Sample records for samples principal component

  1. Fast, Exact Bootstrap Principal Component Analysis for p > 1 million

    PubMed Central

    Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim

    2015-01-01

    Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801

  2. Recovery of a spectrum based on a compressive-sensing algorithm with weighted principal component analysis

    NASA Astrophysics Data System (ADS)

    Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang

    2017-07-01

    The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.

  3. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.

    PubMed

    Maisuradze, Gia G; Leitner, David M

    2007-05-15

    Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.

  4. [A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].

    PubMed

    Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei

    2010-04-01

    It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.

  5. Molecular dynamics in principal component space.

    PubMed

    Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L

    2012-07-26

    A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.

  6. Assessment of Supportive, Conflicted, and Controlling Dimensions of Family Functioning: A Principal Components Analysis of Family Environment Scale Subscales in a College Sample.

    ERIC Educational Resources Information Center

    Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine

    1997-01-01

    A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)

  7. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  8. Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.

    PubMed

    Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko

    2017-12-01

    Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.

  9. Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison

    PubMed Central

    Matsen IV, Frederick A.; Evans, Steven N.

    2013-01-01

    Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415

  10. Short communication: Discrimination between retail bovine milks with different fat contents using chemometrics and fatty acid profiling.

    PubMed

    Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar

    2017-06-01

    We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Snapshot hyperspectral imaging probe with principal component analysis and confidence ellipse for classification

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-06-01

    Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.

  12. [Studies on the brand traceability of milk powder based on NIR spectroscopy technology].

    PubMed

    Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian

    2013-10-01

    Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.

  13. Use of multivariate statistics to identify unreliable data obtained using CASA.

    PubMed

    Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón

    2013-06-01

    In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.

  14. [Spatial distribution characteristics of the physical and chemical properties of water in the Kunes River after the supply of snowmelt during spring].

    PubMed

    Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai

    2015-02-01

    Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.

  15. Multivariate analysis of light scattering spectra of liquid dairy products

    NASA Astrophysics Data System (ADS)

    Khodasevich, M. A.

    2010-05-01

    Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.

  16. Quantitative descriptive analysis and principal component analysis for sensory characterization of Indian milk product cham-cham.

    PubMed

    Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C

    2016-02-01

    Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.

  17. Principal components analysis of the Neurobehavioral Symptom Inventory in a nonclinical civilian sample.

    PubMed

    Sullivan, Karen A; Lurie, Janine K

    2017-01-01

    The study examined the component structure of the Neurobehavioral Symptom Inventory (NSI) under five different models. The evaluated models comprised the full NSI (NSI-22) and the NSI-20 (NSI minus two orphan items). A civilian nonclinical sample was used. The 575 volunteers were predominantly university students who screened negative for mild TBI. The study design was cross-sectional, with questionnaires administered online. The main measure was the Neurobehavioral Symptom Inventory. Subscale, total and embedded validity scores were derived (the Validity-10, the LOW6, and the NIM5). In both models, the principal components analysis yielded two intercorrelated components (psychological and somatic/sensory) with acceptable internal consistency (alphas > 0.80). In this civilian nonclinical sample, the NSI had two underlying components. These components represent psychological and somatic/sensory neurobehavioral symptoms.

  18. A Genealogical Interpretation of Principal Components Analysis

    PubMed Central

    McVean, Gil

    2009-01-01

    Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557

  19. Survey to Identify Substandard and Falsified Tablets in Several Asian Countries with Pharmacopeial Quality Control Tests and Principal Component Analysis of Handheld Raman Spectroscopy.

    PubMed

    Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko

    2018-06-01

    The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.

  20. Analysis of the principal component algorithm in phase-shifting interferometry.

    PubMed

    Vargas, J; Quiroga, J Antonio; Belenguer, T

    2011-06-15

    We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.

  1. [Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine].

    PubMed

    Zhang, Hong-Guang; Yang, Qin-Min; Lu, Jian-Gang

    2014-04-01

    In this paper, a novel discriminant methodology based on near infrared spectroscopic analysis technique and least square support vector machine was proposed for rapid and nondestructive discrimination of different types of Polyacrylamide. The diffuse reflectance spectra of samples of Non-ionic Polyacrylamide, Anionic Polyacrylamide and Cationic Polyacrylamide were measured. Then principal component analysis method was applied to reduce the dimension of the spectral data and extract of the principal compnents. The first three principal components were used for cluster analysis of the three different types of Polyacrylamide. Then those principal components were also used as inputs of least square support vector machine model. The optimization of the parameters and the number of principal components used as inputs of least square support vector machine model was performed through cross validation based on grid search. 60 samples of each type of Polyacrylamide were collected. Thus a total of 180 samples were obtained. 135 samples, 45 samples for each type of Polyacrylamide, were randomly split into a training set to build calibration model and the rest 45 samples were used as test set to evaluate the performance of the developed model. In addition, 5 Cationic Polyacrylamide samples and 5 Anionic Polyacrylamide samples adulterated with different proportion of Non-ionic Polyacrylamide were also prepared to show the feasibilty of the proposed method to discriminate the adulterated Polyacrylamide samples. The prediction error threshold for each type of Polyacrylamide was determined by F statistical significance test method based on the prediction error of the training set of corresponding type of Polyacrylamide in cross validation. The discrimination accuracy of the built model was 100% for prediction of the test set. The prediction of the model for the 10 mixing samples was also presented, and all mixing samples were accurately discriminated as adulterated samples. The overall results demonstrate that the discrimination method proposed in the present paper can rapidly and nondestructively discriminate the different types of Polyacrylamide and the adulterated Polyacrylamide samples, and offered a new approach to discriminate the types of Polyacrylamide.

  2. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis.

    PubMed

    Burnett, Andrew D; Fan, Wenhui; Upadhya, Prashanth C; Cunningham, John E; Hargreaves, Michael D; Munshi, Tasnim; Edwards, Howell G M; Linfield, Edmund H; Davies, A Giles

    2009-08-01

    Terahertz frequency time-domain spectroscopy has been used to analyse a wide range of samples containing cocaine hydrochloride, heroin and ecstasy--common drugs-of-abuse. We investigated real-world samples seized by law enforcement agencies, together with pure drugs-of-abuse, and pure drugs-of-abuse systematically adulterated in the laboratory to emulate real-world samples. In order to investigate the feasibility of automatic spectral recognition of such illicit materials by terahertz spectroscopy, principal component analysis was employed to cluster spectra of similar compounds.

  3. Principal component analysis of TOF-SIMS spectra, images and depth profiles: an industrial perspective

    NASA Astrophysics Data System (ADS)

    Pacholski, Michaeleen L.

    2004-06-01

    Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.

  4. The Derivation of Job Compensation Index Values from the Position Analysis Questionnaire (PAQ). Report No. 6.

    ERIC Educational Resources Information Center

    McCormick, Ernest J.; And Others

    The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…

  5. A modified procedure for mixture-model clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.; Horton, John D.

    2014-01-01

    A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.

  6. Pepper seed variety identification based on visible/near-infrared spectral technology

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen

    2016-11-01

    Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.

  7. Use of principal-component, correlation, and stepwise multiple-regression analyses to investigate selected physical and hydraulic properties of carbonate-rock aquifers

    USGS Publications Warehouse

    Brown, C. Erwin

    1993-01-01

    Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.

  8. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  9. Convergence of sampling in protein simulations

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2002-03-01

    With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.

  10. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  11. Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Fan, Y.; Peng, Z.; Ding, H.; Gao, H.

    2012-07-01

    A new approach for the nondestructive discrimination between genuine wild ginsengs and the counterfeit ones by near infrared spectroscopy (NIRS) was developed. Both discriminant analysis and back propagation artificial neural network (BP-ANN) were applied to the model establishment for discrimination. Optimal modeling wavelengths were determined based on the anomalous spectral information of counterfeit samples. Through principal component analysis (PCA) of various wild ginseng samples, genuine and counterfeit, the cumulative percentages of variance of the principal components were obtained, serving as a reference for principal component (PC) factor determination. Discriminant analysis achieved an identification ratio of 88.46%. With sample' truth values as its outputs, a three-layer BP-ANN model was built, which yielded a higher discrimination accuracy of 100%. The overall results sufficiently demonstrate that NIRS combined with BP-ANN classification algorithm performs better on ginseng discrimination than discriminant analysis, and can be used as a rapid and nondestructive method for the detection of counterfeit wild ginsengs in food and pharmaceutical industry.

  12. [Discrimination of varieties of brake fluid using visual-near infrared spectra].

    PubMed

    Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong

    2008-06-01

    A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.

  13. Gas chromatography/principal component similarity system for detection of E. coli and S. aureus contaminating salmon and hamburger.

    PubMed

    Nakai, S; Wang, Z H; Dou, J; Nakamura, S; Ogawa, M; Nakai, E; Vanderstoep, J

    1999-02-01

    Coho, Atlantic, Spring, and Sockeye salmon and five commercial samples of hamburger patties were analyzed by processing gas chromatography (GC) data of volatile compounds using the principal component similarity (PCS) technique. PCS scattergrams of the samples inoculated with Escherichia coli and Staphylococcus aureus followed by incubation showed the pattern-shift lines moving away from the data point for uninoculated, unincubated reference samples in different directions with increasing incubation time. When the PCS scattergrams were drawn for samples incubated overnight, the samples inoculated with the two bacterial species and the uninoculated samples appeared as three separated groups. This GC/PCS approach has the potential to ensure quality of samples by discriminating good samples from potentially spoiled samples. The latter may require further microbial assays to identify the bacteria species potentially contaminating foods.

  14. Principal component analysis of Raman spectra for TiO2 nanoparticle characterization

    NASA Astrophysics Data System (ADS)

    Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion

    2017-09-01

    The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.

  15. A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample

    DOE PAGES

    Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...

    2012-01-01

    Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less

  16. Principal component analysis for designed experiments.

    PubMed

    Konishi, Tomokazu

    2015-01-01

    Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.

  17. An Evaluation of the Effects of Variable Sampling on Component, Image, and Factor Analysis.

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; Fava, Joseph L.

    1987-01-01

    Principal component analysis, image component analysis, and maximum likelihood factor analysis were compared to assess the effects of variable sampling. Results with respect to degree of saturation and average number of variables per factor were clear and dramatic. Differential effects on boundary cases and nonconvergence problems were also found.…

  18. [Assessment of the strength of tobacco control on creating smoke-free hospitals using principal components analysis].

    PubMed

    Liu, Hui-lin; Wan, Xia; Yang, Gong-huan

    2013-02-01

    To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.

  19. [The principal components analysis--method to classify the statistical variables with applications in medicine].

    PubMed

    Dascălu, Cristina Gena; Antohe, Magda Ecaterina

    2009-01-01

    Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.

  20. Capillary electrophoresis fingerprinting and spectrophotometric determination of antioxidant potential for classification of Mentha products.

    PubMed

    Roblová, Vendula; Bittová, Miroslava; Kubáň, Petr; Kubáň, Vlastimil

    2016-07-01

    In this work aqueous infusions from ten Mentha herbal samples (four different Mentha species and six hybrids of Mentha x piperita) and 20 different peppermint teas were screened by capillary electrophoresis with UV detection. The fingerprint separation was accomplished in a 25 mM borate background electrolyte with 10% methanol at pH 9.3. The total polyphenolic content in the extracts was determined spectrophotometrically at 765 nm by a Folin-Ciocalteu phenol assay. Total antioxidant activity was determined by scavenging of 2,2-diphenyl-1-picrylhydrazyl radical at 515 nm. The peak areas of 12 dominant peaks from CE analysis, present in all samples, and the value of total polyphenolic content and total antioxidant activity obtained by spectrophotometry was combined into a single data matrix and principal component analysis was applied. The obtained principal component analysis model resulted in distinct clusters of Mentha and peppermint tea samples distinguishing the samples according to their potential protective antioxidant effect. Principal component analysis, using a non-targeted approach with no need for compound identification, was found as a new promising tool for the screening of herbal tea products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Interpretable functional principal component analysis.

    PubMed

    Lin, Zhenhua; Wang, Liangliang; Cao, Jiguo

    2016-09-01

    Functional principal component analysis (FPCA) is a popular approach to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). The intervals where the values of FPCs are significant are interpreted as where sample curves have major variations. However, these intervals are often hard for naïve users to identify, because of the vague definition of "significant values". In this article, we develop a novel penalty-based method to derive FPCs that are only nonzero precisely in the intervals where the values of FPCs are significant, whence the derived FPCs possess better interpretability than the FPCs derived from existing methods. To compute the proposed FPCs, we devise an efficient algorithm based on projection deflation techniques. We show that the proposed interpretable FPCs are strongly consistent and asymptotically normal under mild conditions. Simulation studies confirm that with a competitive performance in explaining variations of sample curves, the proposed FPCs are more interpretable than the traditional counterparts. This advantage is demonstrated by analyzing two real datasets, namely, electroencephalography data and Canadian weather data. © 2015, The International Biometric Society.

  2. Discrimination of healthy and osteoarthritic articular cartilage by Fourier transform infrared imaging and Fisher’s discriminant analysis

    PubMed Central

    Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang

    2016-01-01

    Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354

  3. Classification of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulphides by principal component analysis and artificial neural networks.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2013-01-08

    Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. [Principal component analysis and cluster analysis of inorganic elements in sea cucumber Apostichopus japonicus].

    PubMed

    Liu, Xiao-Fang; Xue, Chang-Hu; Wang, Yu-Ming; Li, Zhao-Jie; Xue, Yong; Xu, Jie

    2011-11-01

    The present study is to investigate the feasibility of multi-elements analysis in determination of the geographical origin of sea cucumber Apostichopus japonicus, and to make choice of the effective tracers in sea cucumber Apostichopus japonicus geographical origin assessment. The content of the elements such as Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Hg and Pb in sea cucumber Apostichopus japonicus samples from seven places of geographical origin were determined by means of ICP-MS. The results were used for the development of elements database. Cluster analysis(CA) and principal component analysis (PCA) were applied to differentiate the sea cucumber Apostichopus japonicus geographical origin. Three principal components which accounted for over 89% of the total variance were extracted from the standardized data. The results of Q-type cluster analysis showed that the 26 samples could be clustered reasonably into five groups, the classification results were significantly associated with the marine distribution of the sea cucumber Apostichopus japonicus samples. The CA and PCA were the effective methods for elements analysis of sea cucumber Apostichopus japonicus samples. The content of the mineral elements in sea cucumber Apostichopus japonicus samples was good chemical descriptors for differentiating their geographical origins.

  5. Differentiating Organic and Conventional Sage by Chromatographic and Mass Spectrometry Flow-Injection Fingerprints Combined with Principal Component Analysis

    PubMed Central

    Gao, Boyan; Lu, Yingjian; Sheng, Yi; Chen, Pei; Yu, Liangli (Lucy)

    2013-01-01

    High performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultra-performance liquid chromatography with a quadrupole-time of flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min, and could potentially be developed for high-throughput applications; whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time. PMID:23464755

  6. Effect of noise in principal component analysis with an application to ozone pollution

    NASA Astrophysics Data System (ADS)

    Tsakiri, Katerina G.

    This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction

  7. Exploring the Intentions and Practices of Principals Regarding Inclusive Education: An Application of the Theory of Planned Behaviour

    ERIC Educational Resources Information Center

    Yan, Zi; Sin, Kuen-fung

    2015-01-01

    This study aimed at providing explanation and prediction of principals' inclusive education intentions and practices under the framework of the Theory of Planned Behaviour (TPB). A sample of 209 principals from Hong Kong schools was surveyed using five scales that were developed to assess the five components of TPB: attitude, subjective norm,…

  8. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours.

    PubMed

    Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan

    2017-06-01

    The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt.

    PubMed

    El-Shahat, M F; Sadek, M A; Salem, W M; Embaby, A A; Mohamed, F A

    2017-08-01

    The northwestern coast of Sinai is home to many economic activities and development programs, thus evaluation of the potentiality and vulnerability of water resources is important. The present work has been conducted on the groundwater resources of this area for describing the major features of groundwater quality and the principal factors that control salinity evolution. The major ionic content of 39 groundwater samples collected from the Quaternary aquifer shows high coefficients of variation reflecting asymmetry of aquifer recharge. The groundwater samples have been classified into four clusters (using hierarchical cluster analysis), these match the variety of total dissolvable solids, water types and ionic orders. The principal component analysis combined the ionic parameters of the studied groundwater samples into two principal components. The first represents about 56% of the whole sample variance reflecting a salinization due to evaporation, leaching, dissolution of marine salts and/or seawater intrusion. The second represents about 15.8% reflecting dilution with rain water and the El-Salam Canal. Most groundwater samples were not suitable for human consumption and about 41% are suitable for irrigation. However, all groundwater samples are suitable for cattle, about 69% and 15% are suitable for horses and poultry, respectively.

  10. Determination of the chemical parameters and manufacturer of divins from their broadband transmission spectra

    NASA Astrophysics Data System (ADS)

    Khodasevich, M. A.; Sinitsyn, G. V.; Skorbanova, E. A.; Rogovaya, M. V.; Kambur, E. I.; Aseev, V. A.

    2016-06-01

    Analysis of multiparametric data on transmission spectra of 24 divins (Moldovan cognacs) in the 190-2600 nm range allows identification of outliers and their removal from a sample under study in the following consideration. The principal component analysis and classification tree with a single-rank predictor constructed in the 2D space of principal components allow classification of divin manufacturers. It is shown that the accuracy of syringaldehyde, ethyl acetate, vanillin, and gallic acid concentrations in divins calculated with the regression to latent structures depends on the sample volume and is 3, 6, 16, and 20%, respectively, which is acceptable for the application.

  11. Randomized subspace-based robust principal component analysis for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Yang, Gang; Li, Jialin; Zhang, Dianfa

    2018-01-01

    A randomized subspace-based robust principal component analysis (RSRPCA) method for anomaly detection in hyperspectral imagery (HSI) is proposed. The RSRPCA combines advantages of randomized column subspace and robust principal component analysis (RPCA). It assumes that the background has low-rank properties, and the anomalies are sparse and do not lie in the column subspace of the background. First, RSRPCA implements random sampling to sketch the original HSI dataset from columns and to construct a randomized column subspace of the background. Structured random projections are also adopted to sketch the HSI dataset from rows. Sketching from columns and rows could greatly reduce the computational requirements of RSRPCA. Second, the RSRPCA adopts the columnwise RPCA (CWRPCA) to eliminate negative effects of sampled anomaly pixels and that purifies the previous randomized column subspace by removing sampled anomaly columns. The CWRPCA decomposes the submatrix of the HSI data into a low-rank matrix (i.e., background component), a noisy matrix (i.e., noise component), and a sparse anomaly matrix (i.e., anomaly component) with only a small proportion of nonzero columns. The algorithm of inexact augmented Lagrange multiplier is utilized to optimize the CWRPCA problem and estimate the sparse matrix. Nonzero columns of the sparse anomaly matrix point to sampled anomaly columns in the submatrix. Third, all the pixels are projected onto the complemental subspace of the purified randomized column subspace of the background and the anomaly pixels in the original HSI data are finally exactly located. Several experiments on three real hyperspectral images are carefully designed to investigate the detection performance of RSRPCA, and the results are compared with four state-of-the-art methods. Experimental results show that the proposed RSRPCA outperforms four comparison methods both in detection performance and in computational time.

  12. The principal components model: a model for advancing spirituality and spiritual care within nursing and health care practice.

    PubMed

    McSherry, Wilfred

    2006-07-01

    The aim of this study was to generate a deeper understanding of the factors and forces that may inhibit or advance the concepts of spirituality and spiritual care within both nursing and health care. This manuscript presents a model that emerged from a qualitative study using grounded theory. Implementation and use of this model may assist all health care practitioners and organizations to advance the concepts of spirituality and spiritual care within their own sphere of practice. The model has been termed the principal components model because participants identified six components as being crucial to the advancement of spiritual health care. Grounded theory was used meaning that there was concurrent data collection and analysis. Theoretical sampling was used to develop the emerging theory. These processes, along with data analysis, open, axial and theoretical coding led to the identification of a core category and the construction of the principal components model. Fifty-three participants (24 men and 29 women) were recruited and all consented to be interviewed. The sample included nurses (n=24), chaplains (n=7), a social worker (n=1), an occupational therapist (n=1), physiotherapists (n=2), patients (n=14) and the public (n=4). The investigation was conducted in three phases to substantiate the emerging theory and the development of the model. The principal components model contained six components: individuality, inclusivity, integrated, inter/intra-disciplinary, innate and institution. A great deal has been written on the concepts of spirituality and spiritual care. However, rhetoric alone will not remove some of the intrinsic and extrinsic barriers that are inhibiting the advancement of the spiritual dimension in terms of theory and practice. An awareness of and adherence to the principal components model may assist nurses and health care professionals to engage with and overcome some of the structural, organizational, political and social variables that are impacting upon spiritual care.

  13. Analysis of Moisture Content in Beetroot using Fourier Transform Infrared Spectroscopy and by Principal Component Analysis.

    PubMed

    Nesakumar, Noel; Baskar, Chanthini; Kesavan, Srinivasan; Rayappan, John Bosco Balaguru; Alwarappan, Subbiah

    2018-05-22

    The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm -1 with a spectral resolution of 8 cm -1 . In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm -1 , Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm -1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.

  14. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    NASA Astrophysics Data System (ADS)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  15. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    PubMed

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.

  16. Polyhedral gamut representation of natural objects based on spectral reflectance database and its application

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Sakuda, Yasunori; Honda, Toshio

    2002-06-01

    Spectral reflectance of most reflective objects such as natural objects and color hardcopy is relatively smooth and can be approximated by several numbers of principal components with high accuracy. Though the subspace spanned by those principal components represents a space in which reflective objects can exist, it dos not provide the bound in which the samples distribute. In this paper we propose to represent the gamut of reflective objects in more distinct form, i.e., as a polyhedron in the subspace spanned by several principal components. Concept of the polyhedral gamut representation and its application to calculation of metamer ensemble are described. Color-mismatch volume caused by different illuminant and/or observer for a metamer ensemble is also calculated and compared with theoretical one.

  17. Exploring the Factor Structure of Neurocognitive Measures in Older Individuals

    PubMed Central

    Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno

    2015-01-01

    Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate. PMID:25880732

  18. Asymptotics of empirical eigenstructure for high dimensional spiked covariance.

    PubMed

    Wang, Weichen; Fan, Jianqing

    2017-06-01

    We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.

  19. Asymptotics of empirical eigenstructure for high dimensional spiked covariance

    PubMed Central

    Wang, Weichen

    2017-01-01

    We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726

  20. [Determination and principal component analysis of mineral elements based on ICP-OES in Nitraria roborowskii fruits from different regions].

    PubMed

    Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng

    2017-06-01

    The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.

  1. Stationary Wavelet-based Two-directional Two-dimensional Principal Component Analysis for EMG Signal Classification

    NASA Astrophysics Data System (ADS)

    Ji, Yi; Sun, Shanlin; Xie, Hong-Bo

    2017-06-01

    Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.

  2. [Discrimination of Rice Syrup Adulterant of Acacia Honey Based Using Near-Infrared Spectroscopy].

    PubMed

    Zhang, Yan-nan; Chen, Lan-zhen; Xue, Xiao-feng; Wu, Li-ming; Li, Yi; Yang, Juan

    2015-09-01

    At present, the rice syrup as a low price of the sweeteners was often adulterated into acacia honey and the adulterated honeys were sold in honey markets, while there is no suitable and fast method to identify honey adulterated with rice syrup. In this study, Near infrared spectroscopy (NIR) combined with chemometric methods were used to discriminate authenticity of honey. 20 unprocessed acacia honey samples from the different honey producing areas, mixed? with different proportion of rice syrup, were prepared of seven different concentration gradient? including 121 samples. The near infrared spectrum (NIR) instrument and spectrum processing software have been applied in the? spectrum? scanning and data conversion on adulterant samples, respectively. Then it was analyzed by Principal component analysis (PCA) and canonical discriminant analysis methods in order to discriminating adulterated honey. The results showed that after principal components analysis, the first two principal components accounted for 97.23% of total variation, but the regionalism of the score plot of the first two PCs was not obvious, so the canonical discriminant analysis was used to make the further discrimination, all samples had been discriminated correctly, the first two discriminant functions accounted for 91.6% among the six canonical discriminant functions, Then the different concentration of adulterant samples can be discriminated correctly, it illustrate that canonical discriminant analysis method combined with NIR spectroscopy is not only feasible but also practical for rapid and effective discriminate of the rice syrup adulterant of acacia honey.

  3. Evaluation of Parallel Analysis Methods for Determining the Number of Factors

    ERIC Educational Resources Information Center

    Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.

    2010-01-01

    Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…

  4. Classification of narcotics in solid mixtures using principal component analysis and Raman spectroscopy.

    PubMed

    Ryder, Alan G

    2002-03-01

    Eighty-five solid samples consisting of illegal narcotics diluted with several different materials were analyzed by near-infrared (785 nm excitation) Raman spectroscopy. Principal Component Analysis (PCA) was employed to classify the samples according to narcotic type. The best sample discrimination was obtained by using the first derivative of the Raman spectra. Furthermore, restricting the spectral variables for PCA to 2 or 3% of the original spectral data according to the most intense peaks in the Raman spectrum of the pure narcotic resulted in a rapid discrimination method for classifying samples according to narcotic type. This method allows for the easy discrimination between cocaine, heroin, and MDMA mixtures even when the Raman spectra are complex or very similar. This approach of restricting the spectral variables also decreases the computational time by a factor of 30 (compared to the complete spectrum), making the methodology attractive for rapid automatic classification and identification of suspect materials.

  5. The potential of statistical shape modelling for geometric morphometric analysis of human teeth in archaeological research

    PubMed Central

    Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia

    2017-01-01

    This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199

  6. Classification of adulterated honeys by multivariate analysis.

    PubMed

    Amiry, Saber; Esmaiili, Mohsen; Alizadeh, Mohammad

    2017-06-01

    In this research, honey samples were adulterated with date syrup (DS) and invert sugar syrup (IS) at three concentrations (7%, 15% and 30%). 102 adulterated samples were prepared in six batches with 17 replications for each batch. For each sample, 32 parameters including color indices, rheological, physical, and chemical parameters were determined. To classify the samples, based on type and concentrations of adulterant, a multivariate analysis was applied using principal component analysis (PCA) followed by a linear discriminant analysis (LDA). Then, 21 principal components (PCs) were selected in five sets. Approximately two-thirds were identified correctly using color indices (62.75%) or rheological properties (67.65%). A power discrimination was obtained using physical properties (97.06%), and the best separations were achieved using two sets of chemical properties (set 1: lactone, diastase activity, sucrose - 100%) (set 2: free acidity, HMF, ash - 95%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sensory characteristics and consumer preference for chicken meat in Guinea.

    PubMed

    Sow, T M A; Grongnet, J F

    2010-10-01

    This study identified the sensory characteristics and consumer preference for chicken meat in Guinea. Five chicken samples [live village chicken, live broiler, live spent laying hen, ready-to-cook broiler, and ready-to-cook broiler (imported)] bought from different locations were assessed by 10 trained panelists using 19 sensory attributes. The ANOVA results showed that 3 chicken appearance attributes (brown, yellow, and white), 5 chicken odor attributes (oily, intense, medicine smell, roasted, and mouth persistent), 3 chicken flavor attributes (sweet, bitter, and astringent), and 8 chicken texture attributes (firm, tender, juicy, chew, smooth, springy, hard, and fibrous) were significantly discriminating between the chicken samples (P<0.05). Principal component analysis of the sensory data showed that the first 2 principal components explained 84% of the sensory data variance. The principal component analysis results showed that the live village chicken, the live spent laying hen, and the ready-to-cook broiler (imported) were very well represented and clearly distinguished from the live broiler and the ready-to-cook broiler. One hundred twenty consumers expressed their preferences for the chicken samples using a 5-point Likert scale. The hierarchical cluster analysis of the preference data identified 4 homogenous consumer clusters. The hierarchical cluster analysis results showed that the live village chicken was the most preferred chicken sample, whereas the ready-to-cook broiler was the least preferred one. The partial least squares regression (PLSR) type 1 showed that 72% of the sensory data for the first 2 principal components explained 83% of the chicken preference. The PLSR1 identified that the sensory characteristics juicy, oily, sweet, hard, mouth persistent, and yellow were the most relevant sensory drivers of the Guinean chicken preference. The PLSR2 (with multiple responses) identified the relationship between the chicken samples, their sensory attributes, and the consumer clusters. Our results showed that there was not a chicken category that was exclusively preferred from the other chicken samples and therefore highlight the existence of place for development of all chicken categories in the local market.

  8. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    PubMed

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  9. Differential principal component analysis of ChIP-seq.

    PubMed

    Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang

    2013-04-23

    We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.

  10. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhary, Kenny; Najm, Habib N.

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  11. Bayesian estimation of Karhunen–Loève expansions; A random subspace approach

    DOE PAGES

    Chowdhary, Kenny; Najm, Habib N.

    2016-04-13

    One of the most widely-used statistical procedures for dimensionality reduction of high dimensional random fields is Principal Component Analysis (PCA), which is based on the Karhunen-Lo eve expansion (KLE) of a stochastic process with finite variance. The KLE is analogous to a Fourier series expansion for a random process, where the goal is to find an orthogonal transformation for the data such that the projection of the data onto this orthogonal subspace is optimal in the L 2 sense, i.e, which minimizes the mean square error. In practice, this orthogonal transformation is determined by performing an SVD (Singular Value Decomposition)more » on the sample covariance matrix or on the data matrix itself. Sampling error is typically ignored when quantifying the principal components, or, equivalently, basis functions of the KLE. Furthermore, it is exacerbated when the sample size is much smaller than the dimension of the random field. In this paper, we introduce a Bayesian KLE procedure, allowing one to obtain a probabilistic model on the principal components, which can account for inaccuracies due to limited sample size. The probabilistic model is built via Bayesian inference, from which the posterior becomes the matrix Bingham density over the space of orthonormal matrices. We use a modified Gibbs sampling procedure to sample on this space and then build a probabilistic Karhunen-Lo eve expansions over random subspaces to obtain a set of low-dimensional surrogates of the stochastic process. We illustrate this probabilistic procedure with a finite dimensional stochastic process inspired by Brownian motion.« less

  12. Are polychlorinated biphenyl residues adequately describe by aroclor mixture equivalents. Isomer-specific principal components analysis of such residues in fish and turtles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, T.R.; Stalling, D.L.; Rice, C.L.

    1987-01-01

    Polychlorinated biphenyl (PCB) residues from fish and turtles were analyzed with SIMCA (Soft Independent Modeling of Class Analogy), a principal components analysis technique. A series of technical Aroclors were also analyzed to provide a reference data set for pattern recognition. Environmental PCB residues are often expressed in terms of relative Aroclor composition. In this work, we assessed the similarity of Aroclors to class models derived for fish and turtles to ascertain if the PCB residues in the samples could be described by an Aroclor or Aroclor mixture. Using PCA, we found that these samples could not be described by anmore » Aroclor or Aroclor mixture and that it would be inappropriate to report these samples as such. 18 references, 3 figures, 3 tables.« less

  13. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.

  14. Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nee, K.; Bryan, S.; Levitskaia, T.

    The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less

  15. Combinations of NIR, Raman spectroscopy and physicochemical measurements for improved monitoring of solvent extraction processes using hierarchical multivariate analysis models

    DOE PAGES

    Nee, K.; Bryan, S.; Levitskaia, T.; ...

    2017-12-28

    The reliability of chemical processes can be greatly improved by implementing inline monitoring systems. Combining multivariate analysis with non-destructive sensors can enhance the process without interfering with the operation. Here, we present here hierarchical models using both principal component analysis and partial least square analysis developed for different chemical components representative of solvent extraction process streams. A training set of 380 samples and an external validation set of 95 samples were prepared and Near infrared and Raman spectral data as well as conductivity under variable temperature conditions were collected. The results from the models indicate that careful selection of themore » spectral range is important. By compressing the data through Principal Component Analysis (PCA), we lower the rank of the data set to its most dominant features while maintaining the key principal components to be used in the regression analysis. Within the studied data set, concentration of five chemical components were modeled; total nitrate (NO 3 -), total acid (H +), neodymium (Nd 3+), sodium (Na +), and ionic strength (I.S.). The best overall model prediction for each of the species studied used a combined data set comprised of complementary techniques including NIR, Raman, and conductivity. Finally, our study shows that chemometric models are powerful but requires significant amount of carefully analyzed data to capture variations in the chemistry.« less

  16. Time series analysis of collective motions in proteins

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.

    2004-01-01

    The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.

  17. Chemometric expertise of the quality of groundwater sources for domestic use.

    PubMed

    Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina

    2015-01-01

    In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.

  18. Characterization of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis

    PubMed Central

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)

    2014-01-01

    Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341

  19. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis.

    PubMed

    Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy

    2014-07-01

    Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Demonstrated Potential of Ion Mobility Spectrometry for Detection of Adulterated Perfumes and Plant Speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jared Matthew; Daum, Keith Alvin; Kalival, J. H.

    2003-01-01

    This initial study evaluates the use of ion mobility spectrometry (IMS) as a rapid test procedure for potential detection of adulterated perfumes and speciation of plant life. Sample types measured consist of five genuine perfumes, two species of sagebrush, and four species of flowers. Each sample type is treated as a separate classification problem. It is shown that discrimination using principal component analysis with K-nearest neighbors can distinguish one class from another. Discriminatory models generated using principal component regressions are not as effective. Results from this examination are encouraging and represent an initial phase demonstrating that perfumes and plants possessmore » characteristic chemical signatures that can be used for reliable identification.« less

  1. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  2. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.

  3. Modification of isoflavone profiles in a fermented soy food with almond powder.

    PubMed

    Park, MinHee; Jeong, Min Kyu; Kim, MiJa; Lee, JaeHwan

    2012-01-01

    Isoflavone profiles of a fermented soy food, cheonggukjang, were modified using almond powder. Isoflavones were analyzed by high performance liquid chromatography (HPLC) with an ultraviolet detector. Malonyl derivatives of isoflavones decreased and aglycones of isoflavones increased in samples with almond powder for 48 h. As added, almond powder increased from 0%, 5%, and 10% (w/w), amounts of aglycones increased to 21.11%, 26.63%, and 32.45% for 48 h, respectively. β-Glucosidase activity in 5% and 10% almond added samples was significantly higher than samples without addition of almond (P < 0.05). The content of succinyl daidzin and succinyl genistin, new metabolites from isoflavones, in almond-added cheonggukjang was significantly lower than control samples, implying that β-glucosidase activity from almond affected negatively the formation of succinyl derivatives (P < 0.05). Principal component analysis (PCA) for isoflavone distribution showed that first principal component (PC1) and second principal component (PC2) expressed 64.78% and 22.26% of the data variability, respectively. Biotransformation of isoflavones in any fermented soy foods can be achieved using natural products containing high β-glucosidase activity such as almond. The results of this study can help to modify the structural transformation of phytochemicals in any fermented soy foods using natural products. Adjusting the content of almond powder can achieve wanted profiles, for example, high aglycones content. Also, content of metabolites such as succinyl derivatives can be controlled using proper amounts of almond and fermentation time. © 2011 Institute of Food Technologists®

  4. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  5. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  6. Spatial and temporal variability of hyperspectral signatures of terrain

    NASA Astrophysics Data System (ADS)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

  7. Statistical analysis of major ion and trace element geochemistry of water, 1986-2006, at seven wells transecting the freshwater/saline-water interface of the Edwards Aquifer, San Antonio, Texas

    USGS Publications Warehouse

    Mahler, Barbara J.

    2008-01-01

    The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer. 

  8. Chemical variability of Xylopia quintasii Engl. & Diels leaf oil from Côte d'Ivoire.

    PubMed

    Yapi, Thierry Acafou; Boti, Jean Brice; Tonzibo, Zanahi Félix; Ahibo, Coffy Antoine; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2014-02-01

    The chemical composition of 42 essential-oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC-FID, including the determination of retention indices (RIs), and by (13) C-NMR analyses. In total, 36 components accounting for 91.9-92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)-β-caryophyllene (0.9-56.9%), (Z)-β-ocimene (0.3-54.6%), β-pinene (0.8-27.9%), α-pinene (0.1-22.8%), and furanoguaia-1,4-diene (0.0-17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)-β-caryophyllene. The oils of the second group (12 samples) contained β-pinene and α-pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)-β-ocimene, germacrene D, (E)-β-ocimene, and furanoguaia-1,4-diene. The oil samples of Group I and II came from clay-soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy-soil forest. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Rapidly differentiating grape seeds from different sources based on characteristic fingerprints using direct analysis in real time coupled with time-of-flight mass spectrometry combined with chemometrics.

    PubMed

    Song, Yuqiao; Liao, Jie; Dong, Junxing; Chen, Li

    2015-09-01

    The seeds of grapevine (Vitis vinifera) are a byproduct of wine production. To examine the potential value of grape seeds, grape seeds from seven sources were subjected to fingerprinting using direct analysis in real time coupled with time-of-flight mass spectrometry combined with chemometrics. Firstly, we listed all reported components (56 components) from grape seeds and calculated the precise m/z values of the deprotonated ions [M-H](-) . Secondly, the experimental conditions were systematically optimized based on the peak areas of total ion chromatograms of the samples. Thirdly, the seven grape seed samples were examined using the optimized method. Information about 20 grape seed components was utilized to represent characteristic fingerprints. Finally, hierarchical clustering analysis and principal component analysis were performed to analyze the data. Grape seeds from seven different sources were classified into two clusters; hierarchical clustering analysis and principal component analysis yielded similar results. The results of this study lay the foundation for appropriate utilization and exploitation of grape seed samples. Due to the absence of complicated sample preparation methods and chromatographic separation, the method developed in this study represents one of the simplest and least time-consuming methods for grape seed fingerprinting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  11. State-Space Estimation of Soil Organic Carbon Stock

    NASA Astrophysics Data System (ADS)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  12. Enhanced Quality Control in Pharmaceutical Applications by Combining Raman Spectroscopy and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Martinez, J. C.; Guzmán-Sepúlveda, J. R.; Bolañoz Evia, G. R.; Córdova, T.; Guzmán-Cabrera, R.

    2018-06-01

    In this work, we applied machine learning techniques to Raman spectra for the characterization and classification of manufactured pharmaceutical products. Our measurements were taken with commercial equipment, for accurate assessment of variations with respect to one calibrated control sample. Unlike the typical use of Raman spectroscopy in pharmaceutical applications, in our approach the principal components of the Raman spectrum are used concurrently as attributes in machine learning algorithms. This permits an efficient comparison and classification of the spectra measured from the samples under study. This also allows for accurate quality control as all relevant spectral components are considered simultaneously. We demonstrate our approach with respect to the specific case of acetaminophen, which is one of the most widely used analgesics in the market. In the experiments, commercial samples from thirteen different laboratories were analyzed and compared against a control sample. The raw data were analyzed based on an arithmetic difference between the nominal active substance and the measured values in each commercial sample. The principal component analysis was applied to the data for quantitative verification (i.e., without considering the actual concentration of the active substance) of the difference in the calibrated sample. Our results show that by following this approach adulterations in pharmaceutical compositions can be clearly identified and accurately quantified.

  13. PAH Baselines for Amazonic Surficial Sediments: A Case of Study in Guajará Bay and Guamá River (Northern Brazil).

    PubMed

    Rodrigues, Camila Carneiro Dos Santos; Santos, Ewerton; Ramos, Brunalisa Silva; Damasceno, Flaviana Cardoso; Correa, José Augusto Martins

    2018-06-01

    The 16 priority PAH were determined in sediment samples from the insular zone of Guajará Bay and Guamá River (Southern Amazon River mouth). Low hydrocarbon levels were observed and naphthalene was the most representative PAH. The low molecular weight PAH represented 51% of the total PAH. Statistical analysis showed that the sampling sites are not significantly different. Source analysis by PAH ratios and principal component analysis revealed that PAH are primary from a few rate of fossil fuel combustion, mainly related to the local small community activity. All samples presented no biological stress or damage potencial according to the sediment quality guidelines. This study discuss baselines for PAH in surface sediments from Amazonic aquatic systems based on source determination by PAH ratios and principal component analysis, sediment quality guidelines and through comparison with previous studies data.

  14. Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP

    NASA Astrophysics Data System (ADS)

    Russo, A.; Trigo, R. M.

    2003-04-01

    A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}

  15. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    NASA Astrophysics Data System (ADS)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  16. Influences of High Quality Army Enlistments

    DTIC Science & Technology

    1987-03-01

    The second component was formed with the Money for College and Unemployment variables. The Kaiser - Meyer - Olkin (KMO) statistics (Norusis, 1985, p.129...advertising variables were in the same component for moot of the subgroups. The Kaiser - Meyer - Olkin (1MO) values for the a6vertising variables were at...one component. The Kaiser - tMeyer- Olkin (KMO) measure of sampling adequacy indicated that principal component analysis may not be appropriate for

  17. Near-infrared Raman spectroscopy to detect anti-Toxoplasma gondii antibodies in blood sera of domestic cats

    NASA Astrophysics Data System (ADS)

    Duarte, Janaina; Pacheco, Marcos T. T.; Silveira, Landulfo, Jr.; Machado, Rosangela Z.; Martins, Rodrigo A. L.; Zangaro, Renato A.; Villaverde, Antonio G. J. B.

    2001-05-01

    Near-infrared (NIR) Raman spectroscopy has been studied for the last years for many biomedical applications. It is a powerful tool for biological materials analysis. Toxoplasmosis is an important zoonosis in public health, cats being the principal responsible for the transmission of the disease in Brazil. The objective of this work is to investigate a new method of diagnosis of this disease. NIR Raman spectroscopy was used to detect anti Toxoplasma gondii antibodies in blood sera from domestic cats, without sample preparation. In all, six blood serum samples were used for this study. A previous serological test was done by the Indirect Immunoenzymatic Assay (ELISA) to permit a comparative study between both techniques and it showed that three serum samples were positive and the other three were negative to toxoplasmosis. Raman spectra were taken for all the samples and analyzed by using the principal components analysis (PCA). A diagnosis parameter was defined from the analysis of the second and third principal components of the Raman spectra. It was found that this parameter can detect the infection level of the animal. The results have indicated that NIR Raman spectroscopy, associated to the PCA can be a promising technique for serological analysis, such as toxoplasmosis, allowing a fast and sensitive method of diagnosis.

  18. Weak acid extractable metals in Bramble Bay, Queensland, Australia: temporal behaviour, enrichment and source apportionment.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-02-15

    Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less

  20. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  1. Local Prediction Models on Mid-Atlantic Ridge MORB by Principal Component Regression

    NASA Astrophysics Data System (ADS)

    Ling, X.; Snow, J. E.; Chin, W.

    2017-12-01

    The isotopic compositions of the daughter isotopes of long-lived radioactive systems (Sr, Nd, Hf and Pb ) can be used to map the scale and history of mantle heterogeneities beneath mid-ocean ridges. Our goal is to relate the multidimensional structure in the existing isotopic dataset with an underlying physical reality of mantle sources. The numerical technique of Principal Component Analysis is useful to reduce the linear dependence of the data to a minimum set of orthogonal eigenvectors encapsulating the information contained (cf Agranier et al 2005). The dataset used for this study covers almost all the MORBs along mid-Atlantic Ridge (MAR), from 54oS to 77oN and 8.8oW to -46.7oW, including replicating the dataset of Agranier et al., 2005 published plus 53 basalt samples dredged and analyzed since then (data from PetDB). The principal components PC1 and PC2 account for 61.56% and 29.21%, respectively, of the total isotope ratios variability. The samples with similar compositions to HIMU and EM and DM are identified to better understand the PCs. PC1 and PC2 are accountable for HIMU and EM whereas PC2 has limited control over the DM source. PC3 is more strongly controlled by the depleted mantle source than PC2. What this means is that all three principal components have a high degree of significance relevant to the established mantle sources. We also tested the relationship between mantle heterogeneity and sample locality. K-means clustering algorithm is a type of unsupervised learning to find groups in the data based on feature similarity. The PC factor scores of each sample are clustered into three groups. Cluster one and three are alternating on the north and south MAR. Cluster two exhibits on 45.18oN to 0.79oN and -27.9oW to -30.40oW alternating with cluster one. The ridge has been preliminarily divided into 16 sections considering both the clusters and ridge segments. The principal component regression models the section based on 6 isotope ratios and PCs. The prediction residual is about 1-2km. It means that the combined 5 isotopes are a strong predictor of geographic location along the ridge, a slightly surprising result. PCR is a robust and powerful method for both visualizing and manipulating the multidimensional representation of isotope data.

  2. Screening molecular associations with lipid membranes using natural abundance 13C cross-polarization magic-angle spinning NMR and principal component analysis.

    PubMed

    Middleton, David A; Hughes, Eleri; Madine, Jillian

    2004-08-11

    We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.

  3. Automated Analysis, Classification, and Display of Waveforms

    NASA Technical Reports Server (NTRS)

    Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff

    2004-01-01

    A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.

  4. Physicochemical properties of quinoa starch.

    PubMed

    Li, Guantian; Wang, Sunan; Zhu, Fan

    2016-02-10

    Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítková, Gabriela; Prokeš, Lubomír; Novotný, Karel; Pořízka, Pavel; Novotný, Jan; Všianský, Dalibor; Čelko, Ladislav; Kaiser, Jozef

    2014-11-01

    Focusing on historical aspect, during archeological excavation or restoration works of buildings or different structures built from bricks it is important to determine, preferably in-situ and in real-time, the locality of bricks origin. Fast classification of bricks on the base of Laser-Induced Breakdown Spectroscopy (LIBS) spectra is possible using multivariate statistical methods. Combination of principal component analysis (PCA) and linear discriminant analysis (LDA) was applied in this case. LIBS was used to classify altogether the 29 brick samples from 7 different localities. Realizing comparative study using two different LIBS setups - stand-off and table-top it is shown that stand-off LIBS has a big potential for archeological in-field measurements.

  6. Principal component analysis of bacteria using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Christesen, Steven D.

    2006-05-01

    Surface-enhanced Raman scattering (SERS) provides rapid fingerprinting of biomaterial in a non-destructive manner. The problem of tissue fluorescence, which can overwhelm a normal Raman signal from biological samples, is largely overcome by treatment of biomaterials with colloidal silver. This work presents a study into the applicability of qualitative SER spectroscopy with principal component analysis (PCA) for the discrimination of four biological threat simulants; Bacillus globigii, Pantoea agglomerans, Brucella noetomae, and Yersinia rohdei. We also demonstrate differentiation of gram-negative and gram-positive species and as well as spores and vegetative cells of Bacillus globigii.

  7. Are Apparent Sex Differences in Mean IQ Scores Created in Part by Sample Restriction and Increased Male Variance?

    ERIC Educational Resources Information Center

    Dykiert, Dominika; Gale, Catharine R.; Deary, Ian J.

    2009-01-01

    This study investigated the possibility that apparent sex differences in IQ are at least partly created by the degree of sample restriction from the baseline population. We used a nationally representative sample, the 1970 British Cohort Study. Sample sizes varied from 6518 to 11,389 between data-collection sweeps. Principal components analysis of…

  8. Exploring the Mediating Effects of Trust on Principal Leadership and Teacher Professional Learning in Hong Kong Primary Schools

    ERIC Educational Resources Information Center

    Li, Lijuan; Hallinger, Philip; Walker, Allan

    2016-01-01

    This study attempted to identify effects of trust between principal leadership and teacher professional learning in Hong Kong primary schools. To verify the potential mediating effects of trust as a component of school capacity, survey data with a sample of 970 teachers from 32 local primary schools was used. Two questionnaires were combined to…

  9. Components of Spatial Thinking: Evidence from a Spatial Thinking Ability Test

    ERIC Educational Resources Information Center

    Lee, Jongwon; Bednarz, Robert

    2012-01-01

    This article introduces the development and validation of the spatial thinking ability test (STAT). The STAT consists of sixteen multiple-choice questions of eight types. The STAT was validated by administering it to a sample of 532 junior high, high school, and university students. Factor analysis using principal components extraction was applied…

  10. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-09-20

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.

  11. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed Central

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-01-01

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836

  12. Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.

    PubMed

    Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi

    2016-03-15

    Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.

  13. Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds

    PubMed Central

    Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli

    2012-01-01

    Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456

  14. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  15. Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Goring, Simon

    2017-01-01

    Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.

  16. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.

    PubMed

    Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.

  17. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run

    PubMed Central

    Armeanu, Daniel; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100

  18. Temporal Processing of Dynamic Positron Emission Tomography via Principal Component Analysis in the Sinogram Domain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.

    2004-10-01

    In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.

  19. Discrimination of a chestnut-oak forest unit for geologic mapping by means of a principal component enhancement of Landsat multispectral scanner data.

    USGS Publications Warehouse

    Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.

    1981-01-01

    A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors

  20. Principal component analysis on a torus: Theory and application to protein dynamics.

    PubMed

    Sittel, Florian; Filk, Thomas; Stock, Gerhard

    2017-12-28

    A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib 9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.

  1. Principal component analysis on a torus: Theory and application to protein dynamics

    NASA Astrophysics Data System (ADS)

    Sittel, Florian; Filk, Thomas; Stock, Gerhard

    2017-12-01

    A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.

  2. FT-IR spectroscopy and multivariate analysis as an auxiliary tool for diagnosis of mental disorders: Bipolar and schizophrenia cases

    NASA Astrophysics Data System (ADS)

    Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.

    2016-01-01

    In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.

  3. Increasing the Reliability of Ability-Achievement Difference Scores: An Example Using the Kaufman Assessment Battery for Children.

    ERIC Educational Resources Information Center

    Caruso, John C.; Witkiewitz, Katie

    2002-01-01

    As an alternative to equally weighted difference scores, examined an orthogonal reliable component analysis (RCA) solution and an oblique principal components analysis (PCA) solution for the standardization sample of the Kaufman Assessment Battery for Children (KABC; A. Kaufman and N. Kaufman, 1983). Discusses the practical implications of the…

  4. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.

    PubMed

    Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M

    2009-12-14

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.

  5. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples

    NASA Astrophysics Data System (ADS)

    Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.

    2009-12-01

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.

  6. Elemental Characterization and Discrimination of Nontoxic Ammunition Using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis and Principal Components Analysis.

    PubMed

    Hogg, Seth R; Hunter, Brian C; Waddell Smith, Ruth

    2016-01-01

    Concerns over the toxic by-products produced by traditional ammunition have led to an increase in popularity of nontoxic ammunition. In this work, the chemical composition of six brands of nontoxic ammunition was investigated and compared to that of a road flare, which served as an environmental source with similar composition. Five rounds of each brand were fired while a further five were disassembled and the primer alone was fired. Particles collected from all samples, including the road flare, were analyzed by scanning electron microscopy with energy dispersive X-ray analysis. Common elements among the different ammunition brands included aluminum, potassium, silicon, calcium, and strontium. Spectra were then subjected to principal components analysis in which association of the primer to the intact ammunition sample was generally possible, with distinction among brands and from the road flare sample. Further, PCA loadings plots indicated the elements responsible for the association and discrimination observed. © 2015 American Academy of Forensic Sciences.

  7. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  8. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry.

    PubMed

    Scampicchio, Matteo; Mimmo, Tanja; Capici, Calogero; Huck, Christian; Innocente, Nadia; Drusch, Stephan; Cesco, Stefano

    2012-11-14

    Stable isotope values were used to develop a new analytical approach enabling the simultaneous identification of milk samples either processed with different heating regimens or from different geographical origins. The samples consisted of raw, pasteurized (HTST), and ultrapasteurized (UHT) milk from different Italian origins. The approach consisted of the analysis of the isotope ratio of δ¹³C and δ¹⁵N for the milk samples and their fractions (fat, casein, and whey). The main finding of this work is that as the heat processing affects the composition of the milk fractions, changes in δ¹³C and δ¹⁵N were also observed. These changes were used as markers to develop pattern recognition maps based on principal component analysis and supervised classification models, such as linear discriminant analysis (LDA), multivariate regression (MLR), principal component regression (PCR), and partial least-squares (PLS). The results give proof of the concept that isotope ratio mass spectroscopy can discriminate simultaneously between milk samples according to their geographical origin and type of processing.

  9. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  10. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  11. Assessing prescription drug abuse using functional principal component analysis (FPCA) of wastewater data.

    PubMed

    Salvatore, Stefania; Røislien, Jo; Baz-Lomba, Jose A; Bramness, Jørgen G

    2017-03-01

    Wastewater-based epidemiology is an alternative method for estimating the collective drug use in a community. We applied functional data analysis, a statistical framework developed for analysing curve data, to investigate weekly temporal patterns in wastewater measurements of three prescription drugs with known abuse potential: methadone, oxazepam and methylphenidate, comparing them to positive and negative control drugs. Sewage samples were collected in February 2014 from a wastewater treatment plant in Oslo, Norway. The weekly pattern of each drug was extracted by fitting of generalized additive models, using trigonometric functions to model the cyclic behaviour. From the weekly component, the main temporal features were then extracted using functional principal component analysis. Results are presented through the functional principal components (FPCs) and corresponding FPC scores. Clinically, the most important weekly feature of the wastewater-based epidemiology data was the second FPC, representing the difference between average midweek level and a peak during the weekend, representing possible recreational use of a drug in the weekend. Estimated scores on this FPC indicated recreational use of methylphenidate, with a high weekend peak, but not for methadone and oxazepam. The functional principal component analysis uncovered clinically important temporal features of the weekly patterns of the use of prescription drugs detected from wastewater analysis. This may be used as a post-marketing surveillance method to monitor prescription drugs with abuse potential. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Spectral decomposition of asteroid Itokawa based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho

    2018-01-01

    The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.

  13. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    PubMed

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  14. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  15. [Vis-NIR spectroscopic pattern recognition combined with SG smoothing applied to breed screening of transgenic sugarcane].

    PubMed

    Liu, Gui-Song; Guo, Hao-Song; Pan, Tao; Wang, Ji-Hua; Cao, Gan

    2014-10-01

    Based on Savitzky-Golay (SG) smoothing screening, principal component analysis (PCA) combined with separately supervised linear discriminant analysis (LDA) and unsupervised hierarchical clustering analysis (HCA) were used for non-destructive visible and near-infrared (Vis-NIR) detection for breed screening of transgenic sugarcane. A random and stability-dependent framework of calibration, prediction, and validation was proposed. A total of 456 samples of sugarcane leaves planting in the elongating stage were collected from the field, which was composed of 306 transgenic (positive) samples containing Bt and Bar gene and 150 non-transgenic (negative) samples. A total of 156 samples (negative 50 and positive 106) were randomly selected as the validation set; the remaining samples (negative 100 and positive 200, a total of 300 samples) were used as the modeling set, and then the modeling set was subdivided into calibration (negative 50 and positive 100, a total of 150 samples) and prediction sets (negative 50 and positive 100, a total of 150 samples) for 50 times. The number of SG smoothing points was ex- panded, while some modes of higher derivative were removed because of small absolute value, and a total of 264 smoothing modes were used for screening. The pairwise combinations of first three principal components were used, and then the optimal combination of principal components was selected according to the model effect. Based on all divisions of calibration and prediction sets and all SG smoothing modes, the SG-PCA-LDA and SG-PCA-HCA models were established, the model parameters were optimized based on the average prediction effect for all divisions to produce modeling stability. Finally, the model validation was performed by validation set. With SG smoothing, the modeling accuracy and stability of PCA-LDA, PCA-HCA were signif- icantly improved. For the optimal SG-PCA-LDA model, the recognition rate of positive and negative validation samples were 94.3%, 96.0%; and were 92.5%, 98.0% for the optimal SG-PCA-LDA model, respectively. Vis-NIR spectro- scopic pattern recognition combined with SG smoothing could be used for accurate recognition of transgenic sugarcane leaves, and provided a convenient screening method for transgenic sugarcane breeding.

  16. Applying Ancestry and Sex Computation as a Quality Control Tool in Targeted Next-Generation Sequencing.

    PubMed

    Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H

    2016-03-01

    To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    PubMed

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Non-invasive prediction of hemoglobin levels by principal component and back propagation artificial neural network

    PubMed Central

    Ding, Haiquan; Lu, Qipeng; Gao, Hongzhi; Peng, Zhongqi

    2014-01-01

    To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA. PMID:24761296

  19. Study on pattern recognition of Raman spectrum based on fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing

    2017-10-01

    Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.

  20. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  1. Determination of the Characteristics and Classification of Near-Infrared Spectra of Patchouli Oil (Pogostemon Cablin Benth.) from Different Origin

    NASA Astrophysics Data System (ADS)

    Diego, M. C. R.; Purwanto, Y. A.; Sutrisno; Budiastra, I. W.

    2018-05-01

    Research related to the non-destructive method of near-infrared (NIR) spectroscopy in aromatic oil is still in development in Indonesia. The objectives of the study were to determine the characteristics of the near-infrared spectra of patchouli oil and classify it based on its origin. The samples were selected from seven different places in Indonesia (Bogor and Garut from West Java, Aceh, and Jambi from Sumatra and Konawe, Masamba and Kolaka from Sulawesi Island). The spectral data of patchouli oil was obtained by FT-NIR spectrometer at the wavelength of 1000-2500 nm, and after that, the samples were subjected to composition analysis using Gas Chromatography-Mass Spectrometry. The transmittance and absorbance spectra were analyzed and then principal component analysis (PCA) was carried out. Discriminant analysis (DA) of the principal component was developed to classify patchouli oil based on its origin. The result shows that the data of both spectra (transmittance and absorbance spectra) by the PC analysis give a similar result for discriminating the seven types of patchouli oil due to their distribution and behavior. The DA of the three principal component in both data processed spectra could classify patchouli oil accurately. This result exposed that NIR spectroscopy can be successfully used as a correct method to classify patchouli oil based on its origin.

  2. The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.

    2016-08-01

    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.

  3. On the Fallibility of Principal Components in Research

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Li, Tenglong

    2017-01-01

    The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…

  4. Finger crease pattern recognition using Legendre moments and principal component analysis

    NASA Astrophysics Data System (ADS)

    Luo, Rongfang; Lin, Tusheng

    2007-03-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.

  5. Evidence of seasonal variation in longitudinal growth of height in a sample of boys from Stuttgart Carlsschule, 1771-1793, using combined principal component analysis and maximum likelihood principle.

    PubMed

    Lehmann, A; Scheffler, Ch; Hermanussen, M

    2010-02-01

    Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  6. Characterization and scaling of anisotropy of fabrics and fractures at laboratory scales: insights from volumetric analysis using computed tomography

    NASA Astrophysics Data System (ADS)

    Ketcham, Richard A.

    2017-04-01

    Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.

  7. Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2017-05-01

    Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.

  8. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy.

    PubMed

    Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús

    2017-04-01

    Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Speciation of Energy Critical Elements in Marine Ferromanganese Crusts and Nodules by Principal Component Analysis and Least-squares fits to XAFS Spectra

    NASA Astrophysics Data System (ADS)

    Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.

    2011-12-01

    Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were tested. Te6+ sorbed to Fe oxyhydroxide and Mo sorbed to Fe oxyhydroxide were identified as the best models for Te and Mo PCAs, respectively. However, in the case of Mo, least-squares fits contradicted these results, indicating that about 80% of Mo in crust samples was associated with Mn oxides. Ultimately it was discovered that the sample from which Mn oxide had been leached was skewing the results in the Mo PCA but not in the Te PCA. When the leached sample was removed and the Mo PCA repeated (n = 11), target transformation indicated that Mo sorbed to Mn oxide was indeed the best model for the set. Our results indicate that Te and Mo are strongly partitioned into different phases in these Fe-Mn crusts, and emphasize the importance of evaluating outliers and their effects on PCA.

  10. Factor Structure of the Internet Addiction Test in Online Gamers and Poker Players.

    PubMed

    Khazaal, Yasser; Achab, Sophia; Billieux, Joel; Thorens, Gabriel; Zullino, Daniele; Dufour, Magali; Rothen, Stéphane

    2015-01-01

    The Internet Addiction Test (IAT) is the most widely used questionnaire to screen for problematic Internet use. Nevertheless, its factorial structure is still debated, which complicates comparisons among existing studies. Most previous studies were performed with students or community samples despite the probability of there being more problematic Internet use among users of specific applications, such as online gaming or gambling. To assess the factorial structure of a modified version of the IAT that addresses specific applications, such as video games and online poker. Two adult samples-one sample of Internet gamers (n=920) and one sample of online poker players (n=214)-were recruited and completed an online version of the modified IAT. Both samples were split into two subsamples. Two principal component analyses (PCAs) followed by two confirmatory factor analyses (CFAs) were run separately. The results of principal component analysis indicated that a one-factor model fit the data well across both samples. In consideration of the weakness of some IAT items, a 17-item modified version of the IAT was proposed. This study assessed, for the first time, the factorial structure of a modified version of an Internet-administered IAT on a sample of Internet gamers and a sample of online poker players. The scale seems appropriate for the assessment of such online behaviors. Further studies on the modified 17-item IAT version are needed.

  11. Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat

    2011-05-27

    In this paper, automated sample preparation, retention time locked gas chromatography-mass spectrometry (GC-MS) and data analysis methods for the metabolomics study were evaluated. A miniaturized and automated derivatisation method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types×2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatisation process offers excellent repeatability, and the time between sample preparation and analysis was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatography-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data analysis. XCMS followed by principal component analysis (approach 1) and AMDIS deconvolution combined with a commercially available program (Mass Profiler Professional) followed by principal component analysis (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Discrimination of Geographical Origin of Asian Garlic Using Isotopic and Chemical Datasets under Stepwise Principal Component Analysis.

    PubMed

    Liu, Tsang-Sen; Lin, Jhen-Nan; Peng, Tsung-Ren

    2018-01-16

    Isotopic compositions of δ 2 H, δ 18 O, δ 13 C, and δ 15 N and concentrations of 22 trace elements from garlic samples were analyzed and processed with stepwise principal component analysis (PCA) to discriminate garlic's country of origin among Asian regions including South Korea, Vietnam, Taiwan, and China. Results indicate that there is no single trace-element concentration or isotopic composition that can accomplish the study's purpose and the stepwise PCA approach proposed does allow for discrimination between countries on a regional basis. Sequentially, Step-1 PCA distinguishes garlic's country of origin among Taiwanese, South Korean, and Vietnamese samples; Step-2 PCA discriminates Chinese garlic from South Korean garlic; and Step-3 and Step-4 PCA, Chinese garlic from Vietnamese garlic. In model tests, countries of origin of all audit samples were correctly discriminated by stepwise PCA. Consequently, this study demonstrates that stepwise PCA as applied is a simple and effective approach to discriminating country of origin among Asian garlics. © 2018 American Academy of Forensic Sciences.

  13. Retest of a Principal Components Analysis of Two Household Environmental Risk Instruments.

    PubMed

    Oneal, Gail A; Postma, Julie; Odom-Maryon, Tamara; Butterfield, Patricia

    2016-08-01

    Household Risk Perception (HRP) and Self-Efficacy in Environmental Risk Reduction (SEERR) instruments were developed for a public health nurse-delivered intervention designed to reduce home-based, environmental health risks among rural, low-income families. The purpose of this study was to test both instruments in a second low-income population that differed geographically and economically from the original sample. Participants (N = 199) were recruited from the Women, Infants, and Children (WIC) program. Paper and pencil surveys were collected at WIC sites by research-trained student nurses. Exploratory principal components analysis (PCA) was conducted, and comparisons were made to the original PCA for the purpose of data reduction. Instruments showed satisfactory Cronbach alpha values for all components. HRP components were reduced from five to four, which explained 70% of variance. The components were labeled sensed risks, unseen risks, severity of risks, and knowledge. In contrast to the original testing, environmental tobacco smoke (ETS) items was not a separate component of the HRP. The SEERR analysis demonstrated four components explaining 71% of variance, with similar patterns of items as in the first study, including a component on ETS, but some differences in item location. Although low-income populations constituted both samples, differences in demographics and risk exposures may have played a role in component and item locations. Findings provided justification for changing or reducing items, and for tailoring the instruments to population-level risks and behaviors. Although analytic refinement will continue, both instruments advance the measurement of environmental health risk perception and self-efficacy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate

    PubMed Central

    Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.

    2009-01-01

    Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786

  15. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  16. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  17. RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins.

    PubMed

    Azilawati, M I; Hashim, D M; Jamilah, B; Amin, I

    2015-04-01

    The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analysis of Peanut Seed Oil by NIR

    USDA-ARS?s Scientific Manuscript database

    Near infrared reflectance spectra (NIRS) were collected from Arachis hypogaea seed samples and used in predictive models to rapidly identify varieties with high oleic acid. The method was developed for shelled peanut seeds with intact testa. Spectra were evaluated initially by principal component an...

  19. Discrimination among Panax species using spectral fingerprinting

    USDA-ARS?s Scientific Manuscript database

    Spectral fingerprints of samples of three Panax species (P. quinquefolius L., P. ginseng, and P. notoginseng) were acquired using UV, NIR, and MS spectrometry. With principal components analysis (PCA), all three methods allowed visual discrimination between all three species. All three methods wer...

  20. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  1. Discrimination of gender-, speed-, and shoe-dependent movement patterns in runners using full-body kinematics.

    PubMed

    Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M

    2012-05-01

    Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  2. Differentiation of Aurantii Fructus Immaturus from Poniciri Trifoliatae Fructus Immaturus using Flow- injection Mass spectrometric (FIMS) Metabolic Fingerprinting Method Combined with Chemometrics

    PubMed Central

    Zhao, Yang; Chang, Yuan-Shiun; Chen, Pei

    2015-01-01

    A flow-injection mass spectrometric metabolic fingerprinting method in combination with chemometrics was used to differentiate Aurantii Fructus Immaturus from its counterfeit Poniciri Trifoliatae Fructus Immaturus. Flow-injection mass spectrometric (FIMS) fingerprints of 9 Aurantii Fructus Immaturus samples and 12 Poniciri Trifoliatae Fructus Immaturus samples were acquired and analyzed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The authentic herbs were differentiated from their counterfeits easily. Eight characteristic components which were responsible for the difference between the samples were tentatively identified. Furthermore, three out of the eight components, naringin, hesperidin, and neohesperidin, were quantified. The results are useful to help identify the authenticity of Aurantii Fructus Immaturus. PMID:25622204

  3. Principal Component Relaxation Mode Analysis of an All-Atom Molecular Dynamics Simulation of Human Lysozyme

    NASA Astrophysics Data System (ADS)

    Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi

    2013-02-01

    A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.

  4. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    PubMed

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between PC1 and PC2. It is therefore concluded that maximum discrimination of writing, office, and photocopy paper could be achieved on the basis of the second approach. Hence, the present inexpensive analytical method can be appropriate for application to routine questioned document examination work in forensic laboratories because it provides nondestructive, quantitative, reliable, and repeatable results.

  5. Development of a scale to assess Hwa-Byung, a Korean culture-bound syndrome, using the Korean MMPI-2.

    PubMed

    Roberts, Miguel E; Han, Kyunghee; Weed, Nathan C

    2006-09-01

    This study documents the development of an MMPI-2 scale designed to assess features of the Korean culture-bound syndrome, Hwa-Byung (HB). An American research team and psychiatric practitioners in Korea created an 18-item HB scale via rational item selection and psycho-metric refinement. Principal components analysis of scale items revealed four components, reflecting content domains of general health, gastrointestinal symptoms, hopelessness, and anger. This four-component solution applied well to both Korean men and women, but not to an American sample. Although some findings were encouraging, future studies employing clinical samples are needed to provide further validation of this scale.

  6. A Multi-Dimensional Functional Principal Components Analysis of EEG Data

    PubMed Central

    Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A.; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla

    2017-01-01

    Summary The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. PMID:28072468

  7. A multi-dimensional functional principal components analysis of EEG data.

    PubMed

    Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla

    2017-09-01

    The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.

  8. Functional principal component analysis of glomerular filtration rate curves after kidney transplant.

    PubMed

    Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo

    2017-01-01

    This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.

  9. Ethiopian Genetic Diversity Reveals Linguistic Stratification and Complex Influences on the Ethiopian Gene Pool

    PubMed Central

    Pagani, Luca; Kivisild, Toomas; Tarekegn, Ayele; Ekong, Rosemary; Plaster, Chris; Gallego Romero, Irene; Ayub, Qasim; Mehdi, S. Qasim; Thomas, Mark G.; Luiselli, Donata; Bekele, Endashaw; Bradman, Neil; Balding, David J.; Tyler-Smith, Chris

    2012-01-01

    Humans and their ancestors have traversed the Ethiopian landscape for millions of years, and present-day Ethiopians show great cultural, linguistic, and historical diversity, which makes them essential for understanding African variability and human origins. We genotyped 235 individuals from ten Ethiopian and two neighboring (South Sudanese and Somali) populations on an Illumina Omni 1M chip. Genotypes were compared with published data from several African and non-African populations. Principal-component and STRUCTURE-like analyses confirmed substantial genetic diversity both within and between populations, and revealed a match between genetic data and linguistic affiliation. Using comparisons with African and non-African reference samples in 40-SNP genomic windows, we identified “African” and “non-African” haplotypic components for each Ethiopian individual. The non-African component, which includes the SLC24A5 allele associated with light skin pigmentation in Europeans, may represent gene flow into Africa, which we estimate to have occurred ∼3 thousand years ago (kya). The non-African component was found to be more similar to populations inhabiting the Levant rather than the Arabian Peninsula, but the principal route for the expansion out of Africa ∼60 kya remains unresolved. Linkage-disequilibrium decay with genomic distance was less rapid in both the whole genome and the African component than in southern African samples, suggesting a less ancient history for Ethiopian populations. PMID:22726845

  10. ANALYTICAL METHOD COMPARISONS BY ESTIMATES OF PRECISION AND LOWER DETECTION LIMIT

    EPA Science Inventory

    The paper describes the use of principal component analysis to estimate the operating precision of several different analytical instruments or methods simultaneously measuring a common sample of a material whose actual value is unknown. This approach is advantageous when none of ...

  11. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of Staining-Dependent Colour Changes in Resin Composites Using Principal Component Analysis

    PubMed Central

    Manojlovic, D.; Lenhardt, L.; Milićević, B.; Antonov, M.; Miletic, V.; Dramićanin, M. D.

    2015-01-01

    Colour changes in Gradia Direct™ composite after immersion in tea, coffee, red wine, Coca-Cola, Colgate mouthwash, and distilled water were evaluated using principal component analysis (PCA) and the CIELAB colour coordinates. The reflection spectra of the composites were used as input data for the PCA. The output data (scores and loadings) provided information about the magnitude and origin of the surface reflection changes after exposure to the staining solutions. The reflection spectra of the stained samples generally exhibited lower reflection in the blue spectral range, which was manifested in the lower content of the blue shade for the samples. Both analyses demonstrated the high staining abilities of tea, coffee, and red wine, which produced total colour changes of 4.31, 6.61, and 6.22, respectively, according to the CIELAB analysis. PCA revealed subtle changes in the reflection spectra of composites immersed in Coca-Cola, demonstrating Coca-Cola’s ability to stain the composite to a small degree. PMID:26450008

  13. Cluster and principal component analysis based on SSR markers of Amomum tsao-ko in Jinping County of Yunnan Province

    NASA Astrophysics Data System (ADS)

    Ma, Mengli; Lei, En; Meng, Hengling; Wang, Tiantao; Xie, Linyan; Shen, Dong; Xianwang, Zhou; Lu, Bingyue

    2017-08-01

    Amomum tsao-ko is a commercial plant that used for various purposes in medicinal and food industries. For the present investigation, 44 germplasm samples were collected from Jinping County of Yunnan Province. Clusters analysis and 2-dimensional principal component analysis (PCA) was used to represent the genetic relations among Amomum tsao-ko by using simple sequence repeat (SSR) markers. Clustering analysis clearly distinguished the samples groups. Two major clusters were formed; first (Cluster I) consisted of 34 individuals, the second (Cluster II) consisted of 10 individuals, Cluster I as the main group contained multiple sub-clusters. PCA also showed 2 groups: PCA Group 1 included 29 individuals, PCA Group 2 included 12 individuals, consistent with the results of cluster analysis. The purpose of the present investigation was to provide information on genetic relationship of Amomum tsao-ko germplasm resources in main producing areas, also provide a theoretical basis for the protection and utilization of Amomum tsao-ko resources.

  14. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    PubMed

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  15. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics.

    PubMed

    Yücel, Yasin; Sultanoğlu, Pınar

    2013-09-01

    Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluation of Staining-Dependent Colour Changes in Resin Composites Using Principal Component Analysis.

    PubMed

    Manojlovic, D; Lenhardt, L; Milićević, B; Antonov, M; Miletic, V; Dramićanin, M D

    2015-10-09

    Colour changes in Gradia Direct™ composite after immersion in tea, coffee, red wine, Coca-Cola, Colgate mouthwash, and distilled water were evaluated using principal component analysis (PCA) and the CIELAB colour coordinates. The reflection spectra of the composites were used as input data for the PCA. The output data (scores and loadings) provided information about the magnitude and origin of the surface reflection changes after exposure to the staining solutions. The reflection spectra of the stained samples generally exhibited lower reflection in the blue spectral range, which was manifested in the lower content of the blue shade for the samples. Both analyses demonstrated the high staining abilities of tea, coffee, and red wine, which produced total colour changes of 4.31, 6.61, and 6.22, respectively, according to the CIELAB analysis. PCA revealed subtle changes in the reflection spectra of composites immersed in Coca-Cola, demonstrating Coca-Cola's ability to stain the composite to a small degree.

  17. Documenting mudstone heterogeneity by use of principal component analysis of X-ray diffraction and portable X-ray fluorescence data: A case study in the Triassic Shublik Formation, Alaska North Slope

    USGS Publications Warehouse

    Boehlke, Adam; Whidden, Katherine J.; Benzel, William M.

    2017-01-01

    Determining the chemical and mineralogical variability within fine-grained mudrocks poses analytical challenges but is potentially useful for documenting subtle stratigraphic differences in physicochemical environments that may influence petroleum reservoir properties and behavior. In this study, we investigate the utility of combining principal component analysis (PCA) of X-ray diffraction (XRD) data and portable X-ray fluorescence (pXRF) data to identify simplifying relationships within a large number of samples and subsequently evaluate a subset that encompasses the full spectrum or range of mineral and chemical variability within a vertical section. Samples were collected and analyzed from a vertical core of the Shublik Formation, a heterogeneous, phosphate-rich, calcareous mudstone-to-marl unit deposited in the Arctic Alaska Basin (AAB) during the Middle and Late Triassic. The Shublik is a major petroleum source rock in the Alaskan North Slope, and is considered a prime target for continuous self-sourced resource plays.

  18. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    NASA Astrophysics Data System (ADS)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  19. Determination of Multiple Near-Surface Residual Stress Components in Laser Peened Aluminum Alloy via the Contour Method

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Fitzpatrick, Michael E.; Gungor, Salih

    2015-09-01

    In this study, residual stress fields, including the near-surface residual stresses, were determined for an Al7050-T7451 sample after laser peening. The contour method was applied to measure one component of the residual stress, and the relaxed stresses on the cut surfaces were then measured by X-ray diffraction. This allowed calculation of the three orthogonal stress components using the superposition principle. The near-surface results were validated with results from incremental hole drilling and conventional X-ray diffraction. The results demonstrate that multiple residual stress components can be determined using a combination of the contour method and another technique. If the measured stress components are congruent with the principal stress axes in the sample, then this allows for determination of the complete stress tensor.

  20. The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)

  1. The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.

    1996-03-01

    Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.

  2. Psychometric evaluation of the Revised Professional Practice Environment (RPPE) scale.

    PubMed

    Erickson, Jeanette Ives; Duffy, Mary E; Ditomassi, Marianne; Jones, Dorothy

    2009-05-01

    The purpose was to examine the psychometric properties of the Revised Professional Practice Environment (RPPE) scale. Despite renewed focus on studying health professionals' practice environments, there are still few reliable and valid instruments available to assist nurse administrators in decision making. A psychometric evaluation using a random-sample cross-validation procedure (calibration sample [CS], n = 775; validation sample [VS], n = 775) was undertaken. Cronbach alpha internal consistency reliability of the total score (r = 0.93 [CS] and 0.92 [VS]), resulting subscale scores (r range: 0.80-0.87 [CS], 0.81-0.88 [VS]), and principal components analyses with Varimax rotation and Kaiser normalization (8 components, 59.2% variance [CS], 59.7% [VS]) produced almost identical results in both samples. The multidimensional RPPE is a psychometrically sound measure of 8 components of the professional practice environment in the acute care setting and sufficiently reliable and valid for use as independent subscales in healthcare research.

  3. [Study on Application of NIR Spectral Information Screening in Identification of Maca Origin].

    PubMed

    Wang, Yuan-zhong; Zhao, Yan-li; Zhang, Ji; Jin, Hang

    2016-02-01

    Medicinal and edible plant Maca is rich in various nutrients and owns great medicinal value. Based on near infrared diffuse reflectance spectra, 139 Maca samples collected from Peru and Yunnan were used to identify their geographical origins. Multiplication signal correction (MSC) coupled with second derivative (SD) and Norris derivative filter (ND) was employed in spectral pretreatment. Spectrum range (7,500-4,061 cm⁻¹) was chosen by spectrum standard deviation. Combined with principal component analysis-mahalanobis distance (PCA-MD), the appropriate number of principal components was selected as 5. Based on the spectrum range and the number of principal components selected, two abnormal samples were eliminated by modular group iterative singular sample diagnosis method. Then, four methods were used to filter spectral variable information, competitive adaptive reweighted sampling (CARS), monte carlo-uninformative variable elimination (MC-UVE), genetic algorithm (GA) and subwindow permutation analysis (SPA). The spectral variable information filtered was evaluated by model population analysis (MPA). The results showed that RMSECV(SPA) > RMSECV(CARS) > RMSECV(MC-UVE) > RMSECV(GA), were 2. 14, 2. 05, 2. 02, and 1. 98, and the spectral variables were 250, 240, 250 and 70, respectively. According to the spectral variable filtered, partial least squares discriminant analysis (PLS-DA) was used to build the model, with random selection of 97 samples as training set, and the other 40 samples as validation set. The results showed that, R²: GA > MC-UVE > CARS > SPA, RMSEC and RMSEP: GA < MC-UVE < CARS

  4. Monitoring IACP samples and construction of a centralized data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, D.B.; Ray, D.B.; Simonson, J.

    1991-01-01

    The Integrated Air Cancer Project (IACP) is a multiyear US EPA research program established to develop and evaluate methods required to identify the principal airborne carcinogens, determine emission sources, and improve the estimate of comparative human cancer risk. The first major field study designed to examine a residential wood combustion airshed was conducted in Boise, Idaho during the 1986-1987 winter heating season. The second major field study conducted in Roanoke, Virgina during the 1988-1989 was to study residential oil heating and wood combustion. Motor vehicle emissions were considered a major combustion product contributor in both airsheds. This paper describes twomore » critical components of the project. The first component is the sample custody and tracking of the samples before analysis. The second component describes the data management of the sample field data (eg. sample site, time, date, flow rate) as well as the analytical data (eg. mutagenicity, particle concentrations) for the environmental samples.« less

  5. Principal component analysis of physicochemical and sensory characteristics of beef rounds extended with gum arabic from Acacia senegal var. kerensis.

    PubMed

    Mwove, Johnson K; Gogo, Lilian A; Chikamai, Ben N; Omwamba, Mary; Mahungu, Symon M

    2018-03-01

    Principal component analysis (PCA) was carried out to study the relationship between 24 meat quality measurements taken from beef round samples that were injected with curing brines containing gum arabic (1%, 1.5%, 2%, 2.5%, and 3%) and soy protein concentrate (SPC) (3.5%) at two injection levels (30% and 35%). The measurements used to describe beef round quality were expressible moisture, moisture content, cook yield, possible injection, achieved gum arabic level in beef round, and protein content, as well as descriptive sensory attributes for flavor, texture, basic tastes, feeling factors, color, and overall acceptability. Several significant correlations were found between beef round quality parameters. The highest significant negative and positive correlations were recorded between color intensity and gray color and between color intensity and brown color, respectively. The first seven principal components (PCs) were extracted explaining over 95% of the total variance. The first PC was characterized by texture attributes (hardness and denseness), feeling factors (chemical taste and chemical burn), and two physicochemical properties (expressible moisture and achieved gum arabic level). Taste attribute (saltiness), physicochemical attributes (cook yield and possible injection), and overall acceptability were useful in defining the second PC, while the third PC was characterized by metallic taste, gray color, brown color, and physicochemical attributes (moisture and protein content). The correlation loading plot showed that the distribution of the samples on the axes of the first two PCs allowed for differentiation of samples injected to 30% injection level which were placed on the upper side of the biplot from those injected to 35% which were placed on the lower side. Similarly, beef samples extended with gum arabic and those containing SPC were also visible when scores for the first and third PCs were plotted. Thus, PCA was efficient in analyzing the quality characteristics of beef rounds extended with gum arabic.

  6. High-dimensional inference with the generalized Hopfield model: principal component analysis and corrections.

    PubMed

    Cocco, S; Monasson, R; Sessak, V

    2011-05-01

    We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that maximum likelihood inference is deeply related to principal component analysis when the amplitude of the pattern components ξ is negligible compared to √N. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in ξ/√N. We stress the need to generalize the Hopfield model and include both attractive and repulsive patterns in order to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size N and of the amplitude ξ. The inference approach is illustrated on synthetic and biological data.

  7. The influence of iliotibial band syndrome history on running biomechanics examined via principal components analysis.

    PubMed

    Foch, Eric; Milner, Clare E

    2014-01-03

    Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.

  8. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Multivariate classification of the infrared spectra of cell and tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haaland, D.M.; Jones, H.D.; Thomas, E.V.

    1997-03-01

    Infrared microspectroscopy of biopsied canine lymph cells and tissue was performed to investigate the possibility of using IR spectra coupled with multivariate classification methods to classify the samples as normal, hyperplastic, or neoplastic (malignant). IR spectra were obtained in transmission mode through BaF{sub 2} windows and in reflection mode from samples prepared on gold-coated microscope slides. Cytology and histopathology samples were prepared by a variety of methods to identify the optimal methods of sample preparation. Cytospinning procedures that yielded a monolayer of cells on the BaF{sub 2} windows produced a limited set of IR transmission spectra. These transmission spectra weremore » converted to absorbance and formed the basis for a classification rule that yielded 100{percent} correct classification in a cross-validated context. Classifications of normal, hyperplastic, and neoplastic cell sample spectra were achieved by using both partial least-squares (PLS) and principal component regression (PCR) classification methods. Linear discriminant analysis applied to principal components obtained from the spectral data yielded a small number of misclassifications. PLS weight loading vectors yield valuable qualitative insight into the molecular changes that are responsible for the success of the infrared classification. These successful classification results show promise for assisting pathologists in the diagnosis of cell types and offer future potential for {ital in vivo} IR detection of some types of cancer. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}« less

  10. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  11. Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas

    PubMed Central

    2012-01-01

    Background The aim of the paper is to assess by the principal components analysis (PCA) the heavy metal contamination of soil and vegetables widely used as food for people who live in areas contaminated by heavy metals (HMs) due to long-lasting mining activities. This chemometric technique allowed us to select the best model for determining the risk of HMs on the food chain as well as on people's health. Results Many PCA models were computed with different variables: heavy metals contents and some agro-chemical parameters which characterize the soil samples from contaminated and uncontaminated areas, HMs contents of different types of vegetables grown and consumed in these areas, and the complex parameter target hazard quotients (THQ). Results were discussed in terms of principal component analysis. Conclusion There were two major benefits in processing the data PCA: firstly, it helped in optimizing the number and type of data that are best in rendering the HMs contamination of the soil and vegetables. Secondly, it was valuable for selecting the vegetable species which present the highest/minimum risk of a negative impact on the food chain and human health. PMID:23234365

  12. Chemometric techniques on the analysis of Raman spectra of serum blood samples of breast cancer patients

    NASA Astrophysics Data System (ADS)

    Rocha-Osornio, L. N.; Pichardo-Molina, J. L.; Barbosa-Garcia, O.; Frausto-Reyes, C.; Araujo-Andrade, C.; Huerta-Franco, R.; Gutiérrez-Juárez, G.

    2008-02-01

    Raman spectroscopy and Multivariate methods were used to study serum blood samples of control and breast cancer patients. Blood samples were obtained from 11 patients and 12 controls from the central region of Mexico. Our results show that principal component analysis is able to discriminate serum sample of breast cancer patients from those of control group, also the loading vectors of PCA plotted as a function of Raman shift shown which bands permitted to make the maximum discrimination between both groups of samples.

  13. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  14. LARVAL FISH HABITAT QUALITY : THE EFFECTS OF FRESHWATER FLOW

    EPA Science Inventory

    We sampled larval fish in Suisun Marsh, in the San Francisco Bay estuary from February to June 1994-1999. We used principal components analysis (PCA) and canonical correspondence analysis (CCA) on 13 taxonomic groups making up 99.7% of the catch and several environmental variable...

  15. The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.

    PubMed

    Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S

    2016-10-01

    The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.

  16. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice.

    PubMed

    Socaci, Sonia A; Socaciu, Carmen; Tofană, Maria; Raţi, Ioan V; Pintea, Adela

    2013-01-01

    The health benefits of sea buckthorn (Hippophae rhamnoides L.) are well documented due to its rich content in bioactive phytochemicals (pigments, phenolics and vitamins) as well as volatiles responsible for specific flavours and bacteriostatic action. The volatile compounds are good biomarkers of berry freshness, quality and authenticity. To develop a fast and efficient GC-MS method including a minimal sample preparation technique (in-tube extraction, ITEX) for the discrimination of sea buckthorn varieties based on their chromatographic volatile fingerprint. Twelve sea buckthorn varieties (wild and cultivated) were collected from forestry departments and experimental fields, respectively. The extraction of volatile compounds was performed using the ITEX technique whereas separation and identification was performed using a GC-MS QP-2010. Principal component analysis (PCA) was applied to discriminate the differences among sample composition. Using GC-MS analysis, from the headspace of sea buckthorn samples, 46 volatile compounds were separated with 43 being identified. The most abundant derivatives were ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid and butanoic acid, as well as 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate and benzoic acid ethyl ester (over 80% of all volatile compounds). Principal component analysis showed that the first two components explain 79% of data variance, demonstrating a good discrimination between samples. A reliable, fast and eco-friendly ITEX/GC-MS method was applied to fingerprint the volatile profile and to discriminate between wild and cultivated sea buckthorn berries originating from the Carpathians, with relevance to food science and technology. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Automated cloud screening of AVHRR imagery using split-and-merge clustering

    NASA Technical Reports Server (NTRS)

    Gallaudet, Timothy C.; Simpson, James J.

    1991-01-01

    Previous methods to segment clouds from ocean in AVHRR imagery have shown varying degrees of success, with nighttime approaches being the most limited. An improved method of automatic image segmentation, the principal component transformation split-and-merge clustering (PCTSMC) algorithm, is presented and applied to cloud screening of both nighttime and daytime AVHRR data. The method combines spectral differencing, the principal component transformation, and split-and-merge clustering to sample objectively the natural classes in the data. This segmentation method is then augmented by supervised classification techniques to screen clouds from the imagery. Comparisons with other nighttime methods demonstrate its improved capability in this application. The sensitivity of the method to clustering parameters is presented; the results show that the method is insensitive to the split-and-merge thresholds.

  18. Rapid Elemental Analysis and Provenance Study of Blumea balsamifera DC Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999

  19. Improvements of the Vis-NIRS Model in the Prediction of Soil Organic Matter Content Using Spectral Pretreatments, Sample Selection, and Wavelength Optimization

    NASA Astrophysics Data System (ADS)

    Lin, Z. D.; Wang, Y. B.; Wang, R. J.; Wang, L. S.; Lu, C. P.; Zhang, Z. Y.; Song, L. T.; Liu, Y.

    2017-07-01

    A total of 130 topsoil samples collected from Guoyang County, Anhui Province, China, were used to establish a Vis-NIR model for the prediction of organic matter content (OMC) in lime concretion black soils. Different spectral pretreatments were applied for minimizing the irrelevant and useless information of the spectra and increasing the spectra correlation with the measured values. Subsequently, the Kennard-Stone (KS) method and sample set partitioning based on joint x-y distances (SPXY) were used to select the training set. Successive projection algorithm (SPA) and genetic algorithm (GA) were then applied for wavelength optimization. Finally, the principal component regression (PCR) model was constructed, in which the optimal number of principal components was determined using the leave-one-out cross validation technique. The results show that the combination of the Savitzky-Golay (SG) filter for smoothing and multiplicative scatter correction (MSC) can eliminate the effect of noise and baseline drift; the SPXY method is preferable to KS in the sample selection; both the SPA and the GA can significantly reduce the number of wavelength variables and favorably increase the accuracy, especially GA, which greatly improved the prediction accuracy of soil OMC with Rcc, RMSEP, and RPD up to 0.9316, 0.2142, and 2.3195, respectively.

  20. Teachers' Self-Reported Pedagogical Practices toward Socially Inhibited, Hyperactive, and Average Children

    ERIC Educational Resources Information Center

    Thijs, Jochem T.; Koomen, Helma M. Y.; Van Der Leij, Aryan

    2006-01-01

    This study examined teachers' self-reported pedagogical practices toward socially inhibited, hyperactive, and average kindergartners. A self-report instrument was developed and examined in three samples of kindergartners and their teachers. Principal components analyses were conducted in four datasets pertaining to 1 child per teacher. Two…

  1. 17 CFR Appendix B to Part 420 - Sample Large Position Report

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Memorandum 1 $ Memorandum 2: Report the gross par amount of fails to deliver. Included in the calculation of... millions at par value as of trade date] Security Being Reported Date For Which Information is Being... Principal Components of the Specific Security $________ Total Net Trading Position $ 2. Gross Financing...

  2. A Factor Analytic Validation of Holland's Vocational Preference Inventory

    ERIC Educational Resources Information Center

    Di Scipio, William J.

    1974-01-01

    A principal components analysis was applied to a 135-item pool of the Holland Vocational Preference Inventory, Sixth Revision. The a priori clinical scales were partially upheld with differences attributed to the characteristics of the sample and sociopolitical time context during which the test was administered. (Author)

  3. Reexamining the Correlates of Adolescent Violent Victimization: The Importance of Exposure, Guardianship, and Target Characteristics

    ERIC Educational Resources Information Center

    Tillyer, Marie Skubak; Tillyer, Rob; Miller, Holly Ventura; Pangrac, Rebekah

    2011-01-01

    The present study examines the relative contributions of various theoretical constructs to violent victimization by operationalizing multiple measures of exposure to motivated offenders, guardianship, and target characteristics. Using a nationally representative sample of American adolescents, we conducted principal components factor analysis and…

  4. LARVAL FISH DIVERSITY IN SUISAN MARSH, CALIFORNIA: ARE INTERMEDIATE FLOWS THE BEST?

    EPA Science Inventory

    We sampled larval fish in Suisun Marsh, in the San Francisco Bay estuary from February to June 1995-1999. We used principal components analysis (PCA) and canonical correspondence analysis (CCA) on 13 taxonomic groups making up 99.7% of the catch and several environmental variable...

  5. Mapping "StrengthsQuest" Themes to Holland's Vocational Personality Types

    ERIC Educational Resources Information Center

    Carson, Andrew D.; Evans, Karen; Gitin, Elena; Eads, Jonathan

    2011-01-01

    A sample of 1,747 students attending undergraduate classes in legal education at an online university completed the "StrengthsQuest" assessment as part of a larger investigation; of this number, 117 students also completed the "Kuder Career Search". Exploratory factor analysis (principal components followed varimax rotation) of…

  6. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  7. The Circumplex Pattern of the Life Styles Inventory: A Reanalysis.

    ERIC Educational Resources Information Center

    Levin, Joseph

    1991-01-01

    A reanalysis of the intercorrelation matrix from a principal components analysis of the Life Styles Inventory was conducted using a Canadian sample. Using nonmetric multidimensional scaling, analyses show an almost perfect circumplex pattern. Results illustrate the inadequacy of factor analytic procedures for the analysis and representation of a…

  8. Home on the Great River, part 3: An Integrated Habitat and Hydrology Index

    EPA Science Inventory

    The U.S. EPA’s Environmental Monitoring and Assessment Program sampled 395 sites in the Upper Mississippi, Lower Missouri and Ohio Rivers in 2004-2006 as part of an integrated assessment of ecological condition. Using principal components and cluster analyses, we developed fish ...

  9. Characterization of phenolic amides from cortex lycii by ultra high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  10. Spectroscopic study of honey from Apis mellifera from different regions in Mexico

    NASA Astrophysics Data System (ADS)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.

    2017-05-01

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  11. Factor Structure of the Internet Addiction Test in Online Gamers and Poker Players

    PubMed Central

    Achab, Sophia; Billieux, Joel; Thorens, Gabriel; Zullino, Daniele; Dufour, Magali; Rothen, Stéphane

    2015-01-01

    Background The Internet Addiction Test (IAT) is the most widely used questionnaire to screen for problematic Internet use. Nevertheless, its factorial structure is still debated, which complicates comparisons among existing studies. Most previous studies were performed with students or community samples despite the probability of there being more problematic Internet use among users of specific applications, such as online gaming or gambling. Objective To assess the factorial structure of a modified version of the IAT that addresses specific applications, such as video games and online poker. Methods Two adult samples—one sample of Internet gamers (n=920) and one sample of online poker players (n=214)—were recruited and completed an online version of the modified IAT. Both samples were split into two subsamples. Two principal component analyses (PCAs) followed by two confirmatory factor analyses (CFAs) were run separately. Results The results of principal component analysis indicated that a one-factor model fit the data well across both samples. In consideration of the weakness of some IAT items, a 17-item modified version of the IAT was proposed. Conclusions This study assessed, for the first time, the factorial structure of a modified version of an Internet-administered IAT on a sample of Internet gamers and a sample of online poker players. The scale seems appropriate for the assessment of such online behaviors. Further studies on the modified 17-item IAT version are needed. PMID:26543917

  12. Measuring Acceptance of Sleep Difficulties: The Development of the Sleep Problem Acceptance Questionnaire.

    PubMed

    Bothelius, Kristoffer; Jernelöv, Susanna; Fredrikson, Mats; McCracken, Lance M; Kaldo, Viktor

    2015-11-01

    Acceptance may be an important therapeutic process in sleep medicine, but valid psychometric instruments measuring acceptance related to sleep difficulties are lacking. The purpose of this study was to develop a measure of acceptance in insomnia, and to examine its factor structure as well as construct validity. In a cross-sectional design, a principal component analysis for item reduction was conducted on a first sample (A) and a confirmatory factor analysis on a second sample (B). Construct validity was tested on a combined sample (C). Questionnaire items were derived from a measure of acceptance in chronic pain, and data were gathered through screening or available from pretreatment assessments in four insomnia treatment trials, administered online, via bibliotherapy and in primary care. Adults with insomnia: 372 in sample A and 215 in sample B. Sample C (n = 820) included sample A and B with another 233 participants added. Construct validity was assessed through relations with established acceptance and sleep scales. The principal component analysis presented a two-factor solution with eight items, explaining 65.9% of the total variance. The confirmatory factor analysis supported the solution. Acceptance of sleep problems was more closely related to subjective symptoms and consequences of insomnia than to diary description of sleep, or to acceptance of general private events. The Sleep Problem Acceptance Questionnaire (SPAQ), containing the subscales "Activity Engagement" and "Willingness", is a valid tool to assess acceptance of insomnia. © 2015 Associated Professional Sleep Societies, LLC.

  13. [Identification of varieties of cashmere by Vis/NIR spectroscopy technology based on PCA-SVM].

    PubMed

    Wu, Gui-Fang; He, Yong

    2009-06-01

    One mixed algorithm was presented to discriminate cashmere varieties with principal component analysis (PCA) and support vector machine (SVM). Cashmere fiber has such characteristics as threadlike, softness, glossiness and high tensile strength. The quality characters and economic value of each breed of cashmere are very different. In order to safeguard the consumer's rights and guarantee the quality of cashmere product, quickly, efficiently and correctly identifying cashmere has significant meaning to the production and transaction of cashmere material. The present research adopts Vis/NIRS spectroscopy diffuse techniques to collect the spectral data of cashmere. The near infrared fingerprint of cashmere was acquired by principal component analysis (PCA), and support vector machine (SVM) methods were used to further identify the cashmere material. The result of PCA indicated that the score map made by the scores of PC1, PC2 and PC3 was used, and 10 principal components (PCs) were selected as the input of support vector machine (SVM) based on the reliabilities of PCs of 99.99%. One hundred cashmere samples were used for calibration and the remaining 75 cashmere samples were used for validation. A one-against-all multi-class SVM model was built, the capabilities of SVM with different kernel function were comparatively analyzed, and the result showed that SVM possessing with the Gaussian kernel function has the best identification capabilities with the accuracy of 100%. This research indicated that the data mining method of PCA-SVM has a good identification effect, and can work as a new method for rapid identification of cashmere material varieties.

  14. Strain Transient Detection Techniques: A Comparison of Source Parameter Inversions of Signals Isolated through Principal Component Analysis (PCA), Non-Linear PCA, and Rotated PCA

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Funning, G. J.

    2009-12-01

    We compare several techniques for the analysis of geodetic time series with the ultimate aim to characterize the physical processes which are represented therein. We compare three methods for the analysis of these data: Principal Component Analysis (PCA), Non-Linear PCA (NLPCA), and Rotated PCA (RPCA). We evaluate each method by its ability to isolate signals which may be any combination of low amplitude (near noise level), temporally transient, unaccompanied by seismic emissions, and small scale with respect to the spatial domain. PCA is a powerful tool for extracting structure from large datasets which is traditionally realized through either the solution of an eigenvalue problem or through iterative methods. PCA is an transformation of the coordinate system of our data such that the new "principal" data axes retain maximal variance and minimal reconstruction error (Pearson, 1901; Hotelling, 1933). RPCA is achieved by an orthogonal transformation of the principal axes determined in PCA. In the analysis of meteorological data sets, RPCA has been seen to overcome domain shape dependencies, correct for sampling errors, and to determine principal axes which more closely represent physical processes (e.g., Richman, 1986). NLPCA generalizes PCA such that principal axes are replaced by principal curves (e.g., Hsieh 2004). We achieve NLPCA through an auto-associative feed-forward neural network (Scholz, 2005). We show the geophysical relevance of these techniques by application of each to a synthetic data set. Results are compared by inverting principal axes to determine deformation source parameters. Temporal variability in source parameters, estimated by each method, are also compared.

  15. Nonlinear Principal Components Analysis: Introduction and Application

    ERIC Educational Resources Information Center

    Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.

    2007-01-01

    The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…

  16. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  17. Relationships between NIR spectra and sensory attributes of Thai commercial fish sauces.

    PubMed

    Ritthiruangdej, Pitiporn; Suwonsichon, Thongchai

    2007-07-01

    Twenty Thai commercial fish sauces were characterized by sensory descriptive analysis and near-infrared (NIR) spectroscopy. The main objectives were i) to investigate the relationships between sensory attributes and NIR spectra of samples and ii) to characterize the sensory characteristics of fish sauces based on NIR data. A generic descriptive analysis with 12 trained panels was used to characterize the sensory attributes. These attributes consisted of 15 descriptors: brown color, 5 aromatics (sweet, caramelized, fermented, fishy, and musty), 4 tastes (sweet, salty, bitter, and umami), 3 aftertastes (sweet, salty and bitter) and 2 flavors (caramelized and fishy). The results showed that Thai fish sauce samples exhibited significant differences in all of sensory attribute values (p < 0.05). NIR transflectance spectra were obtained from 1100 to 2500 nm. Prior to investigation of the relationships between sensory attributes and NIR spectra, principal component analysis (PCA) was applied to reduce the dimensionality of the spectral data from 622 wavelengths to two uncorrelated components (NIR1 and NIR2) which explained 92 and 7% of the total variation, respectively. NIR1 was highly correlated with the wavelength regions of 1100 - 1544, 1774 - 2062, 2092 - 2308, and 2358 - 2440 nm, while NIR2 was highly correlated with the wavelength regions of 1742 - 1764, 2066 - 2088, and 2312 - 2354 nm. Subsequently, the relationships among these two components and all sensory attributes were also investigated by PCA. The results showed that the first three principal components (PCs) named as fishy flavor component (PC1), sweet component (PC2) and bitterness component (PC3), respectively, explained a total of 66.86% of the variation. NIR1 was mainly correlated to the sensory attributes of fishy aromatic, fishy flavor and sweet aftertaste on PC1. In addition, the PCA using only the factor loadings of NIR1 and NIR2 could be used to classify samples into three groups which showed high, medium and low degrees of fishy aromatic, fishy flavor and sweet aftertaste.

  18. Similarities between principal components of protein dynamics and random diffusion

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2000-12-01

    Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

  19. Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images

    PubMed Central

    Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali

    2015-01-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077

  20. An Introductory Application of Principal Components to Cricket Data

    ERIC Educational Resources Information Center

    Manage, Ananda B. W.; Scariano, Stephen M.

    2013-01-01

    Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…

  1. Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.

    ERIC Educational Resources Information Center

    Olson, Jeffery E.

    Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…

  2. Identifying apple surface defects using principal components analysis and artifical neural networks

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  3. Utility of Metabolomics toward Assessing the Metabolic Basis of Quality Traits in Apple Fruit with an Emphasis on Antioxidants

    PubMed Central

    Cuthbertson, Daniel; Andrews, Preston K.; Reganold, John P.; Davies, Neal M.; Lange, B. Markus

    2012-01-01

    A gas chromatography–mass spectrometry approach was employed to evaluate the use of metabolite patterns to differentiate fruit from six commercially grown apple cultivars harvested in 2008. Principal component analysis (PCA) of apple fruit peel and flesh data indicated that individual cultivar replicates clustered together and were separated from all other cultivar samples. An independent metabolomics investigation with fruit harvested in 2003 confirmed the separate clustering of fruit from different cultivars. Further evidence for cultivar separation was obtained using a hierarchical clustering analysis. An evaluation of PCA component loadings revealed specific metabolite classes that contributed the most to each principal component, whereas a correlation analysis demonstrated that specific metabolites correlate directly with quality traits such as antioxidant activity, total phenolics, and total anthocyanins, which are important parameters in the selection of breeding germplasm. These data sets lay the foundation for elucidating the metabolic basis of commercially important fruit quality traits. PMID:22881116

  4. Geochemistry of sediments in the Northern and Central Adriatic Sea

    NASA Astrophysics Data System (ADS)

    De Lazzari, A.; Rampazzo, G.; Pavoni, B.

    2004-03-01

    Major, minor and trace elements, loss of ignition, specific surface area, quantities of calcite and dolomite, qualitative mineralogical composition, grain-size distribution and organic micropollutants (PAH, PCB, DDT) were determined on surficial marine sediments sampled during the 1990 ASCOP (Adriatic Scientific Cooperative Program) cruise. Mineralogical composition and carbonate content of the samples were found to be comparable with data previously reported in the literature, whereas geochemical composition and distribution of major, minor and trace elements for samples in international waters and in the central basin have never been reported before. The large amount of information contained in the variables of different origin has been processed by means of a comprehensive approach which establishes the relations among the components through the mathematical-statistical calculation of principal components (factors). These account for the major part of data variance loosing only marginal parts of information and are independent from the units of measure. The sample descriptors concerning natural components and contamination load are discussed by means of a statistical model based on an R-mode Factor analysis calculating four significant factors which explain 86.8% of the total variance, and represent important relationships between grain size, mineralogy, geochemistry and organic micropollutants. A description and an interpretation of factor composition is discussed on the basis of pollution inputs, basin geology and hydrodynamics. The areal distribution of the factors showed that it is the fine grain-size fraction, with oxides and hydroxides of colloidal origin, which are the main means of transport and thus the principal link between chemical, physical and granulometric elements in the Adriatic.

  5. Finding Planets in K2: A New Method of Cleaning the Data

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Mullally, Fergal; Thompson, Susan E.

    2017-01-01

    We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.

  6. 17 CFR Appendix B to Part 420 - Sample Large Position Report

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... $ Memorandum 2: Report the gross par amount of fails to deliver. Included in the calculation of line item 3... millions at par value as of trade date] Security Being Reported Date For Which Information is Being... Principal Components of the Specific Security $ Total Net Trading Position $ 2. Gross Financing Position...

  7. 17 CFR Appendix B to Part 420 - Sample Large Position Report

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... $ Memorandum 2: Report the gross par amount of fails to deliver. Included in the calculation of line item 3... millions at par value as of trade date] Security Being Reported Date For Which Information is Being... Principal Components of the Specific Security $ Total Net Trading Position $ 2. Gross Financing Position...

  8. 17 CFR Appendix B to Part 420 - Sample Large Position Report

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... $ Memorandum 2: Report the gross par amount of fails to deliver. Included in the calculation of line item 3... millions at par value as of trade date] Security Being Reported Date For Which Information is Being... Principal Components of the Specific Security $ Total Net Trading Position $ 2. Gross Financing Position...

  9. A Replication of the MMPI-A PSY-5 Scales and Development of Facet Subscales

    ERIC Educational Resources Information Center

    Bolinskey, P. Kevin; Arnau, Randolph C.; Archer, Robert P.; Handel, Richard W.

    2004-01-01

    McNulty, Harkness, Ben-Porath and Williams recently developed Personality Psychopathology Five (PSY-5) scales for the Minnesota Multiphasic Personality Inventory A (MMPI-A). This study examined these new scales in a sample of 545 adolescents receiving inpatient psychiatric treatment. Item-level principal components analyses were employed to…

  10. Assessment of Self-Reported Anger Expression in Youth.

    ERIC Educational Resources Information Center

    Musante, Linda; Treiber, Frank A.; Davis, Harry C.; Thompson, William O.; Waller, Jennifer L.

    1999-01-01

    Findings related to internal consistency, temporal stability, and principal components structures suggest that the Anger Expression Scale (C. Spielberger and others, 1985) and the Pediatric Anger Expression Scale (G. Jacobs and others, 1989), studied with a sample of 415 youth with a mean age of 14.7 years are acceptably reliable. (SLD)

  11. Validation of the Consumer Values versus Perceived Product Attributes Model Measuring the Purchase of Athletic Team Merchandise

    ERIC Educational Resources Information Center

    Lee, Donghun; Byon, Kevin K.; Schoenstedt, Linda; Johns, Gary; Bussell, Leigh Ann; Choi, Hwansuk

    2012-01-01

    Various consumer values and perceived product attributes trigger consumptive behaviors of athletic team merchandise (Lee, Trail, Kwon, & Anderson, 2011). Likewise, using a principal component analysis technique on a student sample, a measurement scale was proposed that consisted of nine factors affecting the purchase of athletic team…

  12. Measuring Staff Perceptions of University Identity and Activities: The Mission and Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Velcoff, Jessica

    2006-01-01

    Higher education institutions need to ascertain whether their stakeholders understand the school's mission, vision, and values. In the present study, the psychometric properties of a mission identity and activity measure were investigated with two staff samples. Using a principal component factor analysis (varimax rotation), respondents in Sample…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao

    Sparx, a new environment for Cryo-EM image processing; Cryo-EM, Single particle reconstruction, principal component analysis; Hardware Req.: PC, MAC, Supercomputer, Mainframe, Multiplatform, Workstation. Software Req.: operating system is Unix; Compiler C++; type of files: source code, object library, executable modules, compilation instructions; sample problem input data. Location/transmission: http://sparx-em.org; User manual & paper: http://sparx-em.org;

  14. ``Low-cost Electronic nose evaluated on Thai-herb of Northern-Thailand samples using multivariate analysis methods''

    NASA Astrophysics Data System (ADS)

    na ayudhaya, Paisarn Daungjak; Klinbumrung, Arrak; Jaroensutasinee, Krisanadej; Pratontep, Sirapat; Kerdcharoen, Teerakiat

    2009-05-01

    In case of species of natural and aromatic plant originated from the northern Thailand, sensory characteristics, especially odours, have unique identifiers of herbs. The instruments sensory analysis have performed by several of differential of sensing, so call `electronic nose', to be a significantly and rapidly for chemometrics. The signal responses of the low cost electronic nose were evaluated by principal component analysis (PCA). The aims of this paper evaluated various of Thai-herbs grown in Northern of Thailand as data preprocessing tools of the Low-cost electronic nose (enNU-PYO1). The essential oil groups of Thai herbs such as Garlic, Lemongrass, Shallot (potato onion), Onion, Zanthoxylum limonella (Dennst.) Alston (Thai name is Makaen), and Kaffir lime leaf were compared volatilized from selected fresh herbs. Principal component analysis of the original sensor responses did clearly distinguish either all samples. In all cases more than 97% for cross-validated group were classified correctly. The results demonstrated that it was possible to develop in a model to construct a low-cost electronic nose to provide measurement of odoriferous herbs.

  15. Psychometric properties of Connor-Davidson Resilience Scale in a Spanish sample of entrepreneurs.

    PubMed

    Manzano-García, Guadalupe; Ayala Calvo, Juan Carlos

    2013-01-01

    The literature regarding entrepreneurship suggests that the resilience of entrepreneurs may help to explain entrepreneurial success, but there is no resilience measure widely accepted by researchers. This study analyzes the psychometric properties of the Connor and Davidson Resilience Scale (CD-RISC) in a sample of Spanish entrepreneurs. A telephone survey research method was used. The participants were entrepreneurs operating in the business services sector. Interviewers telephoned a total of 900 entrepreneurs of whom 783 produced usable questionnaires. The CD-RISC was used as data collection instrument. We used principal component analysis factor and confirmatory factor analysis to determine the factor structure of the CD-RISC. Confirmatory factor analysis failed to verify the original five-factor structure of the CD-RISC, whereas principal component analysis factor yielded a 3-factor structure of resilience (hardiness, resourcefulness and optimism). In this research, 47.48% of the total variance was accounted for by three factors, and the obtained factor structure was verified through confirmatory factor analysis. The CD-RISC has been shown to be a reliable and valid tool for measuring entrepreneurs' resilience.

  16. The influence of foot hyperpronation on pelvic biomechanics during stance phase of the gait: A biomechanical simulation study.

    PubMed

    Yazdani, Farzaneh; Razeghi, Mohsen; Karimi, Mohammad Taghi; Raeisi Shahraki, Hadi; Salimi Bani, Milad

    2018-05-01

    Despite the theoretical link between foot hyperpronation and biomechanical dysfunction of the pelvis, the literature lacks evidence that confirms this assumption in truly hyperpronated feet subjects during gait. Changes in the kinematic pattern of the pelvic segment were assessed in 15 persons with hyperpronated feet and compared to a control group of 15 persons with normally aligned feet during the stance phase of gait based on biomechanical musculoskeletal simulation. Kinematic and kinetic data were collected while participants walked at a comfortable self-selected speed. A generic OpenSim musculoskeletal model with 23 degrees of freedom and 92 muscles was scaled for each participant. OpenSim inverse kinematic analysis was applied to calculate segment angles in the sagittal, frontal and horizontal planes. Principal component analysis was employed as a data reduction technique, as well as a computational tool to obtain principal component scores. Independent-sample t-test was used to detect group differences. The difference between groups in scores for the first principal component in the sagittal plane was statistically significant (p = 0.01; effect size = 1.06), but differences between principal component scores in the frontal and horizontal planes were not significant. The hyperpronation group had greater anterior pelvic tilt during 20%-80% of the stance phase. In conclusion, in persons with hyperpronation we studied the role of the pelvic segment was mainly to maintain postural balance in the sagittal plane by increasing anterior pelvic inclination. Since anterior pelvic tilt may be associated with low back symptoms, the evaluation of foot posture should be considered in assessing the patients with low back and pelvic dysfunction.

  17. Assessing rumination in eating disorders: principal component analysis of a minimally modified ruminative response scale.

    PubMed

    Cowdrey, Felicity A; Park, Rebecca J

    2011-12-01

    A process account of eating disorders (EDs) (Park et al., in press-a) proposes that preoccupation with ruminative themes of eating, weight and shape may be important in ED maintenance. No self-report measure exists to capture disorder-specific rumination in EDs. 275 healthy participants rated rumination items and completed self-report measures of ED symptoms, depression and anxiety. Principal component analysis revealed two factors, reflection and brooding. The final nine-item Ruminative Response Scale for Eating Disorders (RRS-ED) demonstrated good convergent and discriminant validity and test-retest reliability. The psychometric properties were replicated in an anorexia nervosa sample. The findings support the notion that rumination in EDs is distinct from rumination in depression and is not adequately captured by existing measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    PubMed

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  19. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis.

    PubMed

    Montes-Botella, C; Tenorio, M D

    2003-11-01

    The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.

  20. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    PubMed

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  1. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.

    PubMed

    Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H

    2016-10-01

    Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-11-01

    The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.

  3. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  4. [Methods of a posteriori identification of food patterns in Brazilian children: a systematic review].

    PubMed

    Carvalho, Carolina Abreu de; Fonsêca, Poliana Cristina de Almeida; Nobre, Luciana Neri; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2016-01-01

    The objective of this study is to provide guidance for identifying dietary patterns using the a posteriori approach, and analyze the methodological aspects of the studies conducted in Brazil that identified the dietary patterns of children. Articles were selected from the Latin American and Caribbean Literature on Health Sciences, Scientific Electronic Library Online and Pubmed databases. The key words were: Dietary pattern; Food pattern; Principal Components Analysis; Factor analysis; Cluster analysis; Reduced rank regression. We included studies that identified dietary patterns of children using the a posteriori approach. Seven studies published between 2007 and 2014 were selected, six of which were cross-sectional and one cohort, Five studies used the food frequency questionnaire for dietary assessment; one used a 24-hour dietary recall and the other a food list. The method of exploratory approach used in most publications was principal components factor analysis, followed by cluster analysis. The sample size of the studies ranged from 232 to 4231, the values of the Kaiser-Meyer-Olkin test from 0.524 to 0.873, and Cronbach's alpha from 0.51 to 0.69. Few Brazilian studies identified dietary patterns of children using the a posteriori approach and principal components factor analysis was the technique most used.

  5. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  6. Distributions of experimental protein structures on coarse-grained free energy landscapes

    PubMed Central

    Liu, Jie; Jernigan, Robert L.

    2015-01-01

    Predicting conformational changes of proteins is needed in order to fully comprehend functional mechanisms. With the large number of available structures in sets of related proteins, it is now possible to directly visualize the clusters of conformations and their conformational transitions through the use of principal component analysis. The most striking observation about the distributions of the structures along the principal components is their highly non-uniform distributions. In this work, we use principal component analysis of experimental structures of 50 diverse proteins to extract the most important directions of their motions, sample structures along these directions, and estimate their free energy landscapes by combining knowledge-based potentials and entropy computed from elastic network models. When these resulting motions are visualized upon their coarse-grained free energy landscapes, the basis for conformational pathways becomes readily apparent. Using three well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational changes provide meaningful insights into the functional dynamics and suggest transition pathways between different conformational states. As a further example, we also show that Monte Carlo simulations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven conformational changes. PMID:26723638

  7. Factors affecting medication adherence in community-managed patients with hypertension based on the principal component analysis: evidence from Xinjiang, China.

    PubMed

    Zhang, Yuji; Li, Xiaoju; Mao, Lu; Zhang, Mei; Li, Ke; Zheng, Yinxia; Cui, Wangfei; Yin, Hongpo; He, Yanli; Jing, Mingxia

    2018-01-01

    The analysis of factors affecting the nonadherence to antihypertensive medications is important in the control of blood pressure among patients with hypertension. The purpose of this study was to assess the relationship between factors and medication adherence in Xinjiang community-managed patients with hypertension based on the principal component analysis. A total of 1,916 community-managed patients with hypertension, selected randomly through a multi-stage sampling, participated in the survey. Self-designed questionnaires were used to classify the participants as either adherent or nonadherent to their medication regimen. A principal component analysis was used in order to eliminate the correlation between factors. Factors related to nonadherence were analyzed by using a χ 2 -test and a binary logistic regression model. This study extracted nine common factors, with a cumulative variance contribution rate of 63.6%. Further analysis revealed that the following variables were significantly related to nonadherence: severity of disease, community management, diabetes, and taking traditional medications. Community management plays an important role in improving the patients' medication-taking behavior. Regular medication regimen instruction and better community management services through community-level have the potential to reduce nonadherence. Mild hypertensive patients should be monitored by community health care providers.

  8. Directly reconstructing principal components of heterogeneous particles from cryo-EM images.

    PubMed

    Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali

    2015-08-01

    Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale.

    PubMed

    Buhule, Olive D; Minster, Ryan L; Hawley, Nicola L; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T; Weeks, Daniel E

    2014-01-01

    Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After "removing" batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects.

  10. Stratified randomization controls better for batch effects in 450K methylation analysis: a cautionary tale

    PubMed Central

    Buhule, Olive D.; Minster, Ryan L.; Hawley, Nicola L.; Medvedovic, Mario; Sun, Guangyun; Viali, Satupaitea; Deka, Ranjan; McGarvey, Stephen T.; Weeks, Daniel E.

    2014-01-01

    Background: Batch effects in DNA methylation microarray experiments can lead to spurious results if not properly handled during the plating of samples. Methods: Two pilot studies examining the association of DNA methylation patterns across the genome with obesity in Samoan men were investigated for chip- and row-specific batch effects. For each study, the DNA of 46 obese men and 46 lean men were assayed using Illumina's Infinium HumanMethylation450 BeadChip. In the first study (Sample One), samples from obese and lean subjects were examined on separate chips. In the second study (Sample Two), the samples were balanced on the chips by lean/obese status, age group, and census region. We used methylumi, watermelon, and limma R packages, as well as ComBat, to analyze the data. Principal component analysis and linear regression were, respectively, employed to identify the top principal components and to test for their association with the batches and lean/obese status. To identify differentially methylated positions (DMPs) between obese and lean males at each locus, we used a moderated t-test. Results: Chip effects were effectively removed from Sample Two but not Sample One. In addition, dramatic differences were observed between the two sets of DMP results. After “removing” batch effects with ComBat, Sample One had 94,191 probes differentially methylated at a q-value threshold of 0.05 while Sample Two had zero differentially methylated probes. The disparate results from Sample One and Sample Two likely arise due to the confounding of lean/obese status with chip and row batch effects. Conclusion: Even the best possible statistical adjustments for batch effects may not completely remove them. Proper study design is vital for guarding against spurious findings due to such effects. PMID:25352862

  11. Reliability of the Ego-Grasping Scale.

    PubMed

    Lester, David

    2012-04-01

    Research using Knoblauch and Falconer's Ego-Grasping Scale is reviewed. Using a sample of 695 undergraduate students, the scale had moderate reliability (Cronbach alpha, odd-even numbered items, and test-retest), but a principal-components analysis with a varimax rotation identified five components, indicating heterogeneity in the content of the items. Lower Ego-Grasping scores appear to be associated with better psychological health. The scale has been translated and used with Korean, Kuwaiti, and Turkish students, indicating that the scale can be useful in cross-cultural studies.

  12. How many atoms are required to characterize accurately trajectory fluctuations of a protein?

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2010-06-01

    Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.

  13. 40 CFR 60.2998 - What are the principal components of the model rule?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...

  14. 40 CFR 60.2570 - What are the principal components of the model rule?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...

  15. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer.

    PubMed

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-02-07

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Characterization of Leaf Extracts of Schinus terebinthifolius Raddi by GC-MS and Chemometric Analysis

    PubMed Central

    Carneiro, Fabíola B.; Lopes, Pablo Q.; Ramalho, Ricardo C.; Scotti, Marcus T.; Santos, Sócrates G.; Soares, Luiz A. L.

    2017-01-01

    Background: Schinus terebinthifolius Raddi belongs to Anacardiacea family and is widely known as “aroeira.” This species originates from South America, and its extracts are used in folk medicine due to its therapeutic properties, which include antimicrobial, anti-inflammatory, and antipyretic effects. The complexity and variability of the chemical constitution of the herbal raw material establishes the quality of the respective herbal medicine products. Objective: Thus, the purpose of this study was to investigate the variability of the volatile compounds from leaves of S. terebinthifolius. Materials and Methods: The samples were collected from different states of the Northeast region of Brazil and analyzed with a gas chromatograph coupled to a mass spectrometer (GC-MS). The collected data were analyzed using multivariate data analysis. Results: The samples’ chromatograms, obtained by GC-MS, showed similar chemical profiles in a number of peaks, but some differences were observed in the intensity of these analytical markers. The chromatographic fingerprints obtained by GC-MS were suitable for discrimination of the samples; these results along with a statistical treatment (principal component analysis [PCA]) were used as a tool for comparative analysis between the different samples of S. terebinthifolius. Conclusion: The experimental data show that the PCA used in this study clustered the samples into groups with similar chemical profiles, which builds an appropriate approach to evaluate the similarity in the phytochemical pattern found in the different leaf samples. SUMMARY The leave extracts of Schinus terebinthifolius were obtained by turbo-extractionThe extracts were partitioned with hexane and analyzed by GC-MSThe chromatographic data were analyzed using the principal component analysis (PCA)The PCA plots showed the main compounds (phellandrene, limonene, and carene), which were used to group the samples from a different geographical location in accordance to their chemical similarity. Abbreviations used: AL: Alagoas, BA: Bahia, CE: Ceará, CPETEC: Center for Weather Forecasting and Climate Studies, GC-MS: Gas chromatograph coupled to a mass spectrometer, MA: Maranhão, MVA: Multivariate data analysis, PB: Paraíba, PC1: Direction that describes the maximum variance of the original data, PC2: Maximum direction variance of the data in the subspace orthogonal to PC1, PCA: Principal component analysis, PE: Pernambuco, PI: Piauí, RN: Rio Grande do Norte, SE: Sergipe. PMID:29142431

  17. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    PubMed

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.

  18. Principal Workload: Components, Determinants and Coping Strategies in an Era of Standardization and Accountability

    ERIC Educational Resources Information Center

    Oplatka, Izhar

    2017-01-01

    Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…

  19. Preliminary Results Of PCA On MRO CRISM Multispectral Images

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Smith, M. D.

    2008-09-01

    Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One of the goals of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From this data we can create image cubes using 70 wavelengths from 0.410 to 3.504 µm. We present here a preliminary analysis of these multispectral mode data products using the technique of Principal Components Analysis. Previous work with ground-based images has shown that over an entire visible hemisphere, there are only three to four meaningful components out of 32-105 wavelengths over 1.5-4.1 µm. The first two of these components are fairly consistent over all time intervals from day-to-day and season-to-season. [1-4] The preliminary work on the CRISM images cubes implies similar results_three to four significant principal components that are fairly consistent over time. We will show these components and a rough linear mixture modeling based on in-data spectral endmembers derived from the extrema of the principal components [5]. References: [1] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [2] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [3] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [4] Klassen, D. R. and Bell III, J. F. (2007) in preparation. [5] Klassen, D. R. and Bell III, J. F. (2000) BAAS, 32, 1105.

  20. Fine scale habitat use by age-1 stocked muskellunge and wild northern pike in an upper St. Lawrence River bay

    USGS Publications Warehouse

    Farrell, John M.; Kapuscinski, Kevin L.; Underwood, Harold

    2014-01-01

    Radio telemetry of stocked muskellunge (n = 6) and wild northern pike (n = 6) was used to track late summer and fall movements from a common release point in a known shared nursery bay to test the hypothesis that age-1 northern pike and stocked muskellunge segregate and have different habitat affinities. Water depth, temperature, substrate and aquatic vegetation variables were estimated for each muskellunge (n = 103) and northern pike (n = 131) position and nested ANOVA comparisons by species indicated differences in habitat use. Muskellunge exhibited a greater displacement from the release point and used habitat in shallower water depths (mean = 0.85 m, SE = 0.10) than northern pike (mean = 1.45 m, SE = 0.08). Both principal components analysis (PCA) and principal components ordination (PCO) were used to interpret underlying gradients relative to fish positions in two-dimensional space. Our analysis indicated that a separation of age-1 northern pike and muskellunge occurred 7 d post-release. This first principal component explained 48% of the variation in habitat use. Northern pike locations were associated with deeper habitats that generally had softer silt substrates and dense submersed vegetation. Muskellunge locations post-acclimation showed greater association with shallower habitats containing firmer sandy and clay substrates and emergent vegetation. The observed differences in habitat use suggest that fine-scale ecological separation occurred between these stocked muskellunge and wild northern pike, but small sample sizes and potential for individual variation limit extension of these conclusions. Further research is needed to determine if these patterns exist between larger samples of fishes over a greater range of habitats.

  1. Qualitative data analysis for an exploratory sensory study of Grechetto wine.

    PubMed

    Esti, Marco; González Airola, Ricardo L; Moneta, Elisabetta; Paperaio, Marina; Sinesio, Fiorella

    2010-02-15

    Grechetto is a traditional white-grape vine, widespread in Umbria and Lazio regions in central Italy. Despite the wine commercial diffusion, little literature on its sensory characteristics is available. The present study is an exploratory research conducted with the aim of identifying the sensory markers of Grechetto wine and of evaluating the effect of clone, geographical area, vintage and producer on sensory attributes. A qualitative sensory study was conducted on 16 wines, differing for vintage, Typical Geographic Indication, and clone, collected from 7 wineries, using a trained panel in isolation who referred to a glossary of 133 white wine descriptors. Sixty-five attributes identified by a minimum of 50% of the respondents were submitted to a correspondence analysis to link wine samples to the sensory attributes. Seventeen terms identified as common to all samples are considered as characteristics of Grechetto wine, 10 of which olfactory: fruity, apple, acacia flower, pineapple, banana, floral, herbaceous, honey, apricot and peach. In order to interpret the relationship between design variables and sensory attributes data on 2005 and 2006 wines, the 28 most discriminating descriptors were projected in a principal component analysis. The first principal component was best described by olfactory terms and the second by gustative attributes. Good reproducibility of results was obtained for the two vintages. For one winery, vintage effect (2002-2006) was described in a new principal component analysis model applied on 39 most discriminating descriptors, which globally explained about 84% of the variance. In the young wines the notes of sulphur, yeast, dried fruit, butter, combined with herbaceous fresh and tropical fruity notes (melon, grapefruit) were dominant. During wine aging, sweeter notes, like honey, caramel, jam, become more dominant as well as some mineral notes, such as tuff and flint. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Cone-Beam Computed Tomography Analysis of Mucosal Thickening in Unilateral Cleft Lip and Palate Maxillary Sinuses.

    PubMed

    Kula, Katherine; Hale, Lindsay N; Ghoneima, Ahmed; Tholpady, Sunil; Starbuck, John M

    2016-11-01

      To compare maxillary mucosal thickening and sinus volumes of unilateral cleft lip and palate subjects (UCLP) with noncleft (nonCLP) controls.   Randomized, retrospective study of cone-beam computed tomographs (CBCT).   University.   Fifteen UCLP subjects and 15 sex- and age-matched non-CLP controls, aged 8 to 14 years.   Following institutional review board approval and reliability tests, Dolphin three-dimensional imaging software was used to segment and slice maxillary sinuses on randomly selected CBCTs. The surface area (SA) of bony sinus and airspace on all sinus slices was determined using Dolphin and multiplied by slice thickness (0.4 mm) to calculate volume. Mucosal thickening was the difference between bony sinus and airspace volumes. The number of slices with bony sinus and airspace outlines was totaled. Right and left sinus values for each group were pooled (t tests, P > .05; n = 30 each group). All measures were compared (principal components analysis, multivariate analysis of variance, analysis of variance) by group and age (P ≤ .016 was considered significant).   Principal components analysis axis 1 and 2 explained 89.6% of sample variance. Principal components analysis showed complete separation based on the sample on axis 1 only. Age groups showed some separation on axis 2. Unilateral cleft lip and palate subjects had significantly smaller bony sinus and airspace volumes, fewer bony and airspace slices, and greater mucosal thickening and percentage mucosal thickening when compared with controls. Older subjects had significantly greater bony sinus and airspace volumes than younger subjects.   Children with UCLP have significantly more maxillary sinus mucosal thickening and smaller sinuses than controls.

  3. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  5. Microbial community analysis of field-grown soybeans with different nodulation phenotypes.

    PubMed

    Ikeda, Seishi; Rallos, Lynn Esther E; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-09-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod(+) soybean roots. Fusarium solani was stably associated with nodulated (Nod(+) and Nod(++)) roots and less abundant in Nod(-) soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod(-), Nod(+), or Nod(++)). The analysis of root samples indicated that the microbial community in Nod(-) soybeans was more similar to that in Nod(++) soybeans than to that in Nod(+) soybeans.

  6. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    PubMed Central

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybean roots. Fusarium solani was stably associated with nodulated (Nod+ and Nod++) roots and less abundant in Nod− soybeans, whereas the abundance of basidiomycetes was just the opposite. The phylogenetic analyses suggested that these basidiomycetous fungi might represent a root-associated group in the Auriculariales. Principal-component analysis of the ARISA results showed that there was no clear relationship between nodulation phenotype and bacterial community structure in the stem. In contrast, both the bacterial and fungal community structures in the roots were related to nodulation phenotype. The principal-component analysis further suggested that bacterial community structure in roots could be classified into three groups according to the nodulation phenotype (Nod−, Nod+, or Nod++). The analysis of root samples indicated that the microbial community in Nod− soybeans was more similar to that in Nod++ soybeans than to that in Nod+ soybeans. PMID:18658280

  7. Overlap and distinction between measures of insight and self-stigma.

    PubMed

    Hasson-Ohayon, Ilanit

    2018-05-24

    Multiple studies on insight into one's illness and self-stigma among patients with serious mental illness and their relatives have shown that these constructs are related to one another and that they affect outcome. However, a critical exploration of the items used to assess both constructs raises questions with regard to the possible overlapping and centrality of items. The current study used five different samples to explore the possible overlap and distinction between insight and self-stigma, and to identify central items, via network analyses and principal component factor analysis. Findings from the network analyses showed overlap between insight and self-stigma exist with a relatively clearer observational distinction between the constructs among the two parent samples in comparison to the patient samples. Principal component factor analysis constrained to two factors showed that a relatively high percentage of items were not loaded on either factor, and in a few datasets, several insight items were loaded on the self-stigma scale and vice versa. The author discusses implications for research and calls for rethinking the way insight is assessed. Clinical implications are also discussed in reference to central items of social isolation, future worries and stereotype endorsement among the different study groups. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  9. Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective.

    PubMed

    Villanueva, Cristina M; Castaño-Vinyals, Gemma; Moreno, Víctor; Carrasco-Turigas, Glòria; Aragonés, Nuria; Boldo, Elena; Ardanaz, Eva; Toledo, Estefanía; Altzibar, Jone M; Zaldua, Itziar; Azpiroz, Lourdes; Goñi, Fernando; Tardón, Adonina; Molina, Antonio J; Martín, Vicente; López-Rojo, Concepción; Jiménez-Moleón, José J; Capelo, Rocío; Gómez-Acebo, Inés; Peiró, Rosana; Ripoll, Mónica; Gracia-Lavedan, Esther; Nieuwenhujsen, Mark J; Rantakokko, Panu; Goslan, Emma H; Pollán, Marina; Kogevinas, Manolis

    2012-04-01

    Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Factor Structure, Stability, and Congruence in the Functional Movement Screen

    ERIC Educational Resources Information Center

    Kelleher, Leila K.; Beach, Tyson A. C.; Frost, David M.; Johnson, Andrew M.; Dickey, James P.

    2018-01-01

    The scoring scheme for the functional movement screen implicitly assumes that the factor structure is consistent, stable, and congruent across different populations. To determine if this is the case, we compared principal components analyses of three samples: a healthy, general population (n = 100), a group of varsity athletes (n = 101), and a…

  11. Professor Gender, Age, and "Hotness" in Influencing College Students' Generation and Interpretation of Professor Ratings

    ERIC Educational Resources Information Center

    Sohr-Preston, Sara L.; Boswell, Stefanie S.; McCaleb, Kayla; Robertson, Deanna

    2016-01-01

    A sample of 230 undergraduate psychology students rated their expectations of a bogus professor (who was randomly designated a man or woman and "hot" versus "not hot") based on ratings and comments found on RateMyProfessors.com. Five professor qualities were derived using principal components analysis: dedication,…

  12. What Do Phonological Processing Errors Tell about Students' Skills in Reading, Writing, and Oral Language?

    ERIC Educational Resources Information Center

    Choi, Dowon; Hatcher, Ryan C.; Dulong-Langley, Susan; Liu, Xiaochen; Bray, Melissa A.; Courville, Troy; O'Brien, Rebecca; DeBiase, Emily

    2017-01-01

    The kinds of errors that children and adolescents make on phonological processing tasks were studied with a large sample between ages 4 and 19 (N = 3,842) who were tested on the Kaufman Test of Educational Achievement-Third Edition (KTEA-3). Principal component analysis identified two phonological processing factors: Basic Phonological Awareness…

  13. Determination and fingerprint analysis of steroidal saponins in roots of Liriope muscari (Decne.) L. H. Bailey by ultra high performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Li, Yong-Wei; Qi, Jin; Wen-Zhang; Zhou, Shui-Ping; Yan-Wu; Yu, Bo-Yang

    2014-07-01

    Liriope muscari (Decne.) L. H. Bailey is a well-known traditional Chinese medicine used for treating cough and insomnia. There are few reports on the quality evaluation of this herb partly because the major steroid saponins are not readily identified by UV detectors and are not easily isolated due to the existence of many similar isomers. In this study, a qualitative and quantitative method was developed to analyze the major components in L. muscari (Decne.) L. H. Bailey roots. Sixteen components were deduced and identified primarily by the information obtained from ultra high performance liquid chromatography with ion-trap time-of-flight mass spectrometry. The method demonstrated the desired specificity, linearity, stability, precision, and accuracy for simultaneous determination of 15 constituents (13 steroidal glycosides, 25(R)-ruscogenin, and pentylbenzoate) in 26 samples from different origins. The fingerprint was established, and the evaluation was achieved using similarity analysis and principal component analysis of 15 fingerprint peaks from 26 samples by ultra high performance liquid chromatography. The results from similarity analysis were consistent with those of principal component analysis. All results suggest that the established method could be applied effectively to the determination of multi-ingredients and fingerprint analysis of steroid saponins for quality assessment and control of L. muscari (Decne.) L. H. Bailey. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2004-10-01

    Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.

  15. Differential use of fresh water environments by wintering waterfowl of coastal Texas

    USGS Publications Warehouse

    White, D.H.; James, D.

    1978-01-01

    A comparative study of the environmental relationships among 14 species of wintering waterfowl was conducted at the Welder Wildlife Foundation, San Patricia County, near Sinton, Texas during the fall and early winter of 1973. Measurements of 20 environmental factors (social, vegetational, physical, and chemical) were subjected to multivariate statistical methods to determine certain niche characteristics and environmental relationships of waterfowl wintering in the aquatic community.....Each waterfowl species occupied a unique realized niche by responding to distinct combinations of environmental factors identified by principal component analysis. One percent confidence ellipses circumscribing the mean scores plotted for the first and second principal components gave an indication of relative niche width for each species. The waterfowl environments were significantly different interspecifically and water depth at feeding site and % emergent vegetation were most important in the separation. This was shown by subjecting the transformed data to multivariate analysis of variance with an associated step-down procedure. The species were distributed along a community cline extending from shallow water with abundant emergent vegetation to open deep water with little emergent vegetation of any kind. Four waterfowl subgroups were significantly separated along the cline, as indicated by one-way analysis of variance with Duncan?s multiple range test. Clumping of the bird species toward the middle of the available habitat hyperspace was shown in a plot of the principal component scores for the random samples and individual species.....Naturally occurring relationships among waterfowl were clarified using principal comcomponent analysis and related multivariate procedures. These techniques may prove useful in wetland management for particular groups of waterfowl based on habitat preferences.

  16. VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)

    NASA Astrophysics Data System (ADS)

    Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.

    2013-05-01

    We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).

  17. Portable XRF and principal component analysis for bill characterization in forensic science.

    PubMed

    Appoloni, C R; Melquiades, F L

    2014-02-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2014-12-15

    Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak Acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination. This has significant implications for the future of monitoring and regulation of heavy metal contamination within Deception Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Preliminary study of soil permeability properties using principal component analysis

    NASA Astrophysics Data System (ADS)

    Yulianti, M.; Sudriani, Y.; Rustini, H. A.

    2018-02-01

    Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.

  20. Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains

    PubMed Central

    DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.

    2013-01-01

    Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165

  1. The Coach-Athlete Relationship Questionnaire (CART-Q): development and initial validation.

    PubMed

    Jowett, Sophia; Ntoumanis, Nikos

    2004-08-01

    The purpose of the present study was to develop and validate a self-report instrument that measures the nature of the coach-athlete relationship. Jowett et al.'s (Jowett & Meek, 2000; Jowett, in press) qualitative case studies and relevant literature were used to generate items for an instrument that measures affective, cognitive, and behavioral aspects of the coach-athlete relationship. Two studies were carried out in an attempt to assess content, predictive, and construct validity, as well as internal consistency, of the Coach-Athlete Relationship Questionnaire (CART-Q), using two independent British samples. Principal component analysis and confirmatory factor analysis were used to reduce the number of items, identify principal components, and confirm the latent structure of the CART-Q. Results supported the multidimensional nature of the coach-athlete relationship. The latent structure of the CART-Q was underlined by the latent variables of coaches' and athletes' Closeness (emotions), Commitment (cognitions), and Complementarity (behaviors).

  2. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  3. Determination of butter adulteration with margarine using Raman spectroscopy.

    PubMed

    Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur

    2013-12-15

    In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Influence Function of Principal Component Analysis by Self-Organizing Rule.

    PubMed

    Higuchi; Eguchi

    1998-07-28

    This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.

  5. An algorithm for extraction of periodic signals from sparse, irregularly sampled data

    NASA Technical Reports Server (NTRS)

    Wilcox, J. Z.

    1994-01-01

    Temporal gaps in discrete sampling sequences produce spurious Fourier components at the intermodulation frequencies of an oscillatory signal and the temporal gaps, thus significantly complicating spectral analysis of such sparsely sampled data. A new fast Fourier transform (FFT)-based algorithm has been developed, suitable for spectral analysis of sparsely sampled data with a relatively small number of oscillatory components buried in background noise. The algorithm's principal idea has its origin in the so-called 'clean' algorithm used to sharpen images of scenes corrupted by atmospheric and sensor aperture effects. It identifies as the signal's 'true' frequency that oscillatory component which, when passed through the same sampling sequence as the original data, produces a Fourier image that is the best match to the original Fourier space. The algorithm has generally met with succession trials with simulated data with a low signal-to-noise ratio, including those of a type similar to hourly residuals for Earth orientation parameters extracted from VLBI data. For eight oscillatory components in the diurnal and semidiurnal bands, all components with an amplitude-noise ratio greater than 0.2 were successfully extracted for all sequences and duty cycles (greater than 0.1) tested; the amplitude-noise ratios of the extracted signals were as low as 0.05 for high duty cycles and long sampling sequences. When, in addition to these high frequencies, strong low-frequency components are present in the data, the low-frequency components are generally eliminated first, by employing a version of the algorithm that searches for non-integer multiples of the discrete FET minimum frequency.

  6. Principal component analysis-based unsupervised feature extraction applied to in silico drug discovery for posttraumatic stress disorder-mediated heart disease.

    PubMed

    Taguchi, Y-h; Iwadate, Mitsuo; Umeyama, Hideaki

    2015-04-30

    Feature extraction (FE) is difficult, particularly if there are more features than samples, as small sample numbers often result in biased outcomes or overfitting. Furthermore, multiple sample classes often complicate FE because evaluating performance, which is usual in supervised FE, is generally harder than the two-class problem. Developing sample classification independent unsupervised methods would solve many of these problems. Two principal component analysis (PCA)-based FE, specifically, variational Bayes PCA (VBPCA) was extended to perform unsupervised FE, and together with conventional PCA (CPCA)-based unsupervised FE, were tested as sample classification independent unsupervised FE methods. VBPCA- and CPCA-based unsupervised FE both performed well when applied to simulated data, and a posttraumatic stress disorder (PTSD)-mediated heart disease data set that had multiple categorical class observations in mRNA/microRNA expression of stressed mouse heart. A critical set of PTSD miRNAs/mRNAs were identified that show aberrant expression between treatment and control samples, and significant, negative correlation with one another. Moreover, greater stability and biological feasibility than conventional supervised FE was also demonstrated. Based on the results obtained, in silico drug discovery was performed as translational validation of the methods. Our two proposed unsupervised FE methods (CPCA- and VBPCA-based) worked well on simulated data, and outperformed two conventional supervised FE methods on a real data set. Thus, these two methods have suggested equivalence for FE on categorical multiclass data sets, with potential translational utility for in silico drug discovery.

  7. Relative effectiveness of kinetic analysis vs single point readings for classifying environmental samples based on community-level physiological profiles (CLPP)

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Mills, A. L.; Young, J. S.

    2001-01-01

    The relative effectiveness of average-well-color-development-normalized single-point absorbance readings (AWCD) vs the kinetic parameters mu(m), lambda, A, and integral (AREA) of the modified Gompertz equation fit to the color development curve resulting from reduction of a redox sensitive dye from microbial respiration of 95 separate sole carbon sources in microplate wells was compared for a dilution series of rhizosphere samples from hydroponically grown wheat and potato ranging in inoculum densities of 1 x 10(4)-4 x 10(6) cells ml-1. Patterns generated with each parameter were analyzed using principal component analysis (PCA) and discriminant function analysis (DFA) to test relative resolving power. Samples of equivalent cell density (undiluted samples) were correctly classified by rhizosphere type for all parameters based on DFA analysis of the first five PC scores. Analysis of undiluted and 1:4 diluted samples resulted in misclassification of at least two of the wheat samples for all parameters except the AWCD normalized (0.50 abs. units) data, and analysis of undiluted, 1:4, and 1:16 diluted samples resulted in misclassification for all parameter types. Ordination of samples along the first principal component (PC) was correlated to inoculum density in analyses performed on all of the kinetic parameters, but no such influence was seen for AWCD-derived results. The carbon sources responsible for classification differed among the variable types with the exception of AREA and A, which were strongly correlated. These results indicate that the use of kinetic parameters for pattern analysis in CLPP may provide some additional information, but only if the influence of inoculum density is carefully considered. c2001 Elsevier Science Ltd. All rights reserved.

  8. Study on fast discrimination of varieties of yogurt using Vis/NIR-spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Deng, Xunfei; Li, Xiaoli

    2006-09-01

    A new approach for discrimination of varieties of yogurt by means of VisINTR-spectroscopy was present in this paper. Firstly, through the principal component analysis (PCA) of spectroscopy curves of 5 typical kinds of yogurt, the clustering of yogurt varieties was processed. The analysis results showed that the cumulate reliabilities of PC1 and PC2 (the first two principle components) were more than 98.956%, and the cumulate reliabilities from PC1 to PC7 (the first seven principle components) was 99.97%. Secondly, a discrimination model of Artificial Neural Network (ANN-BP) was set up. The first seven principles components of the samples were applied as ANN-BP inputs, and the value of type of yogurt were applied as outputs, then the three-layer ANN-BP model was build. In this model, every variety yogurt includes 27 samples, the total number of sample is 135, and the rest 25 samples were used as prediction set. The results showed the distinguishing rate of the five yogurt varieties was 100%. It presented that this model was reliable and practicable. So a new approach for the rapid and lossless discrimination of varieties of yogurt was put forward.

  9. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous).

    PubMed

    Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba

    2003-01-01

    A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.

  10. The assessment of facial variation in 4747 British school children.

    PubMed

    Toma, Arshed M; Zhurov, Alexei I; Playle, Rebecca; Marshall, David; Rosin, Paul L; Richmond, Stephen

    2012-12-01

    The aim of this study is to identify key components contributing to facial variation in a large population-based sample of 15.5-year-old children (2514 females and 2233 males). The subjects were recruited from the Avon Longitudinal Study of Parents and Children. Three-dimensional facial images were obtained for each subject using two high-resolution Konica Minolta laser scanners. Twenty-one reproducible facial landmarks were identified and their coordinates were recorded. The facial images were registered using Procrustes analysis. Principal component analysis was then employed to identify independent groups of correlated coordinates. For the total data set, 14 principal components (PCs) were identified which explained 82 per cent of the total variance, with the first three components accounting for 46 per cent of the variance. Similar results were obtained for males and females separately with only subtle gender differences in some PCs. Facial features may be treated as a multidimensional statistical continuum with respect to the PCs. The first three PCs characterize the face in terms of height, width, and prominence of the nose. The derived PCs may be useful to identify and classify faces according to a scale of normality.

  11. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA) wastewater data.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo

    2016-07-12

    Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.

  12. Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics.

    PubMed

    Liang, Wenyi; Chen, Wenjing; Wu, Lingfang; Li, Shi; Qi, Qi; Cui, Yaping; Liang, Linjin; Ye, Ting; Zhang, Lanzhen

    2017-03-17

    Danshen, the dried root of Salvia miltiorrhiza Bge., is a widely used commercially available herbal drug, and unstable quality of different samples is a current issue. This study focused on a comprehensive and systematic method combining fingerprints and chemical identification with chemometrics for discrimination and quality assessment of Danshen samples. Twenty-five samples were analyzed by HPLC-PAD and HPLC-MS n . Forty-nine components were identified and characteristic fragmentation regularities were summarized for further interpretation of bioactive components. Chemometric analysis was employed to differentiate samples and clarify the quality differences of Danshen including hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis. Consistent results were that the samples were divided into three categories which reflected the difference in quality of Danshen samples. By analyzing the reasons for sample classification, it was revealed that the processing method had a more obvious impact on sample classification than the geographical origin, it induced the different content of bioactive compounds and finally lead to different qualities. Cryptotanshinone, trijuganone B, and 15,16-dihydrotanshinone I were screened out as markers to distinguish samples by different processing methods. The developed strategy could provide a reference for evaluation and discrimination of other traditional herbal medicines.

  13. 40 CFR 62.14505 - What are the principal components of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...

  14. [HPLC fingerprint of flavonoids in Sophora flavescens and determination of five components].

    PubMed

    Ma, Hong-Yan; Zhou, Wan-Shan; Chu, Fu-Jiang; Wang, Dong; Liang, Sheng-Wang; Li, Shao

    2013-08-01

    A simple and reliable method of high-performance liquid chromatography with photodiode array detection (HPLC-DAD) was developed to evaluate the quality of a traditional Chinese medicine Sophora flavescens through establishing chromatographic fingerprint and simultaneous determination of five flavonoids, including trifolirhizin, maackiain, kushenol I, kurarinone and sophoraflavanone G. The optimal conditions of separation and detection were achieved on an ULTIMATE XB-C18 column (4.6 mm x 250 mm, 5 microm) with a gradient of acetonitrile and water, detected at 295 nm. In the chromatographic fingerprint, 13 peaks were selected as the characteristic peaks to assess the similarities of different samples collected from different origins in China according to similarity evaluation for chromatographic fingerprint of traditional chinese medicine (2004AB) and principal component analysis (PCA) were used in data analysis. There were significant differences in the fingerprint chromatograms between S. flavescens and S. tonkinensis. Principal component analysis showed that kurarinone and sophoraflavanone G were the most important component. In quantitative analysis, the five components showed good regression (R > 0.999) with linear ranges, and their recoveries were in the range of 96.3% - 102.3%. This study indicated that the combination of quantitative and chromatographic fingerprint analysis can be readily utilized as a quality control method for S. flavescens and its related traditional Chinese medicinal preparations.

  15. Development of a scale to measure adherence to self-monitoring of blood glucose with latent variable measurement.

    PubMed

    Wagner, J A; Schnoll, R A; Gipson, M T

    1998-07-01

    Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its rigorous empirical development.

  16. Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

    PubMed

    Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei

    2010-09-01

    Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  17. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  18. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae).

    PubMed

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks's λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant ( p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species.

  19. The structure and validity of directional measures of appearance social comparison among emerging adults in China.

    PubMed

    Liao, Jun; Jackson, Todd; Chen, Hong

    2014-09-01

    We evaluated the structure and validity of the Upward Appearance Comparison Scale (UPACS) and Downward Appearance Comparison Scale (DACS) (O'Brien et al., 2009) in Chinese samples. In Study 1, principal component analysis on an initial sample (427 women, 123 men) and confirmatory factor analysis on another sample (447 women, 121 men) found that a 15-item, two component model had the best overall fit. Derived components had moderate correlations with most conceptually related measures and low correlations with less conceptually related indices. Study 2 participants (310 women, 201 men) completed the UPACS and DACS as well as measures of disordered eating, fatness concern, and negative affect; they were re-assessed one year later. Baseline UPACS scores predicted changes in disordered eating for women and fatness concerns for men, independent of initial disturbances, but DACS responses were not related to outcomes. Findings highlighted the potential utility of derived UPACS and DACS within a Chinese context. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Distinguishing dissolved organic matter at its origin: size and optical properties of leaf-litter leachates.

    PubMed

    Cuss, C W; Guéguen, C

    2013-09-01

    Dissolved organic matter (DOM) was leached from eight distinct samples of leaves taken from six distinct trees (red maple, bur oak at three times of the year, two sugar maple and two white spruce trees from disparate soil types). Multiple samples were taken over 72-96h of leaching. The size and optical properties of leachates were assessed using asymmetrical flow field-flow fractionation (AF4) coupled to diode-array ultraviolet/visible absorbance and excitation-emission matrix fluorescence detectors (EEM). The fluorescence of unfractionated samples was also analyzed. EEMs were analyzed using parallel factor analysis (PARAFAC) and principal component analysis (PCA) of proportional component loadings. Both the unfractionated and AF4-fractionated leachates had distinct size and optical properties. The 95% confidence ranges for molecular weight distributions were determined as: 210-440Da for spruce, 540-920Da for sugar maple, 630-800Da for spring oak leaves, 930-950Da for senescent oak, 1490-1670 for senescent red maple, and 3430-4270Da for oak leaves that were collected from the ground after spring thaw. In most cases the fluorescence properties of leachates were different for individuals from different soil types and across seasons; however, PCA of PARAFAC loadings revealed that the observed distinctiveness was chiefly species-based. Strong correlations were found between the molecular weight distribution of both unfractionated and fractionated leachates and their principal component loadings (R(2)=0.85 and 0.95, respectively). It is concluded that results support a species-based origin for differences in optical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of thinning on temperature dynamics and mountain pine beetle activity in a lodgepole pine stand

    Treesearch

    Dale L. Bartos; Gordon D. Booth

    1994-01-01

    Temperature measurements were made to better understand the role of microclimate on mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), activity as a result of thinning lodgepole pine stands. Sampling was done over 61 days on the north slope of the Unita Mountain Range in northeastern Utah. Principal components analysis was applied to all...

  2. Using Principal Component Analysis to Improve Fallout Characterization

    DTIC Science & Technology

    2017-03-23

    between actinide location and elemental composition in fallout from historic atmospheric nuclear weapons testing. Fifty spherical fallout samples were...mathematical approach to solving the complex system of elemental variables while establishing correlations to actinide incorporation within the fallout...1. The double hump curve for uranium-235 showing the effective fission yield by mass number for thermal neutrons. Reproduced with permission from

  3. MODIS tasselled cap: land cover characteristics expressed through transformed MODIS data

    Treesearch

    S. E. Lobser; W. B. Cohen

    2007-01-01

    The tasselled cap concept is extended to Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance (NBAR, MOD43) data. The transformation is based on a rigid rotation of principal component axes (PCAs) derived from a global sample spanning one full year of NBAR 16-day composites. To provide a standard for MODIS tasselled cap axes, we...

  4. Validation and Application of the Constructivist Learning Environment Survey in English Language Teacher Education Classrooms in Iran

    ERIC Educational Resources Information Center

    Ebrahimi, Nabi. A.

    2015-01-01

    This article reports the validation and application of an English language teacher education (LTE) version of the Constructivist Learning Environment Survey (CLES). The instrument, called the CLES-LTE, was field tested with a sample of 622 Iranian English language student teachers in 28 classes. When principal components analysis led to the…

  5. Construction and Validation of the Career and Educational Decision Self-Efficacy Inventory for Secondary Students (CEDSIS)

    ERIC Educational Resources Information Center

    Ho, Esther Sui Chu; Sum, Kwok Wing

    2018-01-01

    This study aims to construct and validate the Career and Educational Decision Self-Efficacy Inventory for Secondary Students (CEDSIS) by using a sample of 2,631 students in Hong Kong. Principal component analysis yielded a three-factor structure, which demonstrated good model fit in confirmatory factor analysis. High reliability was found for the…

  6. Traceability of Opuntia ficus-indica L. Miller by ICP-MS multi-element profile and chemometric approach.

    PubMed

    Mottese, Antonio Francesco; Naccari, Clara; Vadalà, Rossella; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Rando, Rossana; Cicero, Nicola; Dugo, Giacomo

    2018-01-01

    Opuntia ficus-indica L. Miller fruits, particularly 'Ficodindia dell'Etna' of Biancavilla (POD), 'Fico d'india tradizionale di Roccapalumba' with protected brand and samples from an experimental field in Pezzolo (Sicily) were analyzed by inductively coupled plasma mass spectrometry in order to determine the multi-element profile. A multivariate chemometric approach, specifically principal component analysis (PCA), was applied to individuate how mineral elements may represent a marker of geographic origin, which would be useful for traceability. PCA has allowed us to verify that the geographical origin of prickly pear fruits is significantly influenced by trace element content, and the results found in Biancavilla PDO samples were linked to the geological composition of this volcanic areas. It was observed that two principal components accounted for 72.03% of the total variance in the data and, in more detail, PC1 explains 45.51% and PC2 26.52%, respectively. This study demonstrated that PCA is an integrated tool for the traceability of food products and, at the same time, a useful method of authentication of typical local fruits such as prickly pear. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Elemental fingerprinting of Hypericum perforatum (St John's Wort) herb and preparations using ICP-OES and chemometrics.

    PubMed

    Owen, Jade D; Kirton, Stewart B; Evans, Sara J; Stair, Jacqueline L

    2016-06-05

    St. John's wort (SJW) (Hypericum perforatum) is a herbal remedy commonly used to treat mild depression. The elemental profiles of 54 samples (i.e., dry herbs, tablets and capsules) were evaluated by monitoring 25 elements using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The major elemental constituents in the SJW samples were Ca (300-199,000μg/g), Mg (410-3,530μg/g), Al (4.4-900μg/g), Fe (1.154-760μg/g), Mn (2.4-261μg/g), Sr (0.88-83.6μg/g), and Zn (7-64μg/g). For the sixteen elements that could be reliably quantified, principal component analysis (PCA) was used to investigate underlying patterns in the data. PCA models identified 7 key elements (i.e., Ba, Ca, Cd, Mg, Mo, Ni and Y), which described 85% of the variance in the dataset in the first three principal components. The PCA approach resulted in a general delineation between the three different formulations and provides a basis for monitoring product quality in this manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Application of Principal Component Analysis to NIR Spectra of Phyllosilicates: A Technique for Identifying Phyllosilicates on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Lanza, N. L.

    2012-01-01

    Orbital near-infrared (NIR) reflectance spectra of the martian surface from the OMEGA and CRISM instruments have identified a variety of phyllosilicates in Noachian terrains. The types of phyllosilicates present on Mars have important implications for the aqueous environments in which they formed, and, thus, for recognizing locales that may have been habitable. Current identifications of phyllosilicates from martian NIR data are based on the positions of spectral absorptions relative to laboratory data of well-characterized samples and from spectral ratios; however, some phyllosilicates can be difficult to distinguish from one another with these methods (i.e. illite vs. muscovite). Here we employ a multivariate statistical technique, principal component analysis (PCA), to differentiate between spectrally similar phyllosilicate minerals. PCA is commonly used in a variety of industries (pharmaceutical, agricultural, viticultural) to discriminate between samples. Previous work using PCA to analyze raw NIR reflectance data from mineral mixtures has shown that this is a viable technique for identifying mineral types, abundances, and particle sizes. Here, we evaluate PCA of second-derivative NIR reflectance data as a method for classifying phyllosilicates and test whether this method can be used to identify phyllosilicates on Mars.

  9. [Tracing Sources of Sulfate Aerosol in Nanjing Northern Suburb Using Sulfur and Oxygen Isotopes].

    PubMed

    Wei, Ying; Guo, Zhao-bing; Ge, Xin; Zhu, Sheng-nan; Jiang, Wen-juan; Shi, Lei; Chen, Shu

    2015-04-01

    Abstract: To trace the sources of sulfate contributing to atmospheric aerosol, PM2.5 samples for isotopic analysis were collected in Nanjing northern suburb during January 2014. The sulfur and oxygen isotopic compositions of sulfate from these samples were determined by EA-IRMS. Source identification and apportionment were carried out using stable isotopic and chemical evidences, combined with absolute principal component analysis (APCA) method. The Δ34S values of aerosol sulfate ranged from 2.7 per thousand to 6.4 per thousand, with an average of 5.0 per thousand ± 0.9 per thousand, while the Δ18O values ranged from 10.6 per thousand to 16.1 per thousand, with an average of 12.5 per thousand ± 1.37 per thousand. In conjunction with air mass trajectories, the results suggested that aerosol sulfates were controlled by a dominance of local anthropogenic sulfate, followed by the contributions of long-distance transported sulfate. There was a minor effect of some other low-Δ34S valued sulfates, which might be expected from biogenic sources. Absolute principal component analysis results showed that the contributions of anthropogenic sulfate and long-distance transported sulfate were 46.74% and 31.54%, respectively.

  10. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    PubMed

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  11. Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki

    2004-04-01

    We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

  12. Chemometric characterization of alembic and industrial sugar cane spirits from cape verde and ceará, Brazil.

    PubMed

    Pereira, Regina F R; Vidal, Carla B; de Lima, Ari C A; Melo, Diego Q; Dantas, Allan N S; Lopes, Gisele S; do Nascimento, Ronaldo F; Gomes, Clerton L; da Silva, Maria Nataniela

    2012-01-01

    Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates.

  13. Chemometric Characterization of Alembic and Industrial Sugar Cane Spirits from Cape Verde and Ceará, Brazil

    PubMed Central

    Pereira, Regina F. R.; Vidal, Carla B.; de Lima, Ari C. A.; Melo, Diego Q.; Dantas, Allan N. S.; Lopes, Gisele S.; do Nascimento, Ronaldo F.; Gomes, Clerton L.; da Silva, Maria Nataniela

    2012-01-01

    Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates. PMID:23227051

  14. Principals' Perceptions Regarding Their Supervision and Evaluation

    ERIC Educational Resources Information Center

    Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann

    2015-01-01

    This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…

  15. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  16. Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Singh, Asha Lata; Singh, Vipin Kumar

    2018-06-01

    A total of 22 water quality parameters were selected for the analysis of groundwater samples with reference to arsenic contamination. Samples were collected in the pre-monsoon and monsoon seasons of the year 2013. The maximum arsenic concentration in both the pre-monsoon and monsoon seasons was approximately the same, i.e., the maximum arsenic concentration being 75.60 and 74.46 µg/L in pre-monsoon and monsoon, respectively. Out of 72 collected samples, three were below the WHO guideline value of 10 µg/L for arsenic concentration. In 95.83% of the groundwater samples, the arsenic concentration was above the permissible limit. Nickel, manganese, and chromium concentrations were above the permissible limits in nearly all samples except for chromium concentration in a few pre-monsoon samples. However, the total iron concentrations in 23 samples (31.94%) were above the permissible limit. A total of six and seven principal components (PCs) were extracted using principal component analysis during the pre-monsoon and monsoon seasons, respectively, accounting for 76.25 and 78.52% of the total variation during two consecutive seasons. Correlation statistics revealed that the arsenic concentration was positively correlated with phosphate, iron, ammonium, bicarbonate, and manganese concentrations but negatively correlated with oxidation reduction potential (ORP), sulfate concentration, electrical conductivity, and total dissolved solids concentration. The negative correlation of arsenic with ORP suggested reducing conditions prevailing in the groundwater. The trilinear Piper diagram revealed calcium and magnesium enrichment of groundwater with an abundance of chloride ions but no predominance of bicarbonate ions. Thus, the groundwater fell into Ca2+ - Mg2+ - Cl- - SO4 2- category.

  17. Sample-space-based feature extraction and class preserving projection for gene expression data.

    PubMed

    Wang, Wenjun

    2013-01-01

    In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.

  18. Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil

    NASA Astrophysics Data System (ADS)

    Andrade, Fatima; Orsini, Celso; Maenhaut, Willy

    Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.

  19. Identification of atmospheric organic sources using the carbon hollow tube-gas chromatography method and factor analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, G.P.; Braman, R.S.; Gilbert, R.A.

    Atmospheric organics were sampled and analyzed by using the carbon hollow tube-gas chromatography method. Chromatograms from spice mixtures, cigarettes, and ambient air were analyzed. Principal factor analysis of row order chromatographic data produces factors which are eigenchromatograms of the components in the samples. Component sources are identified from the eigenchromatograms in all experiments and the individual eigenchromatogram corresponding to a particular source is determined in most cases. Organic sources in ambient air and in cigaretts are identified with 87% certainty. Analysis of clove cigarettes allows the determination of the relative amount of clove in different cigarettes. A new nondestructive qualitymore » control method using the hollow tube-gas chromatography analysis is discussed.« less

  20. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.

    PubMed

    Nguyen, Phuong H

    2007-05-15

    Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.

  1. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  2. Quarry identification of historical building materials by means of laser induced breakdown spectroscopy, X-ray fluorescence and chemometric analysis

    NASA Astrophysics Data System (ADS)

    Colao, F.; Fantoni, R.; Ortiz, P.; Vazquez, M. A.; Martin, J. M.; Ortiz, R.; Idris, N.

    2010-08-01

    To characterize historical building materials according to the geographic origin of the quarries from which they have been mined, the relative content of major and trace elements were determined by means of Laser Induced Breakdown Spectroscopy (LIBS) and X-ray Fluorescence (XRF) techniques. 48 different specimens were studied and the entire samples' set was divided in two different groups: the first, used as reference set, was composed by samples mined from eight different quarries located in Seville province; the second group was composed by specimens of unknown provenance collected in several historical buildings and churches in the city of Seville. Data reduction and analysis on laser induced breakdown spectroscopy and X-ray fluorescence measurements was performed using multivariate statistical approach, namely the Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). A clear separation among reference sample materials mined from different quarries was observed in Principal Components (PC) score plots, then a supervised soft independent modeling of class analogy classification was trained and run, aiming to assess the provenance of unknown samples according to their elemental content. The obtained results were compared with the provenance assignments made on the basis of petrographical description. This work gives experimental evidence that laser induced breakdown spectroscopy measurements on a relatively small set of elements is a fast and effective method for the purpose of origin identification.

  3. Critical Factors Explaining the Leadership Performance of High-Performing Principals

    ERIC Educational Resources Information Center

    Hutton, Disraeli M.

    2018-01-01

    The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…

  4. Optimized principal component analysis on coronagraphic images of the fomalhaut system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.

    We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less

  5. Determination of Key Flavor Components in Methylene Chloride Extracts from Processed Grapefruit Juice.

    PubMed

    Jella; Rouseff; Goodner; Widmer

    1998-01-19

    The relative correlation of 52 aroma and 5 taste components in commercial not-from-concentrate grapefruit juices with flavor panel preference was determined. Methylene chloride extracts of juice were analyzed using GC/MS with a DB-5 column. Nonvolatiles determined included limonin and naringin by HPLC, degrees Brix, total acids, and degrees Brix/acid ratio. Juice samples were classified into low, medium, or high categories, based on average taste panel preference scores (nine-point hedonic scale). Principal component analysis demonstrated that highest quality juices were tightly clustered. Discriminant analysis indicated that 82% of the samples could be identified in the correct preference category using only myrcene, beta-caryophyllene, linalool, nootkatone, and degrees Brix. Nootkatone alone was not strongly associated with preference scores. The most preferred juices were strongly associated with low myrcene, low linalool, and intermediate levels of beta-caryophyllene.

  6. Composition and Chemical Variability of Enantia polycarpa Engler & Diels Leaf Essential Oil from Côte d'Ivoire.

    PubMed

    Yapi, Thierry Acafou; Ouattara, Zana Adama; Boti, Jean Brice; Tonzibo, Zanahi Félix; Paoli, Mathieu; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2018-05-13

    The composition of Enantia polycarpa Engler & Diels leaf essential oil has been investigated for the first time using a combination of chromatographic and spectroscopic techniques. The compositions of 52 leaf essential oil samples have been subjected to statistical analysis, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Four groups were differentiated, whose compositions were dominated by β-elemene and germacrene B (Group III, 22/52 samples); germacrene D (Group I, 16/52 samples); β-cubebene (Group IV, 8/52 samples) and by germacrene B and germacrene D (Group II, 6/52 samples). A special attention was brought to the quantification of the thermolabile components, germacrene A, germacrene B and germacrene C, as well as that of their rearranged compounds, β-elemene, γ-elemene and δ-elemene. 13 C NMR data of β-cubebene have been provided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Resolving Identification Issues of Saraca asoca from Its Adulterant and Commercial Samples Using Phytochemical Markers

    PubMed Central

    Hegde, Satisha; Hegde, Harsha Vasudev; Jalalpure, Sunil Satyappa; Peram, Malleswara Rao; Pai, Sandeep Ramachandra; Roy, Subarna

    2017-01-01

    Saraca asoca (Roxb.) De Wilde (Ashoka) is a highly valued endangered medicinal tree species from Western Ghats of India. Besides treating cardiac and circulatory problems, S. asoca provides immense relief in gynecological disorders. Higher price and demand, in contrast to the smaller population size of the plant, have motivated adulteration with other plants such as Polyalthia longifolia (Sonnerat) Thwaites. The fundamental concerns in quality control of S. asoca arise due to its part of medicinal value (Bark) and the chemical composition. Phytochemical fingerprinting with proper selection of analytical markers is a promising method in addressing quality control issues. In the present study, high-performance liquid chromatography of phenolic compounds (gallic acid, catechin, and epicatechin) coupled to multivariate analysis was used. Five samples each of S. asoca, P. longifolia from two localities alongside five commercial market samples showed evidence of adulteration. Subsequently, multivariate hierarchical cluster analysis and principal component analysis was established to discriminate the adulterants of S. asoca. The proposed method ascertains identification of S. asoca from its putative adulterant P. longifolia and commercial market samples. The data generated may also serve as baseline data to form a quality standard for pharmacopoeias. SUMMARY Simultaneous quantification of gallic acid, catechin, epicatechin from Saraca asoca by high-performance liquid chromatographyDetection of S. asoca from adulterant and commercial samplesUse of analytical method along with a statistical tool for addressing quality issues. Abbreviations used: HPLC: High Performance Liquid Chromatography; RP-HPLC: Reverse Phase High Performance Liquid Chromatography; CAT: Catechin; EPI: Epicatechin; GA: Gallic acid; PCA: Principal Component Analysis. PMID:28808391

  8. Validated scales to assess adult self-efficacy to eat fruits and vegetables.

    PubMed

    Mainvil, Louise A; Lawson, Rob; Horwath, Caroline C; McKenzie, Joanne E; Reeder, Anthony I

    2009-01-01

    An audience-centered approach was used to develop valid and reliable scales to measure adult self-efficacy to eat fruit and vegetables. Cross-sectional survey of a national population. New Zealand. A sample of 350 adults ages 25 to 60 years was randomly selected from a nationally representative sampling frame. Overall, 231 questionnaires were returned, producing a 72% response rate. The mean age of subjects was 42.7years; 58% were female; 80% were of European descent; 11% were indigenous Maori. The 76-item, self-administered questionnaire collected data on demographics, fruit and vegetable intakes, stages of change, decisional balance, and self-efficacy (24 items). Principal components analysis with oblimin rotation was performed. Principal components analysis yielded three distinct and reliable scales for self-efficacy to eat "vegetables," "fruit," and "fruit and vegetables" (Cronbach alpha = .80, .85, and .73, respectively). These scales were correlated, but only the "vegetable" scale was positively correlated with the "fruit and vegetable" scale (Kendall tau r = 0.30, -0.26 [fruit, "fruit and vegetables"], -0.38 [fruit, vegetable]). As predicted, self-efficacy was associated with intake (r = 0.30 [fruit], 0.34 [vegetables]). Assuming the factor structure is confirmed in independent samples, these brief psychometrically sound scales may be used to assess adult self-efficacy to eat fruit and to eat vegetables (separately) but not self-efficacy to eat "fruit and vegetables."

  9. Establishment and application of milk fingerprint by gel filtration chromatography.

    PubMed

    Gao, P; Li, J; Li, Z; Hao, J; Zan, L

    2016-12-01

    Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH 2 PO 4 -Na 2 HPO 4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. [Study of near infrared spectral preprocessing and wavelength selection methods for endometrial cancer tissue].

    PubMed

    Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong

    2010-04-01

    Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.

  11. Ancient remains and the first peopling of the Americas: Reassessing the Hoyo Negro skull.

    PubMed

    de Azevedo, Soledad; Bortolini, Maria C; Bonatto, Sandro L; Hünemeier, Tábita; Santos, Fabrício R; González-José, Rolando

    2015-11-01

    A noticeably well-preserved ∼12.500 years-old skeleton from the Hoyo Negro cave, Yucatán, México, was recently reported, along with its archaeological, genetic and skeletal characteristics. Based exclusively on an anatomical description of the skull (HN5/48), Chatters and colleagues stated that this specimen can be assigned to a set of ancient remains that differ from modern Native Americans, the so called "Paleoamericans". Here, we aim to further explore the morphological affinities of this specimen with a set of comparative cranial samples covering ancient and modern periods from Asia and the Americas. Images published in the original article were analyzed using geometric morphometrics methods. Shape variables were used to perform Principal Component and Discriminant analysis against the reference samples. Even thought the Principal Component Analysis suggests that the Hoyo Negro skull falls in a subregion of the morphospace occupied by both "Paleoamericans" and some modern Native Americans, the Discriminant analyses suggest greater affinity with a modern Native American sample. These results reinforce the idea that the original population that first occupied the New World carried high levels of within-group variation, which we have suggested previously on a synthetic model for the settlement of the Americas. Our results also highlight the importance of developing formal classificatory test before deriving settlement hypothesis purely based on macroscopic descriptions. © 2015 Wiley Periodicals, Inc.

  12. Fractal analysis of scatter imaging signatures to distinguish breast pathologies

    NASA Astrophysics Data System (ADS)

    Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.

    2013-02-01

    Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.

  13. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils.

  14. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].

    PubMed

    Li, Xun-lan; Yi, Shi-lai; He, Shao-lan; Lü, Qiang; Xie, Rang-jin; Zheng, Yong-qiang; Deng, Lie

    2015-09-01

    Existing methods for the identification of pummelo cultivars are usually time-consuming and costly, and are therefore inconvenient to be used in cases that a rapid identification is needed. This research was aimed at identifying different pummelo cultivars by hyperspectral imaging technology which can achieve a rapid and highly sensitive measurement. A total of 240 leaf samples, 60 for each of the four cultivars were investigated. Samples were divided into two groups such as calibration set (48 samples of each cultivar) and validation set (12 samples of each cultivar) by a Kennard-Stone-based algorithm. Hyperspectral images of both adaxial and abaxial surfaces of each leaf were obtained, and were segmented into a region of interest (ROI) using a simple threshold. Spectra of leaf samples were extracted from ROI. To remove the absolute noises of the spectra, only the date of spectral range 400~1000 nm was used for analysis. Multiplicative scatter correction (MSC) and standard normal variable (SNV) were utilized for data preprocessing. Principal component analysis (PCA) was used to extract the best principal components, and successive projections algorithm (SPA) was used to extract the effective wavelengths. Least squares support vector machine (LS-SVM) was used to obtain the discrimination model of the four different pummelo cultivars. To find out the optimal values of σ2 and γ which were important parameters in LS-SVM modeling, Grid-search technique and Cross-Validation were applied. The first 10 and 11 principal components were extracted by PCA for the hyperspectral data of adaxial surface and abaxial surface, respectively. There were 31 and 21 effective wavelengths selected by SPA based on the hyperspectral data of adaxial surface and abaxial surface, respectively. The best principal components and the effective wavelengths were used as inputs of LS-SVM models, and then the PCA-LS-SVM model and the SPA-LS-SVM model were built. The results showed that 99.46% and 98.44% of identification accuracy was achieved in the calibration set for the PCA-LS-SVM model and the SPA-LS-SVM model, respectively, and a 95.83% of identification accuracy was achieved in the validation set for both the PCA-LS-SVM and the SPA- LS-SVM models, which were built based on the hyperspectral data of adaxial surface. Comparatively, the results of the PCA-LS-SVM and the SPA-LS-SVM models built based on the hyperspectral data of abaxial surface both achieved identification accuracies of 100% for both calibration set and validation set. The overall results demonstrated that use of hyperspectral data of adaxial and abaxial leaf surfaces coupled with the use of PCA-LS-SVM and the SPA-LS-SVM could achieve an accurate identification of pummelo cultivars. It was feasible to use hyperspectral imaging technology to identify different pummelo cultivars, and hyperspectral imaging technology provided an alternate way of rapid identification of pummelo cultivars. Moreover, the results in this paper demonstrated that the data from the abaxial surface of leaf was more sensitive in identifying pummelo cultivars. This study provided a new method for to the fast discrimination of pummelo cultivars.

  15. How multi segmental patterns deviate in spastic diplegia from typical developed.

    PubMed

    Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela

    2017-10-01

    The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A reduction in ag/residential signature conflict using principal components analysis of LANDSAT temporal data

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Borden, F. Y.

    1977-01-01

    Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.

  17. Constrained Principal Component Analysis: Various Applications.

    ERIC Educational Resources Information Center

    Hunter, Michael; Takane, Yoshio

    2002-01-01

    Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…

  18. A Native American Community's Involvement and Empowerment to Guide Their Children's Development in the School Setting

    ERIC Educational Resources Information Center

    Rivera, Hector H.; Tharp, Roland G.

    2006-01-01

    This study provides an empirical description of the dimensions of community values, beliefs, and opinions through a survey conducted in the Pueblo Indian community of Zuni in New Mexico. The sample was composed of 200 randomly chosen community members ranging from 21 to 103 years old. A principal component factor analysis was conducted, as well as…

  19. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    PubMed

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.

  20. Psychometric evaluation of the canine brief pain inventory in a Swedish sample of dogs with pain related to osteoarthritis.

    PubMed

    Essner, Ann; Zetterberg, Lena; Hellström, Karin; Gustås, Pia; Högberg, Hans; Sjöström, Rita

    2017-07-01

    To evaluate intervention, implement evidence-based practice and enhance the welfare of dogs with naturally occurring osteoarthritis (OA), access to valid, reliable and clinically relevant outcome measures is crucial for researchers, veterinarians and rehabilitation practitioners. The objectives of the present study were to translate and evaluate psychometric properties, in terms of internal consistency and construct validity, of the owner-reported measure canine brief pain inventory (CBPI) in a Swedish sample of dogs with pain related to OA. Twenty-one owners of clinically sound dogs and 58 owners of dogs with pain related to OA were included in this observational and cross-sectional study. After being translated according to the guidelines for patient-reported outcome measures, the CBPI was completed by the canine owners. Construct validity was assessed by confirmatory factor analysis, by repeating the principal component analysis and by assessing for differences between clinically sound dogs and dogs with pain related to OA. Internal consistency was estimated by Cronbach's α. Confirmatory factor analysis was not able to confirm the factor-structure models tested in our sample. Principal component analysis showed a two-component structure, pain severity and pain interference of function. Two components accounted for 76.8% of the total variance, suggesting an acceptable fit of a two-component structure. The ratings from the clinically sound dogs differed from OA dogs and showed significantly lower CBPI total sum. Cronbach's α was 0.94 for the total CBPI, 0.91 for the pain severity and 0.91 for the pain interference of function. The results indicate that the translated version of the CBPI is valid for use in the Swedish language. The findings suggest satisfying psychometric properties in terms of high internal consistencies and ability to discriminate clinically sound dogs from OA dogs. However, based on the confirmatory factor analysis, the original factor structure in the CBPI is not ideally suited to measure pain related to OA in our sample and the hypothesis of the presented two-factor structure was rejected. Further research needs to be conducted to determine whether the original psychometric results from CBPI can be replicated across different target groups and particularly with larger sample size.

  1. The Classification of Ground Roasted Decaffeinated Coffee Using UV-VIS Spectroscopy and SIMCA Method

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Asnaning, A. R.; Suhandy, D.

    2018-05-01

    In this work, an investigation on the classification between decaffeinated and non- decaffeinated coffee samples using UV-VIS spectroscopy and SIMCA method was investigated. Total 200 samples of ground roasted coffee were used (100 samples for decaffeinated coffee and 100 samples for non-decaffeinated coffee). After extraction and dilution, the spectra of coffee samples solution were acquired using a UV-VIS spectrometer (Genesys™ 10S UV-VIS, Thermo Scientific, USA) in the range of 190-1100 nm. The multivariate analyses of the spectra were performed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The SIMCA model showed that the classification between decaffeinated and non-decaffeinated coffee samples was detected with 100% sensitivity and specificity.

  2. A measure for objects clustering in principal component analysis biplot: A case study in inter-city buses maintenance cost data

    NASA Astrophysics Data System (ADS)

    Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.

    2017-03-01

    This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.

  3. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics.

    PubMed

    Halai, Ajay D; Woollams, Anna M; Lambon Ralph, Matthew A

    2017-01-01

    Individual differences in the performance profiles of neuropsychologically-impaired patients are pervasive yet there is still no resolution on the best way to model and account for the variation in their behavioural impairments and the associated neural correlates. To date, researchers have generally taken one of three different approaches: a single-case study methodology in which each case is considered separately; a case-series design in which all individual patients from a small coherent group are examined and directly compared; or, group studies, in which a sample of cases are investigated as one group with the assumption that they are drawn from a homogenous category and that performance differences are of no interest. In recent research, we have developed a complementary alternative through the use of principal component analysis (PCA) of individual data from large patient cohorts. This data-driven approach not only generates a single unified model for the group as a whole (expressed in terms of the emergent principal components) but is also able to capture the individual differences between patients (in terms of their relative positions along the principal behavioural axes). We demonstrate the use of this approach by considering speech fluency, phonology and semantics in aphasia diagnosis and classification, as well as their unique neural correlates. PCA of the behavioural data from 31 patients with chronic post-stroke aphasia resulted in four statistically-independent behavioural components reflecting phonological, semantic, executive-cognitive and fluency abilities. Even after accounting for lesion volume, entering the four behavioural components simultaneously into a voxel-based correlational methodology (VBCM) analysis revealed that speech fluency (speech quanta) was uniquely correlated with left motor cortex and underlying white matter (including the anterior section of the arcuate fasciculus and the frontal aslant tract), phonological skills with regions in the superior temporal gyrus and pars opercularis, and semantics with the anterior temporal stem. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. X-Ray analysis of riverbank sediment of the Tisza (Hungary): identification of particles from a mine pollution event

    NASA Astrophysics Data System (ADS)

    Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.

    2002-03-01

    A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of particles originating from mine tailings on a defined river section.

  5. Geographical and ethnic variability of finger ridge-counts: biplots of male and female Indian samples.

    PubMed

    Krishnan, T; Reddy, B M

    1994-01-01

    The graphical technique of biplot due to Gabriel and others is explained, and is applied to ten finger ridge-count means of 239 populations, mostly Indian. The biplots, together with concentration ellipses based on them, are used to study geographical, gender and ethnic/social group variability, to compare Indian populations with other populations and to study relations between individual counts and populations. The correlation structure of ridge-counts exhibits a tripartite division of digits demonstrated by many other studies, but with a somewhat different combination of digits. Comparisons are also made with the results of Leguebe and Vrydagh, who used principal components, discriminant functions, Andrews functions, etc., to study geographical and gender variations. There is a great deal of homogeneity in Indian populations when compared to populations from the rest of the world. Although broad geographical contiguity is reflected in the biplots, local (states within India) level contiguity is not maintained. Monogoloids and Caucasoids have distinct ridge-count structures. The higher level of homogeneity in females and on the left side observed by Leguebe and Vrydagh is also observed in the biplots. A comparison with principal component plots indicates that biplots yield a graphical representation similar to component plots, and convey more information than component plots.

  6. Molecular reclassification of Crohn's disease: a cautionary note on population stratification.

    PubMed

    Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel

    2013-01-01

    Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.

  7. Molecular Reclassification of Crohn’s Disease: A Cautionary Note on Population Stratification

    PubMed Central

    Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M.; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel

    2013-01-01

    Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn’s disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn’s disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals. PMID:24147066

  8. Morphological analysis of Trichomycterus areolatus Valenciennes, 1846 from southern Chilean rivers using a truss-based system (Siluriformes, Trichomycteridae)

    PubMed Central

    Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel

    2017-01-01

    Abstract Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks’s λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant (p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species. PMID:29134012

  9. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    PubMed Central

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

  10. Principal Component Analysis: A Method for Determining the Essential Dynamics of Proteins

    PubMed Central

    David, Charles C.; Jacobs, Donald J.

    2015-01-01

    It has become commonplace to employ principal component analysis to reveal the most important motions in proteins. This method is more commonly known by its acronym, PCA. While most popular molecular dynamics packages inevitably provide PCA tools to analyze protein trajectories, researchers often make inferences of their results without having insight into how to make interpretations, and they are often unaware of limitations and generalizations of such analysis. Here we review best practices for applying standard PCA, describe useful variants, discuss why one may wish to make comparison studies, and describe a set of metrics that make comparisons possible. In practice, one will be forced to make inferences about the essential dynamics of a protein without having the desired amount of samples. Therefore, considerable time is spent on describing how to judge the significance of results, highlighting pitfalls. The topic of PCA is reviewed from the perspective of many practical considerations, and useful recipes are provided. PMID:24061923

  11. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  12. Principal component analysis: a method for determining the essential dynamics of proteins.

    PubMed

    David, Charles C; Jacobs, Donald J

    2014-01-01

    It has become commonplace to employ principal component analysis to reveal the most important motions in proteins. This method is more commonly known by its acronym, PCA. While most popular molecular dynamics packages inevitably provide PCA tools to analyze protein trajectories, researchers often make inferences of their results without having insight into how to make interpretations, and they are often unaware of limitations and generalizations of such analysis. Here we review best practices for applying standard PCA, describe useful variants, discuss why one may wish to make comparison studies, and describe a set of metrics that make comparisons possible. In practice, one will be forced to make inferences about the essential dynamics of a protein without having the desired amount of samples. Therefore, considerable time is spent on describing how to judge the significance of results, highlighting pitfalls. The topic of PCA is reviewed from the perspective of many practical considerations, and useful recipes are provided.

  13. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.

    PubMed

    Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank

    2005-01-01

    In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. (c) 2005 John Wiley & Sons, Ltd.

  14. WFIRST: Principal Components Analysis of H4RG-10 Near-IR Detector Data Cubes

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard

    2018-01-01

    The Wide Field Infrared Survey Telescope’s (WFIRST) Wide Field Instrument (WFI) incorporates an array of eighteen Teledyne H4RG-10 near-IR detector arrays. Because WFIRST’s science investigations require controlling systematic uncertainties to state-of-the-art levels, we conducted principal components analysis (PCA) of some H4RG-10 test data obtained in the NASA Goddard Space Flight Center Detector Characterization Laboratory (DCL). The PCA indicates that the Legendre polynomials provide a nearly orthogonal representation of up-the-ramp sampled illuminated data cubes, and suggests other representations that may provide an even more compact representation of the data in some circumstances. We hypothesize that by using orthogonal representations, such as those described here, it may be possible to control systematic errors better than has been achieved before for NASA missions. We believe that these findings are probably applicable to other H4RG, H2RG, and H1RG based systems.

  15. A Principal Component Analysis of the Diffuse Interstellar Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensor, T.; Cami, J.; Bhatt, N. H.

    2017-02-20

    We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less

  16. Statistical Inference for Porous Materials using Persistent Homology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chul; Heath, Jason E.; Mitchell, Scott A.

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability,more » anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.« less

  17. Blood hyperviscosity identification with reflective spectroscopy of tongue tip based on principal component analysis combining artificial neural network.

    PubMed

    Liu, Ming; Zhao, Jing; Lu, XiaoZuo; Li, Gang; Wu, Taixia; Zhang, LiFu

    2018-05-10

    With spectral methods, noninvasive determination of blood hyperviscosity in vivo is very potential and meaningful in clinical diagnosis. In this study, 67 male subjects (41 health, and 26 hyperviscosity according to blood sample analysis results) participate. Reflectance spectra of subjects' tongue tips is measured, and a classification method bases on principal component analysis combined with artificial neural network model is built to identify hyperviscosity. Hold-out and Leave-one-out methods are used to avoid significant bias and lessen overfitting problem, which are widely accepted in the model validation. To measure the performance of the classification, sensitivity, specificity, accuracy and F-measure are calculated, respectively. The accuracies with 100 times Hold-out method and 67 times Leave-one-out method are 88.05% and 97.01%, respectively. Experimental results indicate that the built classification model has certain practical value and proves the feasibility of using spectroscopy to identify hyperviscosity by noninvasive determination.

  18. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data

    NASA Astrophysics Data System (ADS)

    Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.

  19. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    PubMed

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Principal component analysis and analysis of variance on the effects of Entellan New on the Raman spectra of fibers.

    PubMed

    Yu, Marcia M L; Sandercock, P Mark L

    2012-01-01

    During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.

  1. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  2. Relevant principal component analysis applied to the characterisation of Portuguese heather honey.

    PubMed

    Martins, Rui C; Lopes, Victor V; Valentão, Patrícia; Carvalho, João C M F; Isabel, Paulo; Amaral, Maria T; Batista, Maria T; Andrade, Paula B; Silva, Branca M

    2008-01-01

    The main purpose of this study was the characterisation of 'Serra da Lousã' heather honey by using novel statistical methodology, relevant principal component analysis, in order to assess the correlations between production year, locality and composition. Herein, we also report its chemical composition in terms of sugars, glycerol and ethanol, and physicochemical parameters. Sugars profiles from 'Serra da Lousã' heather and 'Terra Quente de Trás-os-Montes' lavender honeys were compared and allowed the discrimination: 'Serra da Lousã' honeys do not contain sucrose, generally exhibit lower contents of turanose, trehalose and maltose and higher contents of fructose and glucose. Different localities from 'Serra da Lousã' provided groups of samples with high and low glycerol contents. Glycerol and ethanol contents were revealed to be independent of the sugars profiles. These data and statistical models can be very useful in the comparison and detection of adulterations during the quality control analysis of 'Serra da Lousã' honey.

  3. Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu's blue slope?

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Binzel, R. P.; DeMeo, F. E.

    2018-03-01

    We compare primitive near-Earth asteroid spectral properties to the irradiated carbonaceous chondrite samples of Lantz et al. (2017) in order to assess how space weathering processes might influence taxonomic classification. Using the same eigenvectors from the asteroid taxonomy by DeMeo et al. (2009), we calculate the principal components for fresh and irradiated meteorites and find that change in spectral slope (blueing or reddening) causes a corresponding shift in the two first principal components along the same line that the C- and X-complexes track. Using a sample of B-, C-, X-, and D-type NEOs with visible and near-infrared spectral data, we further investigated the correlation between prinicipal components and the spectral curvature for the primitive asteroids. We find that space weathering effects are not just slope and albedo, but also include spectral curvature. We show how, through space weathering, surfaces having an original "C-type" reflectance can thus turn into a redder P-type or a bluer B-type, and that space weathering can also decrease (and disguise) the D-type population. Finally we take a look at the case of OSIRIS-REx target (101955) Bennu and propose an explanation for the blue and possibly red spectra that were previously observed on different locations of its surface: parts of Bennu's surface could have become blue due to space weathering, while fresher areas are redder. No clear prediction can be made on Hayabusa-2 target (162173) Ryugu.

  4. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  5. Recognition of units in coarse, unconsolidated braided-stream deposits from geophysical log data with principal components analysis

    USGS Publications Warehouse

    Morin, R.H.

    1997-01-01

    Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.

  6. Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.

    PubMed

    Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming

    2018-05-10

    To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.

  7. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  8. Biomarkers of furan exposure by metabolic profiling of rat urine with liquid chromatography-tandem mass spectrometry and principal component analysis.

    PubMed

    Kellert, Marco; Wagner, Silvia; Lutz, Ursula; Lutz, Werner K

    2008-03-01

    Furan has been found in a number of heated food items and is carcinogenic in the liver of rats and mice. Estimates of human exposure on the basis of concentrations measured in food are not reliable because of the volatility of furan. A biomarker approach is therefore indicated. We searched for metabolites excreted in the urine of male Fischer 344 rats treated by oral gavage with 40 mg of furan per kg of body weight. A control group received the vehicle oil only. Urine collected over two 24-h periods both before and after treatment was analyzed by a column-switching LC-MS/MS method. Data were acquired by a full scan survey scan in combination with information dependent acquisition of fragmentation spectra by the use of a linear ion trap. Areas of 449 peaks were extracted from the chromatograms and used for principal component analysis (PCA). The first principal component fully separated the samples of treated rats from the controls in the first post-treatment sampling period. Thirteen potential biomarkers selected from the corresponding loadings plot were reanalyzed using specific transitions in the MRM mode. Seven peaks that increased significantly upon treatment were further investigated as biomarkers of exposure. MS/MS information indicated conjugation with glutathione on the basis of the characteristic neutral loss of 129 for mercapturates. Adducts with the side chain amino group of lysine were characterized by a neutral loss of 171 for N-acetyl- l-lysine. Analysis of products of in vitro incubations of the reactive furan metabolite cis-2-butene-1,4-dial with the respective amino acid derivatives supported five structures, including a new 3-methylthio-pyrrole metabolite probably formed by beta-lyase reaction on a glutathione conjugate, followed by methylation of the thiol group. Our results demonstrate the potential of comprehensive mass spectrometric analysis of urine combined with multivariate analyses for metabolic profiling in search of biomarkers of exposure.

  9. Controlling the release of wood extractives into water bodies by selecting suitable eucalyptus species

    NASA Astrophysics Data System (ADS)

    Kilulya, K. F.; Msagati, T. A. M.; Mamba, B. B.; Ngila, J. C.; Bush, T.

    Pulping industries are increasing worldwide as a result of the increase in the demand for pulp for cellulose derivatives and paper manufacturing. Due to the activities involved in pulping processes, different chemicals from raw materials (wood) and bleaching agents are released in pulp-mill effluent streams discharged into the environment and find their way into water bodies. Large quantities of water and chemicals used in pulping result in large amounts of wastewater with high concentrations of extractives such as unsaturated fatty acids, which are known to be toxic, and plant sterols which affect the development, growth and reproduction of aquatic organisms. This study was aimed at assessing the composition of extractives in two eucalyptus species used for pulp production in South Africa, in order to identify the suitable species with regard to extractive content. Samples from two eucalyptus plant species (Eucalyptus grandis and Eucalyptus dunnii) were collected from three sites and analysed for extractives by first extracting with water, followed by Soxhlet extraction using acetone. Compounds were identified and quantified using gas chromatography-mass spectrometry (GC-MS). Major classes of extractives identified were fatty acids (mainly hexadecanoic acid, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic acids) and sterols (mainly β-sitosterol and stigmastanol). E. dunnii was found to contain higher amounts of the compounds compared to those found in E. grandis in all sampled sites. Principal component analysis (PCA) was performed and explained 92.9% of the total variation using three principal components. It was revealed that the percentage of fatty acids, which has a negative influence on both principal components 2 and 3, was responsible for the difference between the species. E. grandis, which was found to contain low amounts of extractives, was therefore found suitable for pulping with regard to minimal water usage and environment pollution.

  10. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates.

    PubMed

    Abdul-Hamid, Nur Ashikin; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2015-11-01

    This study aimed to examine the variation in the metabolite profiles and nitric oxide (NO) inhibitory activity of Ajwa dates that were subjected to 2 drying treatments and different extraction solvents. (1)H NMR coupled with multivariate data analysis was employed. A Griess assay was used to determine the inhibition of the production of NO in RAW 264.7 cells treated with LPS and interferon-γ. The oven dried (OD) samples demonstrated the absence of asparagine and ascorbic acid as compared to the freeze dried (FD) dates. The principal component analysis showed distinct clusters between the OD and FD dates by the second principal component. In respect of extraction solvents, chloroform extracts can be distinguished by the absence of arginine, glycine and asparagine compared to the methanol and 50% methanol extracts. The chloroform extracts can be clearly distinguished from the methanol and 50% methanol extracts by first principal component. Meanwhile, the loading score plot of partial least squares analysis suggested that beta glucose, alpha glucose, choline, ascorbic acid and glycine were among the metabolites that were contributing to higher biological activity displayed by FD and methanol extracts of Ajwa. The results highlight an alternative method of metabolomics approach for determination of the metabolites that contribute to NO inhibitory activity. The association between metabolite profiles and nitric oxide (NO) inhibitory activity of the various extracts of Ajwa dates was evaluated by utilizing partial least squares (PLS) model. The validated PLS model can be employed to predict the NO inhibitory activity of new samples of date fruits based on their NMR spectra which was important for assessing fruit quality. The information gained might be used as guidance for quality control, nutritional values and as a basis for the preparation of any food supplements for human health that employs date palm fruit as the raw material. © 2015 Institute of Food Technologists®

  11. Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses.

    PubMed

    Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai

    2014-01-01

    The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. Copyright © 2014. Published by Elsevier Ltd.

  12. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    NASA Astrophysics Data System (ADS)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  13. E-nose based rapid prediction of early mouldy grain using probabilistic neural networks

    PubMed Central

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua; Fu, Jun

    2015-01-01

    In this paper, early mouldy grain rapid prediction method using probabilistic neural network (PNN) and electronic nose (e-nose) was studied. E-nose responses to rice, red bean, and oat samples with different qualities were measured and recorded. E-nose data was analyzed using principal component analysis (PCA), back propagation (BP) network, and PNN, respectively. Results indicated that PCA and BP network could not clearly discriminate grain samples with different mouldy status and showed poor predicting accuracy. PNN showed satisfying discriminating abilities to grain samples with an accuracy of 93.75%. E-nose combined with PNN is effective for early mouldy grain prediction. PMID:25714125

  14. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  15. On Using the Average Intercorrelation Among Predictor Variables and Eigenvector Orientation to Choose a Regression Solution.

    ERIC Educational Resources Information Center

    Mugrage, Beverly; And Others

    Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…

  16. A Note on McDonald's Generalization of Principal Components Analysis

    ERIC Educational Resources Information Center

    Shine, Lester C., II

    1972-01-01

    It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…

  17. CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles

    PubMed Central

    Peterson, Leif E

    2002-01-01

    CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816

  18. The Complexity of Human Walking: A Knee Osteoarthritis Study

    PubMed Central

    Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949

  19. Impact of an urban multi-metal contamination gradient: metal bioaccumulation and tolerance of river biofilms collected in different seasons.

    PubMed

    Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C

    2015-02-01

    The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids concentration. This study shows that chronic in situ exposure to environmental metal concentrations has a significant impact on natural biofilms. Biofilm tolerance to metals and biofilm metal bioaccumulation both reflect metal exposure levels although they remain low when compared to Environmental Quality Standards from the European Water Framework Directive. Yet temperature appears as an important environmental variable shaping community structure and response to toxic exposure which shows that the sampling date is an important parameter to consider when using natural river biofilms to assess the impacts of urban pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Principal component analysis of the CT density histogram to generate parametric response maps of COPD

    NASA Astrophysics Data System (ADS)

    Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.

  1. Using principal components analysis to explore competence and confidence in student nurses as users of information and communication technologies.

    PubMed

    Todhunter, Fern

    2015-07-01

    To report on the relationship between competence and confidence in nursing students as users of information and communication technologies, using principal components analysis. In nurse education, learning about and learning using information and communication technologies is well established. Nursing students are one of the undergraduate populations in higher education required to use these resources for academic work and practice learning. Previous studies showing mixed experiences influenced the choice of an exploratory study to find out about information and communication technologies competence and confidence. A 48-item survey questionnaire was administered to a volunteer sample of first- and second-year nursing students between July 2008-April 2009. The cohort ( N  =   375) represented 18·75% of first- and second-year undergraduates. A comparison between this work and subsequent studies reveal some similar ongoing issues and ways to address them. A principal components analysis (PCA) was carried out to determine the strength of the correlation between information and communication technologies competence and confidence. The aim was to show the presence of any underlying dimensions in the transformed data that would explain any variations in information and communication technologies competence and confidence. Cronbach's alpha values showed fair to good internal consistency. The five component structure gave medium to high results and explained 44·7% of the variance in the original data. Confidence had a high representation. The findings emphasized the shift towards social learning approaches for information and communication technologies. Informal social collaboration found favour with nursing students. Learning through talking, watching and listening all play a crucial role in the development of computing skills.

  2. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins.

    PubMed

    Żarnowiec, Paulina; Czerwonka, Grzegorz; Kaca, Wiesław

    2017-01-01

    Fourier transform infrared spectroscopy (FT-IR) was used to scan whole bacterial cells as well as lipopolysaccharides (LPSs, endotoxins) isolated from them. Proteus mirabilis cells, with chemically defined LPSs, served as a model for the ATR FT-IR method. The paper focuses on three steps of infrared spectroscopy: (1) sample preparation, (2) IR scanning, and (3) multivariate analysis of IR data (principal component analysis, PCA).

  3. Afghan Hindu Kush: Where Eurasian Sub-Continent Gene Flows Converge

    PubMed Central

    Mazières, Stéphane; Myres, Natalie M.; Lin, Alice A.; Temori, Shah Aga; Metspalu, Mait; Metspalu, Ene; Witzel, Michael; King, Roy J.; Underhill, Peter A.; Villems, Richard; Chiaroni, Jacques

    2013-01-01

    Despite being located at the crossroads of Asia, genetics of the Afghanistan populations have been largely overlooked. It is currently inhabited by five major ethnic populations: Pashtun, Tajik, Hazara, Uzbek and Turkmen. Here we present autosomal from a subset of our samples, mitochondrial and Y- chromosome data from over 500 Afghan samples among these 5 ethnic groups. This Afghan data was supplemented with the same Y-chromosome analyses of samples from Iran, Kyrgyzstan, Mongolia and updated Pakistani samples (HGDP-CEPH). The data presented here was integrated into existing knowledge of pan-Eurasian genetic diversity. The pattern of genetic variation, revealed by structure-like and Principal Component analyses and Analysis of Molecular Variance indicates that the people of Afghanistan are made up of a mosaic of components representing various geographic regions of Eurasian ancestry. The absence of a major Central Asian-specific component indicates that the Hindu Kush, like the gene pool of Central Asian populations in general, is a confluence of gene flows rather than a source of distinctly autochthonous populations that have arisen in situ: a conclusion that is reinforced by the phylogeography of both haploid loci. PMID:24204668

  4. Gut microbiota of liver transplantation recipients.

    PubMed

    Sun, Li-Ying; Yang, Yun-Sheng; Qu, Wei; Zhu, Zhi-Jun; Wei, Lin; Ye, Zhi-Sheng; Zhang, Jian-Rui; Sun, Xiao-Ye; Zeng, Zhi-Gui

    2017-06-19

    The characteristics of intestinal microbial communities may be affected by changes in the pathophysiology of patients with end-stage liver disease. Here, we focused on the characteristics of intestinal fecal microbial communities in post-liver transplantation (LT) patients in comparison with those in the same individuals pre-LT and in healthy individuals. The fecal microbial communities were analyzed via MiSeq-PE250 sequencing of the V4 region of 16S ribosomal RNA and were then compared between groups. We found that the gut microbiota of patients with severe liver disease who were awaiting LT was significantly different from that of healthy controls, as represented by the first principal component (p = 0.0066). Additionally, the second principal component represented a significant difference in the gut microbiota of patients between pre-LT and post-LT surgery (p = 0.03125). After LT, there was a significant decrease in the abundance of certain microbial species, such as Actinobacillus, Escherichia, and Shigella, and a significant increase in the abundance of other microbial species, such as Micromonosporaceae, Desulfobacterales, the Sarcina genus of Eubacteriaceae, and Akkermansia. Based on KEGG profiles, 15 functional modules were enriched and 21 functional modules were less represented in the post-LT samples compared with the pre-LT samples. Our study demonstrates that fecal microbial communities were significantly altered by LT.

  5. Comprehensive quality assessment based specific chemical profiles for geographic and tissue variation in Gentiana rigescens using HPLC and FTIR method combined with principal component analysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Ji; Zhao, Yan-Li; Huang, Heng-Yu; Wang, Yuan-Zhong

    2017-12-01

    Roots, stems, leaves and flowers of Longdan (Gentiana rigescens Franch. ex Hemsl) were collected from six geographic origins of Yunnan Province (n = 240) to implement the quality assessment based on contents of gentiopicroside, loganic acid, sweroside and swertiamarin and chemical profile using HPLC-DAD and FTIR method combined with principal component analysis (PCA). The content of gentiopicroside (major iridoid glycoside) was the highest in G. rigescens, regardless of tissue and geographic origin. The level of swertiamarin was the lowest, even unable to be detected in samples from Kunming and Qujing. Significant correlations (p < 0.05) between gentiopicroside, loganic acid, sweroside and swertiamarin were found at inter- or intra-tissues, which were highly depended on geographic origins, indicating the influence of environmental conditions on the conversion and transport of secondary metabolites in G. rigescens. Furthermore, samples were reasonably classified as three clusters along large producing areas where have similar climate conditions, characterized by carbohydrates, phenols, benzoates, terpenoids, aliphatic alcohols, aromatic hydrocarbons, and so forth. The present work provided global information on the chemical profile and contents of major iridoid glycosides in G. rigescens originated from six different origins, which is helpful for controlling quality of herbal medicines systematically.

  6. Comprehensive Quality Assessment Based Specific Chemical Profiles for Geographic and Tissue Variation in Gentiana rigescens Using HPLC and FTIR Method Combined with Principal Component Analysis

    PubMed Central

    Li, Jie; Zhang, Ji; Zhao, Yan-Li; Huang, Heng-Yu; Wang, Yuan-Zhong

    2017-01-01

    Roots, stems, leaves, and flowers of Longdan (Gentiana rigescens Franch. ex Hemsl) were collected from six geographic origins of Yunnan Province (n = 240) to implement the quality assessment based on contents of gentiopicroside, loganic acid, sweroside and swertiamarin and chemical profile using HPLC-DAD and FTIR method combined with principal component analysis (PCA). The content of gentiopicroside (major iridoid glycoside) was the highest in G. rigescens, regardless of tissue and geographic origin. The level of swertiamarin was the lowest, even unable to be detected in samples from Kunming and Qujing. Significant correlations (p < 0.05) between gentiopicroside, loganic acid, sweroside, and swertiamarin were found at inter- or intra-tissues, which were highly depended on geographic origins, indicating the influence of environmental conditions on the conversion and transport of secondary metabolites in G. rigescens. Furthermore, samples were reasonably classified as three clusters along large producing areas where have similar climate conditions, characterized by carbohydrates, phenols, benzoates, terpenoids, aliphatic alcohols, aromatic hydrocarbons, and so forth. The present work provided global information on the chemical profile and contents of major iridoid glycosides in G. rigescens originated from six different origins, which is helpful for controlling quality of herbal medicines systematically. PMID:29312929

  7. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China.

    PubMed

    Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang

    2017-07-01

    Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO 3 - and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.

  8. Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies

    PubMed Central

    Ciucci, Sara; Ge, Yan; Durán, Claudio; Palladini, Alessandra; Jiménez-Jiménez, Víctor; Martínez-Sánchez, Luisa María; Wang, Yuting; Sales, Susanne; Shevchenko, Andrej; Poser, Steven W.; Herbig, Maik; Otto, Oliver; Androutsellis-Theotokis, Andreas; Guck, Jochen; Gerl, Mathias J.; Cannistraci, Carlo Vittorio

    2017-01-01

    Omic science is rapidly growing and one of the most employed techniques to explore differential patterns in omic datasets is principal component analysis (PCA). However, a method to enlighten the network of omic features that mostly contribute to the sample separation obtained by PCA is missing. An alternative is to build correlation networks between univariately-selected significant omic features, but this neglects the multivariate unsupervised feature compression responsible for the PCA sample segregation. Biologists and medical researchers often prefer effective methods that offer an immediate interpretation to complicated algorithms that in principle promise an improvement but in practice are difficult to be applied and interpreted. Here we present PC-corr: a simple algorithm that associates to any PCA segregation a discriminative network of features. Such network can be inspected in search of functional modules useful in the definition of combinatorial and multiscale biomarkers from multifaceted omic data in systems and precision biomedicine. We offer proofs of PC-corr efficacy on lipidomic, metagenomic, developmental genomic, population genetic, cancer promoteromic and cancer stem-cell mechanomic data. Finally, PC-corr is a general functional network inference approach that can be easily adopted for big data exploration in computer science and analysis of complex systems in physics. PMID:28287094

  9. Morphological evidence for discrete stocks of yellow perch in Lake Erie

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Knight, Carey T.

    2012-01-01

    Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.

  10. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud

    2012-01-01

    The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.

  11. Principal Components Analysis of a JWST NIRSpec Detector Subsystem

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting; hide

    2013-01-01

    We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements

  12. Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products.

    PubMed

    Ghosh, Debasree; Chattopadhyay, Parimal

    2012-06-01

    The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.

  13. [Determination of the Plant Origin of Licorice Oil Extract, a Natural Food Additive, by Principal Component Analysis Based on Chemical Components].

    PubMed

    Tada, Atsuko; Ishizuki, Kyoko; Sugimoto, Naoki; Yoshimatsu, Kayo; Kawahara, Nobuo; Suematsu, Takako; Arifuku, Kazunori; Fukai, Toshio; Tamura, Yukiyoshi; Ohtsuki, Takashi; Tahara, Maiko; Yamazaki, Takeshi; Akiyama, Hiroshi

    2015-01-01

    "Licorice oil extract" (LOE) (antioxidant agent) is described in the notice of Japanese food additive regulations as a material obtained from the roots and/or rhizomes of Glycyrrhiza uralensis, G. inflata or G. glabra. In this study, we aimed to identify the original Glycyrrhiza species of eight food additive products using LC/MS. Glabridin, a characteristic compound in G. glabra, was specifically detected in seven products, and licochalcone A, a characteristic compound in G. inflata, was detected in one product. In addition, Principal Component Analysis (PCA) (a kind of multivariate analysis) using the data of LC/MS or (1)H-NMR analysis was performed. The data of thirty-one samples, including LOE products used as food additives, ethanol extracts of various Glycyrrhiza species and commercially available Glycyrrhiza species-derived products were assessed. Based on the PCA results, the majority of LOE products was confirmed to be derived from G. glabra. This study suggests that PCA using (1)H-NMR analysis data is a simple and useful method to identify the plant species of origin of natural food additive products.

  14. Application of principal component regression and artificial neural network in FT-NIR soluble solids content determination of intact pear fruit

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Liu, Yande; Fu, Xiaping; Lu, Huishan

    2005-11-01

    The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. However, majority of today's applications of ANNs is back-propagate feed-forward ANN (BP-ANN). In this paper, back-propagation artificial neural networks (BP-ANN) were applied for modeling soluble solid content (SSC) of intact pear from their Fourier transform near infrared (FT-NIR) spectra. One hundred and sixty-four pear samples were used to build the calibration models and evaluate the models predictive ability. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR), partial least squares (PLS) and non-linear PLS (NPLS). The effects of the optimal methods of training parameters on the prediction model were also investigated. BP-ANN combine with principle component regression (PCR) resulted always better than the classical PCR, PLS and Weight-PLS methods, from the point of view of the predictive ability. Based on the results, it can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for rapid and nondestructive determination of fruit internal quality.

  15. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  16. Analysis of environmental variation in a Great Plains reservoir using principal components analysis and geographic information systems

    USGS Publications Warehouse

    Long, J.M.; Fisher, W.L.

    2006-01-01

    We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.

  17. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain).

    PubMed

    Callén, M S; de la Cruz, M T; López, J M; Navarro, M V; Mastral, A M

    2009-08-01

    Receptor models are useful to understand the chemical and physical characteristics of air pollutants by identifying their sources and by estimating contributions of each source to receptor concentrations. In this work, three receptor models based on principal component analysis with absolute principal component scores (PCA-APCS), Unmix and positive matrix factorization (PMF) were applied to study for the first time the apportionment of the airborne particulate matter less or equal than 10microm (PM10) in Zaragoza, Spain, during 1year sampling campaign (2003-2004). The PM10 samples were characterized regarding their concentrations in inorganic components: trace elements and ions and also organic components: polycyclic aromatic hydrocarbons (PAH) not only in the solid phase but also in the gas phase. A comparison of the three receptor models was carried out in order to do a more robust characterization of the PM10. The three models predicted that the major sources of PM10 in Zaragoza were related to natural sources (60%, 75% and 47%, respectively, for PCA-APCS, Unmix and PMF) although anthropogenic sources also contributed to PM10 (28%, 25% and 39%). With regard to the anthropogenic sources, while PCA and PMF allowed high discrimination in the sources identification associated with different combustion sources such as traffic and industry, fossil fuel, biomass and fuel-oil combustion, heavy traffic and evaporative emissions, the Unmix model only allowed the identification of industry and traffic emissions, evaporative emissions and heavy-duty vehicles. The three models provided good correlations between the experimental and modelled PM10 concentrations with major precision and the closest agreement between the PMF and PCA models.

  18. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-09-01

    As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.

  19. Factors associated with successful transition among children with disabilities in eight European countries

    PubMed Central

    2017-01-01

    Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649

  20. Factors associated with successful transition among children with disabilities in eight European countries.

    PubMed

    Ravenscroft, John; Wazny, Kerri; Davis, John M

    2017-01-01

    This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.

  1. Patient phenotypes associated with outcomes after aneurysmal subarachnoid hemorrhage: a principal component analysis.

    PubMed

    Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch

    2014-03-01

    Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.

  2. Principal components of wrist circumduction from electromagnetic surgical tracking.

    PubMed

    Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E

    2017-02-01

    An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.

  3. Cultural inter-population differences do not reflect biological distances: an example of interdisciplinary analysis of populations from Eastern Adriatic coast.

    PubMed

    Bašić, Željana; Fox, Ayano R; Anterić, Ivana; Jerković, Ivan; Polašek, Ozren; Anđelinović, Šimun; Holland, Mitchell M; Primorac, Dragan

    2015-06-01

    To compare the population group from the Šopot graveyard with population groups from traditional Croatian medieval graveyards by using anthropological, craniometrics, and mitochondrial (mtDNA) analysis and to examine if the cultural differences between population groups reflect biological differences. We determined sex, age at death, pathological, and traumatic changes of skeletal remains from the Šopot graveyard and compared them with a cumulative medieval sample from the same region. We also performed principal component analysis to compare skeletal remains from Šopot with those from Ostrovica and other Central European samples according to 8 cranial measurements. Finally, we compared 46 skeletons from Šopot with medieval (Ostrovica) and contemporary populations using mDNA haplogroup profiling. The remains from Šopot were similar to the cumulative sample in lifestyle and quality of life markers. Principal component analysis showed that they were closely related to Eastern Adriatic coast sites (including Ostrovica and Šopot) in terms of cranial morphology, indicating similar biological makeup. According to mDNA testing, Šopot population showed no significant differences in the haplogroup prevalence from either medieval or contemporary populations. This study shows that the Šopot population does not significantly differ from other medieval populations from this area. Besides similar quality of life markers, these populations also had similar biological markers. Substantial archeological differences can therefore be attributed to apparent cultural influences, which in this case do not reflect biological differences.

  4. Principal components analysis of the hypomanic attitudes and positive predictions inventory and associations with measures of personality, cognitive style and analogue symptoms in a student sample.

    PubMed

    Dodd, Alyson L; Mansell, Warren; Sadhnani, Vaneeta; Morrison, Anthony P; Tai, Sara

    2010-01-01

    An integrative cognitive model proposed that ascribing extreme personal appraisals to changes in internal state is key to the development of the symptoms of bipolar disorder. The Hypomanic Attitudes and Positive Predictions Inventory (HAPPI) was developed to measure these appraisals. The aim of the current study was to validate an expanded 61-item version of the HAPPI. In a largely female student sample (N = 134), principal components analysis (PCA) was performed on the HAPPI. Associations between the HAPPI and analogue bipolar symptoms after 3 months were examined. PCA of the HAPPI revealed six categories of belief: Self Activation, Self-and-Other Critical, Catastrophic, Extreme Appraisals of Social Approval, Appraisals of Extreme Agitation, and Loss of Control. The HAPPI predicted all analogue measures of hypomanic symptoms after 3 months when controlling for baseline symptoms. In a more stringent test incorporating other psychological measures, the HAPPI was independently associated only with activation (e.g. thoughts racing) at 3 months. Dependent dysfunctional attitudes predicted greater conflict (e.g. irritability), depression and reduced well-being, hypomanic personality predicted self-reported diagnostic bipolar symptoms, and behavioural dysregulation predicted depression. Extreme beliefs about internal states show a modest independent association with prospective analogue bipolar symptoms, alongside other psychological factors. Further work will be required to improve the factor structure of the HAPPI and study its validity in clinical samples.

  5. Cultural inter-population differences do not reflect biological distances: an example of interdisciplinary analysis of populations from Eastern Adriatic coast

    PubMed Central

    Bašić, Željana; Fox, Ayano R; Anterić, Ivana; Jerković, Ivan; Polašek, Ozren; Anđelinović, Šimun; Holland, Mitchell M; Primorac, Dragan

    2015-01-01

    Aim To compare the population group from the Šopot graveyard with population groups from traditional Croatian medieval graveyards by using anthropological, craniometrics, and mitochondrial (mtDNA) analysis and to examine if the cultural differences between population groups reflect biological differences. Methods We determined sex, age at death, pathological, and traumatic changes of skeletal remains from the Šopot graveyard and compared them with a cumulative medieval sample from the same region. We also performed principal component analysis to compare skeletal remains from Šopot with those from Ostrovica and other Central European samples according to 8 cranial measurements. Finally, we compared 46 skeletons from Šopot with medieval (Ostrovica) and contemporary populations using mDNA haplogroup profiling. Results The remains from Šopot were similar to the cumulative sample in lifestyle and quality of life markers. Principal component analysis showed that they were closely related to Eastern Adriatic coast sites (including Ostrovica and Šopot) in terms of cranial morphology, indicating similar biological makeup. According to mDNA testing, Šopot population showed no significant differences in the haplogroup prevalence from either medieval or contemporary populations. Conclusion This study shows that the Šopot population does not significantly differ from other medieval populations from this area. Besides similar quality of life markers, these populations also had similar biological markers. Substantial archeological differences can therefore be attributed to apparent cultural influences, which in this case do not reflect biological differences. PMID:26088847

  6. Influence of meteorological parameters on air quality

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Ventura, Luciana; Lima, Igor; Luna, Aderval

    2013-04-01

    The physical characterization representative of ambient air particle concentrations is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. Human exposure to particulate matter of less than 2.5 µm in diameter (PM2.5) can result in a variety of adverse health impacts, including reduced lung function and premature mortality. Numerous studies have shown that fine airborne inhalable particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. This study investigates meteorological parameter impacts on PM2.5 concentrations in the atmosphere of Rio de Janeiro, Brazil. Samples were collected during 24 h every six days using a high-volume sampler from six sites in the metropolitan area of Rio de Janeiro from January to December 2011. The particles mass was determined by Gravimetry. Meteorological parameters were obtained from automatic stations near the sampling sites. The average PM2.5 concentrations ranged from 9 to 32 µg/m3 for all sites, exceeding the suggested annual limit of WHO (10 µg/m3). The relationship between the effects of temperature, relative humidity, wind speed and direction and particle concentration was examined using a Principal Component Analysis (PCA) for the different sites and seasons. The results for each sampling point and season presented different principal component numbers, varying from 2 to 4, and extremely different relationships with the parameters. This clearly shows that changes in meteorological conditions exert a marked influence on air quality.

  7. Introduction to uses and interpretation of principal component analyses in forest biology.

    Treesearch

    J. G. Isebrands; Thomas R. Crow

    1975-01-01

    The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.

  8. Principal component analysis of phenolic acid spectra

    USDA-ARS?s Scientific Manuscript database

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  9. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    PubMed

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  10. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  11. EM in high-dimensional spaces.

    PubMed

    Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim

    2005-06-01

    This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.

  12. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  13. Fast discrimination of traditional Chinese medicine according to geographical origins with FTIR spectroscopy and advanced pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wang, Yan; Xu, Kexin

    2006-08-01

    Combined with Fourier transform infrared (FTIR) spectroscopy and three kinds of pattern recognition techniques, 53 traditional Chinese medicine danshen samples were rapidly discriminated according to geographical origins. The results showed that it was feasible to discriminate using FTIR spectroscopy ascertained by principal component analysis (PCA). An effective model was built by employing the Soft Independent Modeling of Class Analogy (SIMCA) and PCA, and 82% of the samples were discriminated correctly. Through use of the artificial neural network (ANN)-based back propagation (BP) network, the origins of danshen were completely classified.

  14. Preliminary PCA/TT Results on MRO CRISM Multispectral Images

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Smith, M. D.

    2010-10-01

    Mars Reconnaissance Orbiter arrived at Mars in March 2006 and by September had achieved its science-phase orbit with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) beginning its visible to near-infrared (VIS/NIR) spectral imaging shortly thereafter. One goal of CRISM is to fill in the spatial gaps between the various targeted observations, eventually mapping the entire surface. Due to the large volume of data this would create, the instrument works in a reduced spectral sampling mode creating "multispectral” images. From these data we can create image cubes using 64 wavelengths from 0.410 to 3.923 µm. We present here our analysis of these multispectral mode data products using Principal Components Analysis (PCA) and Target Transformation (TT) [1]. Previous work with ground-based images [2-5] has shown that over an entire visible hemisphere, there are only three to four meaningful components using 32-105 wavelengths over 1.5-4.1 µm the first two are consistent over all temporal scales. The TT retrieved spectral endmembers show nearly the same level of consistency [5]. The preliminary work on the CRISM images cubes implies similar results; three to four significant principal components that are fairly consistent over time. These components are then used in TT to find spectral endmembers which can be used to characterize the surface reflectance for future use in radiative transfer cloud optical depth retrievals. We present here the PCA/TT results comparing the principal components and recovered endmembers from six reconstructed CRISM multi-spectral image cubes. References: [1] Bandfield, J. L., et al. (2000) JGR, 105, 9573. [2] Klassen, D. R. and Bell III, J. F. (2001) BAAS 33, 1069. [3] Klassen, D. R. and Bell III, J. F. (2003) BAAS, 35, 936. [4] Klassen, D. R., Wark, T. J., Cugliotta, C. G. (2005) BAAS, 37, 693. [5] Klassen, D. R. (2009) Icarus, 204, 32.

  15. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  16. Soil Components in Heterogeneous Impact Glass in Martian Meteorite EETA79001

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Martian soil composition can illuminate past and ongoing near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Though the Mars Exploration Rovers (MER) have analyzed the major-element composition of Martian soils, no soil samples have been returned to Earth for detailed chemical analysis. Rao et al. [1] suggested that Martian meteorite EETA79001 contains melted Martian soil in its impact glass (Lithology C) based on sulfur enrichment of Lithology C relative to the meteorite s basaltic lithologies (A and B) [1,2]. If true, it may be possible to extract detailed soil chemical analyses using this meteoritic sample. We conducted high-resolution (0.3 m/pixel) element mapping of Lithology C in thin section EETA79001,18 by energy dispersive spectrometry (EDS). We use these data for principal component analysis (PCA).

  17. 1 H NMR study and multivariate data analysis of reindeer skin tanning methods.

    PubMed

    Zhu, Lizheng; Ilott, Andrew J; Del Federico, Eleonora; Kehlet, Cindie; Klokkernes, Torunn; Jerschow, Alexej

    2017-04-01

    Reindeer skin clothing has been an essential component in the lives of indigenous people of the arctic and sub-arctic regions, keeping them warm during harsh winters. However, the skin processing technology, which often conveys the history and tradition of the indigenous group, has not been well documented. In this study, NMR spectra and relaxation behaviors of reindeer skin samples treated with a variety of vegetable tannin extracts, oils and fatty substances are studied and compared. With the assistance of principal component analysis (PCA), one can recognize patterns and identify groupings of differently treated samples. These methods could be important aids in efforts to conserve museum leather artifacts with unknown treatment methods and in the analysis of reindeer skin tanning processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Photosynthetic capacity is negatively correlated with the concentration of leaf phenolic compounds across a range of different species

    PubMed Central

    Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George

    2012-01-01

    Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073

  19. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  20. Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class

    EPA Science Inventory

    Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...

  1. EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES

    EPA Science Inventory

    An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...

  2. Identification of lactic acid bacteria in the rumen and feces of dairy cows fed total mixed ration silage to assess the survival of silage bacteria in the gut.

    PubMed

    Han, H; Ogata, Y; Yamamoto, Y; Nagao, S; Nishino, N

    2014-09-01

    The survival of silage lactic acid bacteria (LAB) in the gut of dairy cows was evaluated by examining the LAB communities of silage and gut contents. Samples were collected at 2 different research institutes (Mie and Okayama) that offered total mixed ration (TMR) silage throughout the year. Silage and feces were sampled in August, October, and November at the Mie institute, whereas silage, rumen fluid, and feces were sampled in June and August at the Okayama institute. Denaturing gradient gel electrophoresis using Lactobacillus-specific primers was performed to detect LAB species in the samples. The selected bands were purified for species identification and the band patterns were used for principal component analysis. Lactic acid was the predominant fermentation product in all the TMR silages analyzed, and the lactic acid level tended to be constant regardless of the sampling time and region. A total of 14 LAB species were detected in the TMR silage samples, of which 5 (Lactobacillus acetotolerans, Lactobacillus pontis, Lactobacillus casei, Lactobacillus suebicus, and Lactobacillus plantarum) were detected in the dairy cow feces. Most of the denaturing gradient gel electrophoresis bands for the feces samples were also detected in the rumen fluid, suggesting that any elimination of silage LAB occurred in the rumen and not in the postruminal gut segments. The principal component analysis indicated that the LAB communities in the silage, rumen fluid, and feces were separately grouped; hence, the survival of silage LAB in the cow rumen and lower gut was deemed difficult. It was concluded that, although the gut LAB community is robust and not easily affected by the silage conditions, several LAB species can inhabit both silage and feces, which suggests the potential of using silage as a vehicle for conveying probiotics. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Principal components analysis in clinical studies.

    PubMed

    Zhang, Zhongheng; Castelló, Adela

    2017-09-01

    In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.

  4. Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.

    PubMed

    Nguyen, Phuong H

    2006-12-01

    Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.

  5. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  6. Evidence for age-associated disinhibition of the wake drive provided by scoring principal components of the resting EEG spectrum in sleep-provoking conditions.

    PubMed

    Putilov, Arcady A; Donskaya, Olga G

    2016-01-01

    Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.

  7. Factors affecting the views and attitudes of Scottish pharmacists to continuing professional development.

    PubMed

    Power, Ailsa; Grammatiki, Aikaterini; Bates, Ian; Mc Kellar, Susan; Johnson, B Julienne; Diack, H Lesley; Stewart, Derek; Hudson, Steve A

    2011-12-01

    To explore factors associated with Scottish pharmacists' views and attitudes to continuing professional development (CPD). A retrospective principal component analysis of 552 (22.8%) questionnaires returned from a sample of 2420 Scottish pharmacists randomly selected from the 4300 pharmacists registered with the Royal Pharmaceutical Society of Great Britain and with a Scottish address. Principal component analysis of questionnaire items (n = 19) revealed four factors associated with Scottish pharmacists' views and attitudes to CPD: having positive support in the workplace, having access to resources and meeting learning needs, having confidence in the CPD process and motivation to participate in the CPD process. Community pharmacists were identified as the subgroup of pharmacists that needed most support for CPD regarding all four factors, while pharmacists working in primary care felt that they had most support in the workplace in comparison to other sectors (P < 0.05) and better access to resources and meeting learning needs when compared to community (P < 0.001) and hospital (P = 0.008) colleagues. Pharmacists working in primary care also felt more motivated to participate in the CPD process than those in the community (P < 0.001), and hospital pharmacists reported having more confidence in the CPD process compared to community pharmacists (P < 0.05). Using principal component analysis has identified four factors associated with Scottish pharmacists' views and attitudes to CPD. This may provide an approach to facilitate comparison of CPD views and attitudes with intra and inter professional groupings. Further study may allow identification of good practice and solutions to common CPD issues. © 2011 The Authors. IJPP © 2011 Royal Pharmaceutical Society.

  8. [Geographical distribution of left ventricular Tei index based on principal component analysis].

    PubMed

    Xu, Jinhui; Ge, Miao; He, Jinwei; Xue, Ranyin; Yang, Shaofang; Jiang, Jilin

    2014-11-01

    To provide a scientific standard of left ventricular Tei index for healthy people from various region of China, and to lay a reliable foundation for the evaluation of left ventricular diastolic and systolic function. The correlation and principal component analysis were used to explore the left ventricular Tei index, which based on the data of 3 562 samples from 50 regions of China by means of literature retrieval. Th e nine geographical factors were longitude(X₁), latitude(X₂), altitude(X₃), annual sunshine hours (X₄), the annual average temperature (X₅), annual average relative humidity (X₆), annual precipitation (X₇), annual temperature range (X₈) and annual average wind speed (X₉). ArcGIS soft ware was applied to calculate the spatial distribution regularities of left ventricular Tei index. There is a significant correlation between the healthy people's left ventricular Tei index and geographical factors, and the correlation coefficients were -0.107 (r₁), -0.301 (r₂), -0.029 (r₃), -0.277 (r₄), -0.256(r₅), -0.289(r₆), -0.320(r₇), -0.310 (r₈) and -0.117 (r₉), respectively. A linear equation between the Tei index and the geographical factor was obtained by regression analysis based on the three extracting principal components. The geographical distribution tendency chart for healthy people's left Tei index was fitted out by the ArcGIS spatial interpolation analysis. The geographical distribution for left ventricular Tei index in China follows certain pattern. The reference value in North is higher than that in South, while the value in East is higher than that in West.

  9. Web document ranking via active learning and kernel principal component analysis

    NASA Astrophysics Data System (ADS)

    Cai, Fei; Chen, Honghui; Shu, Zhen

    2015-09-01

    Web document ranking arises in many information retrieval (IR) applications, such as the search engine, recommendation system and online advertising. A challenging issue is how to select the representative query-document pairs and informative features as well for better learning and exploring new ranking models to produce an acceptable ranking list of candidate documents of each query. In this study, we propose an active sampling (AS) plus kernel principal component analysis (KPCA) based ranking model, viz. AS-KPCA Regression, to study the document ranking for a retrieval system, i.e. how to choose the representative query-document pairs and features for learning. More precisely, we fill those documents gradually into the training set by AS such that each of which will incur the highest expected DCG loss if unselected. Then, the KPCA is performed via projecting the selected query-document pairs onto p-principal components in the feature space to complete the regression. Hence, we can cut down the computational overhead and depress the impact incurred by noise simultaneously. To the best of our knowledge, we are the first to perform the document ranking via dimension reductions in two dimensions, namely, the number of documents and features simultaneously. Our experiments demonstrate that the performance of our approach is better than that of the baseline methods on the public LETOR 4.0 datasets. Our approach brings an improvement against RankBoost as well as other baselines near 20% in terms of MAP metric and less improvements using P@K and NDCG@K, respectively. Moreover, our approach is particularly suitable for document ranking on the noisy dataset in practice.

  10. SU-E-I-58: Objective Models of Breast Shape Undergoing Mammography and Tomosynthesis Using Principal Component Analysis.

    PubMed

    Feng, Ssj; Sechopoulos, I

    2012-06-01

    To develop an objective model of the shape of the compressed breast undergoing mammographic or tomosynthesis acquisition. Automated thresholding and edge detection was performed on 984 anonymized digital mammograms (492 craniocaudal (CC) view mammograms and 492 medial lateral oblique (MLO) view mammograms), to extract the edge of each breast. Principal Component Analysis (PCA) was performed on these edge vectors to identify a limited set of parameters and eigenvectors that. These parameters and eigenvectors comprise a model that can be used to describe the breast shapes present in acquired mammograms and to generate realistic models of breasts undergoing acquisition. Sample breast shapes were then generated from this model and evaluated. The mammograms in the database were previously acquired for a separate study and authorized for use in further research. The PCA successfully identified two principal components and their corresponding eigenvectors, forming the basis for the breast shape model. The simulated breast shapes generated from the model are reasonable approximations of clinically acquired mammograms. Using PCA, we have obtained models of the compressed breast undergoing mammographic or tomosynthesis acquisition based on objective analysis of a large image database. Up to now, the breast in the CC view has been approximated as a semi-circular tube, while there has been no objectively-obtained model for the MLO view breast shape. Such models can be used for various breast imaging research applications, such as x-ray scatter estimation and correction, dosimetry estimates, and computer-aided detection and diagnosis. © 2012 American Association of Physicists in Medicine.

  11. Factor analysis of Wechsler Adult Intelligence Scale-Revised in developmentally disabled persons.

    PubMed

    Di Nuovo, Santo F; Buono, Serafino

    2006-12-01

    The results of previous studies on the factorial structure of Wechsler Intelligence Scales are somewhat inconsistent across normal and pathological samples. To study specific clinical groups, such as developmentally disabled persons, it is useful to examine the factor structure in appropriate samples. A factor analysis was carried out using the principal component method and the Varimax orthogonal rotation on the Wechsler Adult Intelligence Scale (WAIS-R) in a sample of 203 developmentally disabled persons, with a mean age of 25 years 4 months. Developmental disability ranged from mild to moderate. Partially contrasting with previous studies on normal samples, results found a two-factor solution. Wechsler's traditional Verbal and Performance scales seems to be more appropriate for this sample than the alternative three-factor solution.

  12. Application of principal component analysis to ecodiversity assessment of postglacial landscape (on the example of Debnica Kaszubska commune, Middle Pomerania)

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Adam

    2017-04-01

    In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.

  13. Multivariate Statistical Analysis of MSL APXS Bulk Geochemical Data

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Edwards, C. S.; Thompson, L. M.; Schmidt, M. E.

    2014-12-01

    We apply cluster and factor analyses to bulk chemical data of 130 soil and rock samples measured by the Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory (MSL) rover Curiosity through sol 650. Multivariate approaches such as principal components analysis (PCA), cluster analysis, and factor analysis compliment more traditional approaches (e.g., Harker diagrams), with the advantage of simultaneously examining the relationships between multiple variables for large numbers of samples. Principal components analysis has been applied with success to APXS, Pancam, and Mössbauer data from the Mars Exploration Rovers. Factor analysis and cluster analysis have been applied with success to thermal infrared (TIR) spectral data of Mars. Cluster analyses group the input data by similarity, where there are a number of different methods for defining similarity (hierarchical, density, distribution, etc.). For example, without any assumptions about the chemical contributions of surface dust, preliminary hierarchical and K-means cluster analyses clearly distinguish the physically adjacent rock targets Windjana and Stephen as being distinctly different than lithologies observed prior to Curiosity's arrival at The Kimberley. In addition, they are separated from each other, consistent with chemical trends observed in variation diagrams but without requiring assumptions about chemical relationships. We will discuss the variation in cluster analysis results as a function of clustering method and pre-processing (e.g., log transformation, correction for dust cover) and implications for interpreting chemical data. Factor analysis shares some similarities with PCA, and examines the variability among observed components of a dataset so as to reveal variations attributable to unobserved components. Factor analysis has been used to extract the TIR spectra of components that are typically observed in mixtures and only rarely in isolation; there is the potential for similar results with data from APXS. These techniques offer new ways to understand the chemical relationships between the materials interrogated by Curiosity, and potentially their relation to materials observed by APXS instruments on other landed missions.

  14. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  15. Rosacea assessment by erythema index and principal component analysis segmentation maps

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis

    2017-12-01

    RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.

  16. Airborne electromagnetic data levelling using principal component analysis based on flight line difference

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang

    2018-04-01

    A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.

  17. [Content of mineral elements of Gastrodia elata by principal components analysis].

    PubMed

    Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei

    2015-03-01

    To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.

  18. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis.

    PubMed

    Mirnaghi, Fatemeh S; Soucy, Nicholas; Hollebone, Bruce P; Brown, Carl E

    2018-05-19

    The characterization of spilled petroleum products in an oil spill is necessary for identifying the spill source, selection of clean-up strategies, and evaluating potential environmental and ecological impacts. Existing standard methods for the chemical characterization of spilled oils are time-consuming due to the lengthy sample preparation for analysis. The main objective of this study is the development of a rapid screening method for the fingerprinting of spilled petroleum products using excitation/emission matrix (EEM) fluorescence spectroscopy, thereby delivering a preliminary evaluation of the petroleum products within hours after a spill. In addition, the developed model can be used for monitoring the changes of aromatic compositions of known spilled oils over time. This study involves establishing a fingerprinting model based on the composition of polycyclic and heterocyclic aromatic hydrocarbons (PAH and HAHs, respectively) of 130 petroleum products at different states of evaporative weathering. The screening model was developed using parallel factor analysis (PARAFAC) of a large EEM dataset. The significant fluorescing components for each sample class were determined. After which, through principal component analysis (PCA), the variation of scores of their modeled factors was discriminated based on the different classes of petroleum products. This model was then validated using gas chromatography-mass spectrometry (GC-MS) analysis. The rapid fingerprinting and the identification of unknown and new spilled oils occurs through matching the spilled product with the products of the developed model. Finally, it was shown that HAH compounds in asphaltene and resins contribute to ≥4-ring PAHs compounds in petroleum products. Copyright © 2018. Published by Elsevier Ltd.

  19. African and Non-African Admixture Components in African Americans and An African Caribbean Population

    PubMed Central

    Murray, Tanda; Beaty, Terri H.; Mathias, Rasika A.; Rafaels, Nicholas; Grant, Audrey Virginia; Faruque, Mezbah U.; Watson, Harold R.; Ruczinski, Ingo; Dunston, Georgia M.; Barnes, Kathleen C.

    2013-01-01

    Admixture is a potential source of confounding in genetic association studies, so it becomes important to detect and estimate admixture in a sample of unrelated individuals. Populations of African descent in the US and the Caribbean share similar historical backgrounds but the distributions of African admixture may differ. We selected 416 ancestry informative markers (AIMs) to estimate and compare admixture proportions using STRUCTURE in 906 unrelated African Americans (AAs) and 294 Barbadians (ACs) from a study of asthma. This analysis showed AAs on average were 72.5% African, 19.6% European and 8% Asian, while ACs were 77.4% African, 15.9% European, and 6.7% Asian which were significantly different. A principal components analysis based on these AIMs yielded one primary eigenvector that explained 54.04% of the variation and captured a gradient from West African to European admixture. This principal component was highly correlated with African vs. European ancestry as estimated by STRUCTURE (r2 = 0.992, r2 = 0.912, respectively). To investigate other African contributions to African American and Barbadian admixture, we performed PCA on ~14,000 (14k) genome-wide SNPs in AAs, ACs, Yorubans, Luhya and Maasai African groups, and estimated genetic distances (FST). We found AAs and ACs were closest genetically (FST = 0.008), and both were closer to the Yorubans than the other East African populations. In our sample of individuals of African descent, ~400 well-defined AIMs were just as good for detecting substructure as ~14,000 random SNPs drawn from a genome-wide panel of markers. PMID:20717976

  20. Flavor of fresh blueberry juice and the comparison to amount of sugars, acids, anthocyanidins, and physicochemical measurements.

    PubMed

    Bett-Garber, Karen L; Lea, Jeanne M; Watson, Michael A; Grimm, Casey C; Lloyd, Steven W; Beaulieu, John C; Stein-Chisholm, Rebecca E; Andrzejewski, Brett P; Marshall, Donna A

    2015-04-01

    Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested on 2 different dates. Each treatment combination was pressed 2 times for repeated measures. Fresh juice was characterized for 18 flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample was measured for sugars, acids, anthocyanidins, Folin-Ciocalteu, soluble solids (BRIX), titratable acidity (TA), and antioxidant capacity (ORACFL ). Flavors were correlated with the composition and physicochemical data. Blueberry flavor correlated with 3 parameters, and negatively correlated with 2. Strawberry correlated with oxalic acid and negatively correlated with sucrose and quinic acid. Sweet aroma correlated with oxalic and citric acid, but negatively correlated with sucrose, quinic, and total acids. Sweet taste correlated with 11 parameters, including the anthocyanidins; and negatively correlated with 3 parameters. Neither bitter nor astringent correlated with any of the antioxidant parameters, but both correlated with total acids. Sour correlated with total acids and TA, while negatively correlating with pH and BRIX:TA. Throat burn correlated with total acids and TA. Principal component analysis negatively related blueberry, sweet aroma, and sweet to sour, bitter, astringent, tongue tingle, and tongue numbness. The information in this component was related to pH, TA, and BRIX:TA ratio. Another principal component related the nonblueberry fruit flavors to BRIX. This PC, also divided the SHB berries from the RE. This work shows that the impact of juice composition on flavor is very complicated and that estimating flavor with physicochemical parameters is complicated by the composition of the juice. © 2015 Institute of Food Technologists®

  1. Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI

    PubMed Central

    Pearson, William G.; Zumwalt, Ann C.

    2013-01-01

    Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608

  2. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach.

    PubMed

    Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G

    2012-11-13

    We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.

  3. The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.

    PubMed

    Bagley, C

    1980-03-01

    The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.

  4. Perceptions of the Principal Evaluation Process and Performance Criteria: A Qualitative Study of the Challenge of Principal Evaluation

    ERIC Educational Resources Information Center

    Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn

    2012-01-01

    Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…

  5. 2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.

    PubMed

    Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen

    2017-09-19

    A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.

  6. Multivariate analysis of historical data (2004-2013) in assessing the possible environmental impact of the Bellolampo landfill (Palermo).

    PubMed

    Indelicato, Serena; Bongiorno, David; Tuzzolino, Nicola; Mannino, Maria Rosaria; Muscarella, Rosalia; Fradella, Pasquale; Gargano, Maria Elena; Nicosia, Salvatore; Ceraulo, Leopoldo

    2018-03-14

    Multivariate analysis was performed on a large data set of groundwater and leachate samples collected during 9 years of operation of the Bellolampo municipal solid waste landfill (located above Palermo, Italy). The aim was to obtain the most likely correlations among the data. The analysis results are presented. Groundwater samples were collected in the period 2004-2013, whereas the leachate analysis refers to the period 2006-2013. For groundwater, statistical data evaluation revealed notable differences among the samples taken from the numerous wells located around the landfill. Characteristic parameters revealed by principal component analysis (PCA) were more deeply investigated, and corresponding thematic maps were drawn. The composition of the leachate was also thoroughly investigated. Several chemical macro-descriptors were calculated, and the results are presented. A comparison of PCA results for the leachate and groundwater data clearly reveals that the groundwater's main components substantially differ from those of the leachate. This outcome strongly suggests excluding leachate permeation through the multiple landfill lining.

  7. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  8. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India

    NASA Astrophysics Data System (ADS)

    Ravikumar, P.; Somashekar, R. K.

    2017-05-01

    The present study envisages the importance of graphical representations like Piper trilinear diagram and Chadha's plot, respectively to determine variation in hydrochemical facies and understand the evolution of hydrochemical processes in the Varahi river basin. The analytical values obtained from the groundwater samples when plotted on Piper's and Chadha's plots revealed that the alkaline earth metals (Ca2+, Mg2+) are significantly dominant over the alkalis (Na+, K+), and the strong acidic anions (Cl-, SO4 2-) dominant over the weak acidic anions (CO3 2-, HCO3 -). Further, Piper trilinear diagram classified 93.48 % of the samples from the study area under Ca2+-Mg2+-Cl--SO4 2- type and only 6.52 % samples under Ca2+-Mg2+-HCO3 - type. Interestingly, Chadha's plot also demonstrated the dominance of reverse ion exchange water having permanent hardness (viz., Ca-Mg-Cl type) in majority of the samples over recharging water with temporary hardness (i.e., Ca-Mg-HCO3 type). Thus, evaluation of hydrochemical facies from both the plots highlighted the contribution from the reverse ion exchange processes in controlling geochemistry of groundwater in the study area. Further, PCA analysis yielded four principal components (PC1, PC2, PC3 and PC4) with higher eigen values of 1.0 or more, accounting for 65.55, 10.17, 6.88 and 6.52 % of the total variance, respectively. Consequently, majority of the physico-chemical parameters (87.5 %) loaded under PC1 and PC2 were having strong positive loading (>0.75) and these are mainly responsible for regulating the hydrochemistry of groundwater in the study area.

  10. Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics.

    PubMed

    Wang, Zhengfang; Jablonski, Joseph E

    2016-01-01

    Economically motivated adulteration (EMA) of lemon juice was detected by LC-MS and principal component analysis (PCA). Twenty-two batches of freshly squeezed lemon juice were adulterated by adding an aqueous solution containing 5% citric acid and 6% sucrose to pure lemon juice to obtain 30%, 60% and 100% lemon juice samples. Their total titratable acidities, °Brix and pH values were measured, and then all the lemon juice samples were subject to LC-MS analysis. Concentrations of hesperidin and eriocitrin, major phenolic components of lemon juice, were quantified. The PCA score plots for LC-MS datasets were used to preview the classification of pure and adulterated lemon juice samples. Results showed a large inherent variability in the chemical properties among 22 batches of 100% lemon juice samples. Measurement or quantitation of one or several chemical properties (targeted detection) was not effective in detecting lemon juice adulteration. However, by using the LC-MS datasets, including both chromatographic and mass spectrometric information, 100% lemon juice samples were successfully differentiated from adulterated samples containing 30% lemon juice in the PCA score plot. LC-MS coupled with chemometric analysis can be a complement to existing methods for detecting juice adulteration.

  11. The Use of Multi-Component Statistical Techniques in Understanding Subduction Zone Arc Granitic Geochemical Data Sets

    NASA Astrophysics Data System (ADS)

    Pompe, L.; Clausen, B. L.; Morton, D. M.

    2015-12-01

    Multi-component statistical techniques and GIS visualization are emerging trends in understanding large data sets. Our research applies these techniques to a large igneous geochemical data set from southern California to better understand magmatic and plate tectonic processes. A set of 480 granitic samples collected by Baird from this area were analyzed for 39 geochemical elements. Of these samples, 287 are from the Peninsular Ranges Batholith (PRB) and 164 from part of the Transverse Ranges (TR). Principal component analysis (PCA) summarized the 39 variables into 3 principal components (PC) by matrix multiplication and for the PRB are interpreted as follows: PC1 with about 30% of the variation included mainly compatible elements and SiO2 and indicates extent of differentation; PC2 with about 20% of the variation included HFS elements and may indicate crustal contamination as usually identified by Sri; PC3 with about 20% of the variation included mainly HRE elements and may indicate magma source depth as often diplayed using REE spider diagrams and possibly Sr/Y. Several elements did not fit well in any of the three components: Cr, Ni, U, and Na2O.For the PRB, the PC1 correlation with SiO2 was r=-0.85, the PC2 correlation with Sri was r=0.80, and the PC3 correlation with Gd/Yb was r=-0.76 and with Sr/Y was r=-0.66 . Extending this method to the TR, correlations were r=-0.85, -0.21, -0.06, and -0.64, respectively. A similar extent of correlation for both areas was visually evident using GIS interpolation.PC1 seems to do well at indicating differentiation index for both the PRB and TR and correlates very well with SiO2, Al2O3, MgO, FeO*, CaO, K2O, Sc, V, and Co, but poorly with Na2O and Cr. If the crustal component is represented by Sri, PC2 correlates well and less expesively with this indicator in the PRB, but not in the TR. Source depth has been related to the slope on REE spidergrams, and PC3 based on only the HREE and using the Sr/Y ratios gives a reasonable correlation for both PRB and TR, but the Gd/Yb ratio gives a reasonable correlation for only the PRB. The PRB data provide reasonable correlation between principal components and standard geochemical indicators, perhaps because of the well-recognized monotonic variation from SW to NE. Data sets from the TR give similar results in some cases, but poor correlation in others.

  12. Experimental Researches on the Durability Indicators and the Physiological Comfort of Fabrics using the Principal Component Analysis (PCA) Method

    NASA Astrophysics Data System (ADS)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.

    2017-06-01

    The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.

  13. [Research on inorganic explosive and its principal component with laser-induced breakdown spectroscopy].

    PubMed

    Zhao, Hua; Wang, Qian-qian; Liu, Kai; Ge, Cong-hui

    2012-03-01

    Laser-induced breakdown spectroscopy is a technology that can be used for high-speed, real time, multi-component, online, remote detection, and it has considerable superiority in explosives detection. In the present experiment, using 1 064 nm Q-switch laser beam as the resource, the authors investigated a common inorganic explosive (black powder) and one of its key components (KNO3), while choosing NaNO3 as the reference. We obtained the LIBS spectroscopy of these three samples in two surrounding atmospheres (air and Ar gas) at different time delay. And we analysed the change in line intensity ratio of N, O along with the increase in time delay, and found that the maximum of the value of O/N is obtained at time delay 596 ns.

  14. Information extraction from multivariate images

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Kegley, K. A.; Schiess, J. R.

    1986-01-01

    An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.

  15. Psychometric evaluation of the Persian version of the Templer's Death Anxiety Scale in cancer patients.

    PubMed

    Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Bahrami, Nasim; Sharif, Saeed Pahlevan; Sharif Nia, Hamid

    2016-10-01

    In this study, 398 Iranian cancer patients completed the 15-item Templer's Death Anxiety Scale (TDAS). Tests of internal consistency, principal components analysis, and confirmatory factor analysis were conducted to assess the internal consistency and factorial validity of the Persian TDAS. The construct reliability statistic and average variance extracted were also calculated to measure construct reliability, convergent validity, and discriminant validity. Principal components analysis indicated a 3-component solution, which was generally supported in the confirmatory analysis. However, acceptable cutoffs for construct reliability, convergent validity, and discriminant validity were not fulfilled for the three subscales that were derived from the principal component analysis. This study demonstrated both the advantages and potential limitations of using the TDAS with Persian-speaking cancer patients.

  16. Characterization and Discrimination of Oueslati Virgin Olive Oils from Adult and Young Trees in Different Ripening Stages Using Sterols, Pigments, and Alcohols in Tandem with Chemometrics.

    PubMed

    Chtourou, Fatma; Jabeur, Hazem; Lazzez, Ayda; Bouaziz, Mohamed

    2017-05-03

    Dynamics of squalene, sterol, aliphatic alcohol, pigment, and triterpenic diol accumulations in olive oils from adult and young trees of the Oueslati cultivar were studied for two consecutive years, 2013-2014 and 2014-2015. Data were compared statistically for differences by age of trees, maturation of olive, and year of harvesting. Results showed that the mean campesterol content in olive oil from adult trees at the green stage of maturation was significantly (p < 0.02) above the limit established by IOC legislation. However, the mean values of campesterol and Δ-7-stigmastenol were significantly (p < 0.01) above the limits in oils from young trees at the black stage of ripening. Principal component analysis was applied to alcohols, squalene, pigments, and sterols having noncompliance with the legislation. Then, data of 36 samples were subjected to a discriminant analysis with "maturation" as grouping variable and principal components as input variables. The model revealed clear discrimination of each tree age/maturation stage group.

  17. [Study on Commercial Specification of Lonicerae Japonicae Flos].

    PubMed

    Zhou, Jie; Zou, Lin; Liu, Wei; Bian, Li-hua; Wang, Xiao; Zhang, Yong-qing; Dan, Staerk

    2015-04-01

    To provide the basis data for the institute of commercial specification standard of Lonicerae Japonicae Flos. 39 samples of Lonicerae Japonicae Flos commercial of different grades in market were collected, and vernier caliper and electronic balance were used to measure the numbers of flower bud and blooming rate per 0. 5 g, contamination content, browning degree, milden and rot, length, upside diameter, middle diameter and bottom diameter of Lonicerae Japonicae Flos. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, galuteolin,3,5-icaffeoylquinic acid and 4,5-dicaffeoylquinic acid were detected by HPLC. Correlation analysis, principal component analysis and cluster analysis were used by SPSS to analyze all index data,and the correlation of appearance characteristics and intrinsic active constituents was discussed. The numbers of flower bud and blooming rate per 0. 5 g, contamination content and browning degree were principal component indexes. The length of flower bud showed a significant correlation with galuteolin content, and the browning degree and upside diameter showed a significant correlation with chlorogenic acid content. Lonicerae Japonicae Flos commercial should be divided into four specification grades by sieved indexes.

  18. Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.

    PubMed

    Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D

    2003-11-01

    Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.

  19. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  20. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  1. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  2. An Analysis of Turnover Intentions: A Reexamination of Air Force Civil Engineering Company Grade Officers

    DTIC Science & Technology

    2012-03-01

    edu 75 Appendix C Factor Analysis of Measurement Items Interrole conflict Factor Analysis (FA): Table: KMO and Bartlett’s Test Kaiser-Meyer...Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. 77 POS FA: Table: KMO and Bartlett’s...Tempo FA: Table: KMO and Bartlett’s Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .733 Bartlett’s Test of Sphericity Approx. Chi-Square

  3. Trapped Electron Model 2 (TEM-2)

    DTIC Science & Technology

    2010-04-25

    density and computes sample correlations : 9t = ft-{ft)T, («6) £T = (stsf)T, («7) RT = {9t9j+i)r- (88) We have made the very safe...such as solar wind correlation studies, initial and boundary conditions for numerical simulations, and principal component analysis. We...O’Brien 19b. TELEPHONE NUMBER (include area code ) 571-307-3978 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Ackmowledgments This work

  4. Principal Component Clustering Approach to Teaching Quality Discriminant Analysis

    ERIC Educational Resources Information Center

    Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan

    2016-01-01

    Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…

  5. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  6. Burst and Principal Components Analyses of MEA Data for 16 Chemicals Describe at Least Three Effects Classes.

    EPA Science Inventory

    Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...

  7. Incremental principal component pursuit for video background modeling

    DOEpatents

    Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt

    2017-03-14

    An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.

  8. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil): interpretation of geochemical data with the aid of multivariate analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Campredon, R.; Abrao, J. J.; Bernat, M.; Latouche, C.

    1994-06-01

    In the last decade, the Atlantic coast of south-eastern Brazil has been affected by increasing deforestation and anthropogenic effluents. Sediments in the coastal lagoons have recorded the process of such environmental change. Thirty-seven sediment samples from three cores in Piratininga Lagoon, Rio de Janeiro, were analyzed for their major components and minor element concentrations in order to examine geochemical characteristics and the depositional environment and to investigate the variation of heavy metals of environmental concern. Two multivariate analysis methods, principal component analysis and cluster analysis, were performed on the analytical data set to help visualize the sample clusters and the element associations. On the whole, the sediment samples from each core are similar and the sample clusters corresponding to the three cores are clearly separated, as a result of the different conditions of sedimentation. Some changes in the depositional environment are recognized using the results of multivariate analysis. The enrichment of Pb, Cu, and Zn in the upper parts of cores is in agreement with increasing anthropogenic influx (pollution).

  9. Chemical variability of the leaf essential oil of Xylopia aethiopica (Dunal) A.Rich. from Côte d'Ivoire.

    PubMed

    Yapi, Thierry Acafou; Boti, Jean Brice; Ahibo, Coffy Antoine; Bighelli, Ange; Castola, Vincent; Casanova, Joseph; Tomi, Félix

    2012-12-01

    The chemical composition of 48 essential-oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC-FID and (13) C-NMR analyses. In total, 23 components accounting for 82.5-96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β-pinene (up to 61.1%) and α-pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β-pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β-pinene, while those of Group II (10 samples) were characterized by the association of β-pinene and germacrene D. The leaves collected in the four inland forests produced β-pinene-rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Raman exfoliative cytology for oral precancer diagnosis

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Gera, Poonam; Pai, Venkatesh; Dubey, Abhishek; Tyagi, Gunjan; Waghmare, Mandavi; Pagare, Sandeep; Mahimkar, Manoj; Murali Krishna, C.

    2017-11-01

    Oral premalignant lesions (OPLs) such as leukoplakia, erythroplakia, and oral submucous fibrosis, often precede oral cancer. Screening and management of these premalignant conditions can improve prognosis. Raman spectroscopy has previously demonstrated potential in the diagnosis of oral premalignant conditions (in vivo), detected viral infection, and identified cancer in both oral and cervical exfoliated cells (ex vivo). The potential of Raman exfoliative cytology (REC) in identifying premalignant conditions was investigated. Oral exfoliated samples were collected from healthy volunteers (n=20), healthy volunteers with tobacco habits (n=20), and oral premalignant conditions (n=27, OPL) using Cytobrush. Spectra were acquired using Raman microprobe. Spectral acquisition parameters were: λex: 785 nm, laser power: 40 mW, acquisition time: 15 s, and average: 3. Postspectral acquisition, cell pellet was subjected to Pap staining. Multivariate analysis was carried out using principal component analysis and principal component-linear discriminant analysis using both spectra- and patient-wise approaches in three- and two-group models. OPLs could be identified with ˜77% (spectra-wise) and ˜70% (patient-wise) sensitivity in the three-group model while with 86% (spectra-wise) and 83% (patient-wise) in the two-group model. Use of histopathologically confirmed premalignant cases and better sampling devices may help in development of improved standard models and also enhance the sensitivity of the method. Future longitudinal studies can help validate potential of REC in screening and monitoring high-risk populations and prognosis prediction of premalignant lesions.

  11. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Bispo, Jeyse Aliana Martins; de Sousa Vieira, Elzo Everton; Silveira, Landulfo; Fernandes, Adriana Barrinha

    2013-08-01

    Patients with diabetes mellitus and hypertension (HT) diseases are predisposed to kidney diseases. The objective of this study was to identify potential biomarkers in the urine of diabetic and hypertensive patients through Raman spectroscopy in order to predict the evolution to complications and kidney failure. Urine samples were collected from control subjects (CTR) and patients with diabetes and HT with no complications (lower risk, LR), high degree of complications (higher risk, HR), and doing blood dialysis (DI). Urine samples were stored frozen (-20°C) before spectral analysis. Raman spectra were obtained using a dispersive spectrometer (830-nm, 300-mW power, and 20-s accumulation). Spectra were then submitted to principal component analysis (PCA) followed by discriminant analysis. The first PCA loading vectors revealed spectral features of urea, creatinine, and glucose. It has been found that the amounts of urea and creatinine decreased as disease evoluted from CTR to LR/HR and DI (PC1, p<0.05), and the amount of glucose increased in the urine of LR/HR compared to CTR (PC3, p<0.05). The discriminating model showed better overall classification rate of 70%. These results could lead to diagnostic information of possible complications and a better disease prognosis.

  12. Occurrence of Emerging Micropollutants in Water Systems in Gauteng, Mpumalanga, and North West Provinces, South Africa.

    PubMed

    Wanda, Elijah M M; Nyoni, Hlengilizwe; Mamba, Bhekie B; Msagati, Titus A M

    2017-01-13

    The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province.

  13. Occurrence of Emerging Micropollutants in Water Systems in Gauteng, Mpumalanga, and North West Provinces, South Africa

    PubMed Central

    Wanda, Elijah M. M.; Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-01-01

    The ubiquitous occurrence of emerging micropollutants (EMPs) in water is an issue of growing environmental-health concern worldwide. However, there remains a paucity of data regarding their levels and occurrence in water. This study determined the occurrence of EMPs namely: carbamazepine (CBZ), galaxolide (HHCB), caffeine (CAF), tonalide (AHTN), 4-nonylphenol (NP), and bisphenol A (BPA) in water from Gauteng, Mpumalanga, and North West provinces, South Africa using comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry (GCxGC-HRTOFMS). Kruskal-Wallis test and ANOVA were performed to determine temporal variations in occurrence of the EMPs. Principal component analysis (PCA) and Surfer Golden Graphics software for surface mapping were used to determine spatial variations in levels and occurrence of the EMPs. The mean levels ranged from 11.22 ± 18.8 ng/L for CAF to 158.49 ± 662 ng/L for HHCB. There was no evidence of statistically significant temporal variations in occurrence of EMPs in water. Nevertheless, their levels and occurrence vary spatially and are a function of two principal components (PCs, PC1 and PC2) which controlled 89.99% of the variance. BPA was the most widely distributed EMP, which was present in 62% of the water samples. The detected EMPs pose ecotoxicological risks in water samples, especially those from Mpumalanga province. PMID:28098799

  14. Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis.

    PubMed

    Bispo, Jeyse Aliana Martins; de Sousa Vieira, Elzo Everton; Silveira, Landulfo; Fernandes, Adriana Barrinha

    2013-08-01

    Patients with diabetes mellitus and hypertension (HT) diseases are predisposed to kidney diseases. The objective of this study was to identify potential biomarkers in the urine of diabetic and hypertensive patients through Raman spectroscopy in order to predict the evolution to complications and kidney failure. Urine samples were collected from control subjects (CTR) and patients with diabetes and HT with no complications (lower risk, LR), high degree of complications (higher risk, HR), and doing blood dialysis (DI). Urine samples were stored frozen (-20°C) before spectral analysis. Raman spectra were obtained using a dispersive spectrometer (830-nm, 300-mW power, and 20-s accumulation). Spectra were then submitted to principal component analysis (PCA) followed by discriminant analysis. The first PCA loading vectors revealed spectral features of urea, creatinine, and glucose. It has been found that the amounts of urea and creatinine decreased as disease evoluted from CTR to LR/HR and DI (PC1, p<0.05), and the amount of glucose increased in the urine of LR/HR compared to CTR (PC3, p<0.05). The discriminating model showed better overall classification rate of 70%. These results could lead to diagnostic information of possible complications and a better disease prognosis.

  15. A Comparison of the Essential Amino Acid Content and the Retention Rate by Chicken Part according to Different Cooking Methods.

    PubMed

    Kim, Honggyun; Do, Hyun Wook; Chung, Heajung

    2017-01-01

    This study set out to identify the changes in the nutrient contents during the chicken cooking process as basic data for the establishment of a national health nutrition policy. Samples were produced using 3 chicken parts (wing, breast, and leg) and 7 cooking methods (boiling, pancooking, pan-frying, deep-frying, steaming, roasting, and microwaving), and the essential amino acid contents, principal components, and retention rates were analyzed. Weight loss was observed in all chicken parts with all cooking methods. The protein and essential amino acid contents of the chicken samples differed significantly according to the part and the cooking method ( p <0.01). The protein and essential amino acid contents (g/100 g) of raw and cooked chicken parts showed ranges of 16.81-32.36 and 0.44-2.45, respectively. The principal component analysis (PCA) clearly demonstrated that the cooking methods and chicken parts produced similar trends for the essential amino acid contents. The retention rates of the chicken parts varied with the cooking methods, yielding a minimum value of 83% for isoleucine in a roasted wing, 91% for protein in a steamed breast, and 77% for isoleucine and lysine in a roasted leg. Therefore, the protein and amino acid contents of the roasted breast were higher than those of the other cooked chicken parts.

  16. A Comparison of the Essential Amino Acid Content and the Retention Rate by Chicken Part according to Different Cooking Methods

    PubMed Central

    Kim, Honggyun

    2017-01-01

    This study set out to identify the changes in the nutrient contents during the chicken cooking process as basic data for the establishment of a national health nutrition policy. Samples were produced using 3 chicken parts (wing, breast, and leg) and 7 cooking methods (boiling, pancooking, pan-frying, deep-frying, steaming, roasting, and microwaving), and the essential amino acid contents, principal components, and retention rates were analyzed. Weight loss was observed in all chicken parts with all cooking methods. The protein and essential amino acid contents of the chicken samples differed significantly according to the part and the cooking method (p<0.01). The protein and essential amino acid contents (g/100 g) of raw and cooked chicken parts showed ranges of 16.81-32.36 and 0.44-2.45, respectively. The principal component analysis (PCA) clearly demonstrated that the cooking methods and chicken parts produced similar trends for the essential amino acid contents. The retention rates of the chicken parts varied with the cooking methods, yielding a minimum value of 83% for isoleucine in a roasted wing, 91% for protein in a steamed breast, and 77% for isoleucine and lysine in a roasted leg. Therefore, the protein and amino acid contents of the roasted breast were higher than those of the other cooked chicken parts. PMID:29147085

  17. Correlations in metal release profiles following sorption by Lemna minor.

    PubMed

    Üçüncü Tunca, Esra; Ölmez, Tolga T; Özkan, Alper D; Altındağ, Ahmet; Tunca, Evren; Tekinay, Turgay

    2016-08-02

    Following the rapid uptake of contaminants in the first few hours of exposure, plants typically attempt to cope with the toxic burden by releasing part of the sorbed material back into the environment. The present study investigates the general trends in the release profiles of different metal(loid)s in the aquatic macrophyte Lemna minor and details the correlations that exist between the release of metal(loid) species. Water samples with distinct contamination profiles were taken from Nilüfer River (Bursa, Turkey), Yeniçağa Lake (Bolu, Turkey), and Beyşehir Lake (Konya, Turkey) and used for release studies; 36 samples were tested in total. Accumulation and release profiles were monitored over five days for 11 metals and a metalloid ((208)Pb, (111)Cd, (52)Cr,(53)Cr,(60)Ni,(63)Cu,(65)Cu,(75)As,(55)Mn, (137)Ba, (27)Al, (57)Fe, (66)Zn,(68)Zn) and correlation, cluster and principal component analyses were employed to determine the factors that affect the release of these elements. Release profiles of the tested metal(loid)s were largely observed to be distinct; however, strong correlations have been observed between certain metal pairs (Cr/Ni, Cr/Cu, Zn/Ni) and principal component analysis was able to separate the metal(loid)s into three well-resolved groups based on their release.

  18. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra

    NASA Astrophysics Data System (ADS)

    Zhan, Hao; Fang, Jing; Tang, Liying; Yang, Hongjun; Li, Hua; Wang, Zhuju; Yang, Bin; Wu, Hongwei; Fu, Meihong

    2017-08-01

    Near-infrared (NIR) spectroscopy with multivariate analysis was used to quantify gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra, and the feasibility to classify the samples originating from different areas was investigated. A new high-performance liquid chromatography method was developed and validated to analyze gallic acid, catechin, albiflorin, and paeoniflorin in Radix Paeoniae Rubra as the reference. Partial least squares (PLS), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were performed to calibrate the regression model. Different data pretreatments such as derivatives (1st and 2nd), multiplicative scatter correction, standard normal variate, Savitzky-Golay filter, and Norris derivative filter were applied to remove the systematic errors. The performance of the model was evaluated according to the root mean square of calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), and correlation coefficient (r). The results show that compared to PCR and SMLR, PLS had a lower RMSEC, RMSECV, and RMSEP and higher r for all the four analytes. PLS coupled with proper pretreatments showed good performance in both the fitting and predicting results. Furthermore, the original areas of Radix Paeoniae Rubra samples were partly distinguished by principal component analysis. This study shows that NIR with PLS is a reliable, inexpensive, and rapid tool for the quality assessment of Radix Paeoniae Rubra.

  19. Measurement and source characteristics of carbonyl compounds in the atmosphere in Kaohsiung city, Taiwan.

    PubMed

    Wang, H K; Huang, C H; Chen, K S; Peng, Y P; Lai, C H

    2010-07-15

    The concentrations of eighteen atmospheric carbonyls species were measured by the LpDNPH-Cartridge and the microcomputer air sampling device at Nan-Chie (northern part) and Hsiung-Kong (southern part) sites in Kaohsiung city, southern Taiwan. These samples were then analyzed using a high performance liquid chromatography (HPLC). Measurements showed that the highest concentrations of carbonyls were formaldehyde (18.33 and 18.74 microg m(-3)) at the Nan-Chie and Hsiung-Kong site, followed by acetaldehyde (14.90 and 15.71 microg m(-3)). The concentrations of total carbonyls were higher at Hsiung-Kong site (66.96 microg m(-3)) than at Nan-Chie site (60.41 microg m(-3)). The concentrations of total carbonyls at Nan-Chie site (or Hsiung-Kong site) were 74.06 microg m(-3) (89.99 microg m(-3)) in summer and 37.14 microg m(-3) (46.50 microg m(-3)) in winter, due to the fact that photochemical activities are stronger in summer than in winter. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at Nan-Chie were vehicle exhausts (gasoline and diesel engines), stationary emissions (petrochemical and food industry) and restaurant emissions, and the primary pollution sources at Hsiung-Kong were vehicle exhausts (gasoline and diesel engines), stationary emissions (metal assembly and petrochemical industry) and restaurant emissions. 2010 Elsevier B.V. All rights reserved.

  20. Coupling of on-column trypsin digestion-peptide mapping and principal component analysis for stability and biosimilarity assessment of recombinant human growth hormone.

    PubMed

    Shatat, Sara M; Eltanany, Basma M; Mohamed, Abeer A; Al-Ghobashy, Medhat A; Fathalla, Faten A; Abbas, Samah S

    2018-01-01

    Peptide mapping (PM) is a vital technique in biopharmaceutical industry. The fingerprint obtained helps to qualitatively confirm host stability as well as verify primary structure, purity and integrity of the target protein. Yet, in-solution digestion followed by tandem mass spectrometry is not suitable as a routine quality control test. It is time consuming and requires sophisticated, expensive instruments and highly skilled operators. In an attempt to enhance the fuctionality of PM and extract multi-dimentional data about various critical quality attributes and comparability of biosimilars, coupling of PM generated using immobilized trypsin followed by HPLC-UV to principal component analysis (PCA) is proposed. Recombinant human growth hormone (rhGH); was selected as a model biopharmaceutical since it is available in the market from different manufacturers and its PM is a well-established pharmacopoeial test. Samples of different rhGH biosimilars as well as degraded samples: deamidated and oxidized were subjected to trypsin digestion followed by RP-HPLC-UV analysis. PCA of the entire chromatograms of test and reference samples was then conducted. Comparison of the scores of samples and investigation of the loadings plots clearly indicated the applicability of PM-PCA for: i) identity testing, ii) biosimilarity assessment and iii) stability evaluation. Hotelling's T 2 and Q statistics were employed at 95% confidence level to measure the variation and to test the conformance of each sample to the PCA model, respectively. Coupling of PM to PCA provided a novel tool to identify peptide fragments responsible for variation between the test and reference samples as well as evaluation of the extent and relative significance of this variability. Transformation of conventional PM that is largely based on subjective visual comparison into an objective statiscally-guided analysis framework should provide a simple and economic tool to help both manufacturers and regulatory authorities in quality and biosimilarity assessment of biopharmaceuticals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  3. Dynamic competitive probabilistic principal components analysis.

    PubMed

    López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel

    2009-04-01

    We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.

  4. Principal Component Analysis for Enhancement of Infrared Spectra Monitoring

    NASA Astrophysics Data System (ADS)

    Haney, Ricky Lance

    The issue of air quality within the aircraft cabin is receiving increasing attention from both pilot and flight attendant unions. This is due to exposure events caused by poor air quality that in some cases may have contained toxic oil components due to bleed air that flows from outside the aircraft and then through the engines into the aircraft cabin. Significant short and long-term medical issues for aircraft crew have been attributed to exposure. The need for air quality monitoring is especially evident in the fact that currently within an aircraft there are no sensors to monitor the air quality and potentially harmful gas levels (detect-to-warn sensors), much less systems to monitor and purify the air (detect-to-treat sensors) within the aircraft cabin. The specific purpose of this research is to utilize a mathematical technique called principal component analysis (PCA) in conjunction with principal component regression (PCR) and proportionality constant calculations (PCC) to simplify complex, multi-component infrared (IR) spectra data sets into a reduced data set used for determination of the concentrations of the individual components. Use of PCA can significantly simplify data analysis as well as improve the ability to determine concentrations of individual target species in gas mixtures where significant band overlap occurs in the IR spectrum region. Application of this analytical numerical technique to IR spectrum analysis is important in improving performance of commercial sensors that airlines and aircraft manufacturers could potentially use in an aircraft cabin environment for multi-gas component monitoring. The approach of this research is two-fold, consisting of a PCA application to compare simulation and experimental results with the corresponding PCR and PCC to determine quantitatively the component concentrations within a mixture. The experimental data sets consist of both two and three component systems that could potentially be present as air contaminants in an aircraft cabin. In addition, experimental data sets are analyzed for a hydrogen peroxide (H2O2) aqueous solution mixture to determine H2O2 concentrations at various levels that could be produced during use of a vapor phase hydrogen peroxide (VPHP) decontamination system. After the PCA application to two and three component systems, the analysis technique is further expanded to include the monitoring of potential bleed air contaminants from engine oil combustion. Simulation data sets created from database spectra were utilized to predict gas components and concentrations in unknown engine oil samples at high temperatures as well as time-evolved gases from the heating of engine oils.

  5. A principal components model of soundscape perception.

    PubMed

    Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta

    2010-11-01

    There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.

  6. [Content determination of twelve major components in Tibetan medicine Zuozhu Daxi by UPLC].

    PubMed

    Qu, Yan; Li, Jin-hua; Zhang, Chen; Li, Chun-xue; Dong, Hong-jiao; Wang, Chang-sheng; Zeng, Rui; Chen, Xiao-hu

    2015-05-01

    A quantitative analytical method of ultra-high performance liquid chromatography (UPLC) was developed for simultaneously determining twelve components in Tibetan medicine Zuozhu Daxi. SIMPCA 12.0 software was used a principal component analysis PCA) and partial small squares analysis (PLSD-DA) on the twelve components in 10 batches from four pharmaceutical factories. Acquity UPLC BEH C15 column (2.1 mm x 100 mm, 1.7 µm) was adopted at the column temperature of 35 °C and eluted with acetonitrile (A) -0.05% phosphate acid solution (B) as the mobile phase with a flow rate of 0. 3 mL · min(-1). The injection volume was 1 µL. The detection wavelengths were set at 210 nm for alantolactone, isoalantolactone and oleanolic; 260 nm for trychnine and brucine; 288 nm for protopine; 306 nm for protopine, resveratrol and piperine; 370 nm for quercetin and isorhamnetin. The results showed a good separation among index components, with a good linearity relationship (R2 = 0.999 6) within the selected concentration range. The average sample recovery rates ranged between 99.44%-101.8%, with RSD between 0.37%-1.7%, indicating the method is rapid and accurate with a good repeatability and stability. The PCA and PLSD-DA analysis on the sample determination results revealed a great difference among samples from different pharmaceutical factories. The twelve components included in this study contributed significantly to the quantitative determination of intrinsic quality of Zuozhu Daxi. The UPLC established for to the quantitative determination of the twelve components can provide scientific basis for the comprehensive quality evaluation of Zuozhu Daxi.

  7. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. The Recalled Childhood Gender Questionnaire-Revised: a psychometric analysis in a sample of women with congenital adrenal hyperplasia.

    PubMed

    Meyer-Bahlburg, Heino F L; Dolezal, Curtis; Zucker, Kenneth J; Kessler, Suzanna J; Schober, Justine M; New, Maria I

    2006-11-01

    We administered the 18-item Recalled Childhood Gender Questionnaire-Revised (RCGQ-R), female version, to 147 adult women with congenital adrenal hyperplasia (CAH) representing three different degrees of prenatal androgenization due to 21-hydroxylase deficiency and to non-CAH controls. A principal components analysis generated three components accounting for 46%, 9%, and 6% of the variance, respectively. Corresponding unit-weighted scales (high scores = feminine) were labeled Gender Role (13 items; Cronbach alpha = .91), Physical Activity (3 items; alpha = .64), and Cross-Gender Desire (2 items; alpha = .47). Discriminant validity was demonstrated in terms of highly significant comparisons across the four groups. We conclude that the first 2 RCGQ-R scales show good psychometric qualities, but that the third scale needs to be further evaluated in a sample that includes women with gender identity disorder.

  9. Chemical Variability of Ivoirian Xylopia rubescens Leaf Oil.

    PubMed

    Yapi, Thierry Acafou; Boti, Jean Brice; Tonzibo, Zanahi Félix; Ahibo, Coffy Antoine; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2017-02-01

    Forty-two essential oil samples were isolated from leaves of Xylopia rubescens harvested in three forests of Southern Ivory Coast. All the samples have been submitted to GC-FID and the retention indices (RIs) of individual components have been measured on two capillary columns of different polarity. In addition, 20 oil samples, selected on the basis of their chromatographic profile, were also analyzed by 13 C-NMR and 24 components (78.0 - 92.4% of the whole compositions) have been identified. The content of the main components varied drastically from sample to sample: furanoguaia-1,4-diene (5.7 - 54.1%), furanoguaia-1,3-diene (1.1 - 10.5%), (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (4.3 - 16.0%), and (E)-β-caryophyllene (1.7 - 17.3%). Hierarchical cluster and principal components analysis of the 42 oil compositions allowed the distinction of two well-differentiated groups of unequal importance within the oil samples. Oil samples of the main group (Group II) contained mainly furanoguaia-1,4-diene (mean [M] = 43.1%; standard deviation [SD] = 3.2%) while furanoguaia-1,3-diene (M = 8.4%; SD = 0.9%) and (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (M = 7.1%; SD = 1.5%) were present at appreciable contents. The composition of Group I was dominated by furanoguaia-1,4-diene (M = 17.0%; SD = 8.5%), (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (M = 10.2%; SD = 2.4%) and (E)-β-caryophyllene (M = 9.5%; SD = 5.3%). © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper in sediments and the contents of copper in overlying water. And there was also significant positive correlation between the contents of copper in sediments and the contents of copper in the surface soils. And the correlation analysis showed that there were significant positive correlations among the contents of cadmium in sediments and the contents of cadmium in surface soils. The above results reflected that the copper pollution or cadmium sources of water, soil and sediments were consistent, which were mainly from heavy metal acidic waste of mining emissions. The correlations between other components were not very obvious, which reflected the sources of pollutants were different.

  11. Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study.

    PubMed

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-28

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  12. Application of principal component analysis in protein unfolding: An all-atom molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-01

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  13. SAS program for quantitative stratigraphic correlation by principal components

    USGS Publications Warehouse

    Hohn, M.E.

    1985-01-01

    A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.

  14. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.

    2018-05-01

    An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.

  15. A novel principal component analysis for spatially misaligned multivariate air pollution data.

    PubMed

    Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A

    2017-01-01

    We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.

  16. Principals' Perceptions of Collegial Support as a Component of Administrative Inservice.

    ERIC Educational Resources Information Center

    Daresh, John C.

    To address the problem of increasing professional isolation of building administrators, the Principals' Inservice Project helps establish principals' collegial support groups across the nation. The groups are typically composed of 6 to 10 principals who meet at least once each month over a 2-year period. One collegial support group of seven…

  17. Training the Trainers: Learning to Be a Principal Supervisor

    ERIC Educational Resources Information Center

    Saltzman, Amy

    2017-01-01

    While most principal supervisors are former principals themselves, few come to the role with specific training in how to do the job effectively. For this reason, both the Washington, D.C., and Tulsa, Oklahoma, principal supervisor programs include a strong professional development component. In this article, the author takes a look inside these…

  18. Preliminary Study on Appearance-Based Detection of Anatomical Point Landmarks in Body Trunk CT Images

    NASA Astrophysics Data System (ADS)

    Nemoto, Mitsutaka; Nomura, Yukihiro; Hanaoka, Shohei; Masutani, Yoshitaka; Yoshikawa, Takeharu; Hayashi, Naoto; Yoshioka, Naoki; Ohtomo, Kuni

    Anatomical point landmarks as most primitive anatomical knowledge are useful for medical image understanding. In this study, we propose a detection method for anatomical point landmark based on appearance models, which include gray-level statistical variations at point landmarks and their surrounding area. The models are built based on results of Principal Component Analysis (PCA) of sample data sets. In addition, we employed generative learning method by transforming ROI of sample data. In this study, we evaluated our method with 24 data sets of body trunk CT images and obtained 95.8 ± 7.3 % of the average sensitivity in 28 landmarks.

  19. Modeling of rheological characteristics of the fermented dairy products obtained by novel and traditional starter cultures.

    PubMed

    Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G

    2018-06-01

    Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.

  20. μ-SRXRF characterization of Brazilian emeralds

    NASA Astrophysics Data System (ADS)

    Curado, J. F.; Radtke, M.; Buzanich, G.; Reinholz, U.; Riesemeier, H.; Guttler, R. A. S.; Rizzutto, M. A.

    2014-04-01

    The aim of the present study is to characterize emeralds from different mines of Brazil by using Synchrotron Radiation X-ray Fluorescence Microanalysis (μ-SRXRF). The advantage of this technique is that we can analyze a homogeneous, inclusion free area of the stone with the microbeam to distinguish the elemental fingerprint according to the provenance of the emerald. A total of 47 samples belonging to 5 different Brazilian mines were studied in this work and 28 elements were identified. By means of Principal Component Analysis (PCA) it is possible to build different groups according to the provenance of the stones, which allows to assign samples of unknown origin to the according mine.

Top