of compounds detected indicate various sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including point sources from treated wastewater outfalls upstream of the sampling location, overland runoff, and groundwater discharge) to drinking-water supply intakes. Three compounds were detected in more than 20 percent of the source-water intake samples at low concentrations (less than 0.1 microgram per liter), including caffeine, p-cresol (a wood preservative), and toluene (a gasoline hydrocarbon). Sixteen of the 28 compounds detected in source water also were detected in finished water (after treatment, but prior to distribution; 2004-05). Additionally, two disinfection by-products not detected in source water, bromodichloromethane and dibromochloromethane, were detected in all finished water samples. Two detected compounds, cholesterol and 3-beta-coprostanol, are among five naturally occurring biochemicals analyzed in this study. Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the compounds. Seven compounds (toluene, chloroform, bromodichloromethane, dibromodichloromethane, bisphenol A, cholesterol, and 3-beta-coprostanol) were measured at concentrations greater than 0.1 microgram per liter. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).

  7. Dissolved Strontium and Barium in Fresh and Saltwater: a 2-year Study in the Calcasieu River to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2016-02-01

    Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88-km long estuary, the Calcasieu River, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to July 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth. Water samples were analyzed for dissolved Sr, Ba, and Ca concentrations. In-situ measurements of salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance were taken. Our preliminary data showed that the Sr and Ca concentrations and the Sr/Ca ratio all increased significantly with decreasing distance to the Gulf of Mexico, while the Ba/Ca ratio decreased with decreasing distance to the Gulf. The spatial variation in Ba concentration was marginal. The Sr and Ca concentrations and ratios were positively related to salinity, while Ba/Ca was negatively related to salinity. All the elemental concentrations and ratios had considerable seasonal and interannual variations. There were significant differences among sampling months for all the elemental concentrations and ratios (p<0.05), and there were significant differences among sampling years for the Sr and Ca concentrations and the Ba/Ca ratio (p<0.05).

  8. Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline▿†

    PubMed Central

    Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit

    2011-01-01

    Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836

  9. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.

    2010-01-01

    Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.

  10. Getting the right blood to the right patient: the contribution of near-miss event reporting and barrier analysis.

    PubMed

    Kaplan, H S

    2005-11-01

    Safety and reliability in blood transfusion are not static, but are dynamic non-events. Since performance deviations continually occur in complex systems, their detection and correction must be accomplished over and over again. Non-conformance must be detected early enough to allow for recovery or mitigation. Near-miss events afford early detection of possible system weaknesses and provide an early chance at correction. National event reporting systems, both voluntary and involuntary, have begun to include near-miss reporting in their classification schemes, raising awareness for their detection. MERS-TM is a voluntary safety reporting initiative in transfusion. Currently 22 hospitals submit reports anonymously to a central database which supports analysis of a hospital's own data and that of an aggregate database. The system encourages reporting of near-miss events, where the patient is protected from receiving an unsuitable or incorrect blood component due to a planned or unplanned recovery step. MERS-TM data suggest approximately 90% of events are near-misses, with 10% caught after issue but before transfusion. Near-miss reporting may increase total reports ten-fold. The ratio of near-misses to events with harm is 339:1, consistent with other industries' ratio of 300:1, which has been proposed as a measure of reporting in event reporting systems. Use of a risk matrix and an event's relation to protective barriers allow prioritization of these events. Near-misses recovered by planned barriers occur ten times more frequently then unplanned recoveries. A bedside check of the patient's identity with that on the blood component is an essential, final barrier. How the typical two person check is performed, is critical. Even properly done, this check is ineffective against sampling and testing errors. Blood testing at bedside just prior to transfusion minimizes the risk of such upstream events. However, even with simple and well designed devices, training may be a critical issue. Sample errors account for more than half of reported events. The most dangerous miscollection is a blood sample passing acceptance with no previous patient results for comparison. Bar code labels or collection of a second sample may counter this upstream vulnerability. Further upstream barriers have been proposed to counter the precariousness of urgent blood sample collection in a changing unstable situation. One, a linking device, allows safer labeling of tubes away from the bedside, the second, a forcing function, prevents omission of critical patient identification steps. Errors in the blood bank itself account for 15% of errors with a high potential severity. In one such event, a component incorrectly issued, but safely detected prior to transfusion, focused attention on multitasking's contribution to laboratory error. In sum, use of near-miss information, by enhancing barriers supporting error prevention and mitigation, increases our capacity to get the right blood to the right patient.

  11. Freshwater mussel shells as environmental chronicles: Geochemical and taphonomic signatures of mercury-related extirpations in the North Fork Holston River, Virginia

    USGS Publications Warehouse

    Brown, M.E.; Kowalewski, M.; Neves, R.J.; Cherry, D.S.; Schreiber, M.E.

    2005-01-01

    This study utilized freshwater mussel shells to assess mercury (Hg) contamination in the North Fork Holston River that extirpated (caused local extinctions of) a diverse mussel fauna. Shells (n = 366) were collected from five sites situated upstream (two sites), just below (one site), and downstream (two sites) of the town of Saltville, Virginia, where Hg was used to produce chlorine and caustic soda from 1950 to 1972. Shell samples were used to test the (1) utility of geochemical signatures of shells for assessing the spatial variation in Hg levels in the river relative to the contamination source and (2) value of taphonomy (postmortem shell alteration) for distinguishing sites that differ in extirpation histories. Geochemical signatures of 40 shells, analyzed using atomic absorption spectroscopy, indicated a strong longitudinal pattern. All shells from the two upstream sites had low Hg concentrations (<5-31 ??g/kg), shells directly below Saltville had variable, but dramatically higher concentrations (23-4637 ??g/kg), and shells from the two downstream sites displayed intermediate Hg levels (<5-115 ??g/kg) that declined with distance from Saltville. Two pre-industrial shells, collected at Saltville in 1917, yielded very low Hg estimates (5-6 ??g/kg). Hg signatures were consistent among mussel species, suggesting that Hg concentrations were invariant to species type; most likely, highly variable Hg levels, both across sites and through time, overwhelmed any interspecific differences in Hg acquisition. Also, a notable postmortem incorporation of Hg in mussel shells seemed unlikely, as the Hg content was not correlated with shell taphonomy (r = 0.18; p = 0.28). The taphonomic analysis (n = 366) showed that the degree of shell alteration reliably distinguished sites with different extirpation histories. At Saltville, where live mussels have been absent for at least 30 years, shells were most heavily altered and fragmented. Conversely, fresh-looking shells abounded upstream, where reproducing mussel populations are still present. In summary, relic shells offered valuable spatiotemporal data on Hg concentrations in a polluted ecosystem, and shell taphonomic signatures discriminated sites with different extirpation histories. The shell-based strategies exemplified here do not require sampling live specimens and may augment more standard strategies applied to environmental monitoring. The approach should prove especially useful in areas with unknown extirpation and pollution histories. ?? 2005 American Chemical Society.

  12. The transformation of organic carbon during river-groundwater exchange: An example from the Murray-Darling Basin

    NASA Astrophysics Data System (ADS)

    Keshavarzi, M.; Baker, A.; Andersen, M. S.; Kelly, B. F. J.

    2016-12-01

    Groundwater systems connected to rivers can act as carbon sinks and sources, but little is known about the distribution, transformation, and retention of organic carbon in rivers connected to aquifers as few studies are available. The characterisation of dissolved organic matter (DOM) using optical absorbance in connected water systems has potential to provide novel insights about the organic component of carbon fluxes. Here, the optical absorbance of the river and groundwater samples is investigated in a river reach that is hydraulically connected to an adjoining alluvial and karst aquifer system, within a semi-arid agricultural catchment in New South Wales, Australia. Water samples were collected from the river and groundwater within monitoring boreholes and intercepted by caves. These water samples were analysed for absorbance, dissolved organic carbon (DOC) and inorganic chemical constituents. Groundwater samples collected close to the river have DOM characteristics similar to the river water, indicating losing conditions. While, groundwater samples collected further away from the river have lower DOC and absorbance, higher SUVA, and a lower and more variable spectral slope, compared to the river. We infer that this change in DOM character reveals the presence of sedimentary OM, which provides a source of relatively high molecular weight DOM that is subsequently transformed. In a dry period, when there was low flow in the river, three downstream river-water samples exhibited low absorbance and spectral slope similar to the groundwater, while the contemporaneous upstream river-water samples had higher absorbance and spectral slope. This suggests gaining conditions and a contribution of groundwater organic carbon into the river. It is concluded that optical analyses can be used to study organic carbon fluxes to differentiate and quantify the source of organic matter, and identify losing and gaining streams.

  13. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, John P.

    1986-01-01

    An apparatus for measuring the overall decontamination factor of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  14. Apparatus for measuring the decontamination factor of a multiple filter air-cleaning system

    DOEpatents

    Ortiz, J.P.

    1985-07-03

    An apparatus for measuring the overall decontamination factors of first and second filters located in a plenum. The first filter separates the plenum's upstream and intermediate chambers. The second filter separates the plenum's intermediate and downstream chambers. The apparatus comprises an aerosol generator that generates a challenge aerosol. An upstream collector collects unfiltered aerosol which is piped to first and second dilution stages and then to a laser aerosol spectrometer. An intermediate collector collects challenge aerosol that penetrates the first filter. The filtered aerosol is piped to the first dilution stage, diluted, and then piped to the laser aerosol spectrometer which detects single particles. A downstream collector collects challenge aerosol that penetrates both filters. The twice-filtered aerosol is piped to the aerosol spectrometer. A pump and several valves control the movement of aerosol within the apparatus.

  15. 40 CFR 1065.376 - Chiller NO2 penetration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chiller NO2 penetration. 1065.376... Chiller NO2 penetration. (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NOX measurement instrument, but you don't use an NO2-to-NO converter upstream of the chiller, you must perform...

  16. Nutrient concentrations, loads, and yields in the Eucha-Spavinaw Basin, Arkansas and Oklahoma, 2002-09

    USGS Publications Warehouse

    Esralew, Rachel A.; Tortorelli, Robert L.

    2010-01-01

    The city of Tulsa, Oklahoma, uses Lake Eucha and Spavinaw Lake in the Eucha-Spavinaw Basin in northwestern Arkansas and northeastern Oklahoma for public water supply. The city has spent millions of dollars over the last decade to eliminate taste and odor problems in the drinking water from the Eucha-Spavinaw system, which may be attributable to blue-green algae. Increases in the algal biomass in the lakes may be attributable to increases in nutrient concentrations in the lakes and in the waters feeding the lakes. The U.S. Geological Survey, in cooperation with the City of Tulsa, investigated and summarized total nitrogen and total phosphorus concentrations in water samples and provided estimates of nitrogen and phosphorus loads, yields, and flow-weighted concentrations during base flow and runoff for two streams discharging to Lake Eucha for the period January 2002 through December 2009. This report updates a previous report that used data from water-quality samples collected from January 2002 through December 2006. Based on the results from the Mann-Whitney statistical test, unfiltered total nitrogen concentrations were significantly greater in runoff water samples than in base-flow water samples collected from Spavinaw Creek near Maysville and near Cherokee City, Arkansas; Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma. Nitrogen concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Nitrogen concentrations in base-flow and runoff water samples collected in Spavinaw Creek significantly increased from the station furthest upstream (near Maysville) to the Sycamore station and then significantly decreased from the Sycamore station to the station furthest downstream (near Colcord). Nitrogen concentrations in base-flow and runoff water samples collected from Beaty Creek were significantly less than base-flow and runoff water samples collected from Spavinaw Creek. Based on the results from the Mann-Whitney statistical test, unfiltered total phosphorus concentrations were significantly greater in runoff water samples than in base-flow water samples for the entire period for most stations, except in water samples collected from Spavinaw Creek near Cherokee City, in which no significant difference was detected for the entire period nor for any season. Phosphorus concentrations in runoff water samples collected from all stations generally increased with increasing streamflow. Based on results from a multi-stage Kruskal-Wallis statistical test, phosphorus concentrations in base-flow water samples collected from Spavinaw Creek significantly increased from the Maysville station to the Cherokee City station, probably because of discharge from a municipal wastewater-treatment plant between those stations. Phosphorus concentrations significantly decreased downstream from the Cherokee City station to the Colcord station. Phosphorus concentrations in base-flow water samples collected from Beaty Creek were significantly less than phosphorus in base-flow water samples collected from Spavinaw Creek downstream from the Maysville station. View report for unabridged abstract.

  17. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  18. Hydrologic monitoring of selected streams in coal fields of central and southern Utah; summary of data collected, August 1978-September 1984

    USGS Publications Warehouse

    Price, Don; Plantz, G.G.

    1987-01-01

    The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)

  19. Health assessment using aqua-quality indicators of alpine streams (Khunjerab National Park), Gilgit, Pakistan.

    PubMed

    Ali, Salar; Gao, Junfeng; Begum, Farida; Rasool, Atta; Ismail, Muhammad; Cai, Yongjiu; Ali, Shaukat; Ali, Shujaat

    2017-02-01

    This preliminary research was conducted to evaluate the alpine stream health by using water quality as an indicator in Khunjerab National park of the Karakoram ranges located in Pak-China boarder Pakistan having altitude of 3660 m. This study investigated the stream health in the context of the presence or absence of sensitive species, their diversity, and their taxa richness. The water and macroinvertebrate samples were collected from 17 different locations from upstream and downstream of the river by using random sampling method. Macroinvertebrate samples were obtained using kick net (500-μm mesh size) and hand-picking method (NYSDEC). A total of 710 counts including 41 families of macroinvertebrates were recorded comprising of 7 orders including: Ephemeroptera (46%) being the most dominant group, Plecoptera (33%), Trichoptera (5%), Chironomidae (Diptera) (14%), Heteroptera (1%), and Coleoptera (1%). Ephemeroptera, Trichoptera, and Plecoptera (EPT) were found in abundance at the main source, Qarchanai, Dhee, and Tourqeen Nullah, as compared to the other locations of the stream. The most dominant macroinvertebrate was Ephemeroptera whose relative abundance is Pi = 0.49 by using the Shannon index. However, different statistical tools, including principal component analysis (PCA), cluster analysis (CA), ANOVA, and linear regression model, show a strong correlation between water quality and macroinvertebrates. The overall results of the biological indicators showed better ecological health at downstream compared to upstream. This study will provide basic information and understanding about the macroinvertebrates for future researchers, and the data will be helpful for upcoming research programs on alpine streams for the discovery and occurrences of macroinvertebrates and associated fauna.

  20. Measured and predicted environmental concentrations of carbamazepine, diclofenac, and metoprolol in small and medium rivers in northern Germany.

    PubMed

    Meyer, Wibke; Reich, Margrit; Beier, Silvio; Behrendt, Joachim; Gulyas, Holger; Otterpohl, Ralf

    2016-08-01

    This study evaluated the impact of secondary municipal effluent discharge on carbamazepine, diclofenac, and metoprolol concentrations in small and medium rivers in northern Germany and compared the measured environmental concentrations (MECs) to the predicted environmental concentrations (PECs) calculated with four well-established models. During a 1-year sampling period, secondary effluent grab samples were collected at four wastewater treatment plants (WWTPs) together with grab samples from the receiving waters upstream and downstream from the wastewater discharge points. The carbamazepine, diclofenac, and metoprolol concentrations were analyzed with high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS-MS) after solid phase extraction. In the secondary effluents, 84-790 ng/L carbamazepine, 395-2100 ng/L diclofenac, and 745-5000 ng/L metoprolol were detected. The carbamazepine, diclofenac, and metoprolol concentrations analyzed in the rivers downstream from the secondary effluent discharge sites ranged from <5 to 68, 370, and 520 ng/L, respectively. Most of the downstream pharmaceutical concentrations were markedly higher than the corresponding upstream concentrations. The impact of wastewater discharge on the MECs in rivers downstream from the WWTPs was clearly demonstrated, but the correlations of the MECs with dilution factors were poor. The smallest rivers exhibited the largest maximum MECs and the widest ranges of MECs downstream from the wastewater discharge point. Three of the four tested models were conservative, as they showed higher PECs than the MECs in the rivers downstream from the WWTPs. However, the most detailed model underestimated the diclofenac concentrations.

  1. Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics.

    PubMed

    Marathe, Nachiket P; Pal, Chandan; Gaikwad, Swapnil S; Jonsson, Viktor; Kristiansson, Erik; Larsson, D G Joakim

    2017-11-01

    Efficient sewage treatment is critical for limiting environmental transmission of antibiotic-resistant bacteria. In many low and middle income countries, however, large proportions of sewage are still released untreated into receiving water bodies. In-depth knowledge of how such discharges of untreated urban waste influences the environmental resistome is largely lacking. Here, we highlight the impact of uncontrolled discharge of partially treated and/or untreated wastewater on the structure of bacterial communities and resistome of sediments collected from Mutha river flowing through Pune city in India. Using shotgun metagenomics, we found a wide array (n = 175) of horizontally transferable antibiotic resistance genes (ARGs) including carbapenemases such as NDM, VIM, KPC, OXA-48 and IMP types. The relative abundance of total ARGs was 30-fold higher in river sediments within the city compared to upstream sites. Forty four ARGs, including the tet(X) gene conferring resistance to tigecycline, OXA-58 and GES type carbapenemases, were significantly more abundant in city sediments, while two ARGs were more common at upstream sites. The recently identified mobile colistin resistance gene mcr-1 was detected only in one of the upstream samples, but not in city samples. In addition to ARGs, higher abundances of various mobile genetic elements were found in city samples, including integron-associated integrases and ISCR transposases, as well as some biocide/metal resistance genes. Virulence toxin genes as well as bacterial genera comprising many pathogens were more abundant here; the genus Acinetobacter, which is often associated with multidrug resistance and nosocomial infections, comprised up to 29% of the 16S rRNA reads, which to our best knowledge is unmatched in any other deeply sequenced metagenome. There was a strong correlation between the abundance of Acinetobacter and the OXA-58 carbapenemase gene. Our study shows that uncontrolled discharge of untreated urban waste can contribute to an overall increase of the abundance and diversity of ARGs in the environment, including those conferring resistance to last-resort antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  3. Level 1 environmental assessment performance evaluation. Final report jun 77-oct 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, E.D.; Smith, F.; Wagoner, D.E.

    1979-02-01

    The report gives results of a two-phased evaluation of Level 1 environmental assessment procedures. Results from Phase I, a field evaluation of the Source Assessment Sampling System (SASS), showed that the SASS train performed well within the desired factor of 3 Level 1 accuracy limit. Three sample runs were made with two SASS trains sampling simultaneously and from approximately the same sampling point in a horizontal duct. A Method-5 train was used to estimate the 'true' particulate loading. The sampling systems were upstream of the control devices to ensure collection of sufficient material for comparison of total particulate, particle sizemore » distribution, organic classes, and trace elements. Phase II consisted of providing each of three organizations with three types of control samples to challenge the spectrum of Level 1 analytical procedures: an artificial sample in methylene chloride, an artificial sample on a flyash matrix, and a real sample composed of the combined XAD-2 resin extracts from all Phase I runs. Phase II results showed that when the Level 1 analytical procedures are carefully applied, data of acceptable accuracy is obtained. Estimates of intralaboratory and interlaboratory precision are made.« less

  4. Data Validation Package - June 2015 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linard, Joshua; Price, Jeffrey

    2015-08-01

    Groundwater samples were collected during the 2015 sampling event from point-of-compliance (POC) wells 0171, 0173, 0176, 0179, 0181, and 0813 to monitor the disposition of contaminants in the middle sandstone unit of the Cedar Mountain Formation. Groundwater samples also were collected from alluvium monitoring wells 0188, 0189, 0192, 0194, and 0707, and basal sandstone monitoring wells 0182, 0184, 0185, and 0588 as a best management practice. Surface locations 0846 and 0847 were sampled to monitor for degradation of water quality in the backwater area of Brown’s Wash and in the Green River immediately downstream of Brown’s Wash. The Green Rivermore » location 0801 is upstream from the site and is sampled to determine background-threshold values (BTVs). Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Water levels were measured at each sampled well. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. All six POC wells are completed in the middle sandstone unit of the Cedar Mountain Formation and are monitored to measure contaminant concentrations for comparison to proposed alternate concentration limits (ACLs), as provided in Table 1. Contaminant concentrations in the POC wells remain below their respective ACLs.« less

  5. Persistence and stability of fish community structure in a southwest New York stream

    USGS Publications Warehouse

    Hansen, Michael J.; Ramm, Carl W.

    1994-01-01

    We used multivariate and nonparametric statistics to examine persistence and stability of fish species in the upper 43 km of French Creek, New York. Species occurred in upstream and downstream groups in 1937 that persisted in 1979. However, the downstream group expanded its range in the drainage from 1937 to 1979 at the expense of the upstream group. A dam prevented further upstream expansion of the downstream group. Ranks of species abundances were stable, as tests of group similarity were significant. The abundances and distributions of benthic species were stable across seven sampling dates in 1980 despite several floods and repeated removals by sampling that could have altered community structure. We conclude that the fish community in French Creek persisted and was stable over the 42-yr interval, 1937-1979, and that abundances of benthic species were stable in summer 1980.

  6. Effects of nonpoint and selected point contaminant sources on stream-water quality and relation to land use in Johnson County, northeastern Kansas, October 2002 through June 2004

    USGS Publications Warehouse

    Lee, Casey J.; Mau, D.P.; Rasmussen, T.J.

    2005-01-01

    Water and sediment samples were collected by the U.S. Geological Survey in 12 watersheds in Johnson County, northeastern Kansas, to determine the effects of nonpoint and selected point contaminant sources on stream-water quality and their relation to varying land use. The streams studied were located in urban areas of the county (Brush, Dykes Branch, Indian, Tomahawk, and Turkey Creeks), developing areas of the county (Blue River and Mill Creek), and in more rural areas of the county (Big Bull, Captain, Cedar, Kill, and Little Bull Creeks). Two base-flow synoptic surveys (73 total samples) were conducted in 11 watersheds, a minimum of three stormflow samples were collected in each of six watersheds, and 15 streambed-sediment sites were sampled in nine watersheds from October 2002 through June 2004. Discharge from seven wastewater treatment facilities (WWTFs) were sampled during base-flow synoptic surveys. Discharge from these facilities comprised greater than 50 percent of streamflow at the farthest downstream sampling site in six of the seven watersheds during base-flow conditions. Nutrients, organic wastewater-indicator compounds, and prescription and nonprescription pharmaceutical compounds generally were found in the largest concentrations during base-flow conditions at sites at, or immediately downstream from, point-source discharges from WWTFs. Downstream from WWTF discharges streamflow conditions were generally stable, whereas nutrient and wastewater-indicator compound concentrations decreased in samples from sites farther downstream. During base-flow conditions, sites upstream from WWTF discharges had significantly larger fecal coliform and Escherichia coli densities than downstream sites. Stormflow samples had the largest suspended-sediment concentrations and indicator bacteria densities. Other than in samples from sites in proximity to WWTF discharges, stormflow samples generally had the largest nutrient concentrations in Johnson County streams. Discharge from WWTFs with trickling-filter secondary treatment processes had the largest concentrations of many potential contaminants during base-flow conditions. Samples from two of three trickling-filter WWTFs exceeded Kansas Department of Health and Environment pH- and temperature-dependent chronic aquatic-life criteria for ammonia when early-life stages of fish are present. Discharge from trickling-filter facilities generally had the most detections and largest concentrations of many organic wastewater-indicator compounds in Johnson County stream-water samples. Caffeine (stimulant), nonylphenol-diethoxylate (detergent surfactant), and tris(2-butoxyethyl) phosphate (floor polish, flame retardant, and plasticizer) were found at concentrations larger than maximum concentrations in comparable studies. Land use and seasonality affected the occurrence and magnitude of many potential water-quality contaminants originating from nonpoint sources. Base-flow samples from urban sites located upstream from WWTF discharges had larger indicator bacteria densities and wastewater-indicator compound concentrations than did base-flow samples from sites in nonurban areas. Dissolved-solids concentrations were the largest in winter stormflow samples from urban sites and likely were due to runoff from road-salt application. One sample from an urban watershed had a chloride concentration of 1,000 milligrams per liter, which exceeded the Kansas Department of Health and Environment's acute aquatic-life use criterion (860 milligrams per liter) likely due to effects from road-salt application. Pesticide concentrations were the largest in spring stormflow samples collected in nonurban watersheds. Although most wastewater-indicator compounds were found at the largest concentrations in samples from WWTF discharges, the compounds 9-10, anthraquinone (bird repellent), caffeine (stimulant), carbazole (component of coal tar, petroleum products), nonylphenol-diethoxylate (detergent surfactant),

  7. 40 CFR 1066.125 - Data updating, recording, and control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minimum recording frequency, such as for sample flow rates from a CVS that does not have a heat exchanger... exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement 1 Hz. 40 CFR 1065.545§ 1066.425 Diluted exhaust flow rate from a CVS without a heat exchanger upstream of the flow measurement...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less

  9. Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America.

    PubMed

    Letcher, Robert J; Lu, Zhe; Chu, Shaogang; Haffner, G Douglas; Drouillard, Ken; Marvin, Christopher H; Ciborowski, Jan J H

    2015-07-01

    Sediments collected in 2004 from along the Detroit River (n = 19) and across all of Lake Erie (n = 18) were analyzed for isomers of the flame retardant chemical, hexabromocyclododecane (HBCD), using liquid chromatography-tandem mass spectrometry. Sediment samples had ΣHBCD concentrations ranging from not detected to 1.6 ng/g d.w. γ-HBCD (56 %-100 % of ΣHBCDs) was the predominate isomer, observed in 7 of 19 samples from the Detroit River and 6 of 18 samples from Lake Erie (all within the western basin). α-HBCD was found in 4 Detroit River and 2 Lake Erie western basin sites, while β-HBCD was only in two Detroit River samples. High ΣHBCD concentrations (>100 ng/g d.w.) were found in two sludge samples from two Windsor, ON, wastewater treatment plants that feed into the Detroit River upstream. HBCD contamination into the Detroit River is a major input vector into Lake Erie and with an apparent sediment dilution effect moving towards the eastern basin.

  10. Data on surface-water quality and quantity, lower Edgewood Creek basin, Douglas County, Nevada, 1984-85

    USGS Publications Warehouse

    La Camera, R. J.; Browning, S.B.

    1988-01-01

    Selected hydrologic data were collected from August 1984 through July 1985 at three sites on the lower part of Edgewood Creek, and at a recently constructed sediment-catchment basin that captures and retains runoff from developed areas in the lower Edgewood Creek drainage. The data were collected to quantify the discharge of selected constituents downstream from recent and planned watershed restoration projects, and to Lake Tahoe. Contained in this report are the results of quantitative analyses of 39 water samples for: total and dissolved ammonium, organic nitrogen, nitrite, nitrate, phosphorus, and orthophosphorus; suspended sediment; total iron, manganese, and zinc; and dissolved temperature, specific conductance, pH, and dissolved oxygen; summary statistics (means and standard deviations), and computations of instantaneous loads. On the basis of mean values, about 80% of the total nitrogen load at each of the three Edgewood Creek sites is in the form of organic nitrogen, 12% is in the form of nitrate nitrogen, 7% is in the form of ammonium nitrogen, and 1% is in the form of nitrite nitrogen. The percentage of total phosphorus load in the form of orthophosphorus at the three stream sites varies somewhat with time, but is generally greater at the two downstream sites than at the upstream site. In addition, the percentage of the total phosphorus load that is present in the dissolved state generally is greater at the two downstream sites than at the upstream site. (Lantz-PTT)

  11. Proposal of DCS-OFDM-PON upstream transmission with intensity modulator and collective self-coherent detection

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yang, Heming; Zhao, Difu; Qiu, Kun

    2016-07-01

    We introduce digital coherent superposition (DCS) into optical access network and propose a DCS-OFDM-PON upstream transmission scheme using intensity modulator and collective self-coherent detection. The generated OFDM signal is real based on Hermitian symmetry, which can be used to estimate the common phase error (CPE) by complex conjugate subcarrier pairs without any pilots. In simulation, we transmit an aggregated 40 Gb/s optical OFDM signal from two ONUs. The transmission performance with DCS is slightly better after 25 km transmission without relative transmission time delay. The fiber distance for different ONUs to RN are not same in general and there is relative transmission time delay between ONUs, which causes inter-carrier-interference (ICI) power increasing and degrades the transmission performance. The DCS can mitigate the ICI power and the DCS-OFDM-PON upstream transmission outperforms the conventional OFDM-PON. The CPE estimation is by using two pairs of complex conjugate subcarriers without redundancy. The power variation can be 9 dB in DCS-OFDM-PON, which is enough to tolerate several kilometers fiber length difference between the ONUs.

  12. Engineering Design and Testing of a Novel High-Resolution Trace-Metal Clean Sampler for Profiling and Long-term Deployment Applications

    NASA Astrophysics Data System (ADS)

    Mueller, A. V.; Crusius, J.; Carlson, K.; Chapin, T. P.

    2016-02-01

    Design, assembly, and testing of a novel in-situ sampler for automated high-frequency trace-metal clean sampling at ocean moorings was undertaken with the goal of improving marine data density for iron (and other metals) by up to a factor of ten relative to existing samplers. Target characteristics are: modular, flexible use (profiling, static moorings, AUV-deployed), high capacity (100-200 samples), low power, low cost ($3k per 100-samples), ability to collect filtered + unfiltered samples, and simple assembly. Smaller sample volumes (10mL) are enabled by recent innovations in analysis techniques, while use of off-the-shelf components enables lower cost and faster development time, although attention must be taken to verify trace-metal cleanliness of materials in commercial products. Standard polypropylene syringes (tips with lock fittings) are adapted as sample chambers through fabrication of a dual (viton) o-ring replacement plunger to prevent barrel contamination between acid washing and sample collection. Syringes are mounted along a (pumped) sampling channel machined into a modular custom-designed 7.5in. HDPE ring; successive rings stack, fitted around the central 3 in. PVC pressure housing containing the pump, batteries, and temperature and pressure sensors. Optional filtering (0.45um) is easily added at the inlet to the pumped sampling line. Syringes, pre-filled with acid for sample preservation, are held "closed" using plastic zipties connected to the plunger pull; individual syringes are selected for filling by breaking a 0.003in. wire (e.g., stainless steel, gold-plated tungsten/rhenium) with a pulse of current or by melting the ziptie loop using a nichrome wire. Multiplexed addressing minimizes required microcontroller output pins and wires between the free-flooded collection chamber and the pressure housing. A novel, custom rotating inlet mounting scheme ensures that the pump tubing inlet remains positioned approximately 1m upstream of the sampler.

  13. Occurrence of enrofloxacin in overflows from animal lot and residential sewage lagoons and a receiving-stream.

    PubMed

    Ikem, Abua; Lin, Chung-Ho; Broz, Bob; Kerley, Monty; Thi, Ho Le

    2017-10-01

    Enrofloxacin (ENRO), a fluoroquinolone, was quantified in overflows from an animal lot and residential sewage lagoons and in a receiving-stream (Gans Creek). The concentrations of ENRO in samples was determined by high-performance liquid chromatography - tandem mass spectrometry. In total, ninety samples including duplicates were analyzed during several monthly sampling campaigns. The samples collected represented the residential sewage lagoon overflow (RLO), animal lot lagoon overflow (ALLO), the combined overflows (RLO and ALLO), and Gans Creek (upstream, midstream and downstream positions). The frequency of detection of ENRO was 90% for RLO and 100% for both ALLO and Gans Creek. The highest concentration of ENRO (0.44 μg/L) was found in ALLO sample collected during high precipitation. ENRO levels found in RLO samples ranged from < LOQ to 259 ng/L and the highest value observed also coincided with high flow. The levels of ENRO found in Gans Creek ranged from 17-216 ng/L. A preliminary ecotoxicological assessment was conducted through calculation of the risk quotients (RQs) for organisms based on the ratio of the measured environmental concentrations in this study to the predicted-no-effect-concentrations (acute and chronic effect) data. From the RQs, high risks were observed for Microcystis aeruginosa (cyanobacteria; RQ = 4.4); Anabaena flosaquae (cyanobacteria; RQ = 1.3); and Lemna minor (aquatic vascular plant; RQ = 2.0). The long-term effects of mixtures of PHCs on Gans Creek watershed are probable.

  14. Method and apparatus for in-cell vacuuming of radiologically contaminated materials

    DOEpatents

    Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.

    1987-01-01

    A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

  15. Effects of aquifer storage and recovery activities on water quality in the Little Arkansas River and Equus Beds Aquifer, south-central Kansas, 2011–14

    USGS Publications Warehouse

    Stone, Mandy L.; Garrett, Jessica D.; Poulton, Barry C.; Ziegler, Andrew C.

    2016-07-18

    The Equus Beds aquifer in south-central Kansas is aprimary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current (2016) and future water demands. The Equus Beds ASR project pumps water out of the Little Arkansas River during above-base flow conditions, treats it using drinking-water quality standards as a guideline, and recharges it into the Equus Beds aquifer for later use. Phase II of the Equus Beds ASR project currently (2016) includes a river intake facility and a surface-water treatment facility with a 30 million gallon per day capacity. Water diverted from the Little Arkansas River is delivered to an adjacent presedimentation basin for solids removal. Subsequently, waste from the surface-water treatment facility and the presedimentation basin is returned to the Little Arkansas River through a residuals return line. The U.S. Geological Survey, in cooperation with the city of Wichita, developed and implemented a hydrobiological monitoring program as part of the ASR project to characterize and quantify the effects of aquifer storage and recovery activities on the Little Arkansas River and Equus Beds aquifer water quality.Data were collected from 2 surface-water sites (one upstream and one downstream from the residuals return line), 1 residuals return line site, and 2 groundwater well sites (each having a shallow and deep part): the Little Arkansas River upstream from the ASR facility near Sedgwick, Kansas (upstream surface-water site 375350097262800), about 0.03 mile (mi) upstream from the residuals return line site; the Little Arkansas River near Sedgwick, Kans. (downstream surface-water site 07144100), about 1.68 mi downstream from the residuals return line site; discharge from the Little Arkansas River ASR facility near Sedgwick, Kansas (residuals return line site 375348097262800); 25S 01 W 07BCCC01 SMW–S11 near CW36 (MW–7 shallow groundwater well site 375327097285401); 25S01 W 07BCCC02 DMW–S10 near CW36 (MW–7 deep groundwater well site 375327097285402); 25S 01W 07BCCA01 SMW–S13 near CW36 (MW–8 shallow groundwater well site 375332097284801); and 25S 01W 07BCCA02 DMW–S14 near CW36 (MW–8 deep groundwater well site 375332097284802). The U.S. Geological Survey, in cooperation with the city of Wichita, assessed the effects of the ASR Phase II facility residuals return line discharges on stream quality of the Little Arkansas River by measuring continuous physicochemical properties and collecting discrete water-quality and sediment samples for about 2 years pre- (January 2011 through April 2013) and post-ASR (May 2013 through December 2014) Phase II facility operation upstream and downstream from the ASR Phase II facility. Additionally, habitat variables were quantified and macroinvertebrate and fish communities were sampled upstream and downstream from the ASR Phase II facility during the study period. To assess the effects of aquifer recharge on Equus Beds groundwater quality, continuous physicochemical properties were measured and discrete water-quality samples were collected before and during the onset of Phase II aquifer recharge in two (shallow and deep) groundwater wells.Little Arkansas River streamflow was about 10 times larger after the facility began operating because of greater rainfall. Residuals return line release volumes were a very minimal proportion (0.06 percent) of downstream streamflow volume during the months the ASR facility was operating. Upstream and downstream continuously measured water temperature and dissolved oxygen median differences were smaller post-ASR than pre-ASR. Turbidity generally was smaller at the downstream site throughout the study period and decreased at both sites after the ASR Phase II facility began discharging despite a median residuals return line turbidity that was about an order of magnitude larger than the median turbidity at the downstream site. Upstream and downstream continuously measured turbidity median differences were larger post-ASR than pre-ASR. Median post-ASR continuously measured nitrite plus nitrate and continuously computed total suspended solids and suspended-sediment concentrations were smaller than pre-ASR likely because of higher streamflows and dilution; whereas, median continuously computed dissolved and total organic carbon concentrations were larger likely because of higher streamflows and runoff conditions.None of the discretely measured water-quality constituents (dissolved and suspended solids, primary ions, suspended sediment, nutrients, carbon, trace elements, viral and bacterial indicators, and pesticides) in surface water were significantly different between the upstream and downstream sites after the ASR Phase II facility began discharging; however, pre-ASR calcium, sodium, hardness, manganese, and arsenate concentrations were significantly larger at the upstream site, which indicates that some water-quality conditions at the upstream and downstream sites were more similar post-ASR. Most of the primary constituents that make up dissolved solids decreased at both sites after the ASR Phase II facility began operation. Discretely collected total suspended solids concentrations were similar between the upstream and downstream sites before the facility began operating but were about 27 percent smaller at the downstream site after the facility began operating, despite the total suspended solids concentrations in the residuals return line being 15 times larger than the downstream site.Overall habitat scores were indicative of suboptimal conditions upstream and downstream from the ASR Phase II facility throughout the study period. Substrate fouling and sediment deposition mean scores indicated marginal conditions at the upstream and downstream sites during the study period, demonstrating that sediment deposition was evident pre- and post-ASR and no substantial changes in these habitat characteristics were noted after the ASR Phase II facility began discharging. Macroinvertebrate community composition (evaluated using functional feeding, behavioral, and tolerance metrics) generally was similar between sites during the study period. Fewer macroinvertebrate metrics were significant between the upstream and downstream sites post-ASR (6) than pre-ASR (14), which suggests that macroinvertebate communities were more similar after the ASR facility began discharging. Upstream-downstream comparisons in macroinvertebrate aquatic-life-support metrics had no significant differences for the post-ASR time period and neither site was fully supporting for any of the Kansas Department of Health and Environment aquatic-life-support metrics (Macroinvertebrate Biotic Index; Kansas Biotic Index with tolerances for nutrients and oxygen-demanding substances; Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness; and percentage of EPT species). Overall, using macroinvertebrate aquatic life-support criteria from the Kansas Department of Health and Environment, upstream and downstream sites were classified as partially supporting before and after the onset of ASR facility operations. Fish community trophic status and tolerance groups generally were similar among sites during the study period. Fish community Little Arkansas River Basin Index of Biotic Integrity scores at the upstream and downstream sites were indicative of fair-to-good conditions before the facility began operating and decreased to fair conditions after the facility began operating.Groundwater physicochemical changes concurrent with the beginning of recharge operations at the Sedgwick basin were more pronounced in shallow groundwater. No constituent concentrations in the pre-recharge period in comparison to the post-recharge period increased to concentrations exceeding drinking water regulations; however, nitrate decreased significantly from a pre-recharge exceedance of the U.S. Environmental Protection Agency maximum contaminant level to a post recharge nonexceedance. Shallow groundwater chemical concentrations or rates of detection increased after artificial recharge began for the ions potassium, chloride, and fluoride; phosphorus and organic carbon species; trace elements barium, manganese, nickel, arsenate, arsenic, and boron; agricultural pesticides atrazine, metolachlor, metribuzin, and simazine; organic disinfection byproducts bromodichloromethane and trichloromethane; and gross beta levels. Additionally, water temperature, and pH were larger after recharge began; and total solids and slime-forming bacteria concentrations and densities were smaller. Total solids, nitrate, and selenium significantly decreased; and potassium, chloride, nickel, arsenic, fluoride, phosphorus and carbon species, and gross beta levels significantly increased in shallow groundwater after artificial recharge. Results of biological activity reaction tests indicated that water quality microbiology was different before and after artificial recharge began; at times, these differences may lead to changes in dominant bacterial populations that, in turn, may lead to formation and expansion in populations that may cause bioplugging and other unwanted effects. Calcite, iron (II) hydroxide, hydroxyapatite, and similar minerals, had shifts in saturation indices that generally were from undersaturation toward equilibrium and, in some cases, toward oversaturation. These shifts toward neutral saturation indices might suggest reduced weathering of the minerals present in the Equus Beds aquifer. Chemical weathering in the shallow parts of the aquifer may be accelerated because of the increased water temperatures and the system is more vulnerable to clogged pores and mineral dissolution as the equilibrium state is affected by recharge and withdrawal. When oversaturation is indicated for iron minerals, plugging of aquifer materials may happen.

  16. Evaluation of distribution and sources of sewage molecular marker (LABs) in selected rivers and estuaries of Peninsular Malaysia.

    PubMed

    Magam, Sami M; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Kannan, Narayanan; Masood, Najat; Mustafa, Shuhaimi; Alkhadher, Sadeq; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Sani, Muhamad S A; Latif, Mohd Talib

    2016-03-01

    This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.

  17. Loosely bound oxytetracycline in riverine sediments from two tributaries of the Chesapeake Bay

    USGS Publications Warehouse

    Simon, N.S.

    2005-01-01

    The fate of antibiotics that bind to riverine sediment is not well understood. A solution used in geochemical extraction schemes to determine loosely bound species in sediments, 1 M MgCl2 (pH 8), was chosen to determine loosely bound, and potentially bioavailable, tetracycline antibiotics (TCs), including oxytetracycline (5-OH tetracycline) (OTC) in sediment samples from two rivers on the eastern shore of the Chesapeake Bay. Bottom sediments were collected at sites upstream from, at, and downstream from municipal sewage-treatment plants (STPs) situated on two natural waterways, Yellow Bank Stream, MD, and the Pocomoke River, MD. Concentrations of easily desorbed OTC ranged from 0.6 to approximately 1.2 ??g g-1 dry wt sediment in Yellow Bank Stream and from 0.7 to approximately 3.3 ??g g-1 dry wt sediment in the Pocomoke River. Concentrations of easily desorbable OTC were generally smaller in sediment upstream than in sediment downstream from the STP in the Pocomoke River. STPs and poultry manure are both potential sources of OTC to these streams. OTC that is loosely bound to sediment is subject to desorption. Other researchers have found desorbed TCs to be biologically active compounds.

  18. Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.

    PubMed

    Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan

    2016-01-01

    In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River.

  19. Ecology of an estuarine mysid shrimp in the Columbia River (USA)

    USGS Publications Warehouse

    Haskell, C.A.; Stanford, J.A.

    2006-01-01

    The estuarine mysid, Neomysis mercedis, has colonized John Day and other run-of-the-river Reservoirs of the Columbia River, over 400 km from the estuary. In John Day Reservoir N. mercedis numbers peaked (2 m-3) in August in areas near the dam in association with lower water velocity and softer bottom than at the upstream sampling sites. Neomysis broods were primarily released in late spring and early fall. Gut content analysis showed that Neomysis feeds mostly on cladoceran zooplankton and rotifers in John Day Reservoir. Diel vertical migration was documented, with daytime distribution restricted to the bottom and preferentially to the soft-textured sediments in the deepest areas. Common pelagic fishes in the reservoir, especially juvenile American shad (Alosa sapidissima) and chinook salmon (Oncorhynchus tshawytscha), are daytime zooplankton feeders that cannot prey on Neomysis owing to mysid diel vertical migration. Thus, Neomysis has become an important food web component in John Day Reservoir. We also collected N. mercedis further upstream in Lower Granite Reservoir, where another estuarine crustacean, Corophium salmonis, also is reported, underscoring the need to better understand the role of these estuarine invertebrates in the trophic ecology of the Columbia River. Copyright ?? 2006 John Wiley & Sons, Ltd.

  20. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    NASA Astrophysics Data System (ADS)

    Tsai, Candace S.-J.; Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2012-05-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20-46 % points compared to non-coated fabric and could provide collection efficiency above 95 %.

  1. Evaluation of environmental filtration control of engineered nanoparticles using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES)

    PubMed Central

    Echevarría-Vega, Manuel E.; Sotiriou, Georgios A.; Santeufemio, Christopher; Schmidt, Daniel; Demokritou, Philip; Ellenbecker, Michael

    2013-01-01

    Applying engineering controls to airborne engineered nanoparticles (ENPs) is critical to prevent environmental releases and worker exposure. This study evaluated the effectiveness of two air sampling and six air cleaning fabric filters at collecting ENPs using industrially relevant flame-made engineered nanoparticles generated using a versatile engineered nanomaterial generation system (VENGES), recently designed and constructed at Harvard University. VENGES has the ability to generate metal and metal oxide exposure atmospheres while controlling important particle properties such as primary particle size, aerosol size distribution, and agglomeration state. For this study, amorphous SiO2 ENPs with a 15.4 nm primary particle size were generated and diluted with HEPA-filtered air. The aerosol was passed through the filter samples at two different filtration face velocities (2.3 and 3.5 m/min). Particle concentrations as a function of particle size were measured upstream and downstream of the filters using a specially designed filter test system to evaluate filtration efficiency. Real time instruments (FMPS and APS) were used to measure particle concentration for diameters from 5 to 20,000 nm. Membrane-coated fabric filters were found to have enhanced nanoparticle collection efficiency by 20–46 % points compared to non-coated fabric and could provide collection efficiency above 95 %. PMID:23412707

  2. Polybrominated diphenyl ether metabolism in field collected fish from the Gila River, Arizona, USA-Levels, possible sources, and patterns

    USGS Publications Warehouse

    Echols, Kathy R.; Peterman, Paul H.; Hinck, Jo Ellen; Orazio, Carl E.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in fish collected from the Gila River, Arizona, a tributary of the Colorado River in the lower part of the Colorado River Basin. Fish samples were collected at sites on the Gila River downstream from Hayden, Phoenix, and Arlington, Arizona in late summer 2003. The Gila River is ephemeral upstream of the Phoenix urban area due to dams and irrigation projects and has limited perennial flow downstream of Phoenix due to wastewater and irrigation return flows. Fifty PBDE congeners were analyzed by high resolution gas chromatography/high resolution mass spectrometry using labeled surrogate standards in composite samples of male and female common carp (Cyrpinus carpio), largemouth bass (Micropterus salmoides) and channel catfish (Ictalurus punctatus). The predominant PBDE congeners detected and quantified were 47, 100, 153, 49, 28, and 17. Concentrations of total PBDEs in these fish ranged from 1.4 to 12700 ng g-1 wet weight, which are some of the highest concentrations reported in fish from the United States. Differences in metabolism of several PBDE congeners by carp is clear at the Phoenix site; congeners with at least one ring of 2,4,5-substitution are preferentially metabolized as are congeners with 2,3,4-substitution.

  3. Bromine incorporation factors for trihalomethane formation for the Mississippi, Missouri, and Ohio Rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    The bromine incorporation factor describes the distribution of the four trihalomethane compounds in the mixture formed when a natural water is chlorinated. This factor was determined for the Mississippi, Missouri, and Ohio Rivers by chlorinating water samples at three levels each of pH and free chlorine concentration. Samples were collected during the summer, fall, and spring seasons of the year at 12 sites on the Mississippi River from Minneapolis, MN, to New Orleans, LA, and on the Missouri and Ohio Rivers 1.6 kilometers upstream from their confluences with the Mississippi. The bromine incorporation factor increased as the bromide concentration increased, and decreased as the pH, initial free-chlorine and dissolved organic-carbon concentrations increased. Variation of the bromine incorporation factor with distance along the Mississippi River approximately paralleled the variation of the bromide concentration with distance along the river, with the Missouri River samples having the highest bromine incorporation factors for all combinations of pH and free-chlorine concentration.

  4. Ecological succession of the microbial communities of an air-conditioning cooling coil in the tropics.

    PubMed

    Acerbi, E; Chénard, C; Miller, D; Gaultier, N E; Heinle, C E; Chang, V W-C; Uchida, A; Drautz-Moses, D I; Schuster, S C; Lauro, F M

    2017-03-01

    Air-conditioning systems harbor microorganisms, potentially spreading them to indoor environments. While air and surfaces in air-conditioning systems are periodically sampled as potential sources of indoor microbes, little is known about the dynamics of cooling coil-associated communities and their effect on the downstream airflow. Here, we conducted a 4-week time series sampling to characterize the succession of an air-conditioning duct and cooling coil after cleaning. Using an universal primer pair targeting hypervariable regions of the 16S/18S ribosomal RNA, we observed a community succession for the condensed water, with the most abundant airborne taxon Agaricomycetes fungi dominating the initial phase and Sphingomonas bacteria becoming the most prevalent taxa toward the end of the experiment. Duplicate air samples collected upstream and downstream of the coil suggest that the system does not act as ecological filter or source/sink for specific microbial taxa during the duration of the experiment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk.

    PubMed

    Pereira, André M P T; Silva, Liliana J G; Laranjeiro, Célia S M; Meisel, Leonor M; Lino, Celeste M; Pena, Angelina

    2017-12-31

    Pharmaceuticals occurrence and environmental risk assessment were assessed in Portuguese surface waters, evaluating the impact of wastewater treatment plants (WWTPs) and river flow rates. Twenty three pharmaceuticals from 6 therapeutic groups, including metabolites and 1 transformation product, were analysed in 72 samples collected from 20 different sites, upstream and downstream the selected WWTPs, in two different seasons. Analysis was performed by solid phase extraction followed by liquid chromatography coupled to tandem mass spectroscopy. Pharmaceuticals were detected in 27.8% of the samples. Selective serotonin reuptake inhibitors (SSRIs), anti-inflammatories and antibiotics presented the highest detection frequencies (27.8, 23.6 and 23.6%, respectively) and average concentrations (37.9, 36.1 and 33.5ngL -1 , respectively). When assessing the impact of WWTPs, an increase of 21.4% in the average concentrations was observed in the samples located downstream these facilities, when compared with the upstream samples. Increased detection frequencies and concentrations were observed at lower flow rates, both when comparing summer and winter campaigns and by evaluating the different rivers. Risk quotients (RQs) higher than one were found for two pharmaceuticals, concerning two trophic levels. However, since Iberian rivers are highly influenced by water scarcity, in drought periods, the flow rates in these rivers can decrease at least ten times from the lowest value observed in the sampling campaigns. In these conditions, RQs higher than 1 would be observed for 5 pharmaceuticals, additionally, all the detected pharmaceuticals (11) would present RQs higher than 0.1. These results emphasize that the river flow rate represents an important parameter influencing pharmaceuticals concentrations, highlighting the ecotoxicological pressure, especially due to water scarcity in drought periods. This should be a priority issue in the environmental policies for minimizing its impact in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  7. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams

    USGS Publications Warehouse

    Haggard, B.E.; Galloway, J.M.; Green, W.R.; Meyer, M.T.

    2006-01-01

    Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN). ?? ASA, CSSA, SSSA.

  8. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    USGS Publications Warehouse

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red River. The major-element water chemistry of the Red River is controlled by dissolution of calcite and gypsum and the oxidation of pyrite, and the river is generally not well buffered with respect to pH. During higher-flow periods, Red River water was diluted by calcium-carbonate waters, most likely from unmineralized Red River tributaries and areas upstream from scars. The effect of pyrite oxidation on Red River water chemistry was more pronounced after the early 1980's. Elevated zinc concentrations were most apparent during summer thunderstorm and rising limb times, which also were associated with a decrease in alkalinity and an increase in sulfate concentrations and conductivity. The water-quality results demonstrate that it is critical to consider hydrologic conditions when interpreting water chemistry in naturally mineralized or mined drainages.

  9. Moving Upstream in U.S. Hospital Care Toward Investments in Population Health.

    PubMed

    Begun, James W; Potthoff, Sandra

    The root causes for most health outcomes are often collectively referred to as the social determinants of health. Hospitals and health systems now must decide how much to "move upstream," or invest in programs that directly affect the social determinants of health. Moving upstream in healthcare delivery requires an acceptance of responsibility for the health of populations. We examine responses of 950 nonfederal, general hospitals in the United States to the 2015 American Hospital Association Population Health Survey to identify characteristics that distinguish those hospitals that are most aligned with population health and most engaged in addressing social determinants of health. Those "upstream" hospitals are significantly more likely to be large, not-for-profit, metropolitan, teaching-affiliated, and members of systems. Internally, the more upstream hospitals are more likely to organize their population health activities with strong executive-level involvement, full-time-equivalent support, and coordination at the system level.The characteristics differentiating hospitals strongly involved in population health and upstream activity are not unlike those characteristics associated with diffusion of many innovations in hospitals. These hospitals may be the early adopters in a diffusion process that will eventually include most hospitals or, at least, most not-for-profit hospitals. Alternatively, the population health and social determinants movements could be transient or could be limited to a small portion of hospitals such as those identified here, with distinctive patient populations, missions, and resources.

  10. Characteristics and sources analysis of riverine chromophoric dissolved organic matter in Liaohe River, China.

    PubMed

    Shao, Tiantian; Song, Kaishan; Jacinthe, Pierre-Andre; Du, Jia; Zhao, Ying; Ding, Zhi; Guan, Ying; Bai, Zhang

    2016-12-01

    Chromophoric dissolved organic matter (CDOM) in riverine systems can be affected by environmental conditions and land-use, and thus could provide important information regarding human activities in surrounding landscapes. The optical properties of water samples collected at 42 locations across the Liaohe River (LHR, China) watershed were examined using UV-Vis and fluorescence spectroscopy to determine CDOM characteristics, composition and sources. Total nitrogen (TN) and total phosphorus (TP) concentrations at all sampling sites exceeded the GB3838-2002 (national quality standards for surface waters, China) standard for Class V waters of 2.0 mg N/L and 0.4 mg P/L respectively, while trophic state index (TSI M ) indicated that all the sites investigated were mesotrophic, 64% of which were eutrophic at the same time. Redundancy analysis showed that total suspended matter (TSM), dissolved organic carbon (DOC), and turbidity had a strong correlation with CDOM, while the other parameters (Chl a, TN, TP and TSI M ) exhibited weak correlations with CDOM absorption. High spectral slope values and low SUVA254 (the specific UV absorption) values indicated that CDOM in the LHR was primarily comprised of low molecular weight organic substances. Analysis of excitation-emission matrices contour plots showed that CDOM in water samples collected from upstream locations exhibited fulvic-acid-like characteristics whereas protein-like substances were most likely predominant in samples collected in estuarine areas and downstream from large cities. These patterns were interpreted as indicative of water pollution from urban and industrial activities in several downstream sections of the LHR watershed.

  11. Chemical characteristics, including stable-isotope ratios, of surface water and ground water from selected sources in and near East Fork Armells Creek basin, southeastern Montana, 1985

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.; Davis, R.E.

    1989-01-01

    Water samples were collected from 29 sites to provide synoptic chemical data, including stable-isotope ratios, for an area of active surface coal mining and to explore the effectiveness of using the data to chemically distinguish water from different aquifers. Surface-water samples were collected from one spring, four sites on East Armells Creek, one site on Stocker Creek, and two fly-ash ponds. Streamflows in East Fork Armells Creek ranged from no flow in several upstream reaches to 2.11 cu ft/sec downstream from Colstrip, Montana. Only one tributary, Stocker Creek, was observed to contribute surface flow in the study area. Groundwater samples were collected from wells completed in Quaternary alluvium or mine spoils, Rosebud overburden, Rosebud coal bed, McKay coal bed, and sub-McKay deposits of the Tongue River Member, Paleocene Fort Union Formation. Dissolved-solids concentrations, in mg/L, were 840 at the spring, 3,100 to 5,000 in the streams, 13,000 to 22,000 in the ash ponds, and 690 to 4 ,100 in the aquifers. With few exceptions, water from the sampled spring, streams, and wells had similar concentrations of major constituents and trace elements and similar stable-isotope ratios. Water from the fly-ash ponds had larger concentrations of dissolved solids, boron, and manganese and were isotopically more enriched in deuterium and oxygen-18 than water from other sources. Water from individual aquifers could not be distinguished by either ion-composition diagrams or statistical cluster analyses. (USGS)

  12. Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2012-01-01

    Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained at 30 Hz during microgravity flame spread tests in the 10 second Japan Microgravity Center (JAMIC). The tests also used a color video of the surface view and color images of the edge view using 35 millimeter 1600 Kodak Ektapress film at 2 Hz. The cellulose fuel samples (50% long fibers from lumi pine and 50% short fibers from birch) were made with an area density of 60 grams per square meters. The samples were mounted in the center of a 12 centimeter wide by 16 centimeter tall flow duct that uses a downstream fan to draw the air through the flow duct. Samples were ignited after the experiment package was released using a straight hot wire across the center of the 7.5 centimeter wide by 14 centimeter long samples. One case, at 1 atmosphere 35%O2 in N2, at a forced flow of 10 centimeters per second, is presented here. In this case, as the test progresses, the single flame begins to separate into simultaneous upstream and downstream flames. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel.

  13. Fate and transport of heavy metals and radioelements in groundwater aquifers of Al-Qunfudhah and Wadi Haliy quadrangles, southwest of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bajabaa, S. A.; Abd El-Naby, H.; Dawood, Y.

    2009-12-01

    The fate and transport of heavy metals and radioelements in groundwater aquifers in five wadis located in the Al Qunfudhah and Wadi Haliy quadrangles were investigated. These wadis are an important source of water to the Red Sea coastal plain. Copper, zinc and other base-metals mineralization occur at eastern parts of these quadrangles that dominates the water catchments area of these wadis. Water, rock and soil samples were collected from all wadis and they were analyzed for major, trace elements, heavy metals and stable isotopes. The chemical and isotopic results showed active water/rock interaction. The preliminary investigation of the data analyses showed some samples with high heavy metals and uranium contents. Generally, the uranium and heavy metal contents are higher in samples collected from the upstream area of each wadi where the crystalline rocks are exposed and direct contact with the runoff. The uranium contents were as high as 120 ppb in some water samples. These elevated values are mainly due to two factors water rock interaction and concentration through evaporation. It was also observed to have elevated heavy metal contents near mining activates, which suggests that these mining activates are playing an important role in mobilizing the heavy elements and in turn affecting the water quality in these wadis.

  14. The Value of the Freshwater Snail Dip Scoop Sampling Method in Macroinvertebrates Bioassessment of Sugar Mill Wastewater Pollution in Mbandjock, Cameroon

    PubMed Central

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B.; Noumi, Emmanuel

    2008-01-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources. PMID:18441407

  15. The value of the freshwater snail dip scoop sampling method in macroinvertebrates bioassessment of sugar mill wastewater pollution in Mbandjock, Cameroon.

    PubMed

    Takougang, Innocent; Barbazan, Phillipe; Tchounwou, Paul B; Noumi, Emmanuel

    2008-03-01

    Macroinvertebrates identification and enumeration may be used as a simple and affordable alternative to chemical analysis in water pollution monitoring. However, the ecological responses of various taxa to pollution are poorly known in resources-limited tropical countries. While freshwater macroinvertebrates have been used in the assessment of water quality in Europe and the Americas, investigations in Africa have mainly focused on snail hosts of human parasites. There is a need for sampling methods that can be used to assess both snails and other macroinvertebrates. The present study was designed to evaluate the usefulness of the freshwater snail dip scoop method in the study of macroinvertebrates for the assessment of the SOSUCAM sugar mill effluents pollution. Standard snail dip scoop samples were collected upstream and downstream of the factory effluent inputs, on the Mokona and Mengoala rivers. The analysis of the macroinvertebrate communities revealed the absence of Ephemeroptera and Trichoptera, and the thriving of Syrphidae in the sections of the rivers under high effluent load. The Shannon & Weaver diversity index was lower in these areas. The dip scoop sampling protocol was found to be a useful method for macroinvertebrates collection. Hence, this method is recommended as a simple, cost-effective and efficient tool for the bio-assessment of freshwater pollution in developing countries with limited research resources.

  16. Cadmium Isotope Fractionation of the Surface Waters in a Mining Area Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Yang, W.; Chen, Y.; Tang, Y.

    2016-12-01

    The pollution of natural waters and sediments with metals derived from acid mine drainage (AMD) is a global environmental problem. However, the processes governing the behaviors of transportation and transformation of metals like Cd in mountain area are poorly understood, the complicated hydro-geomorphic settings of mountain catchments are difficult to access . And few reports have been reported about the effects of. In this study, the concentration and the isotopic composition of Cd selected filtered stream samples from the Hengshi river affected by AMD have been determined. The Cd concentrations were determined for collected sediments samples, which cover the entire river valley from upstream to the downstream regions. Results showed that reducing concentrations for Cd were found in the river water from upstream to downstream, and also high enrichment factor for Cd in all the sediments, suggest that Cd mainly is derived from Liwu dam and easily enter into solid phase. The isotopic data show that the dissolved Cd in rivers is characterized by δ114/110Cd, ranged from 0.09 ‰ to 0.40 ‰ in term of δ114/110Cd , the mean is 0.25 ± 0.06 ‰, and the content of Cd from the sediments is 0.18 to 39.85 μg/g. The river isotope values are similar to the isotope signature of Liwu dam, which contain significant amounts of contaminants under a deep water cover, such as mine tailings, sulfide-rich rocks and minerals. Large fractionated Cd (δ114/110Cd = 0.40 ± 0.09 ‰) was found in water sample collected from midstream near a farmland, which imply there is a new source different from the LIWU dam depend on the heavier Cd signature. We hypothesize that this shift results from either hydrology changes over time in the main and tributaries stream, and some new pollution source imported. The change in the behavior of sorption of cadmium on oxides and hydroxides in the sediment system under low pH cause indistinguishable fractionation. Our result is encouraging for application of Cd isotopes as a novel tracer for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.

  17. Human Resource Local Content in Ghana's Upstream Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Benin, Papa

    Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

  18. [Distribution of Diatoms in Main Sections of Urban District Rivers with Drowning-prone in Chengdu].

    PubMed

    Ni, Z X; Xie, Q; Yi, X F

    2016-10-01

    To explore the species distribution and constituent ratio of diatoms in main sections of urban district rivers where drowning occurs frequently in Chengdu. Total 39 water samples from the sampling points of 5 rivers (Jinjiang, Jinniu, Qingyang, Wuhou and Chenghua districts) in October 2014 were collected. The diatoms smear were made and the species distribution and constituent ratio of diatoms from the water samples were analyzed using biological microscope and acquisition system of digital microscope. Total 21 species of diatoms were detected in main sections of urban district rivers in Chengdu. Significant differences in the dominant diatom species and proportions of the different rivers were observed, and there were different species existed in all sampling points of the upstream, midstream and downstream of the rivers. The database of species map, species distribution and constituent ratio of diatoms in main sections of urban district rivers in Chengdu are preliminarily established, which has special meaning for the analysis and evaluation of falling location inference using diatoms test in case investigation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  19. Flow variations and macroinvertebrate community responses in a small groundwater-dominated stream in south east England

    USGS Publications Warehouse

    Bendix, J.; Hupp, C.R.

    2000-01-01

    Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community The results are discussed in relation to the role of flow variability in shaping instream communities and management implications. Copyright ?? 2000 John Wiley & Sons, Ltd.Changes in the macroinvertebrate community in response to flow variations in the Little Stour River, Kent, UK, were examined over a 6 year period (1992-1997). This period included the final year of the 1988-1992 drought, followed by some of the wettest conditions recorded this century and a second period of drought between 1996 and 1997. Each year, samples were collected from 15 sites during late-summer base-flow conditions. Correspondence analysis identified clear differences between samples from upstream and downstream sites, and between drought and non-drought years. Step-wise multiple regression was used to identify hydrological indicators of community variation. Several different indices were used to describe the macroinvertebrate community, including macroinvertebrate community abundance, number of families and species, and individual species. Site characteristics were fundamental in accounting for variation in the unstandardized macroinvertebrate community. However, when differences between sites were controlled, hydrological conditions were found to play a dominant role in explaining ecological variation. Indices of high discharge (or their absence), 4-7 months prior to sampling (i.e. winter-spring), were found to be the most important variables for describing the late-summer community. The results are discussed in relation to the role of flow variability in shaping instream communities and management implications.

  20. Concentration and spatial distribution of lead in soil used for ammunition destruction.

    PubMed

    do Nascimento Guedes, Jair; do Amaral Sobrinho, Nelson Moura Brasil; Ceddia, Marcos Bacis; Vilella, André Luis Oliveira; Tolón-Becerra, Alfredo; Lastra-Bravo, Xavier Bolívar

    2012-10-01

    Studies on heavy metal contamination in soils used for ammunition disposal and destruction are still emerging. The present study aimed to evaluate the contamination level and spatial distribution of lead in disposal and destruction areas. This site was used for ammunition disposal and destruction activities for 20 years. The ammunition destruction site (1,296 ha), a sampling system that followed a sampling grid (5 m × 5 m) with 30 points was adopted and samples were collected at the following five depths with a total of 150 samples. During the collection procedure, each sampling grid point was georeferenced using a topographic global positioning system. Data were validated through semivariogram and kriging models using Geostat software. The results demonstrated that the average lead value was 163 mg kg(-1), which was close to the investigation limit and the contamination levels were higher downstream than upstream. The results showed that there was lead contamination at the destruction site and that the contamination existed mainly at the surface layer depth. However, high lead concentrations were also found at deeper soil depths in the destruction area due to frequent detonations. According to the planimetry data, the areas that require intervention significantly decreased with increasing depths in the following order: 582.7 m(2) in the 0-20 cm layer; 194.6 m(2) in the 20-40 cm layer; 101.6 m(2) in the 40-60 cm layer; and 45.3 m(2) in the 60-80 cm layer.

  1. Water-quality reconnaissance and streamflow gain and loss of Yocum Creek basin, Carroll County, Arkansas

    USGS Publications Warehouse

    Joseph, Robert L.; Green, W. Reed

    1994-01-01

    A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of chloroform was present in one spring-water sample. In springs sampled, nitrite plus nitrate concen- trations ranged from 1.4 to 7.0 milligrams per llter as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.2 to 0.49 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.07 milligrams per liter as phosphorus. Fecal colfform bacteria counts ranged from 3 to 200 colonies per 100 milliliters, with a median of 18 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 110 to more than 2,000 colonies per 100 milliliters with a median of 350 colonies per 100 milliliters. Large producing springs 1ocated in the mid to upper reaches of the basin contribute most of the flow to Yocum Creek. Streamflow increased an average of 29 percent on the mainstem of the stream. One losing reach was discovered on the mainstem of the stream and two losing reaches on tributaries to the mainstem. Surface flow steadily decreased along these reaches to the point where surface flow was not present, and the streambed became dry. These observations suggest that significant interaction exists between the underlying Springfield aquifer and surface flow in the Yocum Creek Basin.

  2. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure

    PubMed Central

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-01

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335

  3. Characterization of ROP18 alleles in human toxoplasmosis.

    PubMed

    Sánchez, Víctor; de-la-Torre, Alejandra; Gómez-Marín, Jorge Enrique

    2014-04-01

    The role of the virulent gene ROP18 polymorphisms is not known in human toxoplasmosis. A total of 320 clinical samples were analyzed. In samples positive for ROP18 gene, we determined by an allele specific PCR, if patients got the upstream insertion positive ROP18 sequence Toxoplasma strain (mouse avirulent strain) or the upstream insertion negative ROP18 sequence Toxoplasma strain (mouse virulent strain). We designed an ELISA assay for antibodies against ROP18 derived peptides from the three major clonal lineages of Toxoplasma. 20 clinical samples were of quality for ROP18 allele analysis. In patients with ocular toxoplasmosis, a higher inflammatory reaction on eye was associated to a PCR negative result for the upstream region of ROP18. 23.3%, 33% and 16.6% of serums from individuals with ocular toxoplasmosis were positive for type I, type II and type III ROP18 derived peptides, respectively but this assay was affected by cross reaction. The absence of Toxoplasma ROP18 promoter insertion sequence in ocular toxoplasmosis was correlated with severe ocular inflammatory response. Determination of antibodies against ROP18 protein was not useful for serotyping in human toxoplasmosis. © 2013.

  4. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    USGS Publications Warehouse

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i

  5. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well as lithologic composition for 100 clasts at each location. To better characterize the size distribution of poorly represented lithologies we also measured every grain we could find of these minority lithologies within a one square meter area on adjacent bar top surfaces. At each sampling site we also measured channel gradient, and bank-full width and depth. We collected gravel samples for laboratory tumbling experiments and larger bedrock blocks from which we extracted cores for the Brazilian tensile splitting strength test. Preliminary results show very rapid fining of the weak sedimentary rocks downstream of the fault, much less rapid fining of the quartzite and a net downstream coarsening of the granitic sediments, which dominate the bed in the downstream end of the study reach. This enigmatic downstream coarsening may be a legacy of Pliestocene glaciation, which is evident in the landscape upstream of the fault. Outburst floods or debris flows from upstream moraines may have delivered large quantities of coarse sediments to downstream reaches, which are now relatively immobile. Despite these complications, the Rio Medio site may yet provide sufficient information to test our proposed method for scaling laboratory particle abrasion rates to the field.

  6. Assessment of biological conditions at selected stream sites in Johnson County, Kansas, and Cass and Jackson Counties, Missouri, 2003 and 2004

    USGS Publications Warehouse

    Poulton, Barry C.; Rasmussen, Teresa J.; Lee, Casey J.

    2007-01-01

    Macroinvertebrate samples were collected at 15 stream sites representing 11 different watersheds in Johnson County, Kansas, in 2003 and 2004 to assess biological conditions in streams and relations to environmental variables. Published data from an additional seven stream sites, one in Johnson County, Kansas, and six others in adjacent Cass and Jackson Counties in Missouri also were evaluated. Multimetric scores, which integrated a combination of measures that describe various aspects of biological community abundance and diversity, were used to evaluate and compare the biological health of streams. In addition, for 15 of 16 Johnson County stream sites, environmental data (streamflow, precipitation, and land use) and water- and sediment-quality data (primarily nutrients, indicator bacteria, and organic wastewater compounds) were used in statistical analyses to evaluate relations between macroinvertebrate metrics and variables that may affect them. The information is useful for defining current conditions, evaluating conditions relative to State aquatic-life support and total maximum daily load requirements, evaluating effects of urbanization, developing effective water-quality management plans, and documenting changes in biological condition and water quality.Biological conditions in selected Johnson County streams generally reflected a gradient in the degree of human disturbances upstream from the sites, including percentage of urban and agricultural land use as well as the presence, absence, and proximity of wastewater treatment discharges. In this report, the term gradient is used to describe a continuum in the conditions (biological, environmental, or land use) observed at the study sites. Upstream Blue River sites, downstream from primarily agricultural land use, consistently scored among the sites least impacted by human disturbance, and in some metrics these sites scored higher than the State reference site (Captain Creek). The term impact, as used in this report, refers to a negative biological response at a site associated with one or more human-induced sources of disturbance or stress. However, no sites, including the Captain Creek reference site, met Kansas Department of Health and Environment criteria for full support of aquatic life during the 2 years of sample collection. Upstream sites on Kill and Cedar Creeks also consistently scored among the least impacted. Sites less than 3 miles downstream from municipal wastewater treatment facility discharges (two Indian Creek sites) and sites with no wastewater discharge but with substantial impervious surface area within their respective watersheds (Tomahawk, Turkey, and Brush Creeks) consistently scored among the sites most impacted by human disturbance.

  7. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies.

    PubMed

    Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita

    2015-11-01

    In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

  8. Variation of Water Quality Parameters with Siltation Depth for River Ichamati Along International Border with Bangladesh Using Multivariate Statistical Techniques

    NASA Astrophysics Data System (ADS)

    Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.

    2014-12-01

    River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.

  9. Correction of Anisokinetic Sampling Errors.

    ERIC Educational Resources Information Center

    Nelson, William G.

    Gas flow patterns at a sampling nozzle are described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Three situations for sampling velocity are illustrated and analyzed, where the flow upstream of a sampling probe is: (1) equal to free stream…

  10. Parasite fauna of Etheostoma nigrum (Percidae: Etheostomatinae) in localities of varying pollution stress in the St. Lawrence River, Quebec, Canada.

    PubMed

    Krause, Rachel J; McLaughlin, J Daniel; Marcogliese, David J

    2010-07-01

    Parasite communities were examined in johnny darters (Etheostoma nigrum) collected from five localities in the St. Lawrence River in southwestern Quebec: two reference localities, one polluted locality upstream of the Island of Montreal and downstream of industrial and agricultural activity, and two polluted localities downstream of the Island of Montreal in the plume from the wastewater treatment facility. Twenty-four helminth species were found. Fish from the upstream polluted locality had the highest parasite species richness and total parasite numbers, and fish from the downstream polluted localities the lowest. Nonmetric multivariate analyses were conducted using square-root-transformed Bray-Curtis dissimilarity index. An analysis of similarity, dendrogram of centroids, and a permutational multivariate analysis of variance with contrasts all showed that fish from the reference localities had different parasite community composition than those from the polluted localities, and fish from the upstream polluted locality had different parasite communities than fish from the downstream polluted localities. Differences between reference and polluted localities were mainly due to higher abundances of the brain-encysting trematode, Ornithodiplostomum sp., at the reference localities. Differences between upstream and downstream polluted localities were mainly due to a higher diversity and abundance of trematodes in fish at the upstream locality.

  11. Is global climate change influencing the overwintering distribution of weakfish Cynoscion regalis?

    PubMed

    Weinstein, M P; Litvin, S Y; Guida, V G; Chambers, R C

    2009-08-01

    The pattern of stable isotope signatures in a sub-sample of 67 juvenile weakfish Cynoscion regalis, captured at the mouth of the Christina River, 113 km upstream of the mouth of Delaware Bay (U.S.A) in the autumn of 2000, suggested that they resided at the location since recruitment. The possibility that young C. regalis departed from the generally characteristic life-history pattern of marine migrants at this latitude, i.e. emigrating offshore with the adults in autumn was bolstered by the collection of 69 individuals during the winters of 2000-2006 from the travelling screens of a power plant located at river kilometre 88 including an 118 mm total length juvenile captured in mid-February 2006.

  12. Quantification of a potent mutagenic 4-amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) and the related chemicals in water from the Waka River in Wakayama, Japan.

    PubMed

    Mizuno, Tomoko; Takamura-Enya, Takeji; Watanabe, Tetsushi; Hasei, Tomohiro; Wakabayashi, Keiji; Ohe, Takeshi

    2007-06-15

    4-Amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3'-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3'-dichloro-4,4'-dinitrobiphenyl (DDB), and 4-amino-3,3'-dichloro-4'-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.

  13. Seasonal Variations and Resilience of Bacterial Communities in a Sewage Polluted Urban River

    PubMed Central

    Ouattara, Nouho Koffi; Anzil, Adriana; Verbanck, Michel A.; Brion, Natacha; Servais, Pierre

    2014-01-01

    The Zenne River in Brussels (Belgium) and effluents of the two wastewater treatment plants (WWTPs) of Brussels were chosen to assess the impact of disturbance on bacterial community composition (BCC) of an urban river. Organic matters, nutrients load and oxygen concentration fluctuated highly along the river and over time because of WWTPs discharge. Tag pyrosequencing of bacterial 16S rRNA genes revealed the significant effect of seasonality on the richness, the bacterial diversity (Shannon index) and BCC. The major grouping: -winter/fall samples versus spring/summer samples- could be associated with fluctuations of in situ bacterial activities (dissolved and particulate organic carbon biodegradation associated with oxygen consumption and N transformation). BCC of the samples collected upstream from the WWTPs discharge were significantly different from BCC of downstream samples and WWTPs effluents, while no significant difference was found between BCC of WWTPs effluents and the downstream samples as revealed by ANOSIM. Analysis per season showed that allochthonous bacteria brought by WWTPs effluents triggered the changes in community composition, eventually followed by rapid post-disturbance return to the original composition as observed in April (resilience), whereas community composition remained altered after the perturbation by WWTPs effluents in the other seasons. PMID:24667680

  14. Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline

    PubMed Central

    Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.; Newman, Justin A.; Oglesbee, Robert A.; Hedderich, Hartmut G.; Everly, R. Michael; Becker, Michael; Ronau, Judith A.; Buchanan, Susan K.; Cherezov, Vadim; Morrow, Marie E.; Xu, Shenglan; Ferguson, Dale; Makarov, Oleg; Das, Chittaranjan; Fischetti, Robert; Simpson, Garth J.

    2013-01-01

    Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ∼103–104-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering and analysis of phenylalanine hydroxylase from Chromobacterium violaceum cPAH, Trichinella spiralis deubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied. PMID:23765294

  15. Monitoring design for assessing compliance with numeric nutrient standards for rivers and streams using geospatial variables.

    PubMed

    Williams, Rachel E; Arabi, Mazdak; Loftis, Jim; Elmund, G Keith

    2014-09-01

    Implementation of numeric nutrient standards in Colorado has prompted a need for greater understanding of human impacts on ambient nutrient levels. This study explored the variability of annual nutrient concentrations due to upstream anthropogenic influences and developed a mathematical expression for the number of samples required to estimate median concentrations for standard compliance. A procedure grounded in statistical hypothesis testing was developed to estimate the number of annual samples required at monitoring locations while taking into account the difference between the median concentrations and the water quality standard for a lognormal population. For the Cache La Poudre River in northern Colorado, the relationship between the median and standard deviation of total N (TN) and total P (TP) concentrations and the upstream point and nonpoint concentrations and general hydrologic descriptors was explored using multiple linear regression models. Very strong relationships were evident between the upstream anthropogenic influences and annual medians for TN and TP ( > 0.85, < 0.001) and corresponding standard deviations ( > 0.7, < 0.001). Sample sizes required to demonstrate (non)compliance with the standard depend on the measured water quality conditions. When the median concentration differs from the standard by >20%, few samples are needed to reach a 95% confidence level. When the median is within 20% of the corresponding water quality standard, however, the required sample size increases rapidly, and hundreds of samples may be required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Water quality and benthic macroinvertebrate bioassessment of Gallinas Creek, San Miguel County, New Mexico, 1987-90

    USGS Publications Warehouse

    Garn, H.S.; Jacobi, G.Z.

    1996-01-01

    Upper Gallinas Creek in north-central New Mexico serves as the public water supply for the City of Las Vegas. The majority of this 84-square-mile watershed is within national forest lands managed by the U.S. Forest Service. In 1985, the Forest Service planned to conduct timber harvesting in the headwaters of Gallinas Creek. The City of Las Vegas was concerned about possible effects from logging on water quality and on water-supply treatment costs. The U.S. Geological Survey began a cooperative study in 1987 to (1) assess the baseline water-quality characteristics of Gallinas Creek upstream from the Las Vegas water-supply diversion, (2) relate water quality to State water- quality standards, and (3) determine possible causes for spatial differences in quality. During 1987-90, water-quality constituents and aquatic benthic macroinvertebrates were collected and analyzed at five sampling sites in the watershed. Specific conductance, pH, total hardness, total alkalinity, and calcium concentrations increased in a downstream direction, probably in response to differences in geology in the watershed. The water-quality standard for temperature was exceeded at the two most downstream sites probably due to a lack of riparian vegetation and low streamflow conditions. The standards for pH and turbidity were exceeded at all sites except the most upstream one. Concentrations of nitrogen species and phosphorus generally were small at all sites. The maximum total nitrogen concentration of 2.1 milligrams per liter was at the mouth of Porvenir Canyon; only one sample at this site exceeded the water-quality standard for total inorganic nitrogen. At each of the sites, 10 to 15 percent of the samples exceeded the total phosphorus standard of less than 0.1 milligram per liter. Except for aluminum and iron, almost all samples tested for trace elements contained concentrations less than the laboratory detection limit. No trace-element concentrations exceeded the State standard for domestic water supplies. Suspended-sediment concentrations appeared to increase with distance downstream; suspended sediment increased significantly from the uppermost site to the second site near the national forest boundary, most probably caused by runoff from the unpaved forest road adjacent to Gallinas Creek. The aquatic macroinvertebrate assessment indicated that the three upstream sites had good biological conditions and were nonimpaired, whereas the two downstream sites had lowered biological conditions and were slightly impaired. The water- quality and biological assessments provided similar results.

  17. Invasion and Colonisation of a Tropical Stream by an Exotic Loricariid Fish: Indices of Gradual Displacement of the Native Common Pleco (Hypostomus punctatus) by the Red Fin Dwarf Pleco (Parotocinclus maculicauda) over Fifteen Years

    PubMed Central

    Mazzoni, Rosana; Costa da Silva, Raquel; Pinto, Míriam Plaza

    2015-01-01

    The introduction of invasive species represents a major threat to the integrity of stream-dwelling fish populations worldwide, and this issue is receiving increasing attention from scientists, in particular because of potential impact on biodiversity. In this study, we analysed the dispersal of an exotic loricariid fish the red fin dwarf pleco (Parotocinclus maculicauda) in a stream of the Atlantic Forest biome in coastal south-eastern Brazil and evaluated the effects of this invasion on the native loricariid common pleco (Hypostomus punctatus). Specimens were collected at eight sites located along the course of the stream over a 15-year period. The distribution and density of the two species were determined by the Successive Removal Method. The introduction of P. maculicauda occurred in the medium sector of the stream, and during the course of the study, the species dispersed to new sites further upstream. By the end of the study, it was found at all points upstream from the original site. Hypostomus punctatus was registered at all sample sites both before and after the introduction of P. maculicauda, but its density decreased at all upstream sites after the arrival of the exotic species. Our analysis shows that colonisation by P. maculicauda seems to have a negative effect on H. punctatus densities. The maintenance of H. punctatus densities at the sites not colonised by P. maculicauda reinforces the conclusion that the colonisation of the stream by the exotic species had deleterious effects on the density of the resident H. punctatus populations, either by direct or indirect action. PMID:26440412

  18. Bioavailability of Pb and Zn from mine tailings as indicated by erythrocyte aminolevulinic acid dehydratase (ALA-D) activity in suckers (Pisces: catostomidae)

    USGS Publications Warehouse

    Schmitt, Christopher J.; Dwyer, F. James; Finger, Susan E.

    1984-01-01

    The activity of the erythrocyte enzyme δ-aminolevulinic acid dehydratase (ALA-D) was measured in 35 catostomids (black redhorse, Moxostoma duquesnei; golden redhorse, M. erythrurum; northern hogsucker, Hypentelium nigricans) collected from three sites on a stream contaminated with Pb-, Cd-, and Zn-rich mine tailings and from an uncontaminated site upstream. Enzyme activity was expressed in terms of hemoglobin (Hb), DNA, and protein concentrations; these variables can be determined in the laboratory on once-frozen blood samples. Concentrations of Pb and Zn in blood and of Pb in edible tissues were significantly higher, and ALA-D activity was significantly lower, at all three contaminated sites than upstream. At the most contaminated site, ALA-D activity was 62–67% lower than upstream. Lead concentrations in the edible tissues and in blood were positively correlated (r = 0.80), whereas ALA-D activity was negatively correlated with Pb in blood (r = −0.70) and in edible tissues (r = −0.59). Five statistically significant relations between Pb and Zn in blood and ALA-D activity were determined. The two models that explained the highest percentage (> 74%) of the total variance also included factors related to Hb concentration. All five significant models included negative coefficients for variables that represented Pb in blood and positive coefficients for Zn in blood. The ALA-D assay with results standardized to Hb concentration represents an expedient alternative to the more traditional hematocrit standardization, and the measurement of ALA-D activity by this method can be used to document exposure of fish to environmental Pb.

  19. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.

  20. Sources and transport of contaminants of emerging concern: A two-year study of occurrence and spatiotemporal variation in a mixed land use watershed.

    PubMed

    Fairbairn, David J; Karpuzcu, M Ekrem; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth F; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2016-05-01

    The occurrence and spatiotemporal variation of 26 contaminants of emerging concern (CECs) were evaluated in 68 water samples in 2011-2012 in the Zumbro River watershed, Minnesota, U.S.A. Samples were collected across a range of seasonal/hydrological conditions from four stream sites that varied in associated land use and presence of an upstream wastewater treatment plant (WWTP). Selected CECs included human/veterinary pharmaceuticals, personal care products, pesticides, phytoestrogens, and commercial/industrial compounds. Detection frequencies and concentrations varied, with atrazine, metolachlor, acetaminophen, caffeine, DEET, and trimethoprim detected in more than 70% of samples, acetochlor, mecoprop, carbamazepine, and daidzein detected in 30%-50% of samples, and 4-nonylphenol, cotinine, sulfamethoxazole, erythromycin, tylosin, and carbaryl detected in 10%-30% of samples. The remaining target CECs were not detected in water samples. Three land use-associated trends were observed for the detected CECs. Carbamazepine, 4-nonylphenol, erythromycin, sulfamethoxazole, tylosin, and carbaryl profiles were WWTP-dominated, as demonstrated by more consistent loading and significantly greater concentrations downstream of the WWTP and during low-flow seasons. In contrast, acetaminophen, trimethoprim, DEET, caffeine, cotinine, and mecoprop patterns demonstrated both seasonally-variable non-WWTP-associated and continual WWTP-associated influences. Surface water studies of CECs often target areas near WWTPs. This study suggests that several CECs often characterized as effluent-associated have additional important sources such as septic systems or land-applied biosolids. Finally, agricultural herbicide (atrazine, acetochlor, and metolachlor) profiles were strongly influenced by agricultural land use and seasonal application-runoff, evident by significantly greater concentrations and loadings at upstream sites and in early summer when application and precipitation rates are greatest. Our results indicate that CEC monitoring studies should consider a range of land uses, seasonality, and transport pathways in relation to concentrations and loadings. This knowledge can augment CEC monitoring programs to result in more accurate source, occurrence, and ecological risk characterizations, more precisely targeted mitigation initiatives, and ultimately, enhanced environmental decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  2. Comparison of methods for the removal of organic carbon and extraction of chromium, iron and manganese from an estuarine sediment standard and sediment from the Calcasieu River estuary, Louisiana, U.S.A.

    USGS Publications Warehouse

    Simon, N.S.; Hatcher, S.A.; Demas, C.

    1992-01-01

    U.S. National Bureau of Standards (NBS) estuarine sediment 1646 from the Chesapeake Bay, Maryland, and surface sediment collected at two sites in the Calcasieu River estuary, Louisiana, were used to evaluate the dilute hydrochloric acid extraction of Cr, Fe and Mn from air-dried and freeze-dried samples that had been treated by one of three methods to remove organic carbon. The three methods for the oxidation and removal of organic carbon were: (1) 30% hydrogen peroxide; (2) 30% hydrogen peroxide plus 0.25 mM pyrophosphate; and (3) plasma oxidation (low-temperature ashing). There was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the percent of organic carbon removed by the three methods. Generally, there was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the concentration of Cr, Fe and Mn that was extracted, regardless of the extraction technique that was used. Hydrogen peroxide plus pyrophosphate removed the most organic carbon from sediment collected at the site in the Calcasieu River that was upstream from industrial outfalls. Plasma oxidation removed the most organic carbon from the sediment collected at a site in the Calcasieu River close to industrial outfalls and from the NBS estuarine sediment sample. Plasma oxidation merits further study as a treatment for removal of organic carbon. Operational parameters can be chosen to limit the plasma oxidation of pyrite which, unlike other Fe species, will not be dissolved by dilute hydrochloric acid. Preservation of pyrite allows the positive identification of Fe present as pyrite in sediments. ?? 1992.

  3. Distribution and abundance of Millicoma Dace in the Coos River Basin, Oregon

    USGS Publications Warehouse

    Scheerer, Paul D.; Peterson, James T.; Clements, Shaun

    2017-01-01

    The Millicoma Dace Rhinichthys cataractae is a form of Longnose Dace endemic to the Coos River drainage in southwestern Oregon. Sparse species records in the Oregon State University Ichthyology Collection and database and infrequent recent encounters prompted surveys to assess the current status and distribution of the species. In 2014, we surveyed locations that had historically supported Millicoma Dace using backpack electrofishing to describe their current distribution and abundance at these locations. In 2015, we extended these surveys further upstream in the South Coos River basin, outside of the documented historical range. We used an N-mixture model to estimate abundance and capture probability for Millicoma Dace at each sampling location. We evaluated the effects of habitat covariates on both capture probability and abundance at each sample site. We found Millicoma Dace were widespread throughout their historical range and in the South Coos River sites outside of their documented historical range. We only found Millicoma Dace associated with native fishes; we did not collect any nonnative fish during our surveys. We collected Millicoma Dace exclusively from swift-water habitats, which were relatively uncommon in the basin, and found them typically associated with cobble or boulder substrates. Millicoma Dace were most abundant in the South Fork Coos and West Fork Millicoma River subbasins. We estimated capture probabilities for Millicoma Dace ranging from 9% when substrate was dominated by bedrock to 28% when substrate was dominated by cobble or gravel. Abundance estimates ranged from 1 to 560 dace per sampling location with a total estimated abundance (sum of site estimates) of over 3200 dace for the sites we sampled.

  4. Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices.

    PubMed

    Newman, Alan Paul; Aitken, Douglas; Antizar-Ladislao, Blanca

    2013-12-15

    This paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits of a pervious pavement when the use of traditional paving surfaces is the preferred option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Sediment characteristics in the San Antonio River Basin downstream from San Antonio, Texas, and at a site on the Guadalupe River downstream from the San Antonio River Basin, 1966-2013

    USGS Publications Warehouse

    Crow, Cassi L.; Banta, J. Ryan; Opsahl, Stephen P.

    2014-01-01

    San Antonio and surrounding municipalities in Bexar County, Texas, are in a rapidly urbanizing region in the San Antonio River Basin. The U.S. Geological Survey, in cooperation with the San Antonio River Authority and the Texas Water Development Board, compiled historical sediment data collected between 1996 and 2004 and collected suspended-sediment and bedload samples over a range of hydrologic conditions in the San Antonio River Basin downstream from San Antonio, Tex., and at a site on the Guadalupe River downstream from the San Antonio River Basin during 2011–13. In the suspended-sediment samples collected during 2011–13, an average of about 94 percent of the particles was less than 0.0625 millimeter (silt and clay sized particles); the 50 samples for which a complete sediment-size analysis was performed indicated that an average of about 69 percent of the particles was less than 0.002 millimeter. In the bedload samples collected during 2011–13, an average of 51 percent of sediment particles was sand-sized particles in the 0.25–0.5 millimeter-size range. In general, the loads calculated from the samples indicated that bedload typically composed less than 1 percent of the total sediment load. A least-squares log-linear regression was developed between suspended-sediment concentration and instantaneous streamflow and was used to estimate daily mean suspended-sediment loads based on daily mean streamflow. The daily mean suspended-sediment loads computed for each of the sites indicated that during 2011–12, the majority of the suspended-sediment loads originated upstream from the streamflow-gaging station on the San Antonio River near Elmendorf, Tex. A linear regression relation was developed between turbidity and suspended-sediment concentration data collected at the San Antonio River near Elmendorf site because the high-resolution data can facilitate understanding of the complex suspended-sediment dynamics over time and throughout the river basin.

  6. Stream water chemistry in watersheds receiving different atmospheric inputs of H+, NH4+, NO3-, and SO42-1

    USGS Publications Warehouse

    Stottlemyer, R.

    1997-01-01

    Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.

  7. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors.

    PubMed

    You, Luhua; Nguyen, Viet Tung; Pal, Amrita; Chen, Huiting; He, Yiliang; Reinhard, Martin; Gin, Karina Yew-Hoong

    2015-12-01

    Previous studies showed the presence of multiple emerging organic contaminants (EOCs) in urban surface waters of Singapore even though there are no obvious direct wastewater discharges. In this study, we investigated the occurrence and distribution of 17 pharmaceuticals and personal care products (PPCPs) and endocrine disruptive compounds (EDCs) in a tropical urban catchment of Singapore. Monthly samples were collected from a reservoir and its 5 upstream tributaries during a 16-month period. Analysis of samples showed all sites had measurable PPCP and EDC concentrations, with caffeine (33.9-2980 ng/L), salicylic acid (5-838 ng/L), acetaminophen (<4-485.5 ng/L), BPA (<2-919.5 ng/L) and DEET (13-270 ng/L) being the most abundant. Marked differences in concentrations of target analytes between the reservoir and upstream tributaries were observed, and were tentatively attributed to the spatial differences in source inputs, water dilution capacity as well as natural attenuation of EOCs. Significant correlations between EOCs and conductivity, dissolved oxygen, chlorophyll a, turbidity, nutrients and cumulative precipitation were observed. These factors appeared to affect the distribution and attenuation of EOCs, depending on their physicochemical properties. Rainfall also influenced the temporal distribution of caffeine, BPA, triclosan, fipronil and DEET in the reservoir. Ecological risk assessment showed that caffeine, acetaminophen, estrone, BPA, triclosan and fipronil may warrant further survey. In particular, BPA levels exceeded the literature-based Predicted No-Effect Concentration (PNEC) value, highlighting the need for source control and/or water remediation in this urban catchment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    PubMed

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from <0.30 to 3.30 μg/L, with a mean concentration of 1.11 ± 0.60 μg/L. Dilution of upstream inputs of effluent were estimated for US drinking water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use. © 2013 SETAC.

  9. The impact of on-site wastewater from high density cluster developments on groundwater quality

    NASA Astrophysics Data System (ADS)

    Morrissey, P. J.; Johnston, P. M.; Gill, L. W.

    2015-11-01

    The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site.

  10. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China.

    PubMed

    Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai

    2016-11-01

    Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River rather than its tributaries. On the basis of the carbon-to-nitrogen ratios and the d13C of particulate organic matter in the San Joaquin River and tributaries, the particulate organic matter in the river was mostly phytoplankton. On the basis of the d15N values of the particulate organic matter, and of total dissolved nitrogen and nitrate, the nitrate in the San Joaquin River probably was a significant nutrient source for the phytoplankton. The range of d15N and d18O values of nitrate in the San Joaquin River and tributaries suggest that animal waste or sewage was a significant source of nitrate in the river at the time the samples were collected.

  12. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha in the Willamette River, Oregon, USA

    USGS Publications Warehouse

    Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.

    2014-01-01

    Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.

  13. A weight of evidence approach for assessing remediation of ...

    EPA Pesticide Factsheets

    The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation project took place in the lower 8.8 miles of the river where urban and industrial activities impacted the river as a beneficial resource. Sediment was removed at designated locations based on a surface weighted average concentration model where PCB and PAH levels exceeded targeted levels. This presentation will focus on three biological tools: assessing response of tissue concentrations of PCBs and PAHs, DNA damage in Brown Bullhead and macroinvertebrate biotic condition as measured by Ohio EPA Lacustrine Index of Community Integrity (LICI). From 2009-2013 and again in 2015, pre- and post-remedy sampling of fishes representative of different trophic levels was conducted via electroshocking and fyke net sampling. The study area was divided into 3 river reaches (reaches 2, 3, & 4 numbered from down- to upstream). Fish were collected by electro-shocking or fyke netting across an entire reach where Largemouth Bass, Brown Bullhead, White Sucker, Pumpkinseed, Gizzard Shad, Bluntnose Minnow and Emerald Shiner. Blood samples were collected from 10 Brown Bullheads from each reach and processed in the field and laboratory using Comet Assay methods.Two different configurations of multiplate samplers (Hest

  14. Critical evaluation of monitoring strategy for the multi-residue determination of 90 chiral and achiral micropollutants in effluent wastewater.

    PubMed

    Petrie, Bruce; Proctor, Kathryn; Youdan, Jane; Barden, Ruth; Kasprzyk-Hordern, Barbara

    2017-02-01

    It is essential to monitor the release of organic micropollutants from wastewater treatment plants (WWTPs) for developing environmental risk assessment and assessing compliance with legislative regulation. In this study the impact of sampling strategy on the quantitative determination of micropollutants in effluent wastewater was investigated. An extended list of 90 chiral and achiral micropollutants representing a broad range of biological and physico-chemical properties were studied simultaneously for the first time. During composite sample collection micropollutants can degrade resulting in the under-estimation of concentration. Cooling collected sub-samples to 4°C stabilised ≥81 of 90 micropollutants to acceptable levels (±20% of the initial concentration) in the studied effluents. However, achieving stability for all micropollutants will require an integrated approach to sample collection (i.e., multi-bottle sampling with more than one stabilisation method applied). Full-scale monitoring of effluent revealed time-paced composites attained similar information to volume-paced composites (influent wastewater requires a sampling mode responsive to flow variation). The option of monitoring effluent using time-paced composite samplers is advantageous as not all WWTPs have flow controlled samplers or suitable sites for deploying portable flow meters. There has been little research to date on the impact of monitoring strategy on the determination of chiral micropollutants at the enantiomeric level. Variability in wastewater flow results in a dynamic hydraulic retention time within the WWTP (and upstream sewerage system). Despite chiral micropollutants being susceptible to stereo-selective degradation, no diurnal variability in their enantiomeric distribution was observed. However, unused medication can be directly disposed into the sewer network creating short-term (e.g., daily) changes to their enantiomeric distribution. As enantio-specific toxicity is observed in the environment, similar resolution of enantio-selective analysis to more routinely applied achiral methods is needed throughout the monitoring period for accurate risk assessment. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  15. Seasonal and spatial variations of glyphosate residues in surface waters of El Crespo stream, Buenos Aires province, Argentina.

    NASA Astrophysics Data System (ADS)

    Perez, Debora; Okada, Elena; Aparicio, Virginia; Menone, Mirta; Costa, Jose Luis

    2017-04-01

    El Crespo stream is located inside a small watershed (52,000 Ha) which is only influenced by farming activities without urban or industrial impact. The watershed can be divided in two areas, the southern area (upstream), mainly composed of intensive crops and the northern area (downstream) used only for extensive livestock. In this sense, "El Crespo" stream in an optimal site for monitoring screening of pesticide residues. The objective of this work was to determine the seasonal and spatial variations of glyphosate (GLY), in surface waters of "El Crespo" stream. We hypothesized that in surface waters of "El Crespo" stream the levels of GLY vary depending of the season and rainfall events. The water sampling was carried out from October to June (2014-2015) in two sites: upstream (US) and downstream (DS), before and after rain events. The water samples were collected by triplicate in 1 L polypropylene bottles and stored at -20°C until analysis. GLY was extracted from unfiltered water samples with a buffer solution (100 mM Na2B4O7•10H2O/100 mM K3PO4, pH=9) and derivatized with 9-fluorenylmethylchloroformate (1 mg/mL in acetonitrile). Afterwards samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The detection limit (LD) was 0.1 μg/L and the quantification limit (QL) was 0.5 μg/L. The rainfall regime was obtained from the database of INTA Balcarce. GLY was detected in 92.3% of the analyzed samples. In the US site, were GLY is regularly applied, the highest GLY concentration was registered in October (2.15 ± 0.16 μg/L); from November to June, the GLY levels decreased from 1.97 ± 0.17 μg/L to

  16. [Spatial distribution characteristics of the physical and chemical properties of water in the Kunes River after the supply of snowmelt during spring].

    PubMed

    Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai

    2015-02-01

    Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.

  17. Evidence of autumn spawning in Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi (Vladykov, 1955)

    USGS Publications Warehouse

    Randall, M.T.; Sulak, K.J.

    2012-01-01

    Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late-development ova; motile sperm) or exhibited just-spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age-0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age-at-length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.

  18. Isolation of epidemic poliovirus from sewage during the 1992-3 type 3 outbreak in The Netherlands.

    PubMed Central

    van der Avoort, H. G.; Reimerink, J. H.; Ras, A.; Mulders, M. N.; van Loon, A. M.

    1995-01-01

    To examine the extent of wild poliovirus circulation during the 1992-3 epidemic in the Netherlands caused by poliovirus type 3, 269 samples from sewage pipelines at 120 locations were examined for the presence of poliovirus. The epidemic virus strain was found in 23 samples, all from locations inside the risk area which contained communities that refuse vaccination for religious reasons. By sewage investigation, the wildtype virus was shown to be present in the early phase of the epidemic at two locations, one week before patients were reported from that area. The wild type 3 poliovirus was also detected retrospectively in a river water sample collected for other reasons three weeks before notification of the first poliomyelitis case, at a site a few kilometres upstream the home village of this patient. Oral poliovirus vaccine (OPV) virus was found at 28 locations inside or at the border of the risk area. Trivalent OPV was offered to unvaccinated or incompletely-vaccinated persons living in this region as part of the measures to control the epidemic. PMID:7781736

  19. Biodegradation of 17β-estradiol, estrone, and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Barber, L.B.; McMahon, P.B.; Gray, J.L.; Kolpin, D.W.

    2009-01-01

    The release of endocrine-disrupting chemicals (EDCs) in wastewater treatment plant (WWTP) effluent poses a significant threat to the ecology of surface water receptors, due to impacts on the hormonal control, sexual development, reproductive success and community structure of the indigenous aquatic organisms and associated wildlife. Among the EDCs commonly observed in WWTP effluent, the natural [e.g., 17??-estradiol (E2) and estrone (E1)] and synthetic [e.g., ethynylestradiol (EE2)] estrogens are particular concerns owing to their high endocrine reactivity in both in vitro and in vivo laboratory models. These reproductive hormones have been identified as the primary cause of estrogenic effects in wastewater effluent, with greater than 95% of the estrogen receptor agonist activity in effluent attributed to this contaminant group. The potentials for in situ biodegradation of 17??-estradiol (E2), estrone (E1), and testosterone (T) were investigated in three, hydrologically-distinct, WWTP-impacted streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream samples provided insight into the biodegradative potential of sediment microbial communities that were not under the immediate impact of WWTP effluent. Upstream sediment from all three systems demonstrated significant mineralization of the "A" ring of E2, E1 and T, with the potential of T biodegradation consistently greater than of E2 and no systematic difference in the potentials of E2 and E1. Downstream samples provided insight into the impacts of effluent on reproductive hormone biodegradation. Significant "A" ring mineralization was also observed in downstream sediment, with the potentials for E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, the potentials for E2 mineralization immediately downstream of the WWTP outfalls were more than double that of upstream samples. E2 mineralization was also observed in water, albeit at insufficient rate to prevent substantial downstream transport in the water column. The results of this study indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-impacted streams.

  20. Transport of self-propelling bacteria in micro-channel flow.

    PubMed

    Costanzo, A; Di Leonardo, R; Ruocco, G; Angelani, L

    2012-02-15

    Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.

  1. Reconnaissance of sedimentation in the Rio Pilcomayo Basin, May 1975, Argentina, Bolivia, and Paraguay

    USGS Publications Warehouse

    Ritter, John R.

    1977-01-01

    The Río Pilcomayo "Alto" (Bolivia) and "Superior" (Bolivia, Argentina, and Paraguay) transport large quantities of sediment for the size of the basin. The Río Pilcomayo "Inferior" (Argentina and Paraguay) seems to carry little sediment. The large loads of the "Alto" and "Superior" must be considered before dams or irrigation projects are started. The shifting channel and flooding of the Río Pilcomayo "Superior" also are problems to be considered before development. The Río Pilcomayo "Alto" basin has relatively little deposition whereas the "Superior" basin has considerable deposition. A part of the "Superior" channel is filled with sediment to the top of its banks. The upstream limit of filling is moving farther upstream each year causing the place of overbank flooding to move upstream also.More data must be collected and more observations made before a complete analysis of the sediment movement in the basin can be made.

  2. 18. Photocopy of a photograph (original in the Collection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of a photograph (original in the Collection of the Salt lake City Engineer's Office)--ca. 1925--GENERAL VIEW OF THE UPSTREAM SIDE OF THE DAM FOLLOWING COMPLETION OF CONSTRUCTION. THERE IS ESSENTIALLY NO WATER IN THE RESERVOIR - Mountain Dell Dam, Parley's Canyon, Northwest side of I-80, West of State Route 39, Salt Lake City, Salt Lake County, UT

  3. Diet of juvenile and adult American Shad in the Columbia River

    USGS Publications Warehouse

    Sauter, Sally T.; Blubaugh, J; Parsley, Michael J.

    2011-01-01

    The diet of juvenile and adult American shad Alosa sapidissima captured from various locations in the Columbia River was investigated during 2007 and 2008. Collection efforts in 2007 were restricted to fish collected from existing adult and juvenile fish collection facilities located at Bonneville Dam and to adult shad captured by angling downstream from Bonneville Dam. In 2008, we used gillnets, electrofishing, beach seining, or cast nets to collect juvenile and adult shad from the saline estuary near Astoria (approximately river km 24) to just upstream from McNary Dam (approximately river km 472). We examined the stomach contents of 436 American shad captured in 2007 and 1,272 captured in 2008. Fish caught within the river were much more likely to contain food items than fish removed from fish collection facilities.


    The diet of age-0 American shad varied spatially and temporally, but was comprised primarily of crustaceans and insects. Prey diversity of age-0 American shad, as assessed by the Shannon Diversity Index, increased with decreasing distance to the estuary. Pre- and partial-spawn American shad primarily consumed Corophium spp. throughout the Columbia River; however, post-spawn adults primarily consumed gastropods upstream of McNary Dam

  4. Analysis of ambient conditions and simulation of hydrodynamics and water-quality characteristics in Beaver Lake, Arkansas, 2001 through 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2006-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas. The purpose of this report is to describe the ambient hydrologic and water-quality conditions in Beaver Lake and its inflows and describe a two-dimensional model developed to simulate the hydrodynamics and water quality of Beaver Lake from 2001 through 2003. Water-quality samples were collected at the three main inflows to Beaver Lake; the White River near Fayetteville, Richland Creek at Goshen, and War Eagle Creek near Hindsville. Nutrient concentrations varied among the tributaries because of land use and contributions of nutrients from point sources. The median concentrations of total ammonia plus organic nitrogen were greater for the White River than Richland and War Eagle Creeks. The greatest concentrations of nitrite plus nitrate and total nitrogen, however, were observed at War Eagle Creek. Phosphorus concentrations were relatively low, with orthophosphorus and dissolved phosphorus concentrations mostly below the laboratory reporting limit at the three sites. War Eagle Creek had significantly greater median orthophosphorus and total phosphorus concentrations than the White River and Richland Creek. Dissolved organic-carbon concentrations were significantly greater at the White River than at War Eagle and Richland Creeks. The White River also had significantly greater turbidity than War Eagle Creek and Richland Creek. The temperature distribution in Beaver Lake exhibits the typical seasonal cycle of lakes and reservoirs located within similar latitudes. Beaver Lake is a monomictic system, in which thermal stratification occurs annually during the summer and fall and complete mixing occurs in the winter. Isothermal conditions exist throughout the winter and early spring. Nitrogen concentrations varied temporally, longitudinally, and vertically in Beaver Lake for 2001 through 2003. Nitrite plus nitrate concentrations generally decreased from the upstream portion of Beaver Lake to the downstream portion and generally were greater in the hypolimnion. Total ammonia plus organic nitrogen concentrations also decreased from the upstream end of Beaver Lake to the downstream end and were substantially greater in the hypolimnion of Beaver Lake. Phosphorus concentrations mostly were near or below laboratory detection limits in the epilimnion and metalimnion in Beaver Lake and were substantially greater in the hypolimnion in the upstream and middle parts of the reservoir. Measured total and dissolved organic carbon in Beaver Lake was relatively uniform spatially, longitudinally, and vertically in the reservoir from January 2001 through December 2003. Chlorophyll a concentrations measured at sites in the upstream portion of the lake were significantly greater than at the other sites in the downstream portion of Beaver Lake. During the study period, water clarity in Beaver Lake was significantly greater at the downstream end of the reservoir than at the upstream end. The greatest Secchi depths at the downstream end of the reservoir generally were observed in 2001 compared to 2002 and 2003, but did not have a seasonal pattern as observed at sites in the middle and upstream portion of the reservoir. Similar to Secchi depth results, turbidity results indicated greater water clarity in the downstream portion of Beaver Lake compared to the upstream portion. Turbidity also was greater in the hypolimnion than in the epilimnion in the reservoir during the stratification season. A two-dimensional, laterally averaged, hydrodynamic, and water-quality model using CE-QUAL-W2 Version 3.1 was developed for Beaver Lake and calibrated based on vertical profiles of temperature and dissolved oxygen, and water-quality constituent concentrations collected at various depths at four sites in the reservoir from April 2001 to April 2003. Simulated temperatures and dissolved-oxygen concentrations compared reasonably well with measured t

  5. Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.

    1999-01-01

    Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.

  6. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco).

    PubMed

    Tahri, M; Benyaïch, F; Bounakhla, M; Bilal, E; Gruffat, J J; Moutte, J; Garcia, D

    2005-03-01

    Concentrations of Al, Fe, Cr, Cu, Ni, Pb and Zn in soils, sediments and water samples collected along the Oued Boufekrane river (Meknes, central Morocco) were determined. In soils, a homogeneous distribution of metal concentrations was observed throughout the study area except for Pb, which presents high enrichment at sites located at the vicinity of a main highway. In sediments, high enrichment, with respect to upstream sites, were observed downstream of the city of Meknes for Al, Cr, Fe and Ni and inside the city for Cu, Zn and Pb. In water samples, the metal contents showed to correlate with their homologues in sediments suggesting that the metal contents in water and sediments have identical origins. Descriptive statistics and multivariate analysis (principal factor method, PFM) were used to assist the interpretation of elemental data. This allowed the determination of the correlations between the metals and the identification of three main factor loadings controlling the metal variability in soils and sediments.

  7. Two hermaphroditic alewives from Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Saxon, Margaret I.

    1968-01-01

    Hermaphroditism has been reported frequently among many of the Clupeidae, but only one account of hermaphroditism has been published for the alewife, Alosa pseudoharengus. Rothschild discovered four hermaphroditic alewives among 444 fish he examined from Cayuga Lake, New York. We recently collected two hermaphroditic alewives from Lake Michigan. Both fish were normal in external appearance but were easily identified as hermaphrodites by gross examination of their gonads. The first hermaphrodite (177 mm T.L.) was discovered among several hundred normal adult alewives captured in early July 1965 in the Kalamazoo River about one mile upstream from Lake Michigan. The second hermaphroditic alewife (152 mm T.L.) was obtained from a sample of 160 adult alewives captured in Lake Michigan near the mouth of the Kalamazoo River in mid-April 1966.

  8. Concentrations and ratios of Sr, Ba and Ca along an estuarine river to the Gulf of Mexico - implication for sea level rise effects on trace metal distribution

    NASA Astrophysics Data System (ADS)

    He, S.; Xu, Y. J.

    2015-11-01

    Strontium and barium to calcium ratios are often used as proxies for tracking animal movement across salinity gradients. As sea level rise continues, many estuarine rivers in the world face saltwater intrusion, which may cause changes in mobility and distribution of these metals upstream. Despite intensive research on metal adsorption and desorption in marine systems, knowledge of the spatiotemporal distribution of these elements along estuarine rivers is still limited. In this study, we conducted an intensive monitoring of Sr and Ba dynamics along an 88 km long estuary, the Calcasieu River in South Louisiana, USA, which has been strongly affected by saltwater intrusion. Over the period from May 2013 to August 2015, we collected monthly water samples and performed in-situ water quality measurements at six sites from the upstream to the river mouth, with a salinity range from 0.02 to 29.50 ppt. Water samples were analyzed for Sr, Ba, and Ca concentrations. In-situ measurements were made on salinity, pH, water temperature, dissolved oxygen concentration, and specific conductance. We found that the Sr and Ca concentrations and the Sr / Ca ratio all increased significantly with increasing salinity. The average Sr concentration at the site closest to the Gulf of Mexico (site 6) was 46.21 μmol L-1, which was about 130 times higher than that of the site furthest upstream (site 1, 0.35 μmol L-1). The average Ca concentration at site 6 was 8.19 mmol L-1, which was about 60 times higher than that of site 1 (0.13 mmol L-1). The average Sr / Ca ratio at site 6 (8.41 mmol mol-1) was about 3 times the average Sr / Ca ratio at site 1 (2.89 mmol mol-1). However, the spatial variation in Ba concentration was marginal, varying from 0.36 μmol L-1 at site 6 to 0.47 at site 5. The average Ba / Ca ratio at site 1 (4.82 mmol mol-1) was about 54 times the average Ba / Ca ratio at site 6 (0.09 mmol mol-1), showing a clear negative relation between the Ba / Ca ratio and increasing salinity. All the elemental concentrations and ratios had considerable seasonal variations, with significant differences among sampling months for the Sr, Ba concentrations and the Ba / Ca ratio (p < 0.01). The results from this study suggest that concentrations of Sr and Ca in the world's estuaries will very likely increase in the future as sea level rise continues. For low-gradient estuarine rivers such as the Calcasieu River in South Louisiana, USA, water chemistry upstream would experience substantial Sr and Ca enrichment, which could affect aquatic environments and biological communities.

  9. Modeled de facto reuse and contaminants of emerging concern in drinking water source waters

    USGS Publications Warehouse

    Nguyen, Thuy; Westerhoff, Paul; Furlong, Edward T.; Kolpin, Dana W.; Batt, Angela L.; Mash, Heath E.; Schenck, Kathleen M.; Boone, J. Scott; Rice, Jacelyn; Glassmeyer, Susan T.

    2018-01-01

    De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from <0.1 to 13% during average flow and >80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.

  10. Paper plant effluent revisited-southern Lake Champlain, Vermont and New York

    USGS Publications Warehouse

    Haupt, R.S.; Folger, D.W.

    1993-01-01

    We used geologic and geochemical techniques to document the change with time of the distribution and concentration of contaminated bottom sediments in southern Lake Champlain near an International Paper Company plant. Our work, initiated in 1972, was expanded on behalf of Vermont citizens in a class-action suit against the International Paper Company. To update our 1972-1973 results, we collected nine cores in 1988 upstream and downstream from the paper plant effluent diffuser. Water content, volatile solids, organic carbon, and three ratios, Al/Si, Cl/Si, and S/Si, in addition to megascopic and microscopic observations, were evaluated to identify and trace the distribution of effluent and to measure the thickness of sediment affected by or containing components of effluent. Analyses were carried out on samples from the cores as well as from effluent collected directly from the plant's waste treatment facility. In 1973, two years after the plant opened, we cored near the diffuser; sediment contaminated with effluent was 4.5 cm thick. In 1988, in the same area, sediment contaminated with effluent was 17 cm thick. In 15 years, water content increased from 72 to 85 percent, volatile solids from 7 to 20 percent, and organic carbon from 2 to 12 percent. Cl/Si and S/Si were high only near the diffuser and were zero elsewhere. In the area of the diffuser, contaminated sediment appears to be accumulating at a rate of about 1 cm/yr. At a control location 22 km upstream (south) from the plant, the top, poorly consoli-dated layer was only 1 cm or less thick both in 1973 and in 1988. The class-action suit was settled in favor of the plaintiffs for $5 million. ?? 1993 Springer-Verlag.

  11. Water Quality in the Blue River Basin, Kansas City Metropolitan Area, Missouri and Kansas, July 1998 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Polton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.

    2006-01-01

    Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.

  12. Water quality in the Blue River basin, Kansas City metropolitan area, Missouri and Kansas, July 1998 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Poulton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.

    2006-01-01

    Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.

  13. Water-quality conditions at selected landfills in Mecklenburg County, North Carolina, 1986-92

    USGS Publications Warehouse

    Ferrell, G.M.; Smith, D.G.

    1995-01-01

    Water-quality conditions at five municipal landfills in Mecklenburg County, North Carolina, were studied during 1986-92. Analytical results of water samples from monitoring wells and streams at and near the landfills were used to evaluate effects of leachate on surface and ground water. Ground-water levels at monitoring wells were used to determine directions of ground-water flow at the landfills. Data from previous studies were used for analysis of temporal trends in selected water-quality properties and chemical constituents. Effects of leachate, such as large biochemical- and chemical-oxygen demands, generally were evident in small streams originating within the landfills, whereas effects of leachate generally were not evident in most of the larger streams. In larger streams, surface-water quality upstream and downstream from most of the landfills was similar. However, the chemical quality of water in Irwin Creek appears to have been affected by the Statesville Road landfill. Concentrations of several constituents indicative of leachate were larger in samples collected from Irwin Creek downstream from the Statesville Road landfill than in samples collected from Irwin Creek upstream from the landfill. The effect of leachate on ground-water quality generally was largest in water from wells adjacent to waste-disposal cells. Concentrations of most constituents considered indicative of leachate generally were smaller with increasing distance from waste-disposal cells. Water samples from offsite wells generally indicated no effect or very small effects of leachate. Action levels designated by the Mecklenburg County Engineering Department and maximum contaminant levels established by the U.S. Environmental Protection Agency were exceeded in some samples from the landfills. Ground-water samples exceeded action levels and maximum contaminant levels more commonly than surface-water samples. Iron and manganese were the constituents that most commonly exceeded action levels in water samples from the landfills. Synthetic organic compounds were detected more commonly and in larger concentrations in ground-water samples than in surface-water samples. Concentrations of synthetic organic compounds detected in water samples from monitoring sites at the landfills generally were much less than maximum contaminant levels. However, concentrations of some chlorinated organic compounds exceeded maximum contaminant levels in samples from several monitoring wells at the Harrisburg Road and York Road landfills. Trend analysis indicated statistically significant temporal changes in concentrations of selected water-quality constituents and properties at some of the monitoring sites. Trends detected for the Holbrooks Road and Statesville Road landfills generally indicated an improvement in water quality and a decrease in effects of leachate at most monitoring sites at these landfills from 1979 to 1992. Water-quality trends detected for monitoring sites at the Harrisburg Road and York Road landfills, the largest landfills in the study, differed in magnitude and direction. Upward trends generally were detected for sites near recently closed waste-disposal cells, whereas downward trends generally were detected for sites near older waste-disposal cells. Temporal trends in water quality generally reflected changes in degradation processes associated with the aging of landfill wastes.

  14. Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Nislow, K. H.; Kynard, B. E.; Hackman, A. M.

    2016-01-01

    Dam removal is becoming an increasingly important component of river restoration, with > 1100 dams having been removed nationwide over the past three decades. Despite this recent progression of removals, the lack of pre- to post-removal monitoring and assessment limits our understanding of the magnitude, rate, and sequence of geomorphic and/or ecological recovery to dam removal. Taking advantage of the November 2012 removal of an old ( 190 year-old) 6-m high, run-of-river industrial dam on Amethyst Brook (26 km2) in central Massachusetts, we identify the immediate eco-geomorphic responses to removal. To capture the geomorphic responses to dam removal, we collected baseline data at multiple scales, both upstream ( 300 m) and downstream (> 750 m) of the dam, including monumented cross sections, detailed channel-bed longitudinal profiles, embeddedness surveys, and channel-bed grain size measurements, which were repeated during the summer of 2013. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed and visual surveys of native anadromous sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. late eighteenth century) intact wooden crib dam 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 year RI flood 6 months after removal that caused further upstream incision and downstream aggradation. Now that the downstream reach has been reconnected to upstream sediment supply, the predominant geomorphic response was bed aggradation and associated fining (30-60% reduction). At dam proximal locations, aggradation ranged from 0.3 to > 1 m where a large woody debris jam enhanced aggradation. Although less pronounced, distal locations still showed aggradation with a mean depth of deposition of 0.20 m over the 750-m downstream reach. Post-removal, but pre-flood, bed surveys indicate 2 m of incision had migrated 25 m upstream of the former reservoir before encountering the exhumed dam, which now acts as the new grade control, limiting progressive headcutting. Approximately 1000 m3 of sediment was evacuated in the first year, with 67% of the volume occurring by pre-flood, process-driven (e.g., changes in base level) controls. The combination of changes in channel-bed sedimentology, the occurrence of a large magnitude flood, and the emergence of the new crib dam that is a likely barrier to fish movement was associated with major reductions in abundance and richness in sites downstream and immediately upstream adjacent to the former dam in post-removal sampling. At the same time, we documented the presence of four species of fish, including sea lamprey, which were not present above the dam prior to removal, indicating that upstream passage has been achieved; and we also documented lamprey spawning activity at sites immediately below the dam, which had previously been unsuitable owing to an excessively coarse and armored riverbed. Our results point to the importance of interactions between dam removal and flood disturbance effects, with important implications for short- and long-term monitoring and assessment of dam impacts to river systems.

  15. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    PubMed Central

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.

    2011-01-01

    Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290

  16. Use of the semipermeable membrane device as an in situ sampler of waterborne bioavailable PCDD and PCDF residues at sub-parts-per-quadrillion concentrations

    USGS Publications Warehouse

    Lebo, Jon A.; Gale, Robert W.; Petty, Jimmie D.; Tillitt, Donald E.; Huckins, James N.; Meadows, John C.; Orazio, Carl E.; Echols, Kathy R.; Schroeder, Dennis J.; Inmon, Lloyd E.

    1995-01-01

    Semipermeable membrane devices (SPMDs) were used to passively sample aqueous polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in Bayou Meto, AR. The two sites were upstream and downstream from the confluence with a tributary that delivers PCDDs and PCDFs to the Bayou. Following dialysis, cleanup, and fractionation, four replicate 17-9 SPMD samples from each site were analyzed by GUMS, and four were evaluated by H411E bioassay. Traces of only OCDD and HpCDDs were detected in samples from the upstream site. The four samples from below the tributary contained averages of 1550 ± 80 pg of 2,3,7,8-TCDD, 1640 ± 80 pg of 2,3,7,8-TCDF, and lesser quantities of other congeners. The TCDD equivalents obtained by bioassay of replicate SPMD samples agreed well with results obtained by GC/MS. The quantities of 2,3,7,8- TCDD and 2,3,7,8-TCDF sequestered by SPMDs at the downstream site were used to estimate the aqueous concentrations for both compounds as 2 pg/L.

  17. Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants

    USGS Publications Warehouse

    Venkatesan, Arjun K.; Pycke, Benny F.G.; Barber, Larry B.; Lee, Kathy E.; Halden, Rolf U.

    2012-01-01

    The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC > TCS > DCC > NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined.

  18. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  19. Urbanization and the Level of Microplastic Ingestion by Fish: A Comparison of Freshwater Sunfish (Centrarchidae) from the Brazos River watershed, and Pinfish (Sparidae), from the Brazos Estuary and Inshore Marine Sites, Texas, USA

    NASA Astrophysics Data System (ADS)

    Rieper, K. B.; Peters, C. A.; Bratton, S. P.

    2016-02-01

    While previous research has documented ingestion of macro- and microplastics by aquatic fauna in both freshwater and marine ecosystems, relatively little is known of the environmental and ecological factors influencing the entry and diffusion of plastics and artificial polymers into aquatic foodwebs. Microplastics are defined as 50 μm to 5 mm in length. This study utilized stomach content analysis to compare the level of microplastic artificial polymer ingestion for fish collected from the Brazos River watershed, Brazos estuary, and inshore coastal waters of Texas, USA, in areas with varying levels of urbanization. We collected 318 bluegill (Lepomis macrochirus) and 118 longear sunfish (Lepomis megalotis) at 14 freshwater locales, and 11 samples of 298 pinfish (Lagodon rhomboides) at 6 saltwater locales. Sunfish averaged 12.6 cm in length, and pinfish averaged 14.9 cm. Sunfish averaged .807 microplastics per fish, and pinfish averaged 1.09. The maximum percentage for pinfish with microplastics present per sample (frequency) was 77%, compared to 75% for sunfish. Mean frequencies per sample were also similar: 45% for sunfish and 47% for pinfish. The Brazos River collections, however, had a greater percentage with frequencies of <.30 (42%) for sunfish, versus 9% for pinfish. Sample sites in the center of urbanized zones, including downtown Waco and Galveston, TX, had the greatest frequencies of ingestion, while sites upstream of Waco, TX, had the least. For pinfish, the mean stomach weight per sample was significantly positively correlated (p=.01) to both the percent of individuals ingesting microplastics (cc=.742) and the mean number of plastic particles ingested per fish (cc=.697). The majority of the microplastics were thread shaped, with blue and grey the dominant colors. Comparison with presence of natural food items suggests microplastic ingestion is predominantly incidental for these sentinel fish species.

  20. Metals transport in the Sacramento River, California, 1996-1997; Volume 2: Interpretation of metal loads

    USGS Publications Warehouse

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury.Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ≈ cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15 percent. During irrigation drainage season from rice fields (May-June 1997) loads were cadmium, 53 percent; copper, 42 percent; lead, 20 percent; and zinc, 75 percent. These estimates must be qualified by the following factors: (1) metal loads at Colusa in December 1996 and at Verona in May-June 1997 generally exceeded those determined at Freeport during those sampling periods. Therefore, the above percentages represent maximum estimates of the apparent total proportion of metals from mineralized areas upstream of Keswick Dam; and (2) for logistics reasons, the Sacramento River was sampled at Tower Bridge instead of at Freeport during January 1997.Available data suggest that trace metal loads from agricultural drainage may be significant during certain flow conditions in areas where metals such as copper and zinc are added as agricultural amendments. Copper loads for sampling periods in July and September 1996 and in May-June 1997 show increases of dissolved and colloidal copper and in colloidal zinc between Colusa and Verona, the reach of the Sacramento River along which the Colusa Basin Drain, the Sacramento Slough, and other agricultural return flows are tributaries. Monthly sampling of these two agricultural drains by the USGS National Water-Quality Assessment Program shows seasonal variations in metal concentrations, reaching maximum concentrations of 4 to 6 micrograms per liter in "dissolved" (0.45-micrometer filtrate) copper concentrations in May 1996, December 1996, and June 1997. The total (dissolved plus colloidal) load of copper from the Colusa Basin Drain in June 1997 was 18 kilograms per day, whereas the copper load in Spring Creek, which drains the inactive mines on Iron Mountain, was 20 kilograms per day during the same sampling period. For comparison, during the January 1997 flood, the copper load in Spring Creek was about 1,100 kilograms per day and the copper load in the Yolo Bypass was about 7,300 kilograms per day. The data clearly indicate that most copper and zinc loads during the January 1997 flood entered the Sacramento River upstream of Colusa, and upstream of the influence of the most intense agricultural drainage return flows in the Sacramento River watershed.This study has demonstrated that some trace metals of environmental significance (cadmium, copper, and zinc) in the Sacramento River are transported largely in dissolved form at upstream sites (below Shasta Dam, below Keswick Dam, and at Bend Bridge) proximal to the mineralized areas of the West Shasta and East Shasta mining districts. In contrast, these trace metals are transported largely in colloidal form at downstream sites (Colusa, Verona, Freeport, and Yolo Bypass). Aluminum, iron, and lead were observed to be transported predominantly in the colloidal phase at all mainstem Sacramento River sampling sites during all sampling periods in this study. Despite continuous water treatment, which has removed 85 to 90 percent of the cadmium, copper, and zinc from the mine drainage at Iron Mountain, Spring Creek remains a significant source of these metals to the Sacramento River system.

  1. Model documentation for relations between continuous real-time and discrete water-quality constituents in the North Fork Ninnescah River upstream from Cheney Reservoir, south-central Kansas, 1999--2009

    USGS Publications Warehouse

    Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.

    2013-01-01

    Cheney Reservoir in south-central Kansas is one of the primary sources of water for the city of Wichita. The North Fork Ninnescah River is the largest contributing tributary to Cheney Reservoir. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station since 1998 on the North Fork Ninnescah River. Continuously measured water-quality physical properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, and turbidity. Discrete water-quality samples were collected during 1999 through 2009 and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time because of limitations in sensor technology and fiscal constraints. Regression models were published in 2006 that were based on a different dataset collected during 1997 through 2003. This report updates those models using discrete and continuous data collected during January 1999 through December 2009. Models also were developed for five new constituents, including additional nutrient species and indicator bacteria. The water-quality information in this report is important to the city of Wichita because it allows the concentrations of many potential pollutants of interest, including nutrients and sediment, to be estimated in real time and characterized over conditions and time scales that would not be possible otherwise.

  2. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.

  3. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo.

    PubMed

    Saulino, H H L; Corbi, J J; Trivinho-Strixino, S

    2014-02-01

    The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.

  4. Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland.

    PubMed

    Lizotte, Richard E; Shields, F Douglas; Murdock, Justin N; Kröger, Robert; Knight, Scott S

    2012-06-15

    We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers. Published by Elsevier B.V.

  5. Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February 2000

    USGS Publications Warehouse

    Dileanis, Peter D.; Bennett, Kevin P.; Domagalski, Joseph L.

    2002-01-01

    The organophosphate pesticide diazinon is applied as a dormant orchard spray in the Sacramento Valley, California, during the winter when the area receives a majority of its annual rainfall. Dormant spray pesticides, thus, have the potential to wash off the areas of application and migrate with storm runoff to streams in the Sacramento River Basin. Previous monitoring studies have shown that rain and associated runoff from winter storms plays an important role in the transport of diazinon from point of application to the Sacramento River and tributaries. Between January 30 and February 25, 2000, diazinon concentrations in the Sacramento River and selected tributaries were monitored on 5 consecutive days during each of three winter storms that moved through the Sacramento Valley after diazinon had been applied to orchards in the basin. Water samples were collected at 17 sites chosen to represent the effect of upstream land use at local and regional scales. Most samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). Analysis by gas chromatography with electron capture detector and thermionic specific detector (GC/ECD/TSD) and gas chromatography with mass spectrometry (GC/MS) was done on split replicates from over 30 percent of the samples to confirm ELISA results and to provide lower analytical reporting limits at selected sites [30 ng/L (nanogram per liter) for ELISA, 20 ng/L for GC/ECD/TSD, and 2 ng/L for GC/MS]. Concentrations determined from ELISA analyses were consistently higher than concentrations for split samples analyzed by gas chromatography methods. Because of bias between diazinon concentrations using ELISA and gas chromatography methods, results from ELISA analyses were not compared to water-quality criteria. Load calculations using the ELISA analyses are similarly biased. Because the bias was consistent, however, the ELISA data is useful in site-to-site comparisons used to rank the relative levels and contributions of diazinon from individual subbasins in the watershed. Concentrations of diazinon in 138 samples analyzed by gas chromatography methods ranged from below detection (2 ng/L) to 2,890 ng/L with a median of 44 ng/L. Thirty percent of the samples had concentrations greater than 80 ng/L, which is considered by California as the criterion maximum concentration for the protection of aquatic habitat. Concentrations were highest in small tributaries and canals draining subbasins with predominantly agricultural land use and in a channel draining the Yuba City urban area. Load estimates using concentrations derived from GC/MS analyses indicate that about 30 percent of the diazinon in the lower Sacramento River is from the Feather River Basin. Loads estimated using ELISA analyses show a similar, but slightly higher fraction of the total load coming from that basin. The source of over half the total load measured at Sacramento River at Alamar appears to have originated in the part of the drainage basin upstream of the city of Colusa. Of the diazinon reported applied to agricultural land in Sacramento Valley (about 42,500 pounds active ingredient) just before and during the monitoring period, about 0.4 percent appeared to be transported to the lower Sacramento River during the period of monitoring. A similar percent of applied diazinon was estimated to have entered the Feather River from upstream sources. Diazinon use in the study area during the 1999-2000 dormant spray season was unusually low, about 60 percent of the average of the previous 4 years. Therefore, diazinon loadings may be higher in subsequent years, should use increase and pesticide management practices remain the same. Although diazinon was the most frequently detected pesticide and the pesticide detected at the highest concentrations, 10 other pesticides were detected in the samples collected. These included the insecticides methidathion and chlorpyrifos, and the herbicides simazine, molinate and thiobencarb.

  6. Effects of selenium supplementation in cattle on aquatic ecosystems in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, B.; Nader, G.; Oliver, M.

    1992-09-15

    The potential impact on aquatic ecosystems of supplementing the diets of beef cattle with selenium (Se) was studied on 4 northern California ranches. All study sites included an area of concentrated use by cattle that had diets supplemented with Se. In each case, a stream flowed through the site and provided a control sampling area upstream and a treated sampling area downstream. Specimens of water, sediment, algae, aquatic plants, aquatic invertebrates, and fish were analyzed fluorometrically for total Se content. Significant differences in Se concentration were not found between specimens from upstream control areas and those from downstream areas subjectedmore » to use by Se-treated cattle. Evidence was not found that Se supplementation in cattle at maximal permitted concentrations caused Se accumulation in associated aquatic ecosystems.« less

  7. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population.

    PubMed

    Prevost, B; Lucas, F S; Goncalves, A; Richard, F; Moulin, L; Wurtzer, S

    2015-06-01

    Although enteric viruses constitute a major cause of acute waterborne diseases worldwide, environmental data about occurrence and viral load of enteric viruses in water are not often available. In this study, enteric viruses (i.e., adenovirus, aichivirus, astrovirus, cosavirus, enterovirus, hepatitis A and E viruses, norovirus of genogroups I and II, rotavirus A and salivirus) were monitored in the Seine River and the origin of contamination was untangled. A total of 275 water samples were collected, twice a month for one year, from the river Seine, its tributaries and the major WWTP effluents in the Paris agglomeration. All water samples were negative for hepatitis A and E viruses. AdV, NVGI, NVGII and RV-A were the most prevalent and abundant populations in all water samples. The viral load and the detection frequency increased significantly between the samples collected the most upstream and the most downstream of the Paris urban area. The calculated viral fluxes demonstrated clearly the measurable impact of WWTP effluents on the viral contamination of the Seine River. The viral load was seasonal for almost all enteric viruses, in accordance with the gastroenteritis recordings provided by the French medical authorities. These results implied the existence of a close relationship between the health status of inhabitants and the viral contamination of WWTP effluents and consequently surface water contamination. Subsequently, the regular analysis of wastewater could serve as a proxy for the monitoring of the human viruses circulating in both a population and surface water. Copyright © 2015. Published by Elsevier Ltd.

  8. Mapping and Eradication Prioritization Modeling of Red Sesbania ( Sesbania punicea) Populations

    NASA Astrophysics Data System (ADS)

    Robison, Ramona; Barve, Nita; Owens, Christina; Skurka Darin, Gina; DiTomaso, Joseph M.

    2013-07-01

    Red sesbania is an invasive South American shrub that has rapidly expanded its range along California waterways, emphasizing the need to prioritize eradication sites at a regional scale. To accomplish this, we updated baseline location data in summer 2010 using field surveys throughout the state. We collected relevant GPS attribute data for GIS analysis and eradication prioritization modeling. The regional survey identified upstream and downstream extents for each watershed, as well as outliers in urban areas. We employed the Weed Heuristics: Invasive Population Prioritization for Eradication Tool (WHIPPET) to prioritize red sesbania sites for eradication, and revised the WHIPPET model to consider directional propagule flow of a riparian species. WHIPPET prioritized small populations isolated from larger infestations, as well as outliers in residential areas. When we compared five experts' assessments of a stratified sample of the red sesbania populations to WHIPPET's prioritization results, there was a positive, but nonsignificant, correlation. The combination of WHIPPET and independent expert opinion suggests that small, isolated populations and upstream source populations should be the primary targets for eradication. Particular attention should be paid to these small populations in watersheds where red sesbania is a new introduction. The use of this model in conjunction with evaluation by the land manager may help prevent the establishment of new seed sources and protect uninfested riparian corridors and their adjacent watersheds.

  9. Mapping and eradication prioritization modeling of red sesbania (Sesbania punicea) populations.

    PubMed

    Robison, Ramona; Barve, Nita; Owens, Christina; Skurka Darin, Gina; DiTomaso, Joseph M

    2013-07-01

    Red sesbania is an invasive South American shrub that has rapidly expanded its range along California waterways, emphasizing the need to prioritize eradication sites at a regional scale. To accomplish this, we updated baseline location data in summer 2010 using field surveys throughout the state. We collected relevant GPS attribute data for GIS analysis and eradication prioritization modeling. The regional survey identified upstream and downstream extents for each watershed, as well as outliers in urban areas. We employed the Weed Heuristics: Invasive Population Prioritization for Eradication Tool (WHIPPET) to prioritize red sesbania sites for eradication, and revised the WHIPPET model to consider directional propagule flow of a riparian species. WHIPPET prioritized small populations isolated from larger infestations, as well as outliers in residential areas. When we compared five experts' assessments of a stratified sample of the red sesbania populations to WHIPPET's prioritization results, there was a positive, but nonsignificant, correlation. The combination of WHIPPET and independent expert opinion suggests that small, isolated populations and upstream source populations should be the primary targets for eradication. Particular attention should be paid to these small populations in watersheds where red sesbania is a new introduction. The use of this model in conjunction with evaluation by the land manager may help prevent the establishment of new seed sources and protect uninfested riparian corridors and their adjacent watersheds.

  10. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    USGS Publications Warehouse

    Paganoni, C.A.; Chang, K.C.; Robblee, M.B.

    2006-01-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  11. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    NASA Astrophysics Data System (ADS)

    Paganoni, Christopher A.; Chang, K. C.; Robblee, Michael B.

    2006-05-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  12. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    PubMed

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  13. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    NASA Astrophysics Data System (ADS)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  14. Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water.

    PubMed

    Fan, Shu-Kai S; Kuan, Wen-Hui; Fan, Chihhao; Chen, Chiu-Yang

    2016-12-01

      This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated.

  15. Metal loading in Soda Butte Creek upstream of Yellowstone National Park, Montana and Wyoming; a retrospective analysis of previous research; and quantification of metal loading, August 1999

    USGS Publications Warehouse

    Boughton, G.K.

    2001-01-01

    Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently detected in mainstem synoptic samples. All of these elements were detected at high concentrations in the seeps draining the McLaren Mine tailings impoundment. The lack of detection of these elements in the downstream mainstem synoptic samples is probably because of sorption (coprecipitation and adsorption) to metal colloids in the stream.Most of the metal load that entered Soda Butte Creek was contributed by the inflows draining the McLaren Mine tailings impoundment (between 505 meters and 760 meters downstream from the tracer-injection site), Republic Creek (1,859 meters), and Unnamed Tributary (8,267 meters). Results indicate that treatment or removal of the McLaren Mine tailings impoundment would greatly reduce metal loading in Soda Butte Creek upstream of Yellowstone National Park. However, removing only that single source may not reduce metal loads to acceptable levels. The sources of metal loading in Republic Creek and Unnamed Tributary merit further investigation.

  16. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  17. Colloid particle sizes in the Mississippi River and some of its tributaries, from Minneapolis to below New Orleans

    USGS Publications Warehouse

    Rostad, C.E.; Rees, T.F.; Daniel, S.R.

    1998-01-01

    An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.

  18. Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin

    USGS Publications Warehouse

    Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.

    2003-01-01

    Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.

  19. Temporal and Spatial Distribution of Selected Species of Mercury, Carson River Superfund Site, Nevada

    NASA Astrophysics Data System (ADS)

    Thodal, C.; Morway, E. D.

    2015-12-01

    The Carson River Mercury Site in western Nevada was added to the US Environmental Protection Agency (USEPA) "Superfund" List in 1990 due to contamination from mercury used to amalgamate silver and gold from Comstock Lode ores milled during the late 1800s. The U.S. Geological Survey (USGS) has monitored concentrations of suspended sediment (SS), total mercury (THg) and methylmercury (MeHg) as well as streamflow upstream and downstream of Lahontan Reservoir since 1997 in support of USEPA Remedial Investigations. Differences between inflow and outflow concentrations indicate that nearly 90 percent of SS and unfiltered THg, and at least 50 percent of unfiltered MeHg and filtered (<0.45 μm) THg and MeHg is retained in the reservoir. However, outflow MeHg concentrations exceeded mean inflow concentration (2.9 nanograms per liter; ng/L) in 10 of 135 samples, indicating augmented mercury methylation. During August 2010 and June-September 2011, limnological profiles were measured and water samples collected from discrete depths in each of the reservoir's 3 sub-basins, the inflow delta and 2 shallow and rarely inundated overflow basins to investigate mercury distribution and methylation. In most samples, MeHg concentrations were less than 5 ng/L and increased by less than 1 ng/L in deeper samples. After temperature, oxygen, and Eh profiles indicated thermal stratification in the deep (~25 m) lower basin, samples from the top 1 m still had less than 2 ng/L MeHg but samples collected from 2 m above the sediment-water interface yielded concentrations as high as 220 ng/L in filtered water samples, accounting for 100 percent of filtered and 65 percent of unfiltered THg concentrations in concurrently-sampled water. We hypothesize that anoxic conditions and decomposition of mercury-contaminated plankton and sulfate-reduction in the hypolimnion provide carbon and mercury necessary for mercury methylation that exceeds diffusion from bottom sediment.

  20. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  1. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  2. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.

    PubMed

    Casadio, A; Maglionico, M; Bolognesi, A; Artina, S

    2010-01-01

    The Navile Channel (Bologna, Italy) is an ancient artificial water course derived from the Reno river. It is the main receiving water body for the urban catchment of Bologna sewer systems and also for the Waste Water Treatment Plant (WWTP) main outlet. The aim of this work is to evaluate the Combined Sewer Overflows (CSOs) impact on Navile Channel's water quality. In order to collect Navile flow and water quality data in both dry and wet weather conditions, two measuring and sampling stations were installed, right upstream and downstream the WWTP outflow. The study shows that even in case of low intensity rain events, CSOs have a significant effect on both water quantity and quality, spilling a considerable amount of pollutants into the Navile Channel and presenting also acute toxicity effects. The collected data shown a good correlations between the concentrations of TSS and of chemical compounds analyzed, suggesting that the most part of such substances is attached to suspended solids. Resulting toxicity values are fairly high in both measuring points and seem to confirm synergistic interactions between heavy metals.

  3. Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan

    NASA Astrophysics Data System (ADS)

    Dong, Cheng-Di; Chen, Chih-Feng; Chen, Chiu-Wen

    2015-04-01

    Fifty-eight sediment samples were collected from the Kaohsiung Harbor (Taiwan) for analyses of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT), using gas chromatography/flame photometric detector (GC/FPD). The concentration of total butyltins (ΣBTs), sum of MBT, DBT, and TBT, varied from 3.9 to 158.5 ng Sn/g dw in sediment samples with TBT being the major component of the sediment samples, except for the vicinity of the Love River mouth where MBT was the most abundant BT compound (a proportion of over 57%). Based on the BTs concentration, distribution, composition and correlations, the sources of BTs found in harbor sediments are shipping activities, and TBT is the main pollutant; the estuary (i.e. Love River) has been the anthropogenic source of MBT from upstream inputs. Influences of TBT on aquatic organisms are evaluated using the toxicity guidelines proposed by the US EPA (US Environmental Protection Agency) and the ACCI (assessment class criterion for imposex) proposed by OSPAR (Oslo and Paris Commission). The evaluation shows that the TBT contained in the sediment at Kaohsiung Harbor is likely to have a negative influence at ACCI class C because gastropods present imposex and TBT levels are above ecotoxicological assessment criteria (EAC) limits.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less

  5. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    USGS Publications Warehouse

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.

  6. Assessing potential effects of highway runoff on receiving-water quality at selected sites in Oregon with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Risley, John C.; Granato, Gregory E.

    2014-01-01

    6. An analysis of the use of grab sampling and nonstochastic upstream modeling methods was done to evaluate the potential effects on modeling outcomes. Additional analyses using surrogate water-quality datasets for the upstream basin and highway catchment were provided for six Oregon study sites to illustrate the risk-based information that SELDM will produce. These analyses show that the potential effects of highway runoff on receiving-water quality downstream of the outfall depends on the ratio of drainage areas (dilution), the quality of the receiving water upstream of the highway, and the concentration of the criteria of the constituent of interest. These analyses also show that the probability of exceeding a water-quality criterion may depend on the input statistics used, thus careful selection of representative values is important.

  7. Evaluation of modeled bacteria loads along an impaired stream reach receiving discharge from a municipal separate storm sewer system in Independence, Mo.

    USGS Publications Warehouse

    Flickinger, Allison; Christensen, Eric D.

    2017-01-01

    The Little Blue River in Jackson County, Missouri, was listed as impaired in 2012 due to Escherichia coli (E. coli) from urban runoff and storm sewers. A study was initiated to characterize E. coli concentrations and loads to aid in the development of a total maximum daily load implementation plan. Longitudinal sampling along the stream revealed spatial and temporal variability in E. coli loads. Regression models were developed to better represent E. coli variability in the impaired reach using continuous hydrologic and water-quality parameters as predictive parameters. Daily loads calculated from main-stem samples were significantly higher downstream compared to upstream even though there was no significant difference between the upstream and downstream measured concentrations and no significant conclusions could be drawn from model-estimated loads due to model-associated uncertainty. Increasing sample frequency could decrease the bias and increase the accuracy of the modeled results.

  8. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    PubMed

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  9. Solution to the problem of interferences in electrochemical sensors using the fill-and-flow channel biosensor.

    PubMed

    Zhao, Min; Hibbert, D Brynn; Gooding, J Justin

    2003-02-01

    A generic fill-and-flow channel biosensor with upstream electrodes to determine the extent of interferences in the sample is described. A pair of upstream electrodes poised at a suitable potential allows both the calculation of the extent of removal of interfering agents and the effect of interfering agents at the detector electrode. A model was developed and tested that predicts the concentrations of all species throughout the channel and, hence, the current at each electrode due to each species. This enables correction of the detector electrode current and a more accurate determination of the analyte concentration. The concept was applied to a biosensor for the determination of glucose in the presence of ascorbic acid, acetamidophenol, and uric acid, as well as glucose in wine samples containing polyphenolic interfering agents.

  10. Baseline assessment of instream and riparian-zone biological resources on the Rio Grande in and near Big Bend National Park, Texas

    USGS Publications Warehouse

    Moring, James Bruce

    2002-01-01

    Five study sites, and a sampling reach within each site, were established on the Rio Grande in and near Big Bend National Park in 1999 to provide the National Park Service with data and information on the status of stream habitat, fish communities, and benthic macroinvertebrates. Differences in stream-habitat conditions and riparian vegetation reflect differences in surface geology among the five sampling reaches. In the most upstream reach, Colorado Canyon, where igneous rock predominates, streambed material is larger; and riparian vegetation is less diverse and not as dense as in the four other, mostly limestone reaches. Eighteen species of fish and a total of 474 individuals were collected among the five reaches; 348 of the 474 were minnows. The most fish species (15) were collected at the Santa Elena reach and the fewest species (9) at the Colorado Canyon and Johnson Ranch reaches. The fish community at Colorado Canyon was least like the fish communities at the four other reaches. Fish trophic structure reflected fish-community structure among the five reaches. Invertivores made up at least 60 percent of the trophic structure at all reaches except Colorado Canyon. Piscivores dominated the trophic structure at Colorado Canyon. At the four other reaches, piscivores were the smallest trophic group. Eighty percent of the benthic macroinvertebrate taxa collected were aquatic insects. Two species of blackfly were the most frequently collected invertebrate taxon. Net-spinning caddisflies were common at all reaches except Santa Elena. The aquatic-insect community at the Boquillas reach was least similar to the aquatic-insect community at the other reaches.

  11. Molecular analysis of population genetic structure and recolonization of rainbow trout following the Cantara spill

    USGS Publications Warehouse

    Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.

    2000-01-01

    Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.

  12. Preimpoundment water quality of the Wild Rice River, Norman County, Minnesota

    USGS Publications Warehouse

    Tornes, L.H.

    1980-01-01

    Water samples have been collected at two sites on the Wild Rice River since September 1974 to establish baseline water-quality characteristics before construction of a reservoir for recreation and flood control near Twin Valley, Minn. A decline in water quality between the sites is shown by mean total phosphorus concentrations, which increase from 0.06 to 0.10 milligram per liter downstream, and mean turbidity, which increases from 12 to 24 units downstream. Phosphorus and ammonia concentrations, as high as 0.31 and 2.7 milligrams per liter, respectively, could be the result of domestic waste input to the river upstream from Hendrum. Biochemical oxygen demand concentrations were significantly higher during spring runoff than during the rest of the year. Four out of 90 bacteria samples taken at Twin Valley indicate the presence of human fecal material, though bacteria densities do not exceed recommendations of the U.S. Environmental Protection Agency for public-water supplies. The dominace of organic-pollution tolerant phytoplankton in 49 out of 78 samples also indicates degradation of the river quality at Twin Valley. Nutrient concentrations at Twin Valley have no apparent effect on phytoplankton concentrations. None of the consitituents sampled were found to exceed recommended concentrations for public-water supplies.

  13. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  14. In vitro micronuclei tests to evaluate the genotoxicity of surface water under the influence of tanneries.

    PubMed

    Lemos, A O; Oliveira, N C D; Lemos, C T

    2011-06-01

    Leather manufacturing has a high potential for environmental pollution due to hides and chemicals that are not completely absorbed during the tanning process. This study aims to investigate the mutagenic potential of surface water samples from Cadeia and Feitoria rivers (RS, Brazil) in areas influenced by tanneries and leather footwear industry. Micronucleus assays using V79 cells and human lymphocytes were used. Cells were exposed to surface water collected bimonthly from three sites for a year, totaling six samples. Significant MN induction in human lymphocytes was shown by 83% of samples from sites FEI001 and CAD001 located downstream from the industrial area, followed by FEI004 (33%), upstream. Only a single sample from site FEI004 showed a positive response for MN in V79 cells. Thirteen discordant and five concordant responses were found between the two in vitro tests. Mutagenic agents were found at the sites where chemical quality was worst, corroborating studies on chronic toxicity, oxidative stress and mutagenicity performed in this area. The assay using human lymphocytes was more sensitive than V79 cells to detect the contaminants from this area, showing that it is an excellent biomarker of environmental genotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China

    PubMed Central

    Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo

    2016-01-01

    Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from

  16. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    PubMed

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China

    NASA Astrophysics Data System (ADS)

    Zhou, Haidong; Ying, Tianqi; Wang, Xuelian; Liu, Jianbo

    2016-10-01

    Twelve selected pharmaceuticals including antibiotics, analgesics, antiepileptics and lipid regulators were analysed and detected in water samples collected from 18 sampling sections along the three main urban rivers in Yangpu District of Shanghai, China during four sampling campaigns. Besides, algal growth inhibition test was conducted to preliminarily assess the eco-toxicology induced by the target pharmaceuticals in the rivers. Mean levels for most of target compounds were generally below 100 ng/L at sampling sections, with the exception of caffeine and paracetamol presenting considerably high concentration. The detected pharmaceuticals in the urban rivers ranged from

  18. Lessons from a transplantation of zebra mussels into a small urban river: An integrated ecotoxicological assessment.

    PubMed

    Bourgeault, A; Gourlay-Francé, C; Vincent-Hubert, F; Palais, F; Geffard, A; Biagianti-Risbourg, S; Pain-Devin, S; Tusseau-Vuillemin, M-H

    2010-10-01

    It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro-pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione-S-transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro-pollution but also the trophic status related to the water's physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.

  19. Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Boyd, R.A.

    2000-01-01

    Water samples were collected near a Cedar Rapids, Iowa municipal well field from June 1998 to August 1998 and analyzed for selected triazine and acetanilide herbicides and degradates. The purpose of the study was to evaluate the occurrence of herbicides and herbicide degradates in the well field during a period following springtime application of herbicides to upstream cropland. The well field is in an alluvial aquifer adjacent to the Cedar River. Parent herbicide concentrations generally were greatest in June, and decreased in July and August. Atrazine was most frequently detected and occurred at the greatest concentrations; acetochlor, cyanazine and metolachlor also were detected, but at lesser concentrations than atrazine. Triazine degradate concentrations were relatively small (<0.50 ??g/l) and generally decreased from June to August. Although the rate of groundwater movement is relatively fast (approx. 1 m per day) in the alluvial aquifer near the Cedar River, deethylatrazine (DEA) to atrazine ratios in groundwater samples collected near the Cedar River indicate that atrazine and DEA probably are gradually transported into the alluvial aquifer from the Cedar River. Deisopropylatrazine (DIA) to DEA ratios in water samples indicate most DIA in the Cedar River and alluvial aquifer is produced by atrazine degradation, although some could be from cyanazine degradation. Acetanilide degradates were detected more frequently and at greater concentrations than their corresponding parent herbicides. Ethanesulfonic-acid (ESA) degradates comprised at least 80% of the total acetanilide-degradate concentrations in samples collected from the Cedar River and alluvial aquifer in June, July and August; oxanilic acid degradates comprised less than 20% of the total concentrations. ESA-degradate concentrations generally were smallest in June and greater in July and August. Acetanilide degradate concentrations in groundwater adjacent to the Cedar River indicate acetanilide degradates are transported into the alluvial aquifer in a manner similar to that indicated for atrazine and DEA. Copyright (C) 2000 Elsevier Science B.V.

  20. Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows.

    DTIC Science & Technology

    1980-03-01

    distributions could be obtained. The pressure tappings were sampled using two computer controlled 48 port Model 48J4 Scanivalves equipped with Druck ...the boundary layer becomes turbulent, the upstream in- fluence drops to between 2 and 3D . 3.2 Pressure Distributions Off the Plane of Symmetry 3.2.1...upstream influence varies between 0.3 cm (0.12") and 7.6 cm (3.0"), a ratio of about 25, yet in terms of D , Iu lies between 2 and 3D . The figure shows

  1. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare earth elements (REEs) were also measured in this study. The results normalized by North America Shale REEs (NASC) show a flat pattern and a distinct europium positive anomaly. It possibly indicates a chemical interaction between meteoric water and sedimentary rock, which excludes the possibility of an igneous source.

  2. Upstream factors affecting Tualatin River algae—Tracking the 2008 Anabaena algae bloom to Wapato Lake, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.; Carpenter, Kurt D.; Fesler, Kristel J.; Dorsey, Jessica L.

    2015-12-17

    The results and insights derived from this study can be used to enhance future monitoring and data collection strategies designed to improve water quality and plankton models and better predict dissolved-oxygen concentrations in the lower Tualatin River.

  3. Using remote data collection to identify bridges and culverts susceptible to blockage during flooding events : final report.

    DOT National Transportation Integrated Search

    2016-12-14

    The objectives of this project were to pilot test the use of an unmanned aerial vehicle (UAV) to gather stereo imagery of streambeds upstream of crossing structures, and develop a process of rapidly transmitting actionable information about potential...

  4. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  5. Shocks inside CMEs: A survey of properties from 1997 to 2006

    NASA Astrophysics Data System (ADS)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  6. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 91.420 of this...

  7. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 91.420 of this...

  8. Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.

  9. Reconnaissance of selected PPCP compounds in Costa Rican surface waters.

    PubMed

    Spongberg, Alison L; Witter, Jason D; Acuña, Jenaro; Vargas, José; Murillo, Manuel; Umaña, Gerardo; Gómez, Eddy; Perez, Greivin

    2011-12-15

    Eighty-six water samples were collected in early 2009 from Costa Rican surface water and coastal locations for the analysis of 34 pharmaceutical and personal care product compounds (PPCPs). Sampling sites included areas receiving treated and untreated wastewaters, and urban and rural runoff. PPCPs were analyzed using a combination of solid phase extraction and liquid chromatography tandem mass spectrometry. The five most frequently detected compounds were doxycycline (77%), sulfadimethoxine (43%), salicylic acid (41%), triclosan (34%) and caffeine (29%). Caffeine had the maximum concentration of 1.1 mg L(-1), possibly due to coffee bean production facilities upstream. Other compounds found in high concentrations include: doxycycline (74 μg L(-1)), ibuprofen (37 μg L(-1)), gemfibrozil (17 μg L(-1)), acetominophen (13 μg L(-1)) and ketoprofen (10 μg L(-1)). The wastewater effluent collected from an oxidation pond had similar detection and concentrations of compounds compared to other studies reported in the literature. Waters receiving runoff from a nearby hospital showed higher concentrations than other areas for many PPCPs. Both caffeine and carbamazepine were found in low frequency compared to other studies, likely due to enhanced degradation and low usage, respectively. Overall concentrations of PPCPs in surface waters of Costa Rica are inline with currently reported occurrence data from around the world, with the exception of doxycycline. Published by Elsevier Ltd.

  10. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years.Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (δD) and oxygen-18 (δ18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  11. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  12. Morphogenesis and grain size variation of alluvial gold recovered in auriferous sediments of the Tormes Basin (Iberian Peninsula) using a simple correspondence analysis

    NASA Astrophysics Data System (ADS)

    Barrios, S.; Merinero, R.; Lozano, R.; Orea, I.

    2015-12-01

    With present techniques it is difficult to determine whether the gold particles present at fluvial placers have come from one or multiple sources. Knowledge of this would be useful in prospecting for larger gold deposits. The aim of the present work was to test the potential of a technique based on modern visual and classic statistical methods to determine the single or multisource origin of gold particles at different sites in the Tormes Basin (Central Iberian Zone of the Iberian Massif, Iberian Peninsula). This basin contains numerous lode and placer gold deposits that have been exploited since ancient times. Today, gold nuggets (usually associated with quartz, 0.2-6 g in weight, 0.53-3.74 cm long and mostly discoidal in shape and of intermediate roundness) can be recovered from the sediments of the upper reaches of the River Tormes. These nuggets, as well as small gold particles collected at three gravel pits from across the basin (all of which showed abrasion marks) were examined by optical and/or environmental scanning electron microscopy, and the differences in their dimensions and morphological features noted. Simple correspondence analysis of the sphericity and roundness of the nuggets and particles was used to morphologically classify the gold samples collected at each location. The gold nuggets were best classified as elongated rods of intermediate roundness. Surprisingly, the gold particles from the most upstream and downstream gravel pits were best described as discs/sub-discs of rounded appearance, while those from the intermediate gravel pit were discs of intermediate roundness. Analysis of the variance followed by the Tukey honest significant differences test revealed the particles from the most upstream gravel pit to be significantly more flattened and smaller. These were therefore transported further from their source than the particles collected at the other two pits. These results suggest that multiple sources of sedimentary gold exist in the Tormes Basin and that these feed these different gravel pits. Present techniques for classifying gold would not have detected these differences.

  13. Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02

    USGS Publications Warehouse

    Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan

    2003-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area affected by a 1966 sediment release, reach E habitat rated fair in April 2000 and remained fair in September 2001. The most noticeable habitat change in the three reaches downstream from the dam site was a measurable increase in siltation and embeddedness. Bed-elevation profiles show that bed material upstream from the dam site was remobilized as suspended sediment and bedload, and was redeposited in the reaches below the cofferdam. Deposition was greater in the deep, slow-moving pools than the shallow, fast-moving riffles. For the most part, where deposition took place, deposits were less than 1 foot in thickness. In the year following the removal of the cofferdam, much of the sediment deposited below the dam was moved out of the study reach.

  14. : Signal Decomposition of High Resolution Time Series River data to Separate Local and Regional Components of Conductivity

    EPA Science Inventory

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...

  15. Big Spring spinedace and associated fish populations and habitat conditions in Condor Canyon, Meadow Valley Wash, Nevada

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.; Dixon, Chris

    2011-01-01

    Executive Summary: This project was designed to document habitat conditions and populations of native and non-native fish within the 8-kilometer Condor Canyon section of Meadow Valley Wash, Nevada, with an emphasis on Big Spring spinedace (Lepidomeda mollispinis pratensis). Other native fish present were speckled dace (Rhinichthys osculus) and desert sucker (Catostomus clarki). Big Spring spinedace were known to exist only within this drainage and were known to have been extirpated from a portion of their former habitat located downstream of Condor Canyon. Because of this extirpation and the limited distribution of Big Spring spinedace, the U.S. Fish and Wildlife Service listed this species as threatened under the Endangered Species Act in 1985. Prior to our effort, little was known about Big Spring spinedace populations or life histories and habitat associations. In 2008, personnel from the U.S. Geological Survey's Columbia River Research Laboratory began surveys of Meadow Valley Wash in Condor Canyon. Habitat surveys characterized numerous variables within 13 reaches, thermologgers were deployed at 9 locations to record water temperatures, and fish populations were surveyed at 22 individual sites. Additionally, fish were tagged with Passive Integrated Transponder (PIT) tags, which allowed movement and growth information to be collected on individual fish. The movements of tagged fish were monitored with a combination of recapture events and stationary in-stream antennas, which detected tagged fish. Meadow Valley Wash within Condor Canyon was divided by a 12-meter (m) waterfall known as Delmue Falls. About 6,100 m of stream were surveyed downstream of the falls and about 2,200 m of stream were surveyed upstream of the falls. Although about three-quarters of the surveyed stream length was downstream of Delmue Falls, the highest densities and abundance of native fish were upstream of the falls. Big Spring spinedace and desert sucker populations were highest near the upper end of Condor Canyon, where a tributary known as Kill Wash, and several springs, contribute flow and moderate high and low water temperature. Kill Wash and the area around its confluence with Meadow Valley Wash appeared important for spawning of all three native species. Detections of PIT-tagged fish indicated that there were substantial movements to this area during the spring. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. Our surveys included about 700 m of Meadow Valley Wash upstream of Kill Wash. A small falls about 2 m high was about 560 m upstream of Kill Wash. This falls is likely a barrier to upstream fish movement at most flows. Populations of all three native species were found upstream of this small falls. Age-0 fish of all three species were present, indicating successful spawning. The maximum upstream extent of native fish within Meadow Valley Wash was not determined. A population of non-native rainbow trout (Oncorhynchus mykiss) was found within the 2,000 m of stream immediately downstream of Delmue Falls. Non-native crayfish were very common both upstream and downstream of Delmue Falls. We were not able to quantify crayfish populations, but they compose a significant portion of the biomass of aquatic species in Condor Canyon. There were some distinctive habitat features that may have favored native fish upstream of Delmue Falls. Upstream of the falls, water temperatures were moderated by inputs from springs, turbidity was lower, pool habitat was more prevalent, substrate heterogeneity was higher, and there was less fine sediment than

  16. Quantifying the sources and the transit times of sediment using fallout radionuclides (7Be, 137Cs, 210Pbxs) in contrasted cultivated catchments across the world

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Le Gall, M.; Laceby, J. P.; Foucher, A.; Lefèvre, I.; Salvador-Blanes, S.; Morera, S.; Ribolzi, O.

    2017-12-01

    Soil erosion and fine sediment supply to rivers are exacerbated in intensively cultivated catchments. Information on the sediment sources and transit times in rivers is required to improve our understanding of these processes and to guide the implementation of effective conservation measures. Accordingly, natural (7Be, 210Pb) and artificial (137Cs) fallout radionuclide concentrations were measured in overland flow and suspended sediment collected during the erosive season in contrasted cultivated catchments. In Laos, samples were collected in a steep catchment (Houay Pano, 12 km²) covered with cropland and teak plantations during the first flood of the monsoon in 2014. Cropland surface sources dominated the supply of sediment at the upstream sampling location (55%), whereas subsurface sources (channel, landslides) contributed the majority of material at the outlet (60%). Furthermore, the material exported from the catchment mainly consisted of re-suspended sediment. In Central France, the study was conducted in a flat and drained cultivated catchment (Louroux, 25 km²) during a sequence of winter events in 2013-2014 and 2016. Only surface material enriched in 137Cs was found to transit through the river during floods. The results demonstrated the initial re-suspension of material accumulated in the river channel during the first winter flood before the direct supply of sediment recently eroded from the hillslopes during the next events. In Peru, sediment was collected during a series of summer flood events (2017) in a river draining páramos (Ronquillo, 42 km²) that were recently put in cultivation. Preliminary results show that subsurface re-suspended material dominates the exports from this catchment. These results confirmed the utility of coupling continuous river monitoring and fallout radionuclide measurements on sediment collected in both tropical and temperate rivers to better understand sediment dynamics in these endangered habitats. The main challenges for the future application of this technique are related to the availability of detectors to analyze a large set of samples rapidly after collection, as well as the access to ultra-low background gamma spectrometry facilities.

  17. Organic wastewater compounds in water and sediment in and near restored wetlands, Great Marsh, Indiana Dunes National Lakeshore, 2009–11

    USGS Publications Warehouse

    Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.

    2013-01-01

    A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance) were detected in more than half of the extracts from passive samplers, but they were not detected in any discrete water sample. The Yeast Estrogen Screen assay identified measurable estrogenicity in one passive sampler extract from the most downstream wetland site in both the April and November–December 2011 deployments and in passive sampler extracts from one residential and one upstream site in the November–December 2011 deployment only. Surface-water levels in the restored wetland cells were monitored continuously using submersible pressure transducers in hand-driven well points screened in the surface water. Surface-water levels in the wetland cells responded quickly to precipitation and substantially receded within 2 days following the largest rainfall events. Seasonal patterns in water levels generally showed higher and more variable surface-water levels in the wetland cells during spring and early summer. Water levels in the wetland cells fell below the elevation of the control structures and ceased to flow over the spillways during extended dry periods (primarily late summer and early fall). Daily loads of seven organic wastewater compounds, as indicators of septic system effluent, were estimated for samples collected at wetland outlet spillways when flow measurements could be made. Median daily loads of the indicator organic wastewater compounds increased in downstream order, and the largest median loads were measured at the most downstream site. Median daily loads were higher for samples collected in spring and summer than those collected in fall, as the higher seasonal water levels increased streamflow at the wetland outlet spillways. Wetland sediment samples were analyzed for 84 organic wastewater compounds, polycyclic aromatic hydrocarbons, and semivolatile organic compounds to investigate the fate of contaminants in Great Marsh. The top five detected compounds by total mass in wetland sediment samples were beta-sitosterol, beta-stigmastanol, cholesterol, bis(2-ethylhexyl) phthalate, and phenol. Polycyclic aromatic hydrocarbons also were frequently detected in wetland sediment samples. Source apportionment of polycyclic aromatic hydrocarbon detections indicated atmospheric sources of pyrogenic compounds, rather than residential sources. Comparisons of polycyclic aromatic hydrocarbon concentrations in wetland sediment samples to sediment quality target guidelines indicated the potential for harmful effects on sediment-dwelling organisms at several sites. Biodegradation of select endocrine-disrupting compounds (17α-ethinylestradiol, 4-nonylphenol, triclocarban, and bisphenol A) in shallow wetland sediments was evaluated in laboratory experiments by using carbon-14 radiolabeled model contaminants. Substantial biodegradation of certain organic wastewater compounds were demonstrated, primarily in oxic (oxygen containing) environments. One of four modeled compounds, bisphenol A, was biodegraded in anoxic (oxygen free) environments. Only sediments collected nearest residential areas exhibited degradation of the synthetic birth control pharmaceutical, 17α-ethinylestradiol, possibly owing to adaptation and acclimation of the indigenous microbial community to septic discharge and the resultant selection of a microbial capability for biodegradation of 17α-ethinylestradiol.

  18. Particle collection by a pilot plant venturi scrubber downstream from a pilot plant electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Sparks, L. E.; Ramsey, G. H.; Daniel, B. E.

    The results of pilot plant experiments of particulate collection by a venturi scrubber downstream from an electrostatic precipitator (ESP) are presented. The data, which cover a range of scrubber operating conditions and ESP efficiencies, show that particle collection by the venturi scrubber is not affected by the upstream ESP; i.e., for a given scrubber pressure drop, particle collection efficiency as a function of particle diameter is the same for both ESP on and ESP off. The experimental results are in excellent agreement with theoretical predictions. Order of magnitude cost estimates indicate that particle collection by ESP scrubber systems may be economically attractive when scrubbers must be used for SO x control.

  19. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using turbidity as a surrogate) downstream from the pipeline crossings, and (2) provide continuous turbidity data that enable the development of a real-time turbidity-input warning system and assessment of long-term changes in turbidity conditions. Water-quality conditions were assessed using continuous water-quality monitors deployed upstream and downstream from the pipeline crossings in Indian Creek and the unnamed tributary. These paired upstream and downstream monitors were outfitted with turbidity, pH (for Indian Creek only), specific-conductance, and water-temperature sensors. Water-quality data were collected continuously (every 15 minutes) during three phases of the pipeline construction: pre-construction, during construction, and post-construction. Continuous turbidity data were evaluated at various time steps to determine whether the construction of the pipeline crossings had an effect on downstream suspended-sediment conditions in Indian Creek and the unnamed tributary. These continuous turbidity data were analyzed in real time with the aid of a turbidity-input warning system. A warning occurred when turbidity values downstream from the pipeline were 6 Formazin Nephelometric Units or 15 percent (depending on the observed range) greater than turbidity upstream from the pipeline crossing. Statistical analyses also were performed on monthly and phase-of-construction turbidity data to determine if the pipeline crossing served as a long-term source of sediment. Results of this intensive water-quality monitoring effort indicate that values of turbidity in Indian Creek increased significantly between the upstream and downstream water-quality monitors during the construction of the Jewell Ridge pipeline. The magnitude of the significant turbidity increase, however, was small (less than 2 Formazin Nephelometric Units). Patterns in the continuous turbidity data indicate that the actual pipeline crossing of Indian Creek had little influence of downstream water quality; co

  20. Evaluation of the genotoxicity of waters impacted by domestic and industrial effluents of a highly industrialized region of São Paulo State, Brazil, by the comet assay in HTC cells.

    PubMed

    Manzano, Bárbara Cassu; Roberto, Matheus Mantuanelli; Hoshina, Márcia Miyuki; Menegário, Amauri Antônio; Marin-Morales, Maria Aparecida

    2015-01-01

    The problems that most affect the quality of the waters of rivers and lakes are associated with the discharges performed in these environments, mainly industrial and domestic effluents inappropriately treated or untreated. The comet assay is a sensitive tool and is recommended for studies of environmental biomonitoring, which aim to determine the genotoxicity potential of water pollutants. This study aimed to assess the genotoxic potential of the Ribeirão Tatu waters, region of Limeira, São Paulo (SP), by the comet assay with mammalian cells (hepatoma tissue culture (HTC)). Water samples were collected along the Ribeirão Tatu at three distinct periods: November 2008, February 2009 and August 2009, and five collection sites were established: P1, source of the stream; P2, site located downstream the urban perimeter of the municipality of Cordeirópolis and after receiving the pollution load of this city; P3, collection site located upstream the urban perimeter of the city of Limeira; P4, urban area of Limeira; and P5, rural area of Limeira, downstream the discharges of the city sewage. The results showed that for the November 2008 collection, there was no water sample-induced genotoxicity; for the February 2009 collection, the sites P1 and P2 were statistically significant in relation to the negative control (NC), and for the August 2009 collection, the site P5 was statistically significant. These results could be explained by the content of different metals during the different seasons that are under the influence of domestic, industrial and agricultural effluents and also due to the seasonality, since the water samples collected in the period of heavy rain (February 2009) presented a higher genotoxicity possibly due to the entrainment of contaminants into the bed of the stream promoted by the outflow of rainwaters. The comet assay showed to be a useful and sensitive tool in the evaluation of hydric resources impacted by pollutants of diverse origins, and a constant monitoring should be done in order to verify the influence of different factors (season, amount of contaminants) in the water quality.

  1. 40 CFR 1054.625 - What requirements apply under the Transition Program for Equipment Manufacturers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... number to contact for further information, or a Web site that includes this contact information. (5) The... configuration. Use good engineering judgment for these measurements, which may involve sampling exhaust upstream...

  2. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  3. Physico-chemical and genotoxicity analysis of Guaribas river water in the Northeast Brazil.

    PubMed

    de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva, Felipe Cavalcanti Carneiro; de Siqueira Dantas, Ellifran Bezerra; de Macedo Vieira Lima, Ataíde; de Oliveira, Victor Alves; Matos, Leomá Albuquerque; Paz, Márcia Fernanda Correia Jardim; de Alencar, Marcus Vinicius Oliveira Barros; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Júlio, Horácio Ferreira

    2017-06-01

    River pollution in Brazil is significant. This study aimed to evaluate the physico-chemical and genotoxic profiles of the Guaribas river water, located in Northeast Brazil (State of Piauí, Brazil). The study conducted during the dry and wet seasons to understand the frequency of pollution throughout the year. Genotoxicity analysis was done with the blood of Oreochromis niloticus by using the comet assay. Water samples were collected from upstream, within and downstream the city Picos. The results suggest a significant (p < 0.05) genotoxic effect of the Guaribas river water when compared to the control group. In comparison to the control group, in the river water we found a significant increase in metals such as - Fe, Zn, Cr, Cu and Al. In conclusion, Guaribas river carries polluted water, especially a large quantity of toxic metals, which may impart the genotoxic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.

    PubMed

    Marvig, Rasmus Lykke; Sommer, Lea Mette; Molin, Søren; Johansen, Helle Krogh

    2015-01-01

    Little is known about how within-host evolution compares between genotypically different strains of the same pathogenic species. We sequenced the whole genomes of 474 longitudinally collected clinical isolates of Pseudomonas aeruginosa sampled from 34 children and young individuals with cystic fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors. Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies.

  5. Examining spatial patterns in polycyclic aromatic compounds measured in stream macroinvertebrates near a small subarctic oil and gas operation.

    PubMed

    Korosi, J B; Eickmeyer, D C; Chin, K S; Palmer, M J; Kimpe, L E; Blais, J M

    2016-03-01

    The Cameron River runs through a small, remote petrochemical development in the Cameron Hills (Northwest Territories, Canada). In order to evaluate the exposure of aquatic biota to contaminants from oil and gas activities, we measured polycyclic aromatic compounds (PACs) in macroinvertebrates collected from sites and tributaries along the Cameron River, including upstream and downstream of the development, and sites located near drilled wells (developed). Macroinvertebrate tissue PAC burdens ranged from 0.2-2.8 μg g(-1) lipid for unsubstituted compounds, and from 4.2-63.2 μg g(-1) lipid for alkylated compounds, relatively low compared to similar studies from more industrialized regions in North America. There was no significant difference in tissue PAC burdens between upstream, downstream, or developed sites (p = 0.12), although alkyl PACs in five out of seven developed sites were higher than the regional average. Petrogenic PACs were dominant in most samples, including alkyl fluorines, alkyl phenanthrene/anthracenes, and alkyl dibenzothiophenes. Minimal changes in PAC composition in macroinvertebrate tissues were detected along the Cameron River, with the exception of the two sites furthest downstream that had high concentrations of C3-C4 naphthalene. Overall, our results suggest that oil and gas development in the Cameron Hills has not resulted in substantial increases in PAC bioaccumulation in stream macroinvertebrates, although the potential that alkyl naphthalenes are being transported downstream from the development warrants further attention.

  6. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    PubMed

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p < 0.001), indicating that mercury depuration is rapid or tissue dilution occurs in these riparian predators. Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  7. Hydrogeochemical exploration: a reconnaissance study on northeastern Seward Peninsula, Alaska: Chapter A in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Graham, Garth E.; Taylor, Ryan D.; Buckley, Steve

    2015-01-01

    A reconnaissance hydrogeochemical study employing high-resolution/high-sensitivity inductively coupled plasma mass spectrometry analysis of stream and seep water samples (n= 171) was conducted in an area of limited bedrock exposure on the northeastern Seward Peninsula, Alaska. Sampling was focused in drainages around four main areas—at the Anugi Pb-Zn-Ag occurrence and in streams upstream of historically and currently mined placer gold deposits in the Candle Creek, Utica, and Monument Mountain areas. The objective of the study was to determine whether distribution of elevated metal concentrations in water samples could “see” through sediment cover and provide evidence of bedrock sources for base metals and gold. Some observations include (1) elevated Ag, As, Pb, and Zn concentrations relative to the study area as a whole in stream and seep samples from over and downstream of part of the Anugi Pb-Zn-Ag prospect; (2) abrupt downstream increases in Tl and Sb ± Au concentrations coincident with the upstream termination of productive placer deposits in the Inmachuk and Old Glory Creek drainages near Utica; (3) high K, Mo, Sb, and F throughout much of the Inmachuk River drainage near Utica; and (4) elevated As ± base metals and Au at two sites along Patterson Creek near the town of Candle and three additional contiguous sites identified when an 85th percentile cut-off was employed. Molybdenum ± gold concentrations (>90th percentile) were also measured in samples from three sites on Glacier Creek near Monument Mountain. The hydrogeochemistry in some areas is consistent with limited stream-sediment data from the region, including high Pb-Zn-Ag-As concentrations associated with Anugi, as well as historical reports of arsenopyrite-bearing veins upstream of placer operations in Patterson Creek. Chemistry of samples in the Inmachuk River-Old Glory Creek area also suggest more laterally extensive stibnite- (and gold-?) bearing veining than is currently known in the Old Glory Creek drainage. Our results indicate that hydrogeochemistry can be a useful method of geochemical exploration and offer targets for follow-up rock, soil, and subsurface sampling to ascertain the presence of mineralized bedrock.

  8. Chemical data and lead isotopic compositions of geochemical baseline samples from streambed sediments and smelter slag, lead isotopic compositions in fluvial tailings, and dendrochronology results from the Boulder River watershed, Jefferson County, Montana

    USGS Publications Warehouse

    Unruh, Daniel M.; Fey, David L.; Church, Stan E.

    2000-01-01

    IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.

  9. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    PubMed

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nondestructive Quantitative Sampling for Freshwater Mussels in Variable Substrate Streams

    Treesearch

    John B. Richardson; Winston Paul Smith

    1994-01-01

    Unionidmussels were sampled in the Big South Fork of the Cumberland River, Tennessee and Kentucky, from July to October 1988 with a chain grid of10 l-m2 quadrats. The chain grid was used to define 100-m2 areas along the stream bed by repeatedly moving the10-m2 rectangle upstream. Within each100-m

  11. Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data

    DOE Data Explorer

    Tim Kneafsey

    2016-09-30

    In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.

  12. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).

    PubMed

    Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko

    2010-02-01

    GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.

  13. Do rivermouths alter nutrient and seston delivery to the nearshore?

    USGS Publications Warehouse

    Larson, James H.; Frost, Paul C.; Vallazza, Jon M.; Nelson, John; Richardson, William B.

    2016-01-01

    Tributary inputs to lakes and seas are often measured at riverine gages, upstream of lentic influence. Between these riverine gages and the nearshore zones of large waterbodies lie rivermouths, which may retain, transform and contribute materials to the nearshore zone. However, the magnitude and timing of these rivermouth effects have rarely been measured.During the summer of 2011, 23 tributary systems of the Laurentian Great Lakes were sampled from river to nearshore for dissolved and particulate carbon (C), nitrogen (N) and phosphorus (P) concentrations, as well as bulk seston and chlorophyll a concentrations. Three locations per system were sampled: in the upstream river, in the nearshore zone and at the outflow from the rivermouth to the lake. Using stable oxygen isotopes, a water-mixing model was developed to estimate the nutrient concentration that would occur at the rivermouth if mixing was strictly conservative (i.e. if no processing occurred within the rivermouth). Deviations between these conservative mixing estimates and measured nutrient concentrations were identified as rivermouth effects on nutrient concentrations.Rivermouths had higher concentration of C and P than nearshore areas and more chlorophyll athan upstream river waters. Compared to the conservative mixing model, rivermouths as a class appeared to be summer-time sources of N, P and chlorophyll a. Substantial among rivermouth variation occurred both in the effect size and direction for all constituents.Using principal component analysis, two groups of rivermouths were identified: rivermouths that had a large effect on most constituents and those that had very little effect on any of the measured constituents. ‘High-effect’ rivermouths had more abundant upstream croplands, which were presumably the sources of inorganic nutrients. Cross-validated models built using characteristics of the rivermouth were not good predictors of variation in rivermouth effects on most constituents.For consumers feeding on seston and microbes and vascular autotrophs directly taking up dissolved nutrients, rivermouths are more resource-rich than upstream riverine or nearby Great Lakes waters. Given declines over time in open-lake productivity within the Great Lakes, rivermouths may contribute more productivity than their size would suggest to the Great Lakes food web.

  14. Sphingomonas Infections Arising from Hospital Plumbing Fixtures

    PubMed Central

    Zellmer, Caroline J; Michelin, Angela V; Johnson, Ryan C; Dekker, John P; Frank, Karen M; Henderson, David K; Lau, Anna F; Segre, Julia A; Palmore, Tara N

    2017-01-01

    Abstract Background Following a rise in nosocomial infections due to Sphingomonas, a waterborne Gram-negative organism, we undertook an epidemiological investigation to identify possible sources and develop a remediation strategy. Methods We analyzed Sphingomonas isolates from 30 inpatients in the past 11 years, and we reviewed each patient’s chart. We collected swabs of faucets, water samples, and free and total chlorine levels from rooms of Sphingomonas patients from 2016, using unrelated rooms as controls. Water samples and chlorine levels were collected from hospital pipes. Swabs were placed into 1 mL TSB and cultured to sheep blood agar. Isolates were identified by MALDI-TOF MS. Water samples were tested via membrane filtration (500 mL) and spread plate method (1 mL). Patient and environmental Sphingomonas isolates underwent whole genome sequencing, and were analyzed with Mash and Snippy for overall genomic sequence and single-nucleotide polymorphisms comparisons, respectively, to assess relatedness. Results Of 27 faucets examined, 59% grew Sphingomonas spp., and 33% grew highly-resistant S. koreensis. Of 21 water samples, 76% grew Sphingomonas spp., and 48% grew S. koreensis. Sequence analysis demonstrated strong genetic similarity among S. koreensis clinical isolates from the past 11 years and recent faucet and water isolates. One patient’s S. koreensis isolate was genetically related to isolates from faucets in his room. Sphingomonas did not grow from samples collected from municipal water or some of the far upstream water pipes within the hospital. Free chlorine levels were extremely low in hot water, leading to a program of flushing in order to restore and maintain adequate levels. Among 7 contaminated faucets that were replaced, 3 became recolonized within 4 weeks, and continued to grow Sphingomonas from water. Conclusion Investigation and genome sequencing suggest long-standing S. koreensis colonization within the hospital plumbing system that has served as a reservoir for sporadic infections among immunosuppressed patients. Remediation of Sphingomonas plumbing contamination is an ongoing challenge guided by few published data. Hospital water must be rendered safe for even the most immunosuppressed patients. Disclosures All authors: No reported disclosures.

  15. HEAVY METALS STRUCTURE BENTHIC COMUNITIES IN COLORADO MOUNTAIN STREAMS

    EPA Science Inventory

    The development of field sampling designs that employ multiple reference and polluted sites has been proposed as an alternative to the traditional upstream vs. downstream approach used in most biomonitoring studies. Spatially extensive monitoring programs can characterize ecologi...

  16. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant loads that appear to exceed the river?s assimilative capacity. Annual contaminant loads from stormwater discharges directly to the lower Charles River are large, but most dry-weather and stormwater contaminant loads measured in this study originate from upstream of the Watertown Dam and are delivered to the lower Charles River in mainstem flows. An exception is fecal coliform bacteria. Stony Brook, a large tributary influenced by combined sewer overflow, contributed almost half of the annual fecal coliform load to the lower Charles River for Water Year 2000. Much of this fecal coliform bacteria load is discharged from Stony Brook to the lower Charles River during rain-storms. Estimated stormwater loads for future conditions suggest that sewer separation in the Stony Brook Subbasin might reduce loads of constituents associated with sewage but increase loads of constituents associated with street runoff. The unique environment offered by the lower Charles River must be considered when the environmental implications of large contaminant loads are interpreted. In particular, the lower Charles River has low hydraulic gradients, a lack of tidal flushing, a lack of natural uncontaminated sediment from erosion of upstream uncontaminated soils, and an anoxic, sulfide-rich bottom layer that forms a non-tidal salt wedge in the downstream part of the lower Charles River. Individually and in combination, these characteristics may increase the likelihood of adverse effects of some contaminants on the water, biota, and sediment of the lower Charles River.

  17. Determination of Organic and Inorganic Percentages and Mass of Suspended Material at Four Sites in the Illinois River in Northwestern Arkansas and Northeastern Oklahoma, 2005-07

    USGS Publications Warehouse

    Galloway, Joel M.

    2008-01-01

    The Illinois River located in northwestern Arkansas and northeastern Oklahoma is influenced by point and nonpoint sources of nutrient enrichment. This has led to increased algal growth within the stream, reducing water clarity. Also, sediment runoff from fields, pastures, construction sites, and other disturbed areas, in addition to frequent streambank failure, has increased sedimentation within the stream and decreased water clarity. A study was conducted by the U.S. Geological Survey in cooperation with the Arkansas Department of Environmental Quality and the U.S. Environmental Protection Agency to characterize the increased turbidity by determining the organic and inorganic composition and mass of suspended material in the Illinois River from August 2005 through July 2007. Water-quality samples were collected at four sites on the Illinois River (listed in downstream order): near Viney Grove, Arkansas; at Savoy, Arkansas; south of Siloam Springs, Arkansas; and near Tahlequah, Oklahoma. In general, turbidity, total suspended solids, suspended-sediment concentration, organic material concentration (measured as volatile suspended solids and ash-free dry mass), and chlorophyll a concentration were the greatest in samples collected from the Illinois River at Savoy and the least in samples from the most upstream Illinois River site (near Viney Grove) and the most downstream site (near Tahlequah) from August 2005 through July 2007. For example, the suspended-sediment concentration at the Illinois River at Savoy had a median of 15 milligrams per liter, and the total suspended solids had a median of 12 milligrams per liter. The Illinois River near Tahlequah had the least suspended-sediment concentration with a median of 10 milligrams per liter and the least total suspended solids with a median of 6 milligrams per liter. The turbidity, total suspended solids, suspended-sediment concentration, organic material concentration, and chlorophyll a concentration in samples collected during high-flow events were greater than in samples collected during base-flow conditions at the Illinois River at Savoy, south of Siloam Springs, and near Tahlequah. For example, the median turbidity for the Illinois River at Savoy was 3 nephelometric turbidity ratio units during base-flow conditions and 52 nephelometric turbidity ratio units during high-flow conditions. Organic material in the Illinois River generally composed between 13 and 47 percent of the total suspended material in samples collected from August 2005 through July 2007. Therefore, most of the suspended material in samples collected from the sites was inorganic material. Overall, the highest percentage of organic material was found at the Illinois River near Viney Grove and at the Illinois River near Tahlequah. The Illinois River south of Siloam Springs had the lowest percentage of organic material among the four sites. In general, the percentage of organic material was greater in samples collected during base-flow conditions compared to samples collected during high-flow conditions. The mean seasonal concentrations and percentages of organic material were the least in the fall (September through November) in samples collected from August 2005 to July 2007 from the four Illinois River sites, while the greatest concentrations and percentages of organic material occurred at various times of the year depending on the site. The greatest concentrations of organic material occurred in the summer (June through August) in samples from sites on the Illinois River near Viney Grove, at Savoy and south of Siloam Springs, but in the spring (March through May) in samples from the Illinois River near Tahlequah. The greatest percentages of organic material (least percentages of inorganic material) occurred in the summer in samples from the site near Viney Grove, the winter and summer at the site at Savoy, in the spring, fall, and winter (December through February) at the site south of Siloam Springs, an

  18. Photocopy of photograph (original print in collection of Gerald A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print in collection of Gerald A. Doyle, Phoenix) Photographer: Emil Eger, Yuma, 1983 AERIAL VIEW OF THE YUMA CROSSING LOOKING WEST. FROM BOTTOM TO TOP OF THE IMAGE ARE: 1924 SPRR BRIDGE, OCEAN-TO-OCEAN HIGHWAY BRIDGE, INTERSTATE HIGHWAY BRIDGE (THE LAST IS NOT REFERENCED IN THIS DOCUMENT). THE RIVER IS SEEN IN FLOOD STAGE, APPROXIMATING THE HISTORIC CONDITION BEFORE THE CONSTRUCTION OF THE UP-STREAM DAMS. - Yuma Crossing, Riverfront Area, between Prison Hill & Fourth Avenue, Yuma, Yuma County, AZ

  19. Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Chapelle, Francis H.; Gray, James L.; Kolpin, Dana W.; McMahon, Peter B.

    2009-01-01

    Biodegradation of 17β-estradiol (E2), estrone (E1), and testosterone (T) was investigated in three wastewater treatment plant (WWTP) affected streams in the United States. Relative differences in the mineralization of [4-14C] substrates were assessed in oxic microcosms containing saturated sediment or water-only from locations upstream and downstream of the WWTP outfall in each system. Upstream sediment demonstrated significant mineralization of the “A” ring of E2, E1, and T, with biodegradation of T consistently greater than that of E2 and no systematic difference in E2 and E1 biodegradation. “A” ring mineralization also was observed in downstream sediment, with E1 and T mineralization being substantially depressed relative to upstream samples. In marked contrast, E2 mineralization in sediment immediately downstream from the WWTP outfalls was more than double that in upstream sediment. E2 mineralization was observed in water, albeit at insufficient rate to prevent substantial downstream transport. The results indicate that, in combination with sediment sorption processes which effectively scavenge hydrophobic contaminants from the water column and immobilize them in the vicinity of the WWTP outfall, aerobic biodegradation of reproductive hormones can be an environmentally important mechanism for nonconservative (destructive) attenuation of hormonal endocrine disruptors in effluent-affected streams.

  20. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.

  1. Signal Decomposition of High Resolution Time Series River Data to Separate Local and Regional Components of Conductivity

    EPA Science Inventory

    Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...

  2. EVALUATION OF MICROSOMAL AND CYTOSOLIC BIOMARKERS IN A SEVEN-DAY LARVAL TROUT SEIMENT TOXICITY TEST

    EPA Science Inventory

    Rainbow trout (Oncorhynclus mykiss) sac fry (larvae) were exposed to River Po sediments for 7 days. The sediments were collected in the River Po at two sites located upstream and downstream of the confluence of a polluted tributary, the River Lambro. An additional sediment treatm...

  3. 33 CFR 238.7 - Decision criteria for participation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... upstream of the precise point where Federal flood control authorities become applicable. (b) Storm sewer... will be considered to be a part of local storm drainage to be addressed as part of the consideration of an adequate storm sewer system. The purpose of this system is to collect and convey to a natural...

  4. 33 CFR 238.7 - Decision criteria for participation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... upstream of the precise point where Federal flood control authorities become applicable. (b) Storm sewer... will be considered to be a part of local storm drainage to be addressed as part of the consideration of an adequate storm sewer system. The purpose of this system is to collect and convey to a natural...

  5. 33 CFR 238.7 - Decision criteria for participation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... upstream of the precise point where Federal flood control authorities become applicable. (b) Storm sewer... will be considered to be a part of local storm drainage to be addressed as part of the consideration of an adequate storm sewer system. The purpose of this system is to collect and convey to a natural...

  6. Fate and transport of cyanobacteria and associated toxins and taste-and-odor compounds from upstream reservoir releases in the Kansas River, Kansas, September and October 2011

    USGS Publications Warehouse

    Graham, Jennifer L.; Ziegler, Andrew C.; Loving, Brian L.; Loftin, Keith A.

    2012-01-01

    Cyanobacteria cause a multitude of water-quality concerns, including the potential to produce toxins and taste-and-odor compounds. Toxins and taste-and-odor compounds may cause substantial economic and public health concerns and are of particular interest in lakes, reservoirs, and rivers that are used for drinking-water supply, recreation, or aquaculture. The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Water released from Milford Lake to the Kansas River during a toxic cyanobacterial bloom in late August 2011 prompted concerns about cyanobacteria and associated toxins and taste-and-odor compounds in downstream drinking-water supplies. During September and October 2011 water-quality samples were collected to characterize the transport of cyanobacteria and associated compounds from upstream reservoirs to the Kansas River. This study is one of the first to quantitatively document the transport of cyanobacteria and associated compounds during reservoir releases and improves understanding of the fate and transport of cyanotoxins and taste-and-odor compounds downstream from reservoirs. Milford Lake was the only reservoir in the study area with an ongoing cyanobacterial bloom during reservoir releases. Concentrations of cyanobacteria and associated toxins and taste-and-odor compounds in Milford Lake (upstream from the dam) were not necessarily indicative of outflow conditions (below the dam). Total microcystin concentrations, one of the most commonly occurring cyanobacterial toxins, in Milford Lake were 650 to 7,500 times higher than the Kansas Department of Health and Environment guidance level for a public health warning (20 micrograms per liter) for most of September 2011. By comparison, total microcystin concentrations in the Milford Lake outflow generally were less than 10 percent of the concentrations in surface accumulations, and never exceeded 20 micrograms per liter. The Republican River, downstream from Milford Lake, was the only Kansas River tributary with detectable microcystin concentrations throughout the study period, and concentrations exceeded 1 microgram per liter for most of September 2011. Microcystin was detected periodically in other tributaries, but concentrations were low (less than 0.3 micrograms per liter). In contrast, the taste-and-odor compounds geosmin and 2-methylisoborneol (MIB) were detected in all tributaries located immediately downstream from reservoirs and total concentrations generally exceeded the human detection threshold (5 to 10 nanograms per liter) from September through mid-October. Microcystin, geosmin, and MIB were not detected in the Smoky Hill River upstream from the confluence with the Republican River that forms the Kansas River. Within a week after initial reservoir releases, microcystin, geosmin, and MIB were detected throughout a 173-mile reach of the Kansas River; these compounds remained detectable throughout the reach until mid-October. Losses to groundwater when streamflows in the Kansas River were increasing indicate the potential for reservoir releases to affect groundwater quality as well as surface-water quality. Total microcystin concentrations in the Kansas River generally were highest within about 24 miles of the confluence of the Smoky Hill and Republican Rivers, and decreased downstream; concentrations exceeded 1 microgram per liter in the Kansas River upstream from Topeka during the first 2 weeks of September. Patterns in microcystin occurrence and concentration at Kansas River tributary and main-stem sites indicate that Milford Lake was the source of microcystin in the Kansas River; however, the source of taste-and-odor compounds was not as evident, possibly because multiple tributaries contributed taste-and-odor compounds to the Kansas River. Microcystin and taste-and-odor compounds co-occurred in 56 percent of samples collected, indicating co-occurrence was common. Despite frequent co-occurrence, the spatial and temporal patterns in microcystin, geosmin, and MIB were unique and did not necessarily match patterns in cyanobacterial abundance. Use of a single compound or cyanobacterial abundance alone cannot necessarily be used as an indicator of the presence or concentration of these compounds. Measured concentrations of cyanobacteria and associated compounds were substantially higher than expected concentrations based on simple dilution models at some sites and substantially lower at others, though spatial and temporal patterns were unique for individual compounds. Data were not collected in such a way to determine whether differences between measured and expected concentrations were statistically significant. Results, however, indicate that simple dilution models were not sufficient to describe the downstream transport of cyanobacteria and associated compounds in the Kansas River.

  7. Quantifying the influence of sediment source area sampling on detrital thermochronometer data

    NASA Astrophysics Data System (ADS)

    Whipp, D. M., Jr.; Ehlers, T. A.; Coutand, I.; Bookhagen, B.

    2014-12-01

    Detrital thermochronology offers a unique advantage over traditional bedrock thermochronology because of its sensitivity to sediment production and transportation to sample sites. In mountainous regions, modern fluvial sediment is often collected and dated to determine the past (105 to >107 year) exhumation history of the upstream drainage area. Though potentially powerful, the interpretation of detrital thermochronometer data derived from modern fluvial sediment is challenging because of spatial and temporal variations in sediment production and transport, and target mineral concentrations. Thermochronometer age prediction models provide a quantitative basis for data interpretation, but it can be difficult to separate variations in catchment bedrock ages from the effects of variable basin denudation and sediment transport. We present two examples of quantitative data interpretation using detrital thermochronometer data from the Himalaya, focusing on the influence of spatial and temporal variations in basin denudation on predicted age distributions. We combine age predictions from the 3D thermokinematic numerical model Pecube with simple models for sediment sampling in the upstream drainage basin area to assess the influence of variations in sediment production by different geomorphic processes or scaled by topographic metrics. We first consider a small catchment from the central Himalaya where bedrock landsliding appears to have affected the observed muscovite 40Ar/39Ar age distributions. Using a simple model of random landsliding with a power-law landslide frequency-area relationship we find that the sediment residence time in the catchment has a major influence on predicted age distributions. In the second case, we compare observed detrital apatite fission-track age distributions from 16 catchments in the Bhutan Himalaya to ages predicted using Pecube and scaled by various topographic metrics. Preliminary results suggest that predicted age distributions scaled by the rock uplift rate in Pecube are statistically equivalent to the observed age distributions for ~75% of the catchments, but may improve when scaled by local relief or specific stream power weighted by satellite-derived precipitation. Ongoing work is exploring the effect of scaling by other topographic metrics.

  8. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex.

    PubMed

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry; Lutes, Chris; Truesdale, Robert; Uppencamp, Rob; Cosky, Brian; Zimmerman, John; Schumacher, Brian

    2017-11-15

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into the duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. These test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources.

    PubMed

    Carpenter, Corey M G; Helbling, Damian E

    2018-06-05

    The objective of this study was to identify sources of micropollutants in the Hudson River Estuary (HRE). We collected 127 grab samples at 17 sites along the HRE over 2 years and screened for up to 200 micropollutants. We quantified 168 of the micropollutants in at least one of the samples. Atrazine, gabapentin, metolachlor, and sucralose were measured in every sample. We used data-driven unsupervised methods to cluster the micropollutants on the basis of their spatiotemporal occurrence and normalized-concentration patterns. Three major clusters of micropollutants were identified: ubiquitous and mixed-use (core micropollutants), sourced from sewage treatment plant outfalls (STP micropollutants), and derived from diffuse upstream sources (diffuse micropollutants). Each of these clusters was further refined into subclusters that were linked to specific sources on the basis of relationships identified through geospatial analysis of watershed features. Evaluation of cumulative loadings of each subcluster revealed that the Mohawk River and Rondout Creek are major contributors of most core micropollutants and STP micropollutants and the upper HRE is a major contributor of diffuse micropollutants. These data provide the first comprehensive evaluation of micropollutants in the HRE and define distinct spatiotemporal micropollutant clusters that are linked to sources and conserved across surface water systems around the world.

  10. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    DOE PAGES

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry; ...

    2017-04-26

    We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less

  11. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    PubMed Central

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  12. Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System.

    PubMed

    Olsen, Todd A; Brandt, Craig C; Brooks, Scott C

    2016-10-18

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. 201 Hg II and MM 202 Hg were added to intact periphyton samples in ambient streamwater and the formation of MM 201 Hg and loss of MM 202 Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (k d ). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (k m ). Samples incubated in the dark had lower net methylation due to lower k m values than those incubated in the light. Disrupting the biofilm structure decreased k m and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d -1 MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  13. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    DOE PAGES

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less

  14. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Thomas; Beckley, Lila; Sullivan, Terry

    We report the role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampled during most vapor intrusion investigations. We have used a tracer study and VOC concentration measurements to evaluate the role of the combined sanitary/storm sewer line in VOC transport at the USEPA vapor intrusion research duplex in Indianapolis, Indiana. The results from the tracer study demonstrated gas migration from the sewer main line into themore » duplex. The migration pathway appears to be complex and may include leakage from the sewer lateral at a location below the building foundation. Vapor samples collected from the sewer line demonstrated the presence of tetrachloroethene (PCE) and chloroform in the sewer main in front of the duplex and at multiple sample locations within the sewer line upstream of the duplex. Finally, these test results combined with results from the prior multi-year study of the duplex indicate that the sewer line plays an important role in transport of VOCs from the subsurface source to the immediate vicinity of the duplex building envelope.« less

  15. Time Series Analysis of Heavy Metal Concentrations along the Watershed Gradient in Cameron Highlands: Geospatial Approaches

    NASA Astrophysics Data System (ADS)

    Haron, S. H.; Ismail, B. S.; Mispan, M. R.; Abd Rahman, N. F.; Khalid, K.; Rasid, M. Z. Abdul; Sidek, L. M.

    2016-03-01

    Heavy metal, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. Some metals are extremely toxic to humans and the toxic heavy metals of greatest concern include cadmium, lead, and arsenic. The objective of the study conducted was to determine the accumulation and distribution status of heavy metal cadmium (Cd) in the sediment of Bertam River from September 2014 to February 2015 in the agricultural areas of Cameron Highlands, Malaysia. The sediment samples were collected randomly in three replicates from ten sampling points in the agricultural areas of Cameron Highlands. The heavy metals in the sediment were extracted using the wet acid method and the sample concentrations are then tested for metal concentrations by the spectrography method using Inductively Coupled Plasma (ICP) spectrography. Inverse distance weighting (IDW) was used to create a map of metal concentrations for a point on the polygon dataset spatial interpolation. There is an increasing trend of Cd from the upstream to downstream stations along Bertam River during the rainy season. The activity range of Cd is 0.07 to 2.83 µg/g during the rainy season, whereas, during the dry season, Cd activity ranged from 0.26-0.83µg/g.

  16. Evaluation of Head-of-Reservoir Conditions for Downstream Migration of Juvenile Chinook Salmon and Steelhead at Shasta Lake, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.; Hellmann, K. M.

    2015-12-01

    Since completion of Shasta Dam, migration of Chinook salmon and steelhead trout in the Sacramento River has been blocked, causing loss of spawning and rearing habitat. This has been a factor leading to population declines of these fish species over several decades. Winter-run Chinook salmon, spring-run Chinook salmon and steelhead trout are now listed under the Endangered Species Act. A habitat assessment of the tributaries upstream of Shasta Dam showed that the Sacramento and McCloud tributaries have suitable habitat for reintroduction of adult salmon and steelhead for spawning. Such reintroduction would require downstream passage of juvenile Chinook salmon and steelhead past Shasta Dam. To evaluate the possibility of collecting and transporting juvenile Chinook salmon and steelhead past Shasta Dam, a CE-QUAL-W2 model of Shasta Lake and the Sacramento River, McCloud River, Pit River and Squaw Creek tributaries was used to assess where and when conditions were favorable at head-of-reservoir locations upstream of proposed temperature curtains to collect juvenile fish. Head-of-reservoir is the zone of transition between the river and the upstream end of the reservoir. Criteria for evaluating locations suitable to collect these fish included water temperature and velocities in the Sacramento and McCloud tributaries. Model output was analyzed during months of downstream migration under dry, median and wet year conditions. Potential for proposed temperature curtains, anchored and floating, to improve conditions for fish migration was also evaluated with the CE-QUAL-W2 model. Use of temperature curtains to assist fish migration is a novel approach that to our knowledge has not previously been assessed for recovery of Chinook salmon and steelhead populations. Providing safe passage conditions is challenging, however the study findings may assist in formulation of a juvenile fish passage alternative that is suitable for Shasta Lake.

  17. Invertebrate drift during in-channel gravel mining: the Upper River Cinca (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Béjar, Maria; Gibbins, Chris; Vericat, Damià; Batalla, Ramon J.; Muñoz, Efrén; Ramos, Ester; Lobera, Gemma; Andrés López-Tarazón, Jose; Piqué, Gemma; Tena, Álvaro; Buendía, Cristina; Rennie, Colin D.

    2015-04-01

    Invertebrate drift has been widely studied as an important mechanism to structure the benthic assemblages and as a part of invertebrate behavior in fluvial systems. River channel disturbance is considered the main factor affecting the organization of riverine communities and contributes to key ecological processes. However, little is known about involuntary drift associated to bed disturbance due to the difficulties associated with sampling during floods. In-channel gravel mining offers an opportunity to study involuntary drift associated not only to local bed disturbances but also to sudden changes on suspended sediment concentrations and flow. High suspended sediment concentrations and sudden changes in flow also prompt drift due to the limiting conditions (i.e. lack of oxygen, hydric stress). Within this context, invertebrate drift was monitored in the Upper River Cinca (Southern Pyrenees) during two gravel mining activities performed in summer 2014. The data acquisition design includes: drift, suspended sediment, bedload, bed mobility and flow. Data was acquired before, during and after mining at different sampling locations located upstream and downstream the perturbation. Drift and suspended sediment transport were sampled at 5 sections: 1 control site upstream the mining and 4 downstream. Bedload samples were collected just downstream the channel where gravels were extracted. Bed mobility and changes on topography were assessed by means of GPS-aDcp and repeat topographic surveys. Discharge was continuously recorded 2.5 km downstream the mining location. Additionally, two turbidity meters registered water turbidity at 15 minute intervals in two of the four sampling sections located downstream. This experimental design provides data on the spatial and temporal variability of drift associated to a local bed disturbance that (i) changes the distribution of flow across the section where mining was performed, (ii) increase substantially suspended sediment transport, and (iii) generates bed mobility and changes on local morphology and roughness that, ultimately, modify channel topography. Samples are being post-processed. Preliminary results show markedly differences in drift in terms of densities and species at different temporal and spatial scales. These differences can be attributed to the type of disturbance during mining: (i) hydric stress associated to changes on the distribution of flows, (ii) the sudden increase of suspended sediment concentrations, or (iii) high bed mobility just downstream from the mining location. These results will provide: (a) a new framework to understand ecological responses during river disturbances and (b) key information or guidelines for an appropriate management in human stressed fluvial systems.

  18. Nonpoint Source Road Salt Pollution from Urban Stormwater

    NASA Astrophysics Data System (ADS)

    DeGaetano, S.; Walter, M. T.

    2014-12-01

    In colder climates, such as the Northeast, road salts are commonly applied to deice roads in order to increase pedestrian and driver safety. This study was conducted to establish the mass if NaCl entering the local aquatic systems from Cornell's campus. Using trail cameras, two typical storm water pipes (draining into Cascadilla Creek) were monitored to determine the volume of runoff on an hourly bases. Grab samples were taken three times a week obtain storm water chloride concentration. In general, the average measured salt concentration was found to be 3.61 g/L, while high precipitation events Cl- concentration spiked to levels exceeding 12 g/L (≈ 20 g/L of salt). Combining runoff volumes and salt concentration values, a mass per drainage area was calculated for each monitored pipe. Outfall #1, located just upstream from the Wilson Synchrotron Module, expelled 262,300 kg of salt over a 42-day period of data collection while Outfall#2 discharged 4160 kg during the same period. These results were averaged and then applied to the total impervious area on Cornell's campus to approximate the total mass of sodium chloride leaving campus during the period of data collection.

  19. Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns.

    PubMed

    Li, Huizhen; Sun, Baoquan; Lydy, Michael J; You, Jing

    2013-04-01

    Pesticide use patterns in China have changed in recent years; however, the study of the environmental fate of current-use pesticides (CUPs) and their ecotoxicological significance in aquatic ecosystems is limited. In the present study, sediments were collected from an urban stream in the Chinese city of Guangzhou. Sediment-associated legacy organochlorine pesticides and CUPs-including organophosphates, pyrethroids, fipronil, and abamectin-were analyzed. Additionally, the relative toxicity of the sediments was evaluated with 10-d bioassays using Chironomus dilutus. Fifteen of 16 sediments collected from the stream were acutely toxic to C. dilutus, with 81% of the samples causing 100% mortality. Abamectin, fipronil, and pyrethroids (mainly cypermethrin) were identified as the principal contributors to the noted toxicity in the midges, with median predicted toxic units of 1.63, 1.63, and 1.03, respectively. Sediments taken from downstream sites, where residential and industrial regions were located, had elevated CUP concentrations and sediment toxicity compared with upstream sites. The present study is the first of its kind to link sediment CUPs, fipronil, and abamectin concentrations with toxicity in urban streams in China with a focus on shifting pesticide usage patterns. Copyright © 2013 SETAC.

  20. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.

    PubMed

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-12-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.

  1. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.

  2. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and drinking water treatability. © 2015 John Wiley & Sons Ltd.

  3. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet

    PubMed Central

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-01-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study. PMID:24367140

  4. Distribution of Escherichia coli and Enterococci in water, sediments, and bank soils along North Shore Channel between Bridge Street and Wilson Avenue, Metropolitan Water Reclamation District of Greater Chicago

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara; Whitman, Richard L.; Shively, Dawn; Przybyla-Kelly, Katarzyna; Lukasik, Ashley M.

    2010-01-01

    The Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) wished to know the distribution and potential sources of fecal indicator bacteria, E. coli and enterococci, in water, sediments, and upland soils along an upstream and downstream portion of the North Shore Channel (NSC) that is the receiving stream for the District’s North Side Water Reclamation Plant (NSWRP) outfall. Biweekly water and sediment samples were collected between August and October 2008 and included the following locations upstream of the outfall: Bridge Street (UPS-1), Oakton Street (UPS-2), the NSWRP outfall (OF), and downstream: Foster Avenue (DNS-1), and Wilson Avenue (DNS-2). E. coli and enterococci were consistently found in water and sediments at all sampling locations, with bacterial densities in water increasing below the NSWRP outfall; bacterial densities in sediment were more variable. On a relative measurement basis (i.e., 100 ml=100 g), both E. coli and enterococci densities were significantly higher in sediments than water. E. coli and enterococci were consistently recovered from bank soil along wooded, grassy, erosional, and depositional areas at two recreational parks, as well as other riparian areas along the river. Thus, soils along the river basin are likely sources of these bacteria to the NSC channel, introduced through runoff or other physical processes. Tributaries, such as the North Branch of the Chicago River (NBCR) that flow into NSC near Albany Ave, may provide a constant source of E. coli and enterococci to the NSC. Additionally, storm sewer outfalls may increase E. coli loadings to NSC during wet weather conditions. Our findings suggest that the abundance of nonpoint sources contributing to the overall fecal indicator bacteria (FIB) load in the NSC channel may complicate bacteria source determination and remediation efforts to protect the stream water quality.

  5. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map.

    PubMed

    Tsai, Wen-Ping; Huang, Shih-Pin; Cheng, Su-Ting; Shao, Kwang-Tsao; Chang, Fi-John

    2017-02-01

    The steep slopes of rivers can easily lead to large variations in river water quality during typhoon seasons in Taiwan, which may poses significant impacts on riverine eco-hydrological environments. This study aims to investigate the relationship between fish communities and water quality by using artificial neural networks (ANNs) for comprehending the upstream eco-hydrological system in northern Taiwan. We collected a total of 276 heterogeneous datasets with 8 water quality parameters and 25 fish species from 10 sampling sites. The self-organizing feature map (SOM) was used to cluster, analyze and visualize the heterogeneous datasets. Furthermore, the structuring index (SI) was adopted to determine the relative importance of each input variable of the SOM and identify the indicator factors. The clustering results showed that the SOM could suitably reflect the spatial characteristics of fishery sampling sites. Besides, the patterns of water quality parameters and fish species could be distinguishably (visually) classified into three eco-water quality groups: 1) typical upstream freshwater fishes that depended the most on dissolved oxygen (DO); 2) typical middle-lower reach riverine freshwater fishes that depended the most on total phosphorus (TP) and ammonia nitrogen; and 3) low lands or pond (reservoirs) freshwater fishes that depended the most on water temperature, suspended solids and chemical oxygen demand. According to the results of the SI, the representative indicators of water quality parameters and fish species consisted of DO, TP and Onychostoma barbatulum. This grouping result suggested that the methodology can be used as a guiding reference to comprehensively relate ecology to water quality. Our methods offer a cost-effective alternative to more traditional methods for identifying key water quality factors relating to fish species. In addition, visualizing the constructed topological maps of the SOM could produce detailed inter-relation between water quality and the fish species of stream habitat units. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Distribution of dissolved pesticides and other water quality constituents in small streams, and their relation to land use, in the Willamette River Basin, Oregon, 1996

    USGS Publications Warehouse

    Anderson, Chauncey W.; Wood, Tamara M.; Morace, Jennifer L.

    1997-01-01

    Water quality samples were collected at sites in 16 randomly selected agricultural and 4 urban subbasins as part of Phase III of the Willamette River Basin Water Quality Study in Oregon during 1996. Ninety-five samples were collected and analyzed for suspended sediment, conventional constituents (temperature, dissolved oxygen, pH, specific conductance, nutrients, biochemical oxygen demand, and bacteria) and a suite of 86 dissolved pesticides. The data were collected to characterize the distribution of dissolved pesticide concentrations in small streams (drainage areas 2.6? 13 square miles) throughout the basin, to document exceedances of water quality standards and guidelines, and to identify the relative importance of several upstream land use categories (urban, agricultural, percent agricultural land, percent of land in grass seed crops, crop diversity) and seasonality in affecting these distributions. A total of 36 pesticides (29 herbicides and 7 insecticides) were detected basinwide. The five most frequently detected compounds were the herbicides atrazine (99% of samples), desethylatrazine (93%), simazine (85%), metolachlor (85%), and diuron (73%). Fifteen compounds were detected in 12?35% of samples, and 16 compounds were detected in 1?9% of samples. Water quality standards or criteria were exceeded more frequently for conventional constituents than for pesticides. State of Oregon water quality standards were exceeded at all but one site for the indicator bacteria E. coli, 3 sites for nitrate, 10 sites for water temperature, 4 sites for dissolved oxygen, and 1 site for pH. Pesticide concentrations, which were usually less than 1 part per billion, exceeded State of Oregon or U.S. Environmental Protection Agency aquatic life toxicity criteria only for chlorpyrifos, in three samples from one site; such criteria have been established for only two other detected pesticides. However, a large number of unusually high concentrations (1?90 parts per billion) were detected, indicating that pesticides in the runoff sampled in these small streams were more highly concentrated than in the larger streams sampled in previous studies. These pulses could have had short term toxicological implications for the affected streams; however, additional toxicological assessment of the detected pesticides was limited because of a lack of available information on the response of aquatic life to the observed pesticide concentrations. Six pesticides, including atrazine, diuron, and metolachlor, had significantly higher (p<0.08 for metolachlor, p<0.05 for the other five) median concentrations at agricultural sites than at urban sites. Five other compounds ?carbaryl, diazinon, dichlobenil, prometon, and tebuthiuron?had significantly higher (p<0.05) concentrations at the urban sites than at the agricultural sites. Atrazine, metolachlor, and diuron also had significantly higher median concentrations at southern agricultural sites (dominated by grass seed crops) than northern agricultural sites. Other compounds that had higher median concentrations in the south included 2,4-D and metribuzin, which are both used on grass seed crops, and triclopyr, bromacil, and pronamide. A cluster analysis of the data grouped sites according to their pesticide detections in a manner that was almost identical to a grouping made solely on the basis of their upstream land use patterns (urban, agricultural, crop diversity, percentage of basin in agricultural production). In this way inferences about pesticide associations with different land uses could be drawn, illustrating the strength of these broad land use categories in determining the types of pesticides that can be expected to occur. Among the associations observed were pesticides that occurred at a group of agricultural sites, but which have primarily noncropland uses such as vegetation control along rights-of-way. Also, the amount of forested land in a basin was negatively associated with pesticide occurrence, sugges

  7. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed.

    PubMed

    Mehdi, Hossein; Dickson, Fiona H; Bragg, Leslie M; Servos, Mark R; Craig, Paul M

    2017-11-22

    The objective of this study was to assess the effects of municipal wastewater treatment plant effluent on the energetics and stress response of rainbow darter (Etheostoma caeruleum). Male and female rainbow darter were collected upstream and downstream of the Waterloo WWTP in the Grand River watershed, ON, Canada. To assess the effects of wastewater treatment plant effluent on whole-body and tissue specific metabolic capacity, closed-chamber respirometry and muscle-enzyme activity analyses were performed. Plasma cortisol was also collected from fish before and after an acute air-exposure stressor to evaluate the cortisol stress response in fish exposed to additional stressors. Male and female rainbow darter collected downstream of the effluent had higher oxygen consumption rates, while differences in enzyme activities were primarily associated with sex rather than collection site. No impairment in the cortisol stress response between downstream and upstream fish was observed, however baseline cortisol levels in female fish from the downstream site were significantly higher compared to other baseline groups. Stress-induced cortisol levels were also higher in female fish from both sites when compared to their male counterparts. Overall, this study demonstrates that chronic exposure to WWTP effluent impacts whole-body metabolic performance. This study was also able to demonstrate that sex-differences are a key determinant of various metabolic changes in response to physiological stress, thereby, providing a novel avenue to be considered and further explored. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reproductive health of bass in the potomac, USA, drainage: Part 1. exploring the effects of proximity to wastewater treatment plant discharge

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.; Guy, C.P.; Pinkney, A.E.; Mullcan, J.E.; Alvarezw, D.A.

    2009-01-01

    Abstract-Intersex (specifically, testicular oocytes) has been observed in male smalimouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, USA, and forks of the Shenandoah River, USA. during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, USA. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82-l00%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes. ?? 2009 SETAC.

  9. Reproductive health of bass in the Potomac, U.S.A., drainage: part 1. Exploring the effects of proximity to wastewater treatment plant discharge.

    PubMed

    Iwanowicz, Luke R; Blazer, Vicki S; Guy, Christopher P; Pinkney, Alfred E; Mullican, John E; Alvarez, David A

    2009-05-01

    Intersex (specifically, testicular oocytes) has been observed in male smallmouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, U.S.A., and forks of the Shenandoah River, U.S.A., during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, U.S.A. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82-100%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes.

  10. Predicting recolonization patterns and interactions between potamodromous and anadromous salmonids in response to dam removal in the Elwha River, Washington State, USA

    USGS Publications Warehouse

    Brenkman, S.J.; Pess, G.R.; Torgersen, C.E.; Kloehn, K.K.; Duda, J.J.; Corbett, S.C.

    2008-01-01

    The restoration of salmonids in the Elwha River following dam removal will cause interactions between anadromous and potamodromous forms as recolonization occurs in upstream and downstream directions. Anadromous salmonids are expected to recolonize historic habitats, and rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) isolated above the dams for 90 years are expected to reestablish anadromy. We summarized the distribution and abundance of potamodromous salmonids, determined locations of spawning areas, and mapped natural barriers to fish migration at the watershed scale based on data collected from 1993 to 2006. Rainbow trout were far more abundant than bull trout throughout the watershed and both species were distributed up to river km 71. Spawning locations for bull trout and rainbow trout occurred in areas where we anticipate returning anadromous fish to spawn. Nonnative brook trout were confined to areas between and below the dams, and seasonal velocity barriers are expected to prevent their upstream movements. We hypothesize that the extent of interaction between potamodromous and anadromous salmonids will vary spatially due to natural barriers that will limit upstream-directed recolonization for some species of salmonids. Consequently, most competitive interactions will occur in the main stem and floodplain downstream of river km 25 and in larger tributaries. Understanding future responses of Pacific salmonids after dam removal in the Elwha River depends upon an understanding of existing conditions of the salmonid community upstream of the dams prior to dam removal.

  11. Monitoring the impact of urban effluents on mineral contents of water and sediments of four sites of the river Ravi, Lahore.

    PubMed

    Shakir, Hafiz Abdullah; Qazi, Javed Iqbal; Chaudhry, Abdul Shakoor

    2013-12-01

    We assessed the impact of urban effluents on the concentrations of selected minerals (Cd, Cr, Cu, Fe, Pb, Zn, Mn, Ni, and Hg) in river Ravi before and after its passage through Lahore city. Water and sediment samples were collected from three lowly to highly polluted downstream sites (Shahdera (B), Sunder (C), and Balloki (D)) alongside the least polluted upstream site (Siphon (A)) during high and low river flow seasons. All the mineral concentrations increased up to site C but stabilized at site D, showing some recovery as compared to the third sampling site. The trend of mean mineral concentration was significantly higher during the low than the high flow season at all the sites. The mean Hg concentrations approached 0.14 and 0.12 mg/l at site A which increased (%) up to 107 and 25% at site B, 1,700 and 1,317% at site C, and 1,185 and 1,177% at site D during low and high river flows, respectively. All mineral concentrations were much higher in the sediment than the water samples. Mean Cd (917%), Cr (461%), Cu (300%), Fe (254%), Pb (179%), Zn (170%), Mn (723%), Ni (853%), and Hg (1,699%) concentrations were higher in riverbed sediments sampled from site C in comparison with the sample collected at site A during low flow season. The domestic and industrial discharges from Lahore city have created undesirable water qualities during the low river flow season. As majority of the mineral levels in the river Ravi were higher than the permissible and safe levels, this is of immediate concern for riverine fish consumers and the users of water for recreation and even irrigation. The use of these waters may pose health risks, and therefore, urgent intervention strategies are needed to minimize river water pollution and its impact on fish-consuming communities of this study area and beyond.

  12. Reproductive ecology, spawning behavior, and juvenile distribution of Mountain Whitefish in the Madison River, Montana

    USGS Publications Warehouse

    Boyer, Jan K.; Guy, Christopher S.; Webb, Molly A. H.; Horton, Travis B.; McMahon, Thomas E.

    2017-01-01

    Mountain Whitefish Prosopium williamsoni were historically common throughout much of the U.S. Intermountain West. However, within the last decade Mountain Whitefish have exhibited population-level declines in some rivers. In the Madison River, Montana, anecdotal evidence indicates Mountain Whitefish abundance has declined and the population is skewed toward larger individuals, which is typically symptomatic of recruitment problems. Describing reproductive development, spawning behavior, and juvenile distribution will form a foundation for investigating mechanisms influencing recruitment. We collected otoliths and gonadal samples from fish of all size-classes to characterize fecundity, age at maturity, and spawning periodicity. We implanted radio tags in mature Mountain Whitefish and relocated tagged fish in autumn 2012–2014. Timing of spawning was determined from spawning status of captured females and from density of eggs collected on egg mats. In spring 2014, we seined backwater and channel sites to describe age-0 whitefish distribution. Mountain Whitefish were highly fecund (18,454 eggs/kg body weight) annual spawners, and age at 50% maturity was 2.0 years for males and 2.6 years for females. In 2013 and 2014, spawning occurred between the third week of October and first week of November. During spawning, spawning adults and collected embryos were concentrated in the downstream 26 km of the study site, a reach characterized by a complex, braided channel. This reach had the highest CPUE of age-0 Mountain Whitefish, and the percentage of spawning adults in the 25 km upstream from a sampling site was positively associated with juvenile CPUE. Within this reach, age-0 Mountain Whitefish were associated with silt-laden backwater and eddy habitats. Future investigations on mechanisms influencing recruitment should be focused on the embryological phase and age-0 fish.

  13. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett`s initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates atmore » five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream.« less

  14. New Developments at the ALS High-Pressure Beamline 12.2.2

    NASA Astrophysics Data System (ADS)

    Kunz, M.; MacDowell, A. A.; Yan, J.; Beavers, C. C. G.; Doran, A.; Williams, Q. C.

    2015-12-01

    ALS-beamline 12.2.2 celebrated its 10-year anniversary as a beamline collaboratively operated by the ALS and COMPRES. The anniversary coincided with a major rebuild and expansion of its capabilities for in-situ high-pressure and high-temperature X-ray diffraction. A rebuild of the 12.2.2 laser heating table was completed and commissioned in the past year. The new design relies on a vertically positioned small (~1m x 1m) breadboard that is placed perpendicularly to the incident X-ray beam next to the sample stage. Upstream and downstream viewing-, IR-laser and pyrometry-optics are mounted on opposite surfaces of the breadboard. On-line ruby fluorescence optics including a blue diode laser are also mounted on the upstream surface. The much reduced dimensions of the design lead to smaller mechanical lever arms and thus to a significant suppression of vibrations. This was confirmed in the commissioning phase with high-quality optical images (~ 2 μm resolution) as well as a very stable hotspot in DAC samples. A further optimized pyrometry code was cross-calibrated against thermal expansions of Pt and Ta, and was found to agree with those values within experimental uncertainties. Pyrometry relies on imaging the full hot-spot onto a spectrometer and combining the thus obtained average temperature with an intensity map collected at 700 nm to produce a temperature contour map of the entire sample chamber. Besides axial laser heating, double-sided radial laser heating is also being developed and commissioned. The X-ray source of 12.2.2 makes it an ideal station to focus on high-pressure single crystal diffraction. The present set-up operates parasitically with a single rotation axis on the in-situ laser heating powder diffraction sample stage in concert with a fast (15 fps) amorphous silicon/diode array detector. Although this set-up poses limitations with respect to accessible reciprocal space, high pressure single crystal structure solution and refinements of organic compounds incl. anisotropic displacement parameters have been demonstrated. Imminent development plans aim for the installation of a rugged multi-axis diffractometer on its own dedicated end-station in combination with with a compact fast detector on the 2-theta arm. This will be capable of carrying state of the art wide opening angle DAC's (BX90).

  15. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  16. Capillary pumping independent of the liquid surface energy and viscosity

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter

    2018-03-01

    Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.

  17. Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern.

    PubMed

    Blazer, V S; Iwanowicz, D D; Walsh, H L; Sperry, A J; Iwanowicz, L R; Alvarez, D A; Brightbill, R A; Smith, G; Foreman, W T; Manning, R

    2014-10-01

    Fishes were collected at 16 sites within the three major river drainages (Delaware, Susquehanna, and Ohio) of Pennsylvania. Three species were evaluated for biomarkers of estrogenic/antiandrogenic exposure, including plasma vitellogenin and testicular oocytes in male fishes. Smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, and redhorse sucker Moxostoma species were collected in the summer, a period of low flow and low reproductive activity. Smallmouth bass were the only species in which testicular oocytes were observed; however, measurable concentrations of plasma vitellogenin were found in male bass and white sucker. The percentage of male bass with testicular oocytes ranged from 10 to 100%, with the highest prevalence and severity in bass collected in the Susquehanna drainage. The percentage of males with plasma vitellogenin ranged from 0 to 100% in both bass and sucker. Biological findings were compared with chemical analyses of discrete water samples collected at the time of fish collections. Estrone concentrations correlated with testicular oocytes prevalence and severity and with the percentage of male bass with vitellogenin. No correlations were noted with the percentage of male sucker with vitellogenin and water chemical concentrations. The prevalence and severity of testicular oocytes in bass also correlated with the percent of agricultural land use in the watershed above a site. Two sites within the Susquehanna drainage and one in the Delaware were immediately downstream of wastewater treatment plants to compare results with upstream fish. The percentage of male bass with testicular oocytes was not consistently higher downstream; however, severity did tend to increase downstream.

  18. Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern

    USGS Publications Warehouse

    Blazer, V.S.; Iwanowicz, D.D.; Walsh, H.L.; Sperry, A.J.; Iwanowicz, L.R.; Alvarez, D.A.; Brightbill, R.A.; Smith, G.; Foreman, W.T.; Manning, R.

    2014-01-01

    Fishes were collected at 16 sites within the three major river drainages (Delaware, Susquehanna, and Ohio) of Pennsylvania. Three species were evaluated for biomarkers of estrogenic/antiandrogenic exposure, including plasma vitellogenin and testicular oocytes in male fishes. Smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, and redhorse sucker Moxostoma species were collected in the summer, a period of low flow and low reproductive activity. Smallmouth bass were the only species in which testicular oocytes were observed; however, measurable concentrations of plasma vitellogenin were found in male bass and white sucker. The percentage of male bass with testicular oocytes ranged from 10 to 100 %, with the highest prevalence and severity in bass collected in the Susquehanna drainage. The percentage of males with plasma vitellogenin ranged from 0 to 100 % in both bass and sucker. Biological findings were compared with chemical analyses of discrete water samples collected at the time of fish collections. Estrone concentrations correlated with testicular oocytes prevalence and severity and with the percentage of male bass with vitellogenin. No correlations were noted with the percentage of male sucker with vitellogenin and water chemical concentrations. The prevalence and severity of testicular oocytes in bass also correlated with the percent of agricultural land use in the watershed above a site. Two sites within the Susquehanna drainage and one in the Delaware were immediately downstream of wastewater treatment plants to compare results with upstream fish. The percentage of male bass with testicular oocytes was not consistently higher downstream; however, severity did tend to increase downstream.

  19. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 76 FR 28715 - Endangered and Threatened Species: Designation of a Nonessential Experimental Population for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... Butte Dam. This new facility will protect fish in Lake Billy Chinook from being entrained into turbines... as ``to harass, harm, pursue, hunt, shoot, wound, trap, capture, or collect, or attempt to engage in... upstream of the Wind River, Washington, and the Hood River, Oregon (exclusive), up to, and including, the...

  1. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Gugliotta, Marcello; Saito, Yoshiki; Nguyen, Van Lap; Ta, Thi Kim Oanh; Nakashima, Rei; Tamura, Toru; Uehara, Katsuto; Katsuki, Kota; Yamamoto, Seiichiro

    2017-09-01

    The fluvial to marine transition zone (FMTZ) is the area of coastal rivers in which sedimentation is controlled by the interaction of fluvial and marine processes. This study examines the FMTZ of the Mekong River delta, along a total channel length of 660 km. Methods consist of collection and analysis of channel bed sediment samples, measurements of channel morphological parameters, and recognition of mangrove, molluscan, and diatom species. The process regime, salinity, morphological, and sedimentary trends recognized were used to define two main tracts for this FMTZ: an upstream, fluvial-dominated tract and a downstream, tide-dominated tract. In more detail, they allow the identification of four subzones, from upstream to downstream: 1) fluvial-dominated, tide-affected; 2) fluvial-dominated, tide-influenced; 3) tide-dominated, fluvial-influenced; and 4) tide-dominated, fluvial-affected. Tide-induced water-level changes affect the entire study area and extend into Cambodia. Measured salinity intrusion extends 15 km upstream of the river mouth during wet season, and 50 km during dry season. Brackish water species of mangroves, mollusks, and diatoms, however, occur landward of these limits, suggesting that highly diluted brackish water may reach 160 km upstream of the river mouth during the dry season. In the fluvial-dominated tract, channels are sinuous and show a seaward-deepening trend, whereas width is relatively constant. In the tide-dominated tract, channels are straight, and show seaward-widening and seaward-shallowing trends. Natural levees are present in the fluvial-dominated, tide-affected subzone, but are replaced by mangroves elsewhere along the FMTZ. In the fluvial-dominated tract, mud content is low, sand grain size fines seaward, and gravelly sand and sand are the dominant facies. In the tide-dominated tract, mud content is high, sand grain size is constant, recycled sand is common, and tidal rhythmites are the dominant facies. Mud pebbles are common in sediments throughout a large part of the FMTZ. These trends characterizing the FMTZ of the Mekong River delta seem to be present in other systems and likely represent a general FMTZ pattern. Nonetheless, minor differences may be observed between different types of systems, or because of differences in local conditions. The comprehensive description of trends and their mutual relationships along the FMTZ presented herein provides critical information that can form the basis of a general conceptual model and can help to better understand these complex zones.

  2. Potential disturbance interactions with a single IGV in an F109 turbofan engine

    NASA Astrophysics Data System (ADS)

    Kirk, Joel F.

    A common cause of aircraft engine failure is the high cycle fatigue of engine blades and stators. One of the primary causes of these failures is due to blade row interactions, which cause an aerodynamic excitation to be resonant with a mechanical natural frequency. Traditionally, the primary source of such aerodynamic excitations has been practically limited to viscous wakes from upstream components. However, more advanced designs require that blade rows be very highly loaded and closely spaced. This results in aerodynamic excitation from potential fields of down stream engine components, in addition to the known wake excitations. An experimental investigation of the potential field from the fan of a Honeywell F109 turbofan engine has been completed. The investigation included velocity measurements upstream of the fan, addition of an airfoil shaped probe upstream of the fan on which surface pressure measurements were acquired, and measurement of the velocity in the interaction region between the probe and the fan. This investigation sought to characterize the response on the upstream probe due to the fan potential field and the interaction between a viscous wake and the potential field; as such, all test conditions were for subsonic fan speeds. The results from the collected data show that fan-induced potential disturbances propagate upstream at acoustic velocities, to produce vane surface-pressure amplitudes as high as 40 percent Joel F. Kirk of the inlet, mean total pressure. Further, these fan-induced pressure amplitudes display large variations between the two vane surfaces. An argument is made that the structure of the pressure response is consistent with the presence of two distinct sources of unsteady forcing disturbances. The disturbances on the incoming-rotation-facing surface of the IGV propagated upstream at a different speed than those on the outgoing-rotation-facing surface, indicating that one originated from a rotating source and the other from a stationary source. An argument is made to suggest that the stationary source is due to the rotor blades cutting through the wake of the IGV.

  3. Streamflow and water-quality conditions, Wilsons Creek and James River, Springfield area, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1982-01-01

    A network of water-quality-monitoring stations was established upstream and downstream from the Southwest Wastewater-Treatment Plant on Wilsons Creek to monitor the effects of sewage effluent on water quality. Data indicate that 82 percent of the time the flow in Wilsons Creek upstream from the wastewater-treatment plant is less than the effluent discharged from the plant. On October 15, 1977, an advanced wastewater-treatment facility was put into operation. Of the four water-quality indicators measured at the monitoring stations (specific conductance, dissolved oxygen, pH, and water temperature), only dissolved oxygen showed improvement downstream from the plant. During urban runoff, the specific conductance momentarily increased and dissolved-oxygen concentration momentarily decreased in Wilsons Creek upstream from the plant. Urban runoff was found to have no long-term effects on specific conductance and dissolved oxygen downstream from the plant before or after the addition of the advanced wastewater-treatment facility. Data collected monthly from the James River showed that the dissolved-oxygen concentrations and the total nitrite plus nitrate nitrogen concentrations increased, whereas the dissolved-manganese concentrations decreased after the advanced wastewater-treatment facility became operational.

  4. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    NASA Astrophysics Data System (ADS)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as geothermal springs and groundwater influx from shallow aquifers. The importance of suspended particulate matter relative to THg and MMHg transport in the most contaminated stream reaches indicates that erosion control is likely to be a critical factor in successful remediation efforts in the Upper Putah Creek watershed.

  5. 40 CFR 1065.265 - Nonmethane cutter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...

  6. 40 CFR 1065.265 - Nonmethane cutter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...

  7. 40 CFR 1065.265 - Nonmethane cutter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Nonmethane cutter. 1065.265 Section 1065.265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... sample with purified air or oxygen (O2) upstream of the nonmethane cutter to optimize its performance...

  8. Lagrangian mass-flow investigations of inorganic contaminants in wastewater-impacted streams

    USGS Publications Warehouse

    Barber, L.B.; Antweiler, Ronald C.; Flynn, J.L.; Keefe, S.H.; Kolpin, D.W.; Roth, D.A.; Schnoebelen, D.J.; Taylor, Howard E.; Verplanck, P.L.

    2011-01-01

    Understanding the potential effects of increased reliance on wastewater treatment plant (WWTP) effluents to meet municipal, agricultural, and environmental flow requires an understanding of the complex chemical loading characteristics of the WWTPs and the assimilative capacity of receiving waters. Stream ecosystem effects are linked to proportions of WWTP effluent under low-flow conditions as well as the nature of the effluent chemical mixtures. This study quantifies the loading of 58 inorganic constituents (nutrients to rare earth elements) from WWTP discharges relative to upstream landscape-based sources. Stream assimilation capacity was evaluated by Lagrangian sampling, using flow velocities determined from tracer experiments to track the same parcel of water as it moved downstream. Boulder Creek, Colorado and Fourmile Creek, Iowa, representing two different geologic and hydrologic landscapes, were sampled under low-flow conditions in the summer and spring. One-half of the constituents had greater loads from the WWTP effluents than the upstream drainages, and once introduced into the streams, dilution was the predominant assimilation mechanism. Only ammonium and bismuth had significant decreases in mass load downstream from the WWTPs during all samplings. The link between hydrology and water chemistry inherent in Lagrangian sampling allows quantitative assessment of chemical fate across different landscapes. ?? 2011 American Chemical Society.

  9. Developmental toxicity of treated municipal wastewater effluent on Bombina orientalis (Amphibia: Anura) embryos.

    PubMed

    Park, Chan Jin; Ahn, Hyo Min; Cho, Seong Chan; Kim, Tae-Hoon; Oh, Jong-Min; Ahn, Hong Kyu; Chun, Seung-Hoon; Gye, Myung Chan

    2014-04-01

    Amphibian populations have been decreasing in urban freshwater systems in Korea. To elucidate the biological safety of treated wastewater effluent (TWE) in the Tancheon basin, the capital area of Korea, a 7-d-exposure Bombina orientalis embryo developmental toxicity assay was examined during the breeding season. In March, there were no significant differences in embryonic survival or malformation among the water samples. In July, following monsoon precipitation, embryonic lethality in TWE was significantly higher than in the upstream water sample. Malformation in TWE and TWE-mixed waters was significantly higher than in the control and upstream water samples. Tail muscle height of tadpoles also significantly decreased in TWE and TWE-mixed waters. Heavy metals were not detected in any samples. Total nitrogen, total phosphorous, and chemical oxygen demand in TWE markedly increased together with a decrease in dissolved oxygen in July. The increase in organic and inorganic loading following precipitation could have made TWE and TWE-mixed water not suitable for embryonic development. Though being managed based on physicochemical criteria, the water quality of TWE may not be sufficient to assure normal development of amphibian embryos. An amphibian developmental toxicity assay would be helpful for the water-quality management of TWE and urban freshwater systems in Korea. © 2014 SETAC.

  10. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    PubMed

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  12. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

  13. Rapid movement and instability of an invasive hybrid swarm

    USGS Publications Warehouse

    Glotzbecker, Gregory J.; Walters, David; Blum, Michael J.

    2016-01-01

    Unstable hybrid swarms that arise following the introduction of non-native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non-native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hotspot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.

  14. Impact of textile dyeing industries effluent on groundwater quality in Karur Amaravathi River basin, Tamil Nadu (India)--a field study.

    PubMed

    Rajamanickam, R; Nagan, S

    2010-10-01

    Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.

  15. Water-quality, discharge, and biologic data for streams and springs in the Highland Rim Escarpment of southeastern Bedford County, Tennessee

    USGS Publications Warehouse

    Hollyday, E.F.; Byl, T.D.

    1995-01-01

    From November 1994 through April 1995, streams and springs in 9 drainage basins were observed and sampled at 176 sites to obtain information on environmental quality near the Quail Hollow landfill, Bedford County, Tennessee. Reconnaissance data were collected to establish a regional pattern. Water samples from 26 seepage sites were analyzed to determine water-quality conditions. During the reconnaissance, conductivity ranged regionally from 17 to 617 microsiemens per centimeter. The greatest biologic diversity was in Bennett Branch, followed by Daniel Hollow, Prince, Powell and Renegar, County Line, and Anthony Branches, Hurricane Creek, and Anderton Branch, respectively. In general, conductivity was less than 50 microsiemens per centimeter at and upstream of the Chattanooga Shale but increased downstream to between 200 and 300 microsiemens per centimeter. Of the constituents and properties analyzed, only pH and four metals at six sites had values that were not within the limits set by the State of Tennessee for drinking water. Chloride and dissolved manganese concentrations were highest for a spring and a seep adjacent to the landfill. Scans indicated the presence of about 37 unidentified organic compounds at these same two sites.

  16. Microbial water quality during the northern migration of Sandhill Cranes (Grus canadensis) at the central Platte River, Nebraska

    USGS Publications Warehouse

    Moser, Matthew T.

    2014-01-01

    The central Platte River is an important resource in Nebraska. Its water flows among multiple channels and supports numerous beneficial uses such as drinking water, irrigation for agriculture, groundwater recharge, and recreational activities. The central Platte River valley is an important stopover for migratory waterfowl and cranes, such as the Whooping (Grus americana) and Sandhill Cranes (Grus canadensis), in their annual northward traversal of the Central Flyway. Waterfowl, cranes, and other migratory birds moving across international and intercontinental borders may provide long-range transportation for any microbial pathogen they harbor, particularly through the spread of feces. Samples were collected weekly in the study reach from three sites (upstream, middle, and downstream from the roosting locations) during the spring of 2009 and 2010. The samples were analyzed for avian influenza, Escherichia coli, Cryptosporidium, Giardia, Campylobacter, and Legionella. Analysis indicates that several types of fecal indicator bacteria and a range of viral, protozoan, and bacterial pathogens were present in Sandhill Crane excreta. These bacteria and pathogens were present at a significantly higher frequency and densities in water and sediments when the Sandhill Cranes were present, particularly during evening roosts within the Platte River environment.

  17. Speciation of trihalomethane mixtures for the Mississippi, Missouri, and Ohio Rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane formation potentials were determined for the chlorination of water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at 12 locations on the Mississippi from New Orleans, LA, to Minneapolis, MN, and on the Missouri and Ohio 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH and initial free-chlorine concentration. Chloroform concentrations decreased with distance downstream and approximately paralleled the decrease of the dissolved organic-carbon concentration. Bromide concentrations were 3.7-5.7 times higher for the Missouri and 1.4-1.6 times higher for the Ohio than for the Mississippi above their confluences, resulting in an overall increase of the bromide concentration with distance downstream. Variations of the concentrations of the brominated trihalomethanes with distance downstream approximately paralleled the variation of the bromide concentration. Concentrations of all four trihalomethanes increased as the pH increased. Concentrations of chloroform and bromodichloromethane increased slightly and the concentration of bromoform decreased as the initial free-chlorine concentration increased; the chlorodibromomethane concentration had little dependence on the free-chlorine concentration.

  18. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  19. The effect of residential and agricultural runoff on the microbiology of a Hawaiian ahupua'a.

    PubMed

    Frank, Kiana

    2005-01-01

    The objective of this project was to study the relationship between environmental runoff and the incidence of antibiotic-resistant microorganisms (ARMO) in freshwater streams. Five water systems along the windward coast of the island of O'ahu were evaluated. Samples were collected from sites upstream of residential or agricultural areas, throughout these areas, and at sites of entrance into oceans or bays. It was hypothesized that the incidence of ARMO would increase as the stream received runoff from residential and agricultural areas. The percentage of ARMO did not increase as the streams passed through residential or agricultural areas. Surprisingly, pristine sites, well upstream from residential or agricultural areas, contained bacteria resistant to at least one antibiotic. Areas most affected by runoff did not show a significant increase in the incidence of antibiotic-resistant organisms, suggesting that the incidence of antibiotic resistance is not simply a function of contamination with agricultural or residential runoff. The correlation of antibiotic resistance with heavy metal resistance was evaluated, because others (Fasim et al., 1999; Lazar et al., 2002; Nies, 1999) have shown that antibiotic and heavy metal resistance are each carried on extrachromosomal plasmids. The vast majority of ARMO were also resistant to concentrations of heavy metals reported in the sediments of indicator streams (Waihee, system III), suggesting that an antibiotic-resistant bacterium has a high probability of having dual resistance to a heavy metal. A 3.2-kb plasmid (pSTAMP) was isolated from a bacterium with dual antibiotic and heavy metal resistance. Further analysis of the plasmid is currently in progress.

  20. Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota

    USGS Publications Warehouse

    Ackerman, D.J.

    1980-01-01

    In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.

  1. Fish assemblages in a western Iowa stream modified by grade control structures

    USGS Publications Warehouse

    Litvan, M.E.; Pierce, C.L.; Stewart, T.W.; Larson, C.J.

    2008-01-01

    Over 400 riprap grade control structures (GCSs) have been built in streams of western Iowa to reduce erosion and protect bridges, roads, and farmland. In conjunction with a companion study evaluating fish passage over GCSs in Turkey Creek, we evaluated the differences in fish assemblage and habitat characteristics in reaches immediately downstream from GCSs (GCS sites) and reaches at least 1 km from any GCS (non-GCS sites). The GCS sites were characterized by greater proportions of pool habitat, maximum depths, fish biomass, and abundance of juvenile largemouth bass Micropterus salmoides than were non-GCS sites. Index of biotic integrity (IBI) scores were poor or fair (<43 on a 0-100 scale) and not significantly different between the GCS and non-GCS sites. Additionally, we investigated both the longitudinal changes in fish assemblages in this GCS-fragmented stream and the changes in fish assemblages after slope modifications of three GCSs to facilitate fish passage. Thirteen fish species were present throughout the study area, whereas another 15 species exhibited truncated distributions not extending to the most upstream sampling location. After modification of the GCSs, IBI scores increased at seven of nine sites (mean increase =4.6 points). Also, channel catfish Ictalurus punctatus were detected 7.3 km upstream at sites where, 2 years before GCS modification, they had been absent from collections. Given the number and distribution of GCSs in western Iowa streams, understanding the effects of these structures is vital to the conservation and management of fish assemblages in this and other regions where GCSs or similar structures are used. ?? Copyright by the American Fisheries Society 2008.

  2. Efficient method for assessing channel instability near bridges

    USGS Publications Warehouse

    Robinson, Bret A.; Thompson, R.E.

    1993-01-01

    Efficient methods for data collection and processing are required to complete channel-instability assessments at 5,600 bridge sites in Indiana at an affordable cost and within a reasonable time frame while maintaining the quality of the assessments. To provide this needed efficiency and quality control, a data-collection form was developed that specifies the data to be collected and the order of data collection. This form represents a modification of previous forms that grouped variables according to type rather than by order of collection. Assessments completed during two field seasons showed that greater efficiency was achieved by using a fill-in-the-blank form that organizes the data to be recorded in a specified order: in the vehicle, from the roadway, in the upstream channel, under the bridge, and in the downstream channel.

  3. Quantitative Infrared Image Analysis Of Simultaneous Upstream and Downstream Microgravity Flame Spread over Thermally-Thin Cellulose in Low Speed Forced Flow

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2013-01-01

    The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.

  4. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  5. Diatom assemblage responses to changing environment in the conspicuously eutrophic Kiuruvesi lake route, central-eastern Finland

    NASA Astrophysics Data System (ADS)

    Tammelin, Mira; Kauppila, Tommi

    2016-04-01

    Lakes and their water quality have been affected by anthropogenic actions for centuries. The most intensive changes have often occurred since the mid-19th century. Industrialization, modern agriculture, forest ditching and artificial lowering of water level are examples of these changes that have usually resulted in the deterioration of lake water quality. Many organisms, such as diatoms, are sensitive to these changes in their environmental conditions. Therefore, a marked species turnover is often seen between the pre and post human impact diatom assemblages. This turnover can be rapidly assessed simultaneously from many lakes by using multivariate methods and top-bottom sampling. Our study area consists of three adjacent lake routes in the grass cultivation and dairy production area of central-eastern Finland, where slash-and-burn cultivation and artificial water level lowering were common practice during the past centuries. The centermost Iisalmi lake route is particularly interesting because of the conspicuously eutrophic lakes in its Kiuruvesi subroute. We used the top-bottom approach to sample pre and post human impact samples from 47 lakes (50 sampling sites) located in the three lake routes. In addition, stratigraphic samples from the long cores of three lakes (one larger central basin and two small upstream lakes) in the Kiuruvesi subroute were studied in more detail. Multivariate methods were used to assess diatom assemblage change within the long cores and between the pre-disturbance and modern samples. The results indicate that most study lakes have undergone a marked shift in their diatom assemblages since the onset of human impact in the area. The lake routes are characterized by differing pre-impact diatom assemblages. However, human influence has reduced their natural variation. Similar diatom species are common in the modern samples of the heavily impacted lakes in all three lake routes. The detailed examination of the diatom assemblage turnover in the three Kiuruvesi route lakes portrays different trajectories in each lake. The central basin has changed less than the upstream lakes. Two of the lakes have assemblage change trajectories that suggest increased nutrients, electrical conductivity, and pH. Unexpectedly, one of the upstream lakes shows an opposite trajectory, which might result from lowering water depth and improved living conditions for benthic diatoms.

  6. Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015

    USGS Publications Warehouse

    Lucena, Zulimar; Lee, Michael T.

    2017-02-21

    The U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program, collected streamflow and water-quality data at USGS streamflow-gaging stations in the lower Trinity River watershed from May 2014 to December 2015 to characterize and improve the current understanding of the quantity and quality of freshwater inflow entering Galveston Bay from the Trinity River. Continuous streamflow records at four USGS streamflow-gaging stations were compared to quantify differences in streamflow magnitude between upstream and downstream reaches of the lower Trinity River. Water-quality conditions were characterized from discrete nutrient and sedi­ment samples collected over a range of hydrologic conditions at USGS streamflow-gaging station 08067252 Trinity River at Wallisville, Tex. (hereinafter referred to as the “Wallisville site”), approximately 4 river miles upstream from where the Trinity River enters Galveston Bay.Based on streamflow records, annual mean outflow from Livingston Dam into the lower Trinity River was 2,240 cubic feet per second (ft3/s) in 2014 and 22,400 ft3/s in 2015, the second lowest and the highest, respectively, during the entire period of record (1966–2015). During this study, only about 54 percent of the total volume measured at upstream sites was accounted for at the Wallisville site as the Trinity River enters Galveston Bay. This difference in water volumes between upstream sites and the Wallisville site indicates that at high flows a large part of the volume released from Lake Livingston does not reach Galveston Bay through the main channel of the Trinity River. These findings indicate that water likely flows into wetlands and water bodies surrounding the main channel of the Trinity River before reaching the Wallisville site and is being stored or discharged through other channels that flow directly into Galveston Bay.To characterize suspended-sediment concentrations and loads in Trinity River inflow to Galveston Bay, a regression model was developed to estimate suspended-sediment concentrations by using acoustic backscatter data as a surrogate. The model yielded an adjusted coefficient of determination value of 0.92 and a root mean square error of 1.65 milligrams per liter (mg/L). The mean absolute percentage error between measured and estimated suspended-sediment concentration was 35 percent. During this study, estimated suspended-sediment concentrations ranged from 2 to 701 mg/L, with a mean of 97 mg/L. Suspended-sediment concentrations varied in response to changes in discharge, with peak suspended-sediment concentrations occurring 1 to 2 days before the peak discharge for each event. The total suspended-sediment load at the Wallisville site during May 2014–December 2015 was approximately 2,200,000 tons, with a minimum monthly suspended-sediment load of 100 tons in October 2014 and a maximum monthly load of 441,000 tons in November 2015.Results from nutrient samples collected at the Wallisville site indicate that total nitrogen and total phosphorus concen­trations fluctuated at a similar rate, with the highest nutrient concentrations occurring during periods of high flow corresponding to releases from Lake Livingston. The mean concen­trations of total nitrogen and total phosphorus were approxi­mately 75 percent higher during high flow releases than during periods of low flow, overshadowing variations in nutrient concentrations caused by seasonality at the Wallisville site.Results from the study indicate nutrient delivery to Galveston Bay from the main channel of the Trinity River is likely controlled primarily by high-flow releases from Lake Livingston. For most samples collected at the Wallisville site, organic nitrogen was the predominant form of nitrogen; however, when discharge increased because of releases from Lake Livingston, the percentage of organic nitrogen typically decreased and the percentage of nitrate increased. The concentrations of total phosphorus also increased during high-flow events, likely as a result of suspended sediment within Lake Livingston releases and mobilization of sediment particles in the river channel and flood plain during these periods of high flow. The predominant source of phosphorous to Galveston Bay from the Trinity River is in particulate form closely tied to suspended-sediment concentrations. The changes in nutrient concentration and composition caused by releases from Lake Livingston during this study indicate the reservoir may play an important role in the delivery of nutrients into Galveston Bay. Further study is required to better understand the processes in Lake Livingston influencing the characteristics of nutrient and sediment inflow to Galveston Bay. With phosphorous concentrations correlated to suspended-sediment concentra­tions (coefficient of determination value of 0.75) and with the concentrations of nutrients changing as the discharge changes, the diversion of water and suspended sediment into surround­ing wetlands and channels outside of the main channel of the Trinity River may play a large role in regulating nutrient inputs into Galveston Bay.

  7. Investigation of water quality and aquatic-community structure in Village and Valley Creeks, City of Birmingham, Jefferson County, Alabama, 2000-01

    USGS Publications Warehouse

    McPherson, Ann K.; Abrahamsen, Thomas A.; Journey, Celeste A.

    2002-01-01

    The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of highly intensive residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham?Fivemile Creek and Little Cahaba River, both of which drain less-urbanized areas. Stream samples were analyzed for major ions, nutrients, fecal bacteria, trace and major elements, pesticides, and selected organic constituents. Bed-sediment and fish-tissue samples were analyzed for trace and major elements, pesticides, polychlorinated biphenyls, and additional organic compounds. Aquatic-community structure was evaluated by conducting one survey of the fish community and in-stream habitat and two surveys of the benthic-invertebrate community. Bed-sediment and fish-tissue samples, benthic-invertebrates, and habitat data were collected between June 2000 and October 2000 at six of the nine water-quality sites; fish communities were evaluated in April and May 2001 at the six sites where habitat and benthic-invertebrate data were collected. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. The structure of the aquatic communities, the physical condition of the fish, and the chemical analyses of fish tissue provided an indication of the cumulative effects of water quality on the aquatic biota. Water chemistry was similar at all sites, characterized by strong calcium-bicarbonate component and magnesium components. Median concentrations of total nitrogen and total phosphorus were highest at the headwaters of Valley Creek and lowest at the reference site on Fivemile Creek. In Village Creek, median concentrations of nitrite and ammonia increased in a downstream direction. In Valley Creek, median concentrations of nitrate, nitrite, ammonia, organic nitrogen, suspended phosphorus, and orthophosphate decreased in a downstream direction. Median concentrations of Escherichia coli and fecal coliform bacteria were highest at the most upstream site of Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of enterococci exceeded the U.S. Environmental Protection Agency criterion in 80 percent of the samples; concentrations of Escherichia coli exceeded the criterion in 56 percent of the samples. Concentrations of bacteria at the downstream sites on Village and Valley Creeks were elevated during high flow rather than low flow, indicating the presence of nonpoint sources. Surface-water samples were analyzed for chemical compounds that are commonly found in wastewater and urban runoff. The median number of wastewater indicators was highest at the most upstream site on Valley Creek and lowest at the reference site on Fivemile Creek. Concentrations of total recoverable cadmium, copper, lead, and zinc in surface water exceeded acute and chronic aquatic life criteria in up to 24 percent of the samples that were analyzed for trace and major elements. High concentrations of trace and major elements in the water column were detected most frequently during high flow, indicating the presence of nonpoint sources. Of the 24 pesticides detected in surface water, 17 were herbicides and 7 were insecticides. Atrazine, simazine, and prometon were the most commonly detected herbicides; diazinon, chlorpyrifos, and carbaryl were the most commonly detected insecticides. Concentrations of atrazine, carbaryl, chlorpyrifos, diazinon, and malathion periodically exceeded criteria for the protection of aquatic life. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment at the Village and Valley Creek sites t

  8. Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2017-12-19

    We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.

  9. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case, near the Wyoming-Montana border, and a decrease in another case, upstream of Tongue River Reservoir. Few significant differences were noted from upstream to downstream of Prairie Dog Creek, a major tributary to the Tongue River. Further study would be needed to confirm the observed patterns and choose areas to examine in greater detail.

  10. Modeled De Facto Reuse and Contaminants of Emerging Concern in Drinking Water Source Waters

    EPA Science Inventory

    De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial wat...

  11. Houston-Galveston Navigation Channels, Texas Project. Navigation Channel Sedimentation Study, Phase 2

    DTIC Science & Technology

    2008-07-01

    volume of the system is 64 L. The propeller pump is 2.6 m upstream from the bed sediment sample tray . Flows in the VOST are up to 1.54 m/s, generating...159 High Flow Water Year...160 Low Flow Water Year

  12. Cryptosporidium source tracking in the Potomac River watershed - MCEARD

    EPA Science Inventory

    To better characterize Cryptosporidium in the Potomac River watershed, a PCR-based genotyping tool was used to analyze 64 base-flow and 28 storm-flow samples from five sites within the watershed. These sites included two water treatment plant intakes as well as three upstream si...

  13. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    USGS Publications Warehouse

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  14. Present-day palynomorph deposits in an estuarine context: The case of the Loire Estuary

    NASA Astrophysics Data System (ADS)

    Ganne, A.; Leroyer, C.; Penaud, A.; Mojtahid, M.

    2016-12-01

    Estuaries are dynamic systems that collect terrestrial, aerial, fluvial, and marine inputs, including organic microfossils, which, when fossilized and observed on palynological slides, are also referred to as palynomorphs (pollen and non-pollen palynomorphs including dinoflagellate cysts or dinocysts). To understand these organic microfossil deposit arrangements across the Loire estuary, palynomorph counts were undertaken in 31 surface sediments collected across longitudinal and perpendicular transects of the Loire active riverbed, from the upper inner estuary to the river mouth. Main results suggest a large homogeneity of the pollen content throughout the entire upstream-downstream transect, with a dominance of arboreal taxa (Pinus, Quercus, Alnus) and Poaceae. Also, perpendicular transects across the channel show a great similarity between the muddy surface layers and the underlying consolidated clay layers. This is probably due to: i) homogeneity of the landscape at a regional scale (large catchment area of the Loire River), and ii) complex hydrodynamic processes involving strong mixing of the palynological signal. Furthermore, despite scarce woodlands in the regional landscape, arboreal pollen (especially Pinus and Quercus) represents > 60% of the total pollen percentages. This could be explained by several factors: i) generally higher arboreal pollen production and dispersion as compared to herbaceous taxa, ii) distant inputs from marine areas downstream and/or forested regions far upstream, and iii) differential selection or inheritance from underlying sediments. Differentiation between the outer and inner estuarine environments was furthermore possible using a ratio of terrestrial versus marine palynological indicators. Among the dinocyst assemblages (marine realm), the euryhaline species Lingulodinium machaerophorum predominates; this taxon being very sensitive to strong water column stratification. Also, total dinocyst concentration increased upstream, which may result from the tidal forcing pushing salinity upriver beneath outflowing river water, and thus signing the estuarine turbidity maximum influence within the Loire River.

  15. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the organization of reservoir management efforts. ?? Copyright by the American Fisheries Society 2008.

  16. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    USGS Publications Warehouse

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of core characteristics along the depth profile suggests that there has been regular sediment mixing and removal, as well as non-uniform sediment deposition with time. Estimated mean accretion rates based on the three methods of determination (two time markers for 137Cs, 210Pb) ranged from 0.22–0.35 centimeters per year, and approximately 70 percent of cores had less 137Cs than expected. Concentrations of sediment-associated elements generally were within reported reference ranges, and all agrichemicals analyzed were below detection limits. Results suggest that there does not appear to be widespread sediment accumulation in impoundments of the Souris River Basin refuges. In addition, there were no identifiable patterns among sedimentation rates from the upstream (Des Lacs, Upper Souris) to the downstream (J. Clark Salyer) refuges. There were, however, apparent upstream to downstream patterns of increased concentrations of some elements (for example, aluminum, boron, and vanadium) that may warrant further exploration. Future related monitoring and research efforts should focus on areas with high potential for sediment accumulation, such as upstream areas adjacent to dams, to identify potential sediment problems before they become too severe. Further, assessments of suspended sediments transported in the Des Lacs and Souris Rivers would augment interpretation of sedimentation data by identifying potential sediment sources and areas with the greatest potential for accumulation.

  17. Water quality in the Bear River Basin of Utah, Idaho, and Wyoming prior to and following snowmelt runoff in 2001

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, Lawrence E.

    2006-01-01

    Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.

  18. Spatial and temporal patterns of endocrine active chemicals in small streams indicate differential exposure to aquatic organisms

    USGS Publications Warehouse

    Lee, K.E.; Barber, L.B.; Schoenfuss, H.L.

    2014-01-01

    Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4-tert-octylphenol and 4-nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000-140,000 ng/l), followed by 4-nonlylphenol and 4-nonylphenolethoxylates (50-880 ng/l), 4-tert-octylphenol and 4-tert-octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1-54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.

  19. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    PubMed

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. An Upstream Truncation of the furA-katG Operon Confers High-Level Isoniazid Resistance in a Mycobacterium tuberculosis Clinical Isolate with No Known Resistance-Associated Mutations

    PubMed Central

    Yam, Wing Cheong; Zhang, Ying; Kao, Richard Y. T.

    2014-01-01

    Although the major causes of isoniazid (INH) resistance in Mycobacterium tuberculosis are confined to structural mutations in katG and promoter mutations in the mabA-inhA operon, a significant proportion of INH-resistant strains have unknown resistance mechanisms. Recently, we identified a high-level INH-resistant M. tuberculosis clinical isolate, GB005, with no known resistance-associated mutations. A comprehensive study was performed to investigate the molecular basis of drug resistance in this strain. Although no mutations were found throughout the katG and furA-katG intergenic region, the katG expression and the catalase activity were greatly diminished compared to those in H37Rv (P < 0.01). Northern blotting revealed that the katG transcript from the isolate was smaller than that of H37Rv. Sequencing analysis of furA and upstream genes discovered a 7.2-kb truncation extended from the 96th base preceding the initiation codon of katG. Complementation of the M. tuberculosis Δ(furA-katG) strain with katG and different portions of the truncated region identified a 134-bp upstream fragment of furA that was essential for full catalase activity and INH susceptibility in M. tuberculosis. The promoter activity of this fragment was also shown to be stronger than that of the furA-katG intergenic region (P < 0.01). Collectively, these findings demonstrate that deletion of the 134-bp furA upstream fragment is responsible for the reduction in katG expression, resulting in INH resistance in GB005. To our knowledge, this is the first report showing that deletion of the upstream region preceding the furA-katG operon causes high-level INH resistance in a clinical isolate of M. tuberculosis. PMID:25092698

  1. Geochemical and Morphologic Evolution of Soil-Covered Hillslopes in the Feather River Basin, California: Responses to Channel Incision

    NASA Astrophysics Data System (ADS)

    Weinman, B.; Yoo, K.; Mudd, S. M.; Hurst, M. D.; Mayer, K.; Maher, K.

    2009-12-01

    Tectonically driven changes in channel incision rates lead to changes in hillslope erosion rates that propagate upslope. In an effort to understand how these changes affect soil geochemistry, this study theoretically and empirically integrates sediment transport and chemical weathering. Here, we focus on a tributary basin of the Middle Folk Feather River (FR) in Sierra Nevada, California. This basin is adjusting to an increase in main stem channel incision that has resulted in rapidly eroding, steep hillslopes near the main stem channel and gentler, more slowly eroding slopes further upstream. To constrain how geomorphic signals (i.e., knickpoint) propagate upslope and affect soil geochemistry, soils were sampled in July 2009 along three hillslope transects within the FR basin: transect POMD (40% slope at 780m elevation), FTA (70% slope at 680m elevation), and BRC (90% slope at 630m elevation). To capture and bracket a coupled change in soil geochemistry upslope, transects were specifically chosen so that POMD is downstream of the knickpoint of the main channel, FTA in a transitional region, and BRC upstream of the knickpoint. Along each ~50 m transect, soil pits were dug <10 m apart of each other to depths of about 1m. CRN samples were collected from the upper saprolite and undisturbed B horizons to determine the soil production rates. For constraining soil mixing, sediment ages, and chemical weathering, OSL and geochemistry samples were collected every ~10 cm in the A, B, and saprolite horizons. Judging from the soil color, the abundances of pedogenic iron oxides systematically are greater in the less steep hillslopes. This is consistent with a preliminary view that the soils have briefer residence times in the steeper hillslopes, which have greater rates of channel incision at their lower boundaries. One contrast to our expectations, however, was that the soils were not consistently thicker in the gentler hillslopes, which presumably undergo reduced rates of soil erosion. Additionally, within each hillslope, soil thicknesses were largely constant, ~50-70 cm thick. Therefore, tree throw, which appears to be dominant soil production mechanism at the site, may be capable of buffering soil thickness against the variation of soil erosion rate. While we are still in the preliminary stages of the OSL and CRN work, transect profiles of major oxide elements Si, Al, Fe, Ca, Mg, Na, K, P, and Mn versus potentially immobile elements such as Zr and Ti in the soils are used to infer how channel incision affects soil geochemistry in the three hillslopes. In the future, these results will be coupled with LiDAR, OSL, CRN, and pore-water chemistry work for a more holistic view of how the morphology and geochemistry of hillslopes evolve together in their responses to tectonic forcing.

  2. 8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment

    NASA Astrophysics Data System (ADS)

    Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.

    2017-02-01

    SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.

  3. Concentrations and transport of atrazine in the Delaware River-Perry Lake system, northeast Kansas, July 1993 through September 1995

    USGS Publications Warehouse

    Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.

    1996-01-01

    A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and northeastern parts of the Delaware River Basin had the largest monthly and annual mean atrazine concentrations. Time- weighted, annual mean atrazine concentrations did not exceed the MCL in water from any sampling site for either the 1993 or 1994 crop years (April-March); however, concentrations were during 1994 than during 1993. Time-weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 0.27 to 1.5 ug/L and from 0.36 to 2.8 ug/L during the 1994 crop year. Furthermore, concentrations in samples from the outflow of Perry Lake were larger during the first 6 months of the 1995 crop year than during the previous year. Flow-weighted, annual mean atrazine concentrations were larger than time-weighted, annual mean concentrations in water from all sampling sites upstream of Perry Lake, and samples from several sites had concentrations were substantially larger than the MCL. This difference explained why time-weighted, annual mean concentrations in the outflow of Perry Lake were larger than corresponding time-weighted concentrations in water from sampling sites upstream of Perry Lake. Flow- weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 1.0 to 4.4 ug/L and from 1.0 to 8.9 ug/L during the 1994 crop year. Statistically significant linear-regression equations were identified relating the percentage of subbasin in cropland to time- and flow-weighted, average annual mean atrazine concentrations. The relations indicate that time-weighted, average annual mean atrazine concentrations may not exceed the MCL in water from subbasins with at least about 70-percent cropland. However, flow-weighted, average annual mean atrazine concentrations may exceed the MCL when the percentage of cropland is greater than about 40 percent. Approximately 90 percent of the annual atrazine load is transport from May through July. Atrazine loads and yields were larger during the 1993 cro

  4. Development and implementation of a regression model for predicting recreational water quality in the Cuyahoga River, Cuyahoga Valley National Park, Ohio 2009-11

    USGS Publications Warehouse

    Brady, Amie M.G.; Plona, Meg B.

    2012-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) is at times impaired for recreational use due to elevated concentrations of Escherichia coli (E. coli), a fecal-indicator bacterium. During the recreational seasons of mid-May through September during 2009–11, samples were collected 4 days per week and analyzed for E. coli concentrations at two sites within CVNP. Other water-quality and environ-mental data, including turbidity, rainfall, and streamflow, were measured and (or) tabulated for analysis. Regression models developed to predict recreational water quality in the river were implemented during the recreational seasons of 2009–11 for one site within CVNP–Jaite. For the 2009 and 2010 seasons, the regression models were better at predicting exceedances of Ohio's single-sample standard for primary-contact recreation compared to the traditional method of using the previous day's E. coli concentration. During 2009, the regression model was based on data collected during 2005 through 2008, excluding available 2004 data. The resulting model for 2009 did not perform as well as expected (based on the calibration data set) and tended to overestimate concentrations (correct responses at 69 percent). During 2010, the regression model was based on data collected during 2004 through 2009, including all of the available data. The 2010 model performed well, correctly predicting 89 percent of the samples above or below the single-sample standard, even though the predictions tended to be lower than actual sample concentrations. During 2011, the regression model was based on data collected during 2004 through 2010 and tended to overestimate concentrations. The 2011 model did not perform as well as the traditional method or as expected, based on the calibration dataset (correct responses at 56 percent). At a second site—Lock 29, approximately 5 river miles upstream from Jaite, a regression model based on data collected at the site during the recreational seasons of 2008–10 also did not perform as well as the traditional method or as well as expected (correct responses at 60 percent). Above normal precipitation in the region and a delayed start to the 2011 sampling season (sampling began mid-June) may have affected how well the 2011 models performed. With these new data, however, updated regression models may be better able to predict recreational water quality conditions due to the increased amount of diverse water quality conditions included in the calibration data. Daily recreational water-quality predictions for Jaite were made available on the Ohio Nowcast Web site at www.ohionowcast.info. Other public outreach included signage at trailheads in the park, articles in the park's quarterly-published schedule of events and volunteer newsletters. A U.S. Geological Survey Fact Sheet was also published to bring attention to water-quality issues in the park.

  5. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to be most useful for low streamflow simulations. The Ardmore BLTM/QUAL2E model was calibrated and verified with water-quality data from nine sites where two sets of five samples were collected. The streamflow during the water-quality sampling in Caddo Creek at site 7 ranged from 8.4 to 20 cubic feet per second, of which about 5.0 to 9.7 cubic feet per second was contributed by Sand Creek. The model simulates the fate and transport of 10 water-quality constituents. The model was verified by running it using data that were not used in calibration; only phytoplankton were not verified.Measured and simulated concentrations of dissolved oxygen exhibited a marked daily pattern that was attributable to waste loading and algal activity. Dissolved-oxygen measurements during this study and simulated dissolved-oxygen concentrations using the Ardmore Water-Quality Model, for the conditions of this study, illustrate that the dissolved-oxygen sag curve caused by the upstream wastewater discharges is confined to Sand Creek.

  6. Adequacy of Nasqan data to describe areal and temporal variability of water quality of the San Juan River Drainage basin upstream from Shiprock New Mexico

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.

    1987-01-01

    Analyses indicate that water quality in the San Juan River drainage basin upstream from Shiprock, New Mexico, is quite variable from station to station. Analyses are based on water quality data from the U.S. Geological Survey WATSTORE files and the New Mexico Environmental Improvement Division 's files. In the northeastern part of the basin, most streams are calcium-bicarbonate waters. In the northwestern and southern part of the basin, the streams are calcium-sulfate and sodium-sulfate waters. Geology, climate, and land use and water use affect the water quality. Statistical analysis shows that streamflow, suspended-sediment, dissolved-iron, dissolved-orthophosphate-phosphorus, dissolved-sodium, dissolved-sulfate, and dissolved-manganese concentrations, specific conductance, and pH are highly variable among most stations. Dissolved-radium-226 concentration is the least variable among stations. A trend in one or more water quality constituents for the time period, October 1, 1973, through September 30, 1981, was detected at 15 out of 36 stations tested. The NASQAN stations Animas River at Farmington and San Juan River at Shiprock, New Mexico, record large volumes of flow that represent an integration of the flow from many upstream tributaries. The data collected do not represent what is occurring at specific points upstream in the basin, but do provide accurate information on how water quality is changing over time at the station location. A water quality, streamflow model would be necessary to predict accurately what is occurring simultaneously in the entire basin. (USGS)

  7. Mapping the Interactions between Shocks and Mixing Layers in a 3-Stream Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Lewalle, Jacques; Ruscher, Christopher; Kan, Pinqing; Tenney, Andrew; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Pressure is obtained from an LES calculation of the supersonic jet (Ma1 = 1 . 6) issuing from a rectangular nozzle in a low-subsonic co-flow; a tertiary flow, also rectangular with Ma3 = 1 insulates the primary jet from an aft-deck plate. The developing jet exhibits complex three-dimensional interactions between oblique shocks, multiple mixing layers and corner vortices, which collectively act as a skeleton for the flow. Our study is based on several plane sections through the pressure field, with short signals (0.1 s duration at 80 kHz sampling rate). Using wavelet-based band-pass filtering and cross-correlations, we map the directions of propagation of information among the various ``bones'' in the skeleton. In particular, we identify upstream propagation in some frequency bands, 3-dimensional interactions between the various shear layers, and several key bones from which the pressure signals, when taken as reference, provide dramatic phase-locking for parts of the skeleton. We acknowledge the support of AFRL through an SBIR grant.

  8. Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savanna.

    PubMed

    Brasil, L S; Juen, L; Batista, J D; Pavan, M G; Cabette, H S R

    2014-10-01

    We demonstrate that the distribution of the functional feeding groups of aquatic insects is related to hierarchical patch dynamics. Patches are sites with unique environmental and functional characteristics that are discontinuously distributed in time and space within a lotic system. This distribution predicts that the occurrence of species will be based predominantly on their environmental requirements. We sampled three streams within the same drainage basin in the Brazilian Cerrado savanna, focusing on waterfalls and associated habitats (upstream, downstream), representing different functional zones. We collected 2,636 specimens representing six functional feeding groups (FFGs): brushers, collector-gatherers, collector-filterers, shredders, predators, and scrapers. The frequency of occurrence of these groups varied significantly among environments. This variation appeared to be related to the distinct characteristics of the different habitat patches, which led us to infer that the hierarchical patch dynamics model can best explain the distribution of functional feeding groups in minor lotic environments, such as waterfalls.

  9. Settling velocity of particulate pollutants from combined sewer wet weather discharges.

    PubMed

    Gromaire, M C; Kafi-Benyahia, M; Gasperi, J; Saad, M; Moilleron, R; Chebbo, G

    2008-01-01

    Settling velocities of TSS and of particulate pollutants (COP, PDCO, PTKN, PCu, PPb, PZn, PPAH) measured on a wide range of wet weather flow (WWF) samples collected at different levels of the Parisian combined sewer system are reported. The recorded V30 (0.01 to 0.1 mm s(-1)) and V50 (0.09 to 0.6 mm s(-1)) values exceed by a factor 10 those of dry weather sewage and also exceed the values measured for pavement runoff. These values lie however often below the 0.28 mm s(-1) reference value considered in France for the design of WWF settling facilities. A decrease in settleability is observed between a small upstream catchment and larger scaled downstream catchments. The settling behaviour of particulate pollutants varies depending on the considered parameter and can differ significantly from the TSS behaviour, due to a non homogeneous distribution of micropolluants over the different classes of particles. PZn and PTKN appear far less settleable than TSS, whereas PPAH show higher settleability. IWA Publishing 2008.

  10. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China.

    PubMed

    Geng, Junjie; Wang, Yiping; Luo, Hanjin

    2015-12-30

    Riverine samples were collected at various locations in the Pearl River Delta (PRD) to determine the concentrations of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, and Pb) in time and space and to estimate the fluxes of heavy metals to the coastal waters off South China. Most of the elements exhibit clear temporal and spatial trends. Principal component analysis shows that surface erosion is the major factor affecting metal concentrations in particulates in the PRD. Natural geology is an important source of these heavy metals. The annual fluxes of Cr, Ni, Cu, Mn, Zn, Cd, and Pb in upstream and downstream were 445, 256, 241, 3293, 1279, 12, and 317 t/year and 1823, 1144, 1786, 15,634, 6183, 74, and 2017 t/year, respectively. A comparison indicated that the annual fluxes of Mn accounted for 1.3% of the global river fluxes, whereas other elements contribute <1%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97

    USGS Publications Warehouse

    Sarver, K.M.; Steiner, B.C.

    1998-01-01

    Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.

  12. Geochemistry and exploration criteria for epithermal cinnabar and stibnite vein deposits in the Kuskokwim River region, southwestern Alaska

    USGS Publications Warehouse

    Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.

    1991-01-01

    Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.

  13. [Temporal-spatial difference of ecotoxicity and heavy metals pollution in Shima catchment, Dongguan].

    PubMed

    Gao, Lei; Chen, Jian-Yao; Ke, Zhi-Ting; Wang, Jiang; Yang, Xue-Yun; Shimizu, Yuta

    2013-08-01

    Shima River, a tributary of Dongjiang River, located in Dongguan City of Guangdong Province, has been seriously polluted in the last 30 years. Water samples were collected from the river and the aquifer and the soil samples were collected as well in the wet (June) and dry (February) season to investigate the temporal and spatial variations of water quality in terms of heavy metal concentrations and inhibition rate of the luminescent bacterium (Vibrio fischeri, LUMIStox 300). Heavy metal concentrations and inhibition rate in river water were found decreasing from the upstream to the downstream, with metal concentrations exceeding the national surface water quality standard (Class I) for all samples and a highest inhibition of 38.34% (equivalent to moderate toxic) at R1 in the dry season. Significant difference (P < 0.01 or P < 0.001) in the wet and dry season was identified in both metal concentrations and inhibition rate, except at R11, which showed a inhibition rate of 15.56%, higher than those in all other samples in the wet season. Inhibition rate at GW4, GW5 and GW6 showed significant difference (P < 0.01 or P < 0.001) in the two periods, and the highest inhibition rate (15.88%) at GW6 in the dry season was considered as low in toxicity. The positive correlations (P < 0.05 or P < 0.01) between heavy metals (Zn, Fe, Mn and Ni) and inhibition rate were identified with correlation coefficients of 0.452, 0.567, 0.726 and 0.475, respectively. Heavy metal pollution of soil (Cu, Ni and Zn) near the river was due to the interaction between the river and the groundwater. Cd was heavily accumulated in the soil, while elevated concentrations of Fe and Mn were found in the river and the groundwater was heavily polluted by Ni.

  14. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Dolores Project area, southwestern Colorado and southeastern Utah, 1990-91

    USGS Publications Warehouse

    Butler, D.L.; Krueger, R.P.; Osmundson, B.C.; Jensen, E.G.

    1995-01-01

    Water, bottom-sediment, and biota samples were collected in 1990-91 to identify water-quality problems associated with irrigation drainage in the Dolores Project area. Concentrations of cadmium, mercury, and selenium in some water samples exceeded aquatic-life criteria. Selenium was associated with irrigaton drainage from the Dolores Project, but other trace elements may be transported into the area in the irrigation water supply. Selenium concentrations exceeded the chronic aquatic-life criterion in water samples from lower McElmo Creek and Navajo Wash, which drain the Montezuma Valley, from newly irrigated areas, and from the Mancos River. The maximum selenium con- centration in water was 88 micrograms per liter from Navajo Wash. Concentrations of herbicides in water were less than concentrations harmful to aquatic life. Selenium concentrations in four bottom-sediment samples exceeded the baseline concentrations for soils in the Western United States. The largest selenium concentrations in biota were in samples from Navajo Wash, from newly irrigated areas north of the Montezuma Valley, and from the Mancos River basin. Selenium concentrations in aquatic-invertebrate samples from the newly irrigated areas exceeded a guideline for food items consumed by fish and wildlife. Selenium concen- trations in whole-body suckers were larger in the San Juan River downstream from the Dolores Project than upstream from the project at Four Corners. Selenium concentrations in fathead minnow samples from two sites were at adverse-effect levels. Mercury concentrations in warm-water game fish in reservoirs in the study area may be of concern to human health. Some concentrations of other trace elements exceeded background concentrations, but the concentrations were not toxicologically significant or the toxicologic significance is not known.

  15. Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking

    USGS Publications Warehouse

    Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  16. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in theenvironment; however, waterfowl were reproducing at the two ponds. Three tributary streams of Mc Elmo Creek that drain irrigated areas of the Montezuma Valley south of the creek were sampled in 1994. Mud Creek probably is the largest source of selenium to Mc Elmo Creek. Most biota samples from Mud Creek had elevated selenium concentrations when compared to guidelines for dietary items and freshwater fish. Selenium concentrations in water samples collected in the Mancos River Basin upstream from Navajo Wash, which includes the Mancos Project, ranged from less than 1 to 10 micrograms per liter. Mud Creek contributed about 74 percent of the selenium load to the upper Mancos River in March 1994.Selenium concentrations were much higher in Navajo Wash; a sample collected in March had 97 micrograms per liter of selenium. Bottom-sediment samples from two ponds in the Mancos Projectexceeded the concentration of concern of 4 micrograms per gram. The highest selenium concentrations in biota samples from streams in the Mancos River Basin were for samples from Navajo Wash. Mostconcentrations in biota in the upper Mancos River Basin were less than guidelines. Mean selenium concentrations in eggs from aquatic birds collected at three ponds in the Mancos Project slightly exceed the guideline associated with reduced hatchability.Five bird livers had a mean selenium concentration of 32.6 micrograms per gram dry weight, whichslightly exceeded the mean concentration of 30 micrograms per gram dry weight that is associated with reproductive impairment. Two of the pondshad a high selenium hazard rating; however, mallard reproduction was observed in 1994 at one of the ponds that had a high selenium-hazard rating.

  17. Fish entrainment rates through towboat propellers in the Upper Mississippi and Illinois rivers

    USGS Publications Warehouse

    Jack, Killgore K.; Miranda, L.E.; Murphy, C.E.; Wolff, D.M.; Hoover, J.J.; Keevin, T.M.; Maynord, S.T.; Cornish, M.A.

    2011-01-01

    Aspecially designed netwas used to study fish entrainment and injury through towboat propellers in 13 pools of the Upper Mississippi and Illinois rivers. The net was attached to the stern of a 48.8-m-long towboat with twin propellers (in Kort propulsion nozzles), and sampling typically took place while the towboat pushed 15 loaded barges upstream at a time. In total, 254 entrainment samples over 894 km of the 13 study pools were collected. The sampling efforts produced 16,005 fish representing 15 families and at least 44 species; fish ranged in total length from 3 to 123 cm, but only 12.5-cm or longer fish were analyzed because smaller fish could escape through the mesh of the trawl. Clupeidae (68% of total catch) and Sciaenidae (21%) were the dominant families. We detected no effects of towboat operation variables (speed and engine [i.e., propeller] revolutions per minute [RPM]) on entrainment rate (i.e., fish/km), but entrainment rate showed a wedge-shaped distribution relative to hydraulic and geomorphic characteristics of the channel. Entrainment rate was low (30 fish/km). Although total entrainment rate was not related to engine RPM, the probability of being struck by a propeller increased with fish length and engine RPM. Limits on engine RPM in narrow, shallow, and sluggish reaches could reduce entrainment impact, particularly for large-bodied fish. ?? American Fisheries Society 2011.

  18. Assessing overland sediment transport to the Apalachicola River/Bay in Florida

    NASA Astrophysics Data System (ADS)

    Smar, D. E.; Hagen, S.; Daranpob, A.; Passeri, D.

    2011-12-01

    An ongoing study in Franklin County, Florida is focused on classifying the mechanisms of sediment transport from the overland areas to eventual deposition in the Apalachicola River and surrounding estuaries. Sediment cores and water column samples were collected at various locations along the Apalachicola River, its tributaries, and distributaries over a two-week period during the wet season. A preliminary particle size distribution analysis of the sediment cores and water column samples demonstrates decreasing particle sizes as the river and wetlands progress toward the ocean. Daily water samples from the mouth of the Apalachicola River and two distributaries reveal fluctuating total suspended solid (TSS) concentrations. To understand these deviations, flow rate and water level at each location is inspected. Because the nearest USGS gage is approximately 16 miles upstream from these sites, investigation of the hydrodynamic influences of sediment transport is conducted by developing a hydrodynamic model simulating river flow and tides in the Apalachicola River and bay system. With spatially accurate flow rates and water levels, an attempt can be made to correlate flow rate with fluctuating TSS concentrations. Precipitation events during the sampling period also support spikes in the TSS concentrations as expected. Assessing sediment transport to the river/bay system will lead to a better understanding of the regression or accretion of the river's alluvial fan and the marsh platform. High flow periods following extreme rain events (which are expected to intensify under global climate change) transport more sediment downstream, however, the interaction with tidal and sea level effects are still being analyzed. With rising sea levels, it is expected that the alluvial fan will recede and wetland areas may migrate inland gradually transforming existing dry lands such as pine forests into new wetland regions. Future work will include an analysis of the tidal cycle during the sampling period to more accurately classify fluctuation of TSS concentration in the downstream samples. The data collection process and laboratory analysis will also be repeated in the dry season, and subsequent years to observe temporal trends.

  19. Algal Nitrate Assimilation and Productivity in an Urban, Concrete-Lined Stream Dominated by Tertiary Treated Municipal Waste-Water

    NASA Astrophysics Data System (ADS)

    Kent, R. H.; Burton, C. A.

    2001-12-01

    This study examined the extent and variabiltity of nitrate loss in a 2.85 km reach of Cucamonga Creek, which is concrete-lined and dominated by treated municipal waste-water. Primary production was measured to determine if the loss could be attributed to algal assimilation. Samples for nitrite plus nitrate analysis were collected at the top and bottom of the study reach every hour throughout the 24-hour sampling period; samples for analyses of other parameters were collected less frequently. Water temperature, dissolved oxygen (DO), pH and specific conductance were monitored continuously throughout the sampling period using in-stream probes. During the two weeks prior to the study, periphyton samples were collected periodically at four stations along the reach for standing crop measurements and a growth rate time-series using Chlorophyll A and ash-free-dry mass. Water samples from the upstream station were compared to those taken an hour later (the approximate travel time) at the downstream station. Nitrate concentrations were lower at the downstream station in 21 of 25 of the paired samples, indicating nearly continuous loss in the reach. The total loss of NO3 for the day was about 0.71 g as N/m2. Most of the loss occurred during daylight hours, with the peak occurring at midday. During the night, CO2 concentrations were relatively constant at about 25 mg/L. Concentrations began to decline at sunrise, and declined to 0 mg/L at the lower site after midday. Peak nitrate loss occurred at about the same time as the CO2 concentration was at its minimum. DO declined slightly during the night, began to rise at sunrise, reached a peak during midday, and declined in late afternoon through evening; pH followed a similar pattern. Net primary productivity, as measured by the differences in DO between the two sites was 13 g O2/m2 for the day. Using the Redfield ratio, the predicted nitrate assimilation is about 0.66 g NO3 as N/m2. The continuous loss of nitrate between the two sites; the comparability between the observed loss in nitrate and that predicted using the Redfield ratio; and the timing of changes in nitrate loss, DO, pH and CO2 indicate that nitrate loss in this concrete-lined channel was primarily due to algal assimilation. The timing of the peak nitrate loss relative to the depletion of CO2 suggests that CO2 may be limiting photosynthesis, and therefore assimilation of nitrate by algae.

  20. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    PubMed

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  1. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2017-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish ( Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  2. Barrage fishponds: Reduction of pesticide concentration peaks and associated risk of adverse ecological effects in headwater streams.

    PubMed

    Gaillard, Juliette; Thomas, Marielle; Iuretig, Alain; Pallez, Christelle; Feidt, Cyril; Dauchy, Xavier; Banas, Damien

    2016-03-15

    Constructed wetlands have been suggested as pesticide risk mitigation measures. Yet, in many agricultural areas, ponds or shallow lakes are already present and may contribute to the control of non-point source contamination by pesticides. In order to test this hypothesis, we investigated the influence of extensively managed barrage fishponds (n = 3) on the dissolved concentrations of 100 pesticides in headwater streams over the course of a year. Among the 100 pesticides, 50 different substances were detected upstream and 48 downstream. Highest measured concentration upstream was 26.5 μg/L (2-methyl-4-chlorophenoxyacetic acid, MCPA) and 5.19 μg/L (isoproturon) downstream. Fishponds were found to reduce peak exposure levels as high pesticide concentrations (defined here as ≥ 1 μg/L) generally decreased by more than 90% between upstream and downstream sampling sites. The measured concentrations in the investigated streams were compared to laboratory toxicity data for standard test organisms (algae, invertebrates and fish) using the toxic unit approach. When considering the threshold levels set by the European Union within the first tier risk assessment procedure for pesticide registration (commission regulation (EU) N° 546/2011), regulatory threshold exceedances were observed for 22 pesticides upstream from fishponds and for 9 pesticides downstream. Therefore, the investigated barrage fishponds contributed to the reduction of pesticide peak concentrations and potential risk of adverse effects for downstream ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. New crayfish species records from the Sipsey Fork drainage, including Lewis Smith Reservoir (Alabama, USA): Native or introduced species?

    Treesearch

    Susan B. Adams; Craig Roghair; Colin Krause; Mel Warren; J. Allison Cochran; Andy Dolloff; John Moran; Stuart W. McGregor; Guenter A. Schuester; Michael Gangloff; Dennis R. DeVries; Michael R. Kendrick; G. Lee Grove; Russell A. Wright

    2015-01-01

    As part of a study of aquatic faunal community changes along riverine-lacustrine transition zones upstream of Lewis Smith Reservoir in northwest Alabama, USA, we collected crayfish from 60 sites in the Sipsey Fork, Brushy Creek, and selected tributaries (Black Warrior River system). After finding two unexpected and possibly-introduced crayfish species, we expanded our...

  4. Contactor/filter improvements

    DOEpatents

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  5. Leaf Litter Decomposition as a Functional Assessment of a Natural Stream Channel Design Project

    NASA Astrophysics Data System (ADS)

    Gentry, A.; Word, D.; Carreiro, M.; Jack, J.

    2005-05-01

    In October 2003, a 965m reach of Wilson Creek (Bernheim Research Forest, Kentucky, USA) was relocated, and meanders and riffle-pool sequences were restored, providing a unique opportunity to measure the re-establishment of post-restoration stream functions. Leaf litter bags were placed across riffles in the restored reach, in an upstream reference site and in two reference streams. Bags were collected for nine months, and mass loss, N dynamics and fungal ergosterol were measured. Daily mass loss rates in the restored and reference riffles in Wilson Creek were faster (k= -0.00759 and k= -0.00855, respectively) than those of the two reference streams (k= -0.00511 and k= -0.00308). This is equivalent to litter mean residence times of 132 days for the restored reach in Wilson, 117 days in the upstream reference site, and 196 and 325 days for the reference streams. It appears that the decay rate in the restored reach is similar to the upstream portion of Wilson Creek, indicating rapid mass loss recovery in the restored reach. We also determined that same-stream reference sites are important for evaluating the restoration of stream functions, because of high decay rate variation among nearby streams within the same watershed.

  6. Parasitism of the isopod Artystone trysibia in the fish Chaetostoma dermorhynchum from the Tena River (Amazonian region, Ecuador).

    PubMed

    Junoy, Juan

    2016-01-01

    The isopod Artystone trysibia Schioedte, 1866 is described by using a collection of specimens that were found parasitizing loricariid fish Chaetostoma dermorhynchum Boulenger, 1887 in the Tena River (Napo province, Ecuador, Amazonian region). Additionally to freshly collected specimens, complementary data of the parasite was obtained from preserved fishes at Ecuadorian museums. This is the first record of A. trysibia in Ecuador, and the most upstream location for the species. The new host fish, Chaetostoma dermorhynchum, is used locally as food. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Collection of an adult gizzard shad (Dorosoma cepedianum) from the San Juan River, Utah

    USGS Publications Warehouse

    Mueller, G.A.; Brooks, J.L.

    2004-01-01

    We collected an adult gizzard shad (Dorosoma cepedianum) from the San Juan River just upstream of Lake Powell, Utah, on 6 June 2000. This represents the first documented occurrence of the species in the Colorado River or its tributaries. The adult male (35 cm TL, 470 g) was taken by trammel net from a small (0.5 ha), shallow (<2 m) backwater along with several other fish that included 3 endangered razorback sucker (Xyrauchen texanus). The specimen is stored at the Museum of Southwestern Biology, University of New Mexico, Albuquerque (curation number 49122).

  8. [Environment spatial distribution of mercury pollution in Songhua River upstream gold mining areas].

    PubMed

    Zou, Ting-Ting; Wang, Ning; Zhang, Gang; Zhao, Dan-Dan

    2010-09-01

    Using Zeeman mercury spectrometer RA915+ monitoring the total gaseous mercury concentration were collected from gold mining area in Huadian, in the upper reaches of the Songhua River, during summer and autumn of 2008, where we simultaneously collected samples of air, water, sediment and soil. The research is focused on analyzing of the spatial and temporal distribution characteristics of atmospheric mercury pollution and the correlation with other environmental factors. The results show that: the concentration of atmospheric mercury in summer is higher than that in autumn and in the evening is higher than at noon, and it present a gradual decay with the distance to the gold mining area as the center point increasing. The distribution rule of mercury pollution of environmental factors in the gold mining area is: in sediment > in soil > in plant > in water, the characteristics of mercury pollution distribution in plant is: root > stem and leaf, and the content of mercury in plant in autumn is commonly higher than that in summer. This is thought due to the accumulation of pollutant element from soil during the growth of plant. The atmospheric mercury has a significant correlation with the root of plant, respectively 0.83 in summer and 0.97 in autumn.

  9. Assessment of water quality, benthic invertebrates, and periphyton in the Threemile Creek basin, Mobile, Alabama, 1999-2003

    USGS Publications Warehouse

    McPherson, Ann K.; Gill, Amy C.; Moreland, Richard S.

    2005-01-01

    The U.S. Geological Survey conducted a 4-year investigation of water quality and aquatic-community structure in Threemile Creek, an urban stream that drains residential areas in Mobile, Alabama. Water-quality samples were collected between March 2000 and September 2003 at four sites on Threemile Creek, and between March 2000 and October 2001 at two tributary sites that drain heavily urbanized areas in the watershed. Stream samples were analyzed for major ions, nutrients, fecal-indicator bacteria, and selected organic wastewater compounds. Continuous measurements of dissolved-oxygen concentrations, water temperature, specific conductance, and turbidity were recorded at three sites on Threemile Creek during 1999?2003. Aquatic-community structure was evaluated by conducting one survey of the benthic invertebrate community and multiple surveys of the algal community (periphyton). Benthic invertebrate samples were collected in July 2000 at four sites on Threemile Creek; periphyton samples were collected at four sites on Threemile Creek and the two tributary sites during 2000 ?2003. The occurrence and distribution of chemical constituents in the water column provided an initial assessment of water quality in the streams; the structure of the benthic invertebrate and algal communities provided an indication of the cumulative effects of water quality on the aquatic biota. Information contained in this report can be used by planners and resource managers in the evaluation of proposed total maximum daily loads and other restoration efforts that may be implemented on Threemile Creek. The three most upstream sites on Threemile Creek had similar water chemistry, characterized by a strong calcium-bicarbonate component; the most downstream site on Threemile Creek was affected by tidal fluctuations and mixing from Mobile Bay and had a strong sodium-chloride component. The water chemistry at the tributary site on Center Street was characterized by a strong sodium-chloride component; the water chemistry at the second tributary site, Toulmins Spring Branch, was characterized by a strong calcium component without a dominant anionic species. The ratios of sodium to chloride at the tributary at Center Street were higher than typical values for seawater, indicating that sources other than seawater (such as leaking or overflowing sewer systems or industrial discharge) likely are contributors to the increased levels of sodium and chloride. Concentrations of fluoride and boron also were elevated at this site, indicating possible anthropogenic sources. Dissolved-oxygen concentrations were not always within levels established by the Alabama Department of Environmental Management; continuous monitors recorded dissolved-oxygen concentrations that were repeatedly less than the minimum criterion (3.0 milligrams per liter) at the most downstream site on Threemile Creek. Water temperature exceeded the recommended criterion (32.2 degrees Celsius) at five of six sites in the Threemile Creek basin. The pH values were within established criteria (6.0 ? 8.5) at sites on Threemile Creek; however, pH values ranged from 7.2 to 10.0 at the tributary at Center Street and from 6.6 to 9.9 at Toulmins Spring Branch. Nutrient concentrations in the Threemile Creek basin reflect the influences of both land use and the complex hydrologic systems in the lower part of the basin. Nitrite-plus-nitrate concentrations exceeded U.S. Environmental Protection Agency ecoregion nutrient criteria in 88 percent of the samples. In 45 percent of the samples, total phosphorus concentrations exceeded the U.S. Environmental Protection Agency goal of 0.1 milligram per liter for preventing nuisance aquatic growth. Ratios of nitrogen to phosphorus indicate that both nutrients have limiting effects. Median concentrations of enterococci and fecal coliform bacteria were highest at the two tributary sites and lowest at the most upstream site on Threemile Creek. In general, concentrations o

  10. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  11. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  12. Mercury accumulation in biota of Thunder Creek, Saskatchewan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munro, D.J.; Gummer, W.D.

    Collection of biological organisms was undertaken to investigate the bioaccumulation of mercury in the food chain, the results of which are reported. Two sites were selected on Thunder Creek; the control or background site, site number 2, is located approximately 2.5 km upstream, from site number 1. The selection of organisms for analysis was based on the presence and abundance of each at both locations. Only crayfish (Orconcetes virilis) pearl dace (Semotilus margarita) and brook stickleback (Culaea inconstans) were found to be sufficiently abundant. The importance of the data obtained is the significant difference in concentration between the upstream andmore » downstream sites on Thunder Creek. This difference shows that more mercury is available to the biological community at site number 1 than at site number 2 confirming that mercury in the contaminated sediments is being methylated and taken up into the food chain.« less

  13. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; occurrence and distribution of selected pesticides and nutrients at selected surface-water sites in the Mesilla Valley, 1994-95

    USGS Publications Warehouse

    Healy, D.F.

    1996-01-01

    The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program conducted a two-phase synoptic study of the occurrence and distribution of pesticides and nutrients in the surface water of the Mesilla Valley, New Mexico and Texas. Phase one, conducted in April-May 1994 during the high-flow irrigation season, consisted of a 6-week time- series sampling event during which 17 water-column samples were collected at 3 main-stem sites on the Rio Grande and a synoptic irrigation-run sampling event during which 19 water-column samples were collected at 7 main-stem sites, 10 drain sites, and 2 sites at the discharges of wastewater-treatment plants. Three samples are included in both the time-series and irrigation-run events. Phase two, conducted in January 1995 during the low-flow non-irrigation season, consisted of a non-irrigation synoptic sampling event during which 18 water-column samples were collected at seven main-stem sites, nine drain sites, and two sites at the discharges of wastewater-treatment plants and a bed- material sampling event during which 6 bed-material samples were collected at six sites near the mouths of drains that discharge to the Rio Grande. The 51 water-column samples were analyzed for 78 pesticides and metabolites and 8 nutrients along with other constituents. The six bed-material samples were analyzed for 21 pesticides and metabolites, gross polychlorinated biphenyls, and gross polychlorinated naphthalenes. The presence of dissolved pesticides in the surface water of the Mesilla Valley is erratic. A total of 100 detections of 17 different pesticides were detected in 44 of the water-column samples. As many as 38 percent of these detections may be attributed to pesticide use upstream from the valley or to nonagricultural pesticide use within the valley. There were 29 detections of 10 different pesticides in 17 samples during the irrigation run and 41 detections of 13 pesticides in 16 samples during the non-irrigation run. Nine pesticides were detected during both phases of the study. The most commonly detected pesticides in the water-column samples were DCPA, which was detected in 29 samples, and metolachlor, which was detected in 17 of the samples. DCPA was detected throughout the Mesilla Valley, whereas metolachlor was detected mainly in the northern and central parts of the valley. The maximum pesticide concentration found during the study was 0.75 microgram per liter of carbofuran, which was detected at the East Side Drain site during the irrigation run. No water-column pesticide concentration exceeded U.S. Environmental Protection Agency's drinking-water standards or any applicable Federal or State criteria or guidelines. A total of 21 occurrences of six pesticides and metabolites were found in the bed-material samples. Chlordane, diazinon, and methyl parathion were detected once each, whereas DDD, DDE, and DDT were detected at all six bed-material sites. Water-column samples for the analysis of nutrient concentrations were collected at all sampling sites during both phases of the study. The concentrations of each nutrient ranged from at or below the individual minimum reporting level to as much as two or three orders of magnitude larger than the minimum reporting level. The concentration of each nutrient was left skewed with most of the values toward the lower end of the range. The larger concentrations of each nutrient, except dissolved nitrite plus nitrate, were associated with wastewater-treatment- plant sites 4 and 16. The larger concentrations of dissolved nitrite plus nitrate were generally associated with the non- irrigation run; however, the largest concentration was at site 4 during the irrigation run. During this study, the Mesilla Valley as a unit was a source of nutrients to the Rio Grande. Wi

  14. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques in Wightman Fork, southwestern Colorado, September 1997

    USGS Publications Warehouse

    Ortiz, Roderick F.; Bencala, Kenneth E.

    2001-01-01

    Spatial determinations of the metal loads in Wightman Fork can be used to identify potential source areas to the stream. In September 1997, a chloride tracer-injection study was done concurrently with synoptic water-quality sampling in Wightman Fork near the Summitville Mine site. Discharge was determined and metal concentrations at 38 sites were used to generate mass-load profiles for dissolved aluminum, copper, iron, manganese, and zinc. The U.S. Environmental Protection Agency had previously identified these metals as contaminants of concern.Metal loads increased substantially in Wightman Fork near the Summitville Mine. A large increase occurred along a 60-meter reach that is north of the North Waste Dump and generally corresponds to a region of radial faults. Metal loading from this reach was equivalent to 50 percent or more of the dissolved aluminum, copper, iron, manganese, and zinc load upstream from the outfall of the Summitville Water Treatment Facility (SWTF). Overall, sources along the entire reach upstream from the SWTF were equivalent to 15 percent of the iron, 33 percent of the copper and manganese, 58 percent of the zinc, and 66 percent of the aluminum load leaving the mine site. The largest increases in metal loading to Wightman Fork occurred as a result of inflow from Cropsy Creek. Aluminum, iron, manganese, and zinc loads from Cropsy Creek were equivalent to about 40 percent of the specific metal load leaving the mine site. Copper, iron, and manganese loads from Cropsy Creek were nearly as large or larger than the load from sources upstream from the SWTF.

  15. PAH occurrence in chalk river systems from the Jura region (France). Pertinence of suspended particulate matter and sediment as matrices for river quality monitoring.

    PubMed

    Chiffre, Axelle; Degiorgi, François; Morin-Crini, Nadia; Bolard, Audrey; Chanez, Etienne; Badot, Pierre-Marie

    2015-11-01

    This study investigates the variations of polycyclic aromatic hydrocarbon (PAH) levels in surface water, suspended particulate matter (SPM) and sediment upstream and downstream of the discharges of two wastewater treatment plant (WWTP) effluents. Relationships between the levels of PAHs in these different matrices were also investigated. The sum of 16 US EPA PAHs ranged from 73.5 to 728.0 ng L(-1) in surface water and from 85.4 to 313.1 ng L(-1) in effluent. In SPM and sediment, ∑16PAHs ranged from 749.6 to 2,463 μg kg(-1) and from 690.7 μg kg(-1) to 3,625.6 μg kg(-1), respectively. Investigations performed upstream and downstream of both studied WWTPs showed that WWTP discharges may contribute to the overall PAH contaminations in the Loue and the Doubs rivers. Comparison between gammarid populations upstream and downstream of WWTP discharge showed that biota was impacted by the WWTP effluents. When based only on surface water samples, the assessment of freshwater quality did not provide evidence for a marked PAH contamination in either of the rivers studied. However, using SPM and sediment samples, we found PAH contents exceeding sediment quality guidelines. We conclude that sediment and SPM are relevant matrices to assess overall PAH contamination in aquatic ecosystems. Furthermore, we found a positive linear correlation between PAH contents of SPM and sediment, showing that SPM represents an integrating matrix which is able to provide meaningful data about the overall contamination over a given time span.

  16. Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Haskin, Henry H.

    2011-01-01

    The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise.

  17. Effects of metals on a montane aquatic system evaluated using an integrated assessment approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltman, D.; Lipton, J.; Cacela, D.

    Surface water, benthic invertebrates, aufwuchs, and sediments were sampled in a Rocky Mountain stream impacted by a cobalt-copper mine. A randomized study design was employed to ensure valid inferences beyond the areas sampled. As, Co, and Cu concentrations in all media downstream of the mine were 1--3 orders of magnitude greater than concentrations upstream, and concentrations in invertebrates were greater than those that adversely affect trout via dietary intake. Correlational analysis shows that bioaccumulation mechanisms and pathways between the different media differ from element to element; the differences are related to geochemical characteristics of the elements. The benthic invertebrate communitymore » is severely impacted for at least 50 km downstream of the mine: Ephemeropteran density, number of taxa, and total biomass are as low as 0.1% of values upstream. Other indices of the effects of metals on invertebrate communities that have been used elsewhere were ineffective in detecting these severe impacts. The integrated assessment approach used in this study provides information on contaminant sources, exposure pathways and mechanisms, and impacts to the stream ecosystem at several organizational levels.« less

  18. Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Frissell, Christopher A.; Muhlfeld, Clint C.; Fred W. Allendorf,

    2003-01-01

    We examined spatial and temporal patterns of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, O. mykiss, in streams of the Flathead River system in Montana, U.S.A. We detected hybridization in 24 of 42 sites sampled from 1998 to 2001. We found new Oncorhynchus mykiss introgression in seven of 11 sample populations that were determined to be nonhybridized in 1984. Patterns of spatial autocorrelation and linkage disequilibrium indicated that hybridization is spreading among sites and is advancing primarily via post-F1 hybrids. Although hybridized populations were distributed widely throughout the study area, the genetic contribution from O. mykiss decreased with increasing upstream distance from the Flathead River mainstem, suggesting that O. mykiss introgression is spreading in an upstream direction. The spread of hybridization may be constrained more by demographic than by environmental factors, given that (i) hybridized populations generally encompassed the range of environmental variability in nonhybridized populations, and (ii) hybridization status was more strongly associated with neighborhood statistics than measured environmental gradients.

  19. White sucker (Catostomus commersoni) growth and sexual maturation in pulp mill-contaminated and reference rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, M.M.; Bussieres, D.; Dodson, J.J.

    1995-02-01

    Induction of hepatic ethoxyresorufin-O-deethylase (EROD) activity and accumulation of chlorophenolic compounds typical of bleached-kraft mill effluent (BKME) in fish sampled downstream of a pulp mill on the St. Maurice River, Quebec, Canada, provided evidence of chemical exposure to BKME. In comparison, fish sampled over the same distances and in similar habitats in a noncontaminated reference river, the Gatineau River, demonstrated low EROD activity and contamination levels. Accelerated growth of white suckers occurred between 2 and 10 years of age in both rivers at downstream stations relative to upstream stations, suggesting the existence of gradients of nutrient enrichment independent of BKMEmore » contamination. The impact of BKME exposure was expressed as reduced investment in reproduction, as revealed by greater length at maturity, reduced gonad size, and more variable fecundity. These effects were not obvious in simple upstream-downstream comparisons, but became evident when fish from the uncontaminated Gatineau River showed increased gonadal development and reduced age and size at maturity in response to enhanced growth rates.« less

  20. Nutrient and metal loads estimated by using discrete, automated, and continuous water-quality monitoring techniques for the Blackstone River at the Massachusetts-Rhode Island State line, water years 2013–14

    USGS Publications Warehouse

    Sorenson, Jason R.; Granato, Gregory E.; Smith, Kirk P.

    2018-01-10

    Flow-proportional composite water samples were collected in water years 2013 and 2014 by the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, from the Blackstone River at Millville, Massachusetts (U.S. Geological Survey station 01111230), about 0.5 mile from the border with Rhode Island. Samples were collected in order to better understand the dynamics of selected nutrient and metal constituents, assist with planning, guide activities to meet water-quality goals, and provide real-time water-quality information to the public. An automated system collected the samples at 14-day intervals to determine total and dissolved nitrogen and phosphorus concentrations, to provide accurate monthly nutrient concentration data, and to calculate monthly load estimates. Concentrations of dissolved trace metals and total aluminum were determined from 4-day composite water samples that were collected twice monthly by the automated system. Results from 4-day composites provide stakeholders with information to evaluate trace metals on the basis of chronic 4-day exposure criteria for aquatic life, and the potential to use the biotic ligand model to evaluate copper concentrations. Nutrient, trace metal, suspended sediment, dissolved organic carbon, and chlorophyll a concentrations were determined from discrete samples collected at the Millville station and from across the stream transect at the upstream railroad bridge, and these concentrations served as a means to evaluate the representativeness of the Millville point location.Analytical results from samples collected with the automated flow-proportional sampling system provided the means to calculate monthly and annual loading data. Total nitrogen and total phosphorus loads in water year (WY) 2013 were about 447,000 and 36,000 kilograms (kg), respectively. In WY 2014, annual loads of total nitrogen and total phosphorus were about 342,000 and 21,000 kg, respectively. Total nitrogen and total phosphorus loads from WYs 2013 and 2014 were about 56 and 65 percent lower than those reported for WYs 2008 and 2009. The higher loads in 2008 and 2009 may be explained by the higher than average flows in WY 2009 and by facility upgrades made by wastewater treatment facilities in the basin.Median loads were determined from composite samples collected with the automated system between October 2012 and October 2014. Median dissolved cadmium and chromium 4-day loads were 0.55 and 0.84 kg, respectively. Dissolved copper and total lead median 4-day loads were 8.02 and 1.42 kg, respectively. The dissolved nickel median 4-day load was 5.45 kg, and the dissolved zinc median 4-day load was 36 kg. Median total aluminum 4-day loads were about 197 kg.Spearman’s rank correlation analyses were used with discrete sample concentrations and continuous records of temperature, specific conductance, turbidity, and chlorophyll a to identify correlations between variables that could be used to develop regression equations for estimating real-time concentrations of constituents. Correlation coefficients were generated for flow, precipitation, antecedent precipitation, physical parameters, and chemical constituents. A 95-percent confidence limit for each value of Spearman’s rho was calculated, and multiple linear regression analysis using ordinary least squares regression techniques was used to develop regression equations for concentrations of total phosphorus, total nitrogen, suspended sediment concentration, total copper, and total aluminum. Although the correlations are based on the limited amount of data collected as part of this study, the potential to monitor water-quality changes in real time may be of value to resource managers and decision makers.

Top