Sample records for samples sequence analysis

  1. Analysis of sequences from field samples reveals the presence of the recently described pepper vein yellows virus (genus Polerovirus) in six additional countries.

    PubMed

    Knierim, Dennis; Tsai, Wen-Shi; Kenyon, Lawrence

    2013-06-01

    Polerovirus infection was detected by reverse transcription polymerase chain reaction (RT-PCR) in 29 pepper plants (Capsicum spp.) and one black nightshade plant (Solanum nigrum) sample collected from fields in India, Indonesia, Mali, Philippines, Thailand and Taiwan. At least two representative samples for each country were selected to generate a general polerovirus RT-PCR product of 1.4 kb length for sequencing. Sequence analysis of the partial genome sequences revealed the presence of pepper vein yellows virus (PeVYV) in all 13 samples. A 1990 Australian herbarium sample of pepper described by serological means as infected with capsicum yellows virus (CYV) was identified by sequence analysis of a partial CP sequence as probably infected with a potato leaf roll virus (PLRV) isolate.

  2. Deep Sequencing to Identify the Causes of Viral Encephalitis

    PubMed Central

    Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.

    2014-01-01

    Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691

  3. Detecting and Estimating Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data

    PubMed Central

    Jun, Goo; Flickinger, Matthew; Hetrick, Kurt N.; Romm, Jane M.; Doheny, Kimberly F.; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min

    2012-01-01

    DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling; analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combination of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to screen for and prevent DNA contamination in sequencing studies. PMID:23103226

  4. Piscine reovirus: Genomic and molecular phylogenetic analysis from farmed and wild salmonids collected on the Canada/US Pacific Coast

    USGS Publications Warehouse

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul S.; Richmond, Zina; Purcell, Maureen K.; Johns, Robert; Johnson, Stewart C.; Sakasida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period.

  5. Piscine Reovirus: Genomic and Molecular Phylogenetic Analysis from Farmed and Wild Salmonids Collected on the Canada/US Pacific Coast

    PubMed Central

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul; Richmond, Zina; Johns, Robert; Purcell, Maureen K.; Johnson, Stewart C.; Saksida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period. PMID:26536673

  6. Use of Sequence-independent, single-primer amplification (SISPA) with NGS platform for detection of RNA viruses in clinical samples

    USDA-ARS?s Scientific Manuscript database

    Current technologies for next generation sequencing (NGS) have revolutionized metagenomics analysis of clinical samples. One advantage of the NGS platform is the possibility to sequence the genetic material in samples without any prior knowledge of the sequence contained within. Sequence-Independent...

  7. Mucosal and Cutaneous Human Papillomaviruses Detected in Raw Sewages

    PubMed Central

    La Rosa, Giuseppina; Fratini, Marta; Accardi, Luisa; D'Oro, Graziana; Della Libera, Simonetta; Muscillo, Michele; Di Bonito, Paola

    2013-01-01

    Epitheliotropic viruses can find their way into sewage. The aim of the present study was to investigate the occurrence, distribution, and genetic diversity of Human Papillomaviruses (HPVs) in urban wastewaters. Sewage samples were collected from treatment plants distributed throughout Italy. The DNA extracted from these samples was analyzed by PCR using five PV-specific sets of primers targeting the L1 (GP5/GP6, MY09/MY11, FAP59/64, SKF/SKR) and E1 regions (PM-A/PM-B), according to the protocols previously validated for the detection of mucosal and cutaneous HPV genotypes. PCR products underwent sequencing analysis and the sequences were aligned to reference genomes from the Papillomavirus Episteme database. Phylogenetic analysis was then performed to assess the genetic relationships among the different sequences and between the sequences of the samples and those of the prototype strains. A broad spectrum of sequences related to mucosal and cutaneous HPV types was detected in 81% of the sewage samples analyzed. Surprisingly, sequences related to the anogenital HPV6 and 11 were detected in 19% of the samples, and sequences related to the “high risk” oncogenic HPV16 were identified in two samples. Sequences related to HPV9, HPV20, HPV25, HPV76, HPV80, HPV104, HPV110, HPV111, HPV120 and HPV145 beta Papillomaviruses were detected in 76% of the samples. In addition, similarity searches and phylogenetic analysis of some sequences suggest that they could belong to putative new genotypes of the beta genus. In this study, for the first time, the presence of HPV viruses strongly related to human cancer is reported in sewage samples. Our data increases the knowledge of HPV genomic diversity and suggests that virological analysis of urban sewage can provide key information useful in supporting epidemiological studies. PMID:23341898

  8. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).

    PubMed

    Rambaut, Andrew; Lam, Tommy T; Max Carvalho, Luiz; Pybus, Oliver G

    2016-01-01

    Gene sequences sampled at different points in time can be used to infer molecular phylogenies on a natural timescale of months or years, provided that the sequences in question undergo measurable amounts of evolutionary change between sampling times. Data sets with this property are termed heterochronous and have become increasingly common in several fields of biology, most notably the molecular epidemiology of rapidly evolving viruses. Here we introduce the cross-platform software tool, TempEst (formerly known as Path-O-Gen), for the visualization and analysis of temporally sampled sequence data. Given a molecular phylogeny and the dates of sampling for each sequence, TempEst uses an interactive regression approach to explore the association between genetic divergence through time and sampling dates. TempEst can be used to (1) assess whether there is sufficient temporal signal in the data to proceed with phylogenetic molecular clock analysis, and (2) identify sequences whose genetic divergence and sampling date are incongruent. Examination of the latter can help identify data quality problems, including errors in data annotation, sample contamination, sequence recombination, or alignment error. We recommend that all users of the molecular clock models implemented in BEAST first check their data using TempEst prior to analysis.

  9. Molecular identification and phylogenetic analysis of Wuchereria bancrofti from human blood samples in Egypt.

    PubMed

    Abdel-Shafi, Iman R; Shoieb, Eman Y; Attia, Samar S; Rubio, José M; Ta-Tang, Thuy-Huong; El-Badry, Ayman A

    2017-03-01

    Lymphatic filariasis (LF) is a serious vector-borne health problem, and Wuchereria bancrofti (W.b) is the major cause of LF worldwide and is focally endemic in Egypt. Identification of filarial infection using traditional morphologic and immunological criteria can be difficult and lead to misdiagnosis. The aim of the present study was molecular detection of W.b in residents in endemic areas in Egypt, sequence variance analysis, and phylogenetic analysis of W.b DNA. Collected blood samples from residents in filariasis endemic areas in five governorates were subjected to semi-nested PCR targeting repeated DNA sequence, for detection of W.b DNA. PCR products were sequenced; subsequently, a phylogenetic analysis of the obtained sequences was performed. Out of 300 blood samples, W.b DNA was identified in 48 (16%). Sequencing analysis confirmed PCR results identifying only W.b species. Sequence alignment and phylogenetic analysis indicated genetically distinct clusters of W.b among the study population. Study results demonstrated that the semi-nested PCR proved to be an effective diagnostic tool for accurate and rapid detection of W.b infections in nano-epidemics and is applicable for samples collected in the daytime as well as the night time. PCR products sequencing and phylogenitic analysis revealed three different nucleotide sequences variants. Further genetic studies of W.b in Egypt and other endemic areas are needed to distinguish related strains and the various ecological as well as drug effects exerted on them to support W.b elimination.

  10. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis.

    PubMed

    Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.

  11. Population-Sequencing as a Biomarker of Burkholderia mallei and Burkholderia pseudomallei Evolution through Microbial Forensic Analysis

    PubMed Central

    Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-01-01

    Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204

  12. CloVR-ITS: Automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota

    PubMed Central

    2013-01-01

    Background Besides the development of comprehensive tools for high-throughput 16S ribosomal RNA amplicon sequence analysis, there exists a growing need for protocols emphasizing alternative phylogenetic markers such as those representing eukaryotic organisms. Results Here we introduce CloVR-ITS, an automated pipeline for comparative analysis of internal transcribed spacer (ITS) pyrosequences amplified from metagenomic DNA isolates and representing fungal species. This pipeline performs a variety of steps similar to those commonly used for 16S rRNA amplicon sequence analysis, including preprocessing for quality, chimera detection, clustering of sequences into operational taxonomic units (OTUs), taxonomic assignment (at class, order, family, genus, and species levels) and statistical analysis of sample groups of interest based on user-provided information. Using ITS amplicon pyrosequencing data from a previous human gastric fluid study, we demonstrate the utility of CloVR-ITS for fungal microbiota analysis and provide runtime and cost examples, including analysis of extremely large datasets on the cloud. We show that the largest fractions of reads from the stomach fluid samples were assigned to Dothideomycetes, Saccharomycetes, Agaricomycetes and Sordariomycetes but that all samples were dominated by sequences that could not be taxonomically classified. Representatives of the Candida genus were identified in all samples, most notably C. quercitrusa, while sequence reads assigned to the Aspergillus genus were only identified in a subset of samples. CloVR-ITS is made available as a pre-installed, automated, and portable software pipeline for cloud-friendly execution as part of the CloVR virtual machine package (http://clovr.org). Conclusion The CloVR-ITS pipeline provides fungal microbiota analysis that can be complementary to bacterial 16S rRNA and total metagenome sequence analysis allowing for more comprehensive studies of environmental and host-associated microbial communities. PMID:24451270

  13. Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait.

    PubMed

    Madi, Nada; Al-Nakib, Widad; Mustafa, Abu Salim; Habibi, Nazima

    2018-03-01

    A metagenomic approach based on target independent next-generation sequencing has become a known method for the detection of both known and novel viruses in clinical samples. This study aimed to use the metagenomic sequencing approach to characterize the viral diversity in respiratory samples from patients with respiratory tract infections. We have investigated 86 respiratory samples received from various hospitals in Kuwait between 2015 and 2016 for the diagnosis of respiratory tract infections. A metagenomic approach using the next-generation sequencer to characterize viruses was used. According to the metagenomic analysis, an average of 145, 019 reads were identified, and 2% of these reads were of viral origin. Also, metagenomic analysis of the viral sequences revealed many known respiratory viruses, which were detected in 30.2% of the clinical samples. Also, sequences of non-respiratory viruses were detected in 14% of the clinical samples, while sequences of non-human viruses were detected in 55.8% of the clinical samples. The average genome coverage of the viruses was 12% with the highest genome coverage of 99.2% for respiratory syncytial virus, and the lowest was 1% for torque teno midi virus 2. Our results showed 47.7% agreement between multiplex Real-Time PCR and metagenomics sequencing in the detection of respiratory viruses in the clinical samples. Though there are some difficulties in using this method to clinical samples such as specimen quality, these observations are indicative of the promising utility of the metagenomic sequencing approach for the identification of respiratory viruses in patients with respiratory tract infections. © 2017 Wiley Periodicals, Inc.

  14. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  15. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  16. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    PubMed

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  17. [The use of 16S rDNA sequencing in species diversity analysis for sputum of patients with ventilator-associated pneumonia].

    PubMed

    Yang, Xiaojun; Wang, Xiaohong; Liang, Zhijuan; Zhang, Xiaoya; Wang, Yanbo; Wang, Zhenhai

    2014-05-01

    To study the species and amount of bacteria in sputum of patients with ventilator-associated pneumonia (VAP) by using 16S rDNA sequencing analysis, and to explore the new method for etiologic diagnosis of VAP. Bronchoalveolar lavage sputum samples were collected from 31 patients with VAP. Bacterial DNA of the samples were extracted and identified by polymerase chain reaction (PCR). At the same time, sputum specimens were processed for routine bacterial culture. The high flux sequencing experiment was conducted on PCR positive samples with 16S rDNA macro genome sequencing technology, and sequencing results were analyzed using bioinformatics, then the results between the sequencing and bacteria culture were compared. (1) 550 bp of specific DNA sequences were amplified in sputum specimens from 27 cases of the 31 patients with VAP, and they were used for sequencing analysis. 103 856 sequences were obtained from those sputum specimens using 16S rDNA sequencing, yielding approximately 39 Mb of raw data. Tag sequencing was able to inform genus level in all 27 samples. (2) Alpha-diversity analysis showed that sputum samples of patients with VAP had significantly higher variability and richness in bacterial species (Shannon index values 1.20, Simpson index values 0.48). Rarefaction curve analysis showed that there were more species that were not detected by sequencing from some VAP sputum samples. (3) Analysis of 27 sputum samples with VAP by using 16S rDNA sequences yielded four phyla: namely Acitinobacteria, Bacteroidetes, Firmicutes, Proteobacteria. With genus as a classification, it was found that the dominant species included Streptococcus 88.9% (24/27), Limnohabitans 77.8% (21/27), Acinetobacter 70.4% (19/27), Sphingomonas 63.0% (17/27), Prevotella 63.0% (17/27), Klebsiella 55.6% (15/27), Pseudomonas 55.6% (15/27), Aquabacterium 55.6% (15/27), and Corynebacterium 55.6% (15/27). (4) Pyrophosphate sequencing discovered that Prevotella, Limnohabitans, Aquabacterium, Sphingomonas might not be detected by routine bacteria culture. Among seven species which were identified by both methods, pyrophosphate sequencing yielded higher positive rate than that of ordinary bacteria culture [Streptococcus: 88.9% (24/27) vs. 18.5% (5/27), Klebsiella: 55.6% (15/27) vs. 18.5% (5/27), Acinetobacter: 70.4% (19/27) vs. 37.0% (10/27), Corynebacterium: 55.6% (15/27) vs. 7.4% (2/27), P<0.05 or P<0.01]. Sequencing positive rate was found to increase positive rate for culture of Pseudomonas [55.6% (15/27) vs. 25.9% (7/27), P=0.050]. No significant differences were observed between sequencing and ordinary bacteria culture for detection Staphylococcus [7.4% (2/27) vs. 11.1% (3/27)] and Neisseria bacteria genera [18.5% (5/27) vs. 3.7% (1/27), both P>0.05]. 16S rDNA sequencing analysis confirmed that pathogenic bacteria in sputum of VAP were complicated with multiple drug resistant strains. Compared with routine bacterial culture, pyrophosphate sequencing had higher positive rate in detecting pathogens. 16S rDNA gene sequencing technology may become a new method for etiological diagnosis of VAP.

  18. Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA.

    PubMed

    Drummond, A; Rodrigo, A G

    2000-12-01

    Reconstruction of evolutionary relationships from noncontemporaneous molecular samples provides a new challenge for phylogenetic reconstruction methods. With recent biotechnological advances there has been an increase in molecular sequencing throughput, and the potential to obtain serial samples of sequences from populations, including rapidly evolving pathogens, is fast being realized. A new method called the serial-sample unweighted pair grouping method with arithmetic means (sUPGMA) is presented that reconstructs a genealogy or phylogeny of sequences sampled serially in time using a matrix of pairwise distances. The resulting tree depicts the terminal lineages of each sample ending at a different level consistent with the sample's temporal order. Since sUPGMA is a variant of UPGMA, it will perform best when sequences have evolved at a constant rate (i.e., according to a molecular clock). On simulated data, this new method performs better than standard cluster analysis under a variety of longitudinal sampling strategies. Serial-sample UPGMA is particularly useful for analysis of longitudinal samples of viruses and bacteria, as well as ancient DNA samples, with the minimal requirement that samples of sequences be ordered in time.

  19. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer’s, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  20. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing.

    PubMed

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  1. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    PubMed

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.

  2. Identification of multiple mRNA and DNA sequences from small tissue samples isolated by laser-assisted microdissection.

    PubMed

    Bernsen, M R; Dijkman, H B; de Vries, E; Figdor, C G; Ruiter, D J; Adema, G J; van Muijen, G N

    1998-10-01

    Molecular analysis of small tissue samples has become increasingly important in biomedical studies. Using a laser dissection microscope and modified nucleic acid isolation protocols, we demonstrate that multiple mRNA as well as DNA sequences can be identified from a single-cell sample. In addition, we show that the specificity of procurement of tissue samples is not compromised by smear contamination resulting from scraping of the microtome knife during sectioning of lesions. The procedures described herein thus allow for efficient RT-PCR or PCR analysis of multiple nucleic acid sequences from small tissue samples obtained by laser-assisted microdissection.

  3. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  4. Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes

    PubMed Central

    Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz

    2015-01-01

    Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material. PMID:25727040

  5. Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes.

    PubMed

    Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz

    2015-02-01

    To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequen-ces were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material.

  6. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S

    2015-01-01

    The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2.

  7. First full-length genome sequence of the polerovirus luffa aphid-borne yellows virus (LABYV) reveals the presence of at least two consensus sequences in an isolate from Thailand.

    PubMed

    Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf

    2015-10-01

    Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.

  8. Evaluation of Targeted Sequencing for Transcriptional Analysis of Archival Formalin-Fixed Paraffin-Embedded (FFPE) Samples

    EPA Science Inventory

    Next-generation sequencing provides unprecedented access to genomic information in archival FFPE tissue samples. However, costs and technical challenges related to RNA isolation and enrichment limit use of whole-genome RNA-sequencing for large-scale studies of FFPE specimens. Rec...

  9. Sequence analysis of Jembrana disease virus strains reveals a genetically stable lentivirus.

    PubMed

    Desport, Moira; Stewart, Meredith E; Mikosza, Andrew S; Sheridan, Carol A; Peterson, Shane E; Chavand, Olivier; Hartaningsih, Nining; Wilcox, Graham E

    2007-06-01

    Jembrana disease virus (JDV) is a lentivirus associated with an acute disease syndrome with a 20% case fatality rate in Bos javanicus (Bali cattle) in Indonesia, occurring after a short incubation period and with no recurrence of the disease after recovery. Partial regions of gag and pol and the entire env were examined for sequence variation in DNA samples from cases of Jembrana disease obtained from Bali, Sumatra and South Kalimantan in Indonesian Borneo. A high level of nucleotide conservation (97-100%) was observed in gag sequences from samples taken in Bali and Sumatra, indicating that the source of JDV in Sumatra was most likely to have originated from Bali. The pol sequences and, unexpectedly, the env sequences from Bali samples were also well conserved with low nucleotide (96-99%) and amino acid substitutions (95-99%). However, the sample from South Kalimantan (JDV(KAL/01)) contained more divergent sequences, particularly in env (88% identity). Phylogenetic analysis revealed that the JDV(KAL/01)env sequences clustered with the sequence from the Pulukan sample (Bali) from 2001. JDV appears to be remarkably stable genetically and has undergone minor genetic changes over a period of nearly 20 years in Bali despite becoming endemic in the cattle population of the island.

  10. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing

    PubMed Central

    Constable, Fiona E.; Nancarrow, Narelle; Plummer, Kim M.; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored. PMID:28632759

  11. Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition

    PubMed Central

    Lim, Yan Wei; Cuevas, Daniel A.; Silva, Genivaldo Gueiros Z.; Aguinaldo, Kristen; Dinsdale, Elizabeth A.; Haas, Andreas F.; Hatay, Mark; Sanchez, Savannah E.; Wegley-Kelly, Linda; Dutilh, Bas E.; Harkins, Timothy T.; Lee, Clarence C.; Tom, Warren; Sandin, Stuart A.; Smith, Jennifer E.; Zgliczynski, Brian; Vermeij, Mark J.A.; Rohwer, Forest

    2014-01-01

    Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines. PMID:25177534

  12. Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition.

    PubMed

    Lim, Yan Wei; Cuevas, Daniel A; Silva, Genivaldo Gueiros Z; Aguinaldo, Kristen; Dinsdale, Elizabeth A; Haas, Andreas F; Hatay, Mark; Sanchez, Savannah E; Wegley-Kelly, Linda; Dutilh, Bas E; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Sandin, Stuart A; Smith, Jennifer E; Zgliczynski, Brian; Vermeij, Mark J A; Rohwer, Forest; Edwards, Robert A

    2014-01-01

    Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.

  13. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2.

    PubMed

    Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un

    2018-01-01

    Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.

  14. Analyzing Immunoglobulin Repertoires

    PubMed Central

    Chaudhary, Neha; Wesemann, Duane R.

    2018-01-01

    Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis. PMID:29593723

  15. Analysis of a diverse assemblage of diazotrophic bacteria from Spartina alterniflora using DGGE and clone library screening.

    PubMed

    Lovell, Charles R; Decker, Peter V; Bagwell, Christopher E; Thompson, Shelly; Matsui, George Y

    2008-05-01

    Methods to assess the diversity of the diazotroph assemblage in the rhizosphere of the salt marsh cordgrass, Spartina alterniflora were examined. The effectiveness of nifH PCR-denaturing gradient gel electrophoresis (DGGE) was compared to that of nifH clone library analysis. Seventeen DGGE gel bands were sequenced and yielded 58 nonidentical nifH sequences from a total of 67 sequences determined. A clone library constructed using the GC-clamp nifH primers that were employed in the PCR-DGGE (designated the GC-Library) yielded 83 nonidentical sequences from a total of 257 nifH sequences. A second library constructed using an alternate set of nifH primers (N-Library) yielded 83 nonidentical sequences from a total of 138 nifH sequences. Rarefaction curves for the libraries did not reach saturation, although the GC-Library curve was substantially dampened and appeared to be closer to saturation than the N-Library curve. Phylogenetic analyses showed that DGGE gel band sequencing recovered nifH sequences that were frequently sampled in the GC-Library, as well as sequences that were infrequently sampled, and provided a species composition assessment that was robust, efficient, and relatively inexpensive to obtain. Further, the DGGE method permits a large number of samples to be examined for differences in banding patterns, after which bands of interest can be sampled for sequence determination.

  16. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences.

    PubMed

    Zeng, Y H; Chen, X H; Jiao, N Z

    2007-12-01

    To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.

  17. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.

    PubMed

    Pryde, S E; Richardson, A J; Stewart, C S; Flint, H J

    1999-12-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.

  18. Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig

    PubMed Central

    Pryde, Susan E.; Richardson, Anthony J.; Stewart, Colin S.; Flint, Harry J.

    1999-01-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined. PMID:10583991

  19. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis

    PubMed Central

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P. N.; Sharma, N. S.

    2015-01-01

    Aim: The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. Materials and Methods: A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Results: Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. Conclusion: It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2. PMID:27046996

  20. Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.).

    PubMed

    Witsenboer, H; Michelmore, R W; Vogel, J

    1997-12-01

    Selectively amplified microsatellite polymorphic locus (SAMPL) analysis is a method of amplifying microsatellite loci using generic PCR primers. SAMPL analysis uses one AFLP primer in combination with a primer complementary to microsatellite sequences. SAMPL primers based on compound microsatellite sequences provided the clearest amplification patterns. We explored the potential of SAMPL analysis in lettuce to detect PCR-based codominant microsatellite markers. Fifty-eight SAMPLs were identified and placed on the genetic map. Seventeen were codominant. SAMPLs were dispersed with RFLP markers on 11 of the 12 main linkage groups in lettuce, indicating that they have a similar genomic distribution. Some but not all fragments amplified by SAMPL analysis were confirmed to contain microsatellite sequences by Southern hybridization. Forty-five cultivars of lettuce and five wild species of Lactuca were analyzed to determine the allelic diversity for codominant SAMPLs. From 3 to 11 putative alleles were found for each SAMPL; 2-6 alleles were found within Lactuca sativa and 1-3 alleles were found among the crisphead genotypes, the most genetically homogeneous plant type of L. sativa. This allelic diversity is greater than that found for RFLP markers. Numerous new alleles were observed in the wild species; however, there were frequent null alleles. Therefore, SAMPL analysis is more applicable to intraspecific than to interspecific comparisons. A phenetic analysis based on SAMPLs resulted in a dendrogram similar to those based on RFLP and AFLP markers.

  1. Evaluation of positive Rift Valley fever virus formalin-fixed paraffin embedded samples as a source of sequence data for retrospective phylogenetic analysis.

    PubMed

    Mubemba, B; Thompson, P N; Odendaal, L; Coetzee, P; Venter, E H

    2017-05-01

    Rift Valley fever (RVF), caused by an arthropod borne Phlebovirus in the family Bunyaviridae, is a haemorrhagic disease that affects ruminants and humans. Due to the zoonotic nature of the virus, a biosafety level 3 laboratory is required for isolation of the virus. Fresh and frozen samples are the preferred sample type for isolation and acquisition of sequence data. However, these samples are scarce in addition to posing a health risk to laboratory personnel. Archived formalin-fixed, paraffin-embedded (FFPE) tissue samples are safe and readily available, however FFPE derived RNA is in most cases degraded and cross-linked in peptide bonds and it is unknown whether the sample type would be suitable as reference material for retrospective phylogenetic studies. A RT-PCR assay targeting a 490 nt portion of the structural G N glycoprotein encoding gene of the RVFV M-segment was applied to total RNA extracted from archived RVFV positive FFPE samples. Several attempts to obtain target amplicons were unsuccessful. FFPE samples were then analysed using next generation sequencing (NGS), i.e. Truseq ® (Illumina) and sequenced on the Miseq ® genome analyser (Illumina). Using reference mapping, gapped virus sequence data of varying degrees of shallow depth was aligned to a reference sequence. However, the NGS did not yield long enough contigs that consistently covered the same genome regions in all samples to allow phylogenetic analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Longitudinal Metagenomic Analysis of Hospital Air Identifies Clinically Relevant Microbes.

    PubMed

    King, Paula; Pham, Long K; Waltz, Shannon; Sphar, Dan; Yamamoto, Robert T; Conrad, Douglas; Taplitz, Randy; Torriani, Francesca; Forsyth, R Allyn

    2016-01-01

    We describe the sampling of sixty-three uncultured hospital air samples collected over a six-month period and analysis using shotgun metagenomic sequencing. Our primary goals were to determine the longitudinal metagenomic variability of this environment, identify and characterize genomes of potential pathogens and determine whether they are atypical to the hospital airborne metagenome. Air samples were collected from eight locations which included patient wards, the main lobby and outside. The resulting DNA libraries produced 972 million sequences representing 51 gigabases. Hierarchical clustering of samples by the most abundant 50 microbial orders generated three major nodes which primarily clustered by type of location. Because the indoor locations were longitudinally consistent, episodic relative increases in microbial genomic signatures related to the opportunistic pathogens Aspergillus, Penicillium and Stenotrophomonas were identified as outliers at specific locations. Further analysis of microbial reads specific for Stenotrophomonas maltophilia indicated homology to a sequenced multi-drug resistant clinical strain and we observed broad sequence coverage of resistance genes. We demonstrate that a shotgun metagenomic sequencing approach can be used to characterize the resistance determinants of pathogen genomes that are uncharacteristic for an otherwise consistent hospital air microbial metagenomic profile.

  3. Cross-shore and Vertical Distributions of Invertebrate Larvae Using Autonomous Sampling Coupled with Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Govindarajan, A.; Pineda, J.; Purcell, M.; Tradd, K.; Packard, G.; Girard, A.; Dennett, M.; Breier, J. A., Jr.

    2016-02-01

    We present a new method to estimate the distribution of invertebrate larvae relative to environmental variables such as temperature, salinity, and circulation. A large volume in situ filtering system developed for discrete biogeochemical sampling in the deep-sea (the Suspended Particulate Rosette "SUPR" multisampler) was mounted to the autonomous underwater vehicle REMUS 600 for coastal larval and environmental sampling. We describe the results of SUPR-REMUS deployments conducted in Buzzards Bay, Massachusetts (2014) and west of Martha's Vineyard, Massachusetts (2015). We collected discrete samples cross-shore and from surface, middle, and bottom layers of the water column. Samples were preserved for DNA analysis. Our Buzzards Bay deployment targeted barnacle larvae, which are abundant in late winter and early spring. For these samples, we used morphological analysis and DNA barcodes generated by Sanger sequencing to obtain stage and species-specific cross-shore and vertical distributions. We targeted bivalve larvae in our 2015 deployments, and genetic analysis of larvae from these samples is underway. For these samples, we are comparing species barcode data derived from traditional Sanger sequencing of individuals to those obtained from next generation sequencing (NGS) of bulk plankton samples. Our results demonstrate the utility of autonomous sampling combined with DNA barcoding for studying larval distributions and transport dynamics.

  4. Illuminator, a desktop program for mutation detection using short-read clonal sequencing.

    PubMed

    Carr, Ian M; Morgan, Joanne E; Diggle, Christine P; Sheridan, Eamonn; Markham, Alexander F; Logan, Clare V; Inglehearn, Chris F; Taylor, Graham R; Bonthron, David T

    2011-10-01

    Current methods for sequencing clonal populations of DNA molecules yield several gigabases of data per day, typically comprising reads of < 100 nt. Such datasets permit widespread genome resequencing and transcriptome analysis or other quantitative tasks. However, this huge capacity can also be harnessed for the resequencing of smaller (gene-sized) target regions, through the simultaneous parallel analysis of multiple subjects, using sample "tagging" or "indexing". These methods promise to have a huge impact on diagnostic mutation analysis and candidate gene testing. Here we describe a software package developed for such studies, offering the ability to resolve pooled samples carrying barcode tags and to align reads to a reference sequence using a mutation-tolerant process. The program, Illuminator, can identify rare sequence variants, including insertions and deletions, and permits interactive data analysis on standard desktop computers. It facilitates the effective analysis of targeted clonal sequencer data without dedicated computational infrastructure or specialized training. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq

    PubMed Central

    Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru

    2015-01-01

    Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome. PMID:26617593

  6. Top-down analysis of protein samples by de novo sequencing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J. M.

    MOTIVATION: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. RESULTS: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. Themore » former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns.« less

  7. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context?

    PubMed

    Benschop, Corina C G; Quaak, Frederike C A; Boon, Mathilde E; Sijen, Titia; Kuiper, Irene

    2012-03-01

    Forensic analysis of biological traces generally encompasses the investigation of both the person who contributed to the trace and the body site(s) from which the trace originates. For instance, for sexual assault cases, it can be beneficial to distinguish vaginal samples from skin or saliva samples. In this study, we explored the use of microbial flora to indicate vaginal origin. First, we explored the vaginal microbiome for a large set of clinical vaginal samples (n = 240) by next generation sequencing (n = 338,184 sequence reads) and found 1,619 different sequences. Next, we selected 389 candidate probes targeting genera or species and designed a microarray, with which we analysed a diverse set of samples; 43 DNA extracts from vaginal samples and 25 DNA extracts from samples from other body sites, including sites in close proximity of or in contact with the vagina. Finally, we used the microarray results and next generation sequencing dataset to assess the potential for a future approach that uses microbial markers to indicate vaginal origin. Since no candidate genera/species were found to positively identify all vaginal DNA extracts on their own, while excluding all non-vaginal DNA extracts, we deduce that a reliable statement about the cellular origin of a biological trace should be based on the detection of multiple species within various genera. Microarray analysis of a sample will then render a microbial flora pattern that is probably best analysed in a probabilistic approach.

  8. Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering

    PubMed Central

    Sul, Woo Jun; Cole, James R.; Jesus, Ederson da C.; Wang, Qiong; Farris, Ryan J.; Fish, Jordan A.; Tiedje, James M.

    2011-01-01

    High-throughput sequencing of 16S rRNA genes has increased our understanding of microbial community structure, but now even higher-throughput methods to the Illumina scale allow the creation of much larger datasets with more samples and orders-of-magnitude more sequences that swamp current analytic methods. We developed a method capable of handling these larger datasets on the basis of assignment of sequences into an existing taxonomy using a supervised learning approach (taxonomy-supervised analysis). We compared this method with a commonly used clustering approach based on sequence similarity (taxonomy-unsupervised analysis). We sampled 211 different bacterial communities from various habitats and obtained ∼1.3 million 16S rRNA sequences spanning the V4 hypervariable region by pyrosequencing. Both methodologies gave similar ecological conclusions in that β-diversity measures calculated by using these two types of matrices were significantly correlated to each other, as were the ordination configurations and hierarchical clustering dendrograms. In addition, our taxonomy-supervised analyses were also highly correlated with phylogenetic methods, such as UniFrac. The taxonomy-supervised analysis has the advantages that it is not limited by the exhaustive computation required for the alignment and clustering necessary for the taxonomy-unsupervised analysis, is more tolerant of sequencing errors, and allows comparisons when sequences are from different regions of the 16S rRNA gene. With the tremendous expansion in 16S rRNA data acquisition underway, the taxonomy-supervised approach offers the potential to provide more rapid and extensive community comparisons across habitats and samples. PMID:21873204

  9. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples.

    PubMed

    Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki

    2014-01-01

    Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Niche and neutral processes both shape community structure in parallelized, aerobic, single carbon-source enrichments

    DOE Data Explorer

    Flynn, Theodore M.; Koval, Jason C.; Greenwald, Stephanie M.; Owens, Sarah M.; Kemner, Kenneth M.; Antonopoulos, Dionysios A.

    2017-01-01

    We present DNA sequence data in FASTA-formatted files from aerobic environmental microcosms inoculated with a sole carbon source. DNA sequences are of 16S rRNA genes present in DNA extracted from each microcosm along with the environmental samples (soil, water) used to inoculate them. These samples were sequenced using the Illumina MiSeq platform at the Environmental Sample Preparation and Sequencing Facility at Argonne National Laboratory. This data is compatible with standard microbiome analysis pipelines (e.g., QIIME, mothur, etc.).

  11. A Web-Hosted R Workflow to Simplify and Automate the Analysis of 16S NGS Data

    EPA Science Inventory

    Next-Generation Sequencing (NGS) produces large data sets that include tens-of-thousands of sequence reads per sample. For analysis of bacterial diversity, 16S NGS sequences are typically analyzed in a workflow that containing best-of-breed bioinformatics packages that may levera...

  12. SEQassembly: A Practical Tools Program for Coding Sequences Splicing

    NASA Astrophysics Data System (ADS)

    Lee, Hongbin; Yang, Hang; Fu, Lei; Qin, Long; Li, Huili; He, Feng; Wang, Bo; Wu, Xiaoming

    CDS (Coding Sequences) is a portion of mRNA sequences, which are composed by a number of exon sequence segments. The construction of CDS sequence is important for profound genetic analysis such as genotyping. A program in MATLAB environment is presented, which can process batch of samples sequences into code segments under the guide of reference exon models, and splice these code segments of same sample source into CDS according to the exon order in queue file. This program is useful in transcriptional polymorphism detection and gene function study.

  13. High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.

    PubMed

    Harrison, Lucas B; Hanson, Nancy D

    2017-06-01

    Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.

  14. Cryptosporidium parvum Infection Involving Novel Genotypes in Wildlife from Lower New York State

    PubMed Central

    Perz, Joseph F.; Le Blancq, Sylvie M.

    2001-01-01

    Cryptosporidium, an enteric parasite of humans and a wide range of other mammals, presents numerous challenges to the supply of safe drinking water. We performed a wildlife survey, focusing on white-tailed deer and small mammals, to assess whether they may serve as environmental sources of Cryptosporidium. A PCR-based approach that permitted genetic characterization via sequence analysis was applied to wildlife fecal samples (n = 111) collected from September 1996 to July 1998 from three areas in lower New York State. Southern analysis revealed 22 fecal samples containing Cryptosporidium small-subunit (SSU) ribosomal DNA; these included 10 of 91 white-tailed deer (Odocoileus virginianus) samples, 3 of 5 chipmunk (Tamias striatus) samples, 1 of 2 white-footed mouse (Peromyscus leucopus) samples, 1 of 2 striped skunk (Mephitis mephitis) samples, 1 of 5 racoon (Procyon lotor) samples, and 6 of 6 muskrat (Ondatra zibethicus) samples. All of the 15 SSU PCR products sequenced were characterized as Cryptosporidium parvum; two were identical to genotype 2 (bovine), whereas the remainder belonged to two novel SSU sequence groups, designated genotypes 3 and 4. Genotype 3 comprised four deer-derived sequences, whereas genotype 4 included nine sequences from deer, mouse, chipmunk, and muskrat samples. PCR analysis was performed on the SSU-positive fecal samples for three other Cryptosporidium loci (dihydrofolate reductase, polythreonine-rich protein, and beta-tubulin), and 8 of 10 cloned PCR products were consistent with C. parvum genotype 2. These data provide evidence that there is sylvatic transmission of C. parvum involving deer and other small mammals. This study affirmed the importance of wildlife as potential sources of Cryptosporidium in the catchments of public water supplies. PMID:11229905

  15. Cryptosporidium parvum infection involving novel genotypes in wildlife from lower New York State.

    PubMed

    Perz, J F; Le Blancq, S M

    2001-03-01

    Cryptosporidium, an enteric parasite of humans and a wide range of other mammals, presents numerous challenges to the supply of safe drinking water. We performed a wildlife survey, focusing on white-tailed deer and small mammals, to assess whether they may serve as environmental sources of Cryptosporidium. A PCR-based approach that permitted genetic characterization via sequence analysis was applied to wildlife fecal samples (n = 111) collected from September 1996 to July 1998 from three areas in lower New York State. Southern analysis revealed 22 fecal samples containing Cryptosporidium small-subunit (SSU) ribosomal DNA; these included 10 of 91 white-tailed deer (Odocoileus virginianus) samples, 3 of 5 chipmunk (Tamias striatus) samples, 1 of 2 white-footed mouse (Peromyscus leucopus) samples, 1 of 2 striped skunk (Mephitis mephitis) samples, 1 of 5 racoon (Procyon lotor) samples, and 6 of 6 muskrat (Ondatra zibethicus) samples. All of the 15 SSU PCR products sequenced were characterized as Cryptosporidium parvum; two were identical to genotype 2 (bovine), whereas the remainder belonged to two novel SSU sequence groups, designated genotypes 3 and 4. Genotype 3 comprised four deer-derived sequences, whereas genotype 4 included nine sequences from deer, mouse, chipmunk, and muskrat samples. PCR analysis was performed on the SSU-positive fecal samples for three other Cryptosporidium loci (dihydrofolate reductase, polythreonine-rich protein, and beta-tubulin), and 8 of 10 cloned PCR products were consistent with C. parvum genotype 2. These data provide evidence that there is sylvatic transmission of C. parvum involving deer and other small mammals. This study affirmed the importance of wildlife as potential sources of Cryptosporidium in the catchments of public water supplies.

  16. Identification and molecular analysis of infectious bursal disease in broiler farms in the Kurdistan Regional Government of Iraq.

    PubMed

    Amin, Oumed Gerjis M; Jackwood, Daral J

    2014-10-01

    The present study was undertaken to characterize field isolates of infectious bursal disease virus (IBDV). The identification was done using reverse transcription-polymerase chain reaction (RT-PCR) and partial sequencing of the VP2 gene. Pooled bursal samples were collected from commercial broiler farms located in the Kurdistan Regional Government (KRG) of Iraq. The genetic material of the IBDV was detected in 10 out of 29 field samples. Sequences of the hypervariable VP2 region were determined for 10 of these viruses. Molecular analysis of the VP2 gene of five IBDVs showed amino acid sequences consistent with the very virulent (vv) IBDV. Two samples were identified as classic vaccine viruses, and three samples were classic vaccine viruses that appear to have mutated during replication in the field. Phylogenetic analysis showed that all five field IBDV strains of the present study were closely related to each other. On the basis of nucleotide sequencing and phylogenetic analysis, it is very likely that IBD-causing viruses in this part of Iraq are of the very virulent type. These IBDVs appear to be evolving relative to their type strains.

  17. Onco-STS: a web-based laboratory information management system for sample and analysis tracking in oncogenomic experiments.

    PubMed

    Gavrielides, Mike; Furney, Simon J; Yates, Tim; Miller, Crispin J; Marais, Richard

    2014-01-01

    Whole genomes, whole exomes and transcriptomes of tumour samples are sequenced routinely to identify the drivers of cancer. The systematic sequencing and analysis of tumour samples, as well other oncogenomic experiments, necessitates the tracking of relevant sample information throughout the investigative process. These meta-data of the sequencing and analysis procedures include information about the samples and projects as well as the sequencing centres, platforms, data locations, results locations, alignments, analysis specifications and further information relevant to the experiments. The current work presents a sample tracking system for oncogenomic studies (Onco-STS) to store these data and make them easily accessible to the researchers who work with the samples. The system is a web application, which includes a database and a front-end web page that allows the remote access, submission and updating of the sample data in the database. The web application development programming framework Grails was used for the development and implementation of the system. The resulting Onco-STS solution is efficient, secure and easy to use and is intended to replace the manual data handling of text records. Onco-STS allows simultaneous remote access to the system making collaboration among researchers more effective. The system stores both information on the samples in oncogenomic studies and details of the analyses conducted on the resulting data. Onco-STS is based on open-source software, is easy to develop and can be modified according to a research group's needs. Hence it is suitable for laboratories that do not require a commercial system.

  18. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    PubMed

    Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei

    2014-01-01

    Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  19. Are quantitative trait-dependent sampling designs cost-effective for analysis of rare and common variants?

    PubMed

    Yilmaz, Yildiz E; Bull, Shelley B

    2011-11-29

    Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.

  20. The Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea

    PubMed Central

    Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon

    2015-01-01

    Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190

  1. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses.

    PubMed

    Zepeda-Mendoza, Marie Lisandra; Bohmann, Kristine; Carmona Baez, Aldo; Gilbert, M Thomas P

    2016-05-03

    DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5'-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies.

  2. Shotgun metagenomic data streams: surfing without fear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berendzen, Joel R

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomicmore » sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.« less

  3. Transcriptome sequencing analysis of novel sRNAs of Kineococcus radiotolerans in response to ionizing radiation.

    PubMed

    Chen, Zhouwei; Li, Lufeng; Shan, Zhan; Huang, Hannian; Chen, Huan; Ding, Xianfeng; Guo, Jiangfeng; Liu, Lili

    2016-11-01

    Kineococcus radiotolerans is a Gram-positive, radio-resistant bacterium isolated from a radioactive environment. The small noncoding RNAs (sRNAs) in bacteria are reported to play roles in the immediate response to stress and/or the recovery from stress. The analysis of K. radiotolerans transcriptome sequencing results can identify these sRNAs in a genome-wide detection, using RNA sequencing (RNA-seq) by the deep sequencing technique. In this study, the raw data of radiation-exposed samples (RS) and control samples (CS) were acquired separately from the sequencing platform. There were 217 common sRNA candidates in the two samples screened in the genome-wide scale by bioinformatics analysis. There were 43 differentially expressed sRNA candidates, including 28 up-regulated and 15 down-regulated ones. The down-regulated sRNAs were selected for the sRNA target prediction, of which 12 sRNAs that may modulate the genes related to the transcription regulation and DNA repair were considered as the candidates involved in the radio-resistance regulation system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, M.S.

    1998-08-18

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device. 27 figs.

  5. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, Mark S.; Wang, Chunwei; Jevons, Luis C.; Bernhart, Derek H.; Lipshutz, Robert J.

    2004-05-11

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  6. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, Mark S.

    1998-08-18

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments are improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  7. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, Mark S.

    2003-08-19

    A computer system for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area and sample sequences in another area on a display device.

  8. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  9. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    PubMed

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. High Throughput Sequence Analysis for Disease Resistance in Maize

    USDA-ARS?s Scientific Manuscript database

    Preliminary results of a computational analysis of high throughput sequencing data from Zea mays and the fungus Aspergillus are reported. The Illumina Genome Analyzer was used to sequence RNA samples from two strains of Z. mays (Va35 and Mp313) collected over a time course as well as several specie...

  11. Analysis of Sequence Data Under Multivariate Trait-Dependent Sampling.

    PubMed

    Tao, Ran; Zeng, Donglin; Franceschini, Nora; North, Kari E; Boerwinkle, Eric; Lin, Dan-Yu

    2015-06-01

    High-throughput DNA sequencing allows for the genotyping of common and rare variants for genetic association studies. At the present time and for the foreseeable future, it is not economically feasible to sequence all individuals in a large cohort. A cost-effective strategy is to sequence those individuals with extreme values of a quantitative trait. We consider the design under which the sampling depends on multiple quantitative traits. Under such trait-dependent sampling, standard linear regression analysis can result in bias of parameter estimation, inflation of type I error, and loss of power. We construct a likelihood function that properly reflects the sampling mechanism and utilizes all available data. We implement a computationally efficient EM algorithm and establish the theoretical properties of the resulting maximum likelihood estimators. Our methods can be used to perform separate inference on each trait or simultaneous inference on multiple traits. We pay special attention to gene-level association tests for rare variants. We demonstrate the superiority of the proposed methods over standard linear regression through extensive simulation studies. We provide applications to the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study and the National Heart, Lung, and Blood Institute Exome Sequencing Project.

  12. Application of Ion Torrent Sequencing to the Assessment of the Effect of Alkali Ballast Water Treatment on Microbial Community Diversity

    PubMed Central

    Fujimoto, Masanori; Moyerbrailean, Gregory A.; Noman, Sifat; Gizicki, Jason P.; Ram, Michal L.; Green, Phyllis A.; Ram, Jeffrey L.

    2014-01-01

    The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (p<0.001). UniFrac distance based principal coordinate analysis (PCoA) plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for <0.5% of the total reads in intake samples but more than 50% of the reads in the treated discharge samples. The only apparent difference in microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new Ion Torrent sequencing techniques to microbial community studies. PMID:25222021

  13. Application of ion torrent sequencing to the assessment of the effect of alkali ballast water treatment on microbial community diversity.

    PubMed

    Fujimoto, Masanori; Moyerbrailean, Gregory A; Noman, Sifat; Gizicki, Jason P; Ram, Michal L; Green, Phyllis A; Ram, Jeffrey L

    2014-01-01

    The impact of NaOH as a ballast water treatment (BWT) on microbial community diversity was assessed using the 16S rRNA gene based Ion Torrent sequencing with its new 400 base chemistry. Ballast water samples from a Great Lakes ship were collected from the intake and discharge of both control and NaOH (pH 12) treated tanks and were analyzed in duplicates. One set of duplicates was treated with the membrane-impermeable DNA cross-linking reagent propidium mono-azide (PMA) prior to PCR amplification to differentiate between live and dead microorganisms. Ion Torrent sequencing generated nearly 580,000 reads for 31 bar-coded samples and revealed alterations of the microbial community structure in ballast water that had been treated with NaOH. Rarefaction analysis of the Ion Torrent sequencing data showed that BWT using NaOH significantly decreased microbial community diversity relative to control discharge (p<0.001). UniFrac distance based principal coordinate analysis (PCoA) plots and UPGMA tree analysis revealed that NaOH-treated ballast water microbial communities differed from both intake communities and control discharge communities. After NaOH treatment, bacteria from the genus Alishewanella became dominant in the NaOH-treated samples, accounting for <0.5% of the total reads in intake samples but more than 50% of the reads in the treated discharge samples. The only apparent difference in microbial community structure between PMA-processed and non-PMA samples occurred in intake water samples, which exhibited a significantly higher amount of PMA-sensitive cyanobacteria/chloroplast 16S rRNA than their corresponding non-PMA total DNA samples. The community assembly obtained using Ion Torrent sequencing was comparable to that obtained from a subset of samples that were also subjected to 454 pyrosequencing. This study showed the efficacy of alkali ballast water treatment in reducing ballast water microbial diversity and demonstrated the application of new Ion Torrent sequencing techniques to microbial community studies.

  14. Impact of Sampling Density on the Extent of HIV Clustering

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor

    2014-01-01

    Abstract Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with broad confidence intervals. HIV clustering increased linearly at sampling density >10%, and was accompanied by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local concentrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ≥10%. Pairwise distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal genotyping density of 10% and sampling density of 50–70% are suggested for HIV-1 V1C5 cluster analysis. PMID:25275430

  15. Molecular analysis of partial VP-2 gene amplified from rectal swab samples of diarrheic dogs in Pakistan confirms the circulation of canine parvovirus genetic variant CPV-2a and detects sequences of feline panleukopenia virus (FPV).

    PubMed

    Ahmed, Nisar; Riaz, Adeel; Zubair, Zahra; Saqib, Muhammad; Ijaz, Sehrish; Nawaz-Ul-Rehman, Muhammad Shah; Al-Qahtani, Ahmed; Mubin, Muhammad

    2018-03-15

    The infection in dogs due to canine parvovirus (CPV), is a highly contagious one with high mortality rate. The present study was undertaken for a detailed genetic analysis of partial VP2 gene i.e., 630 bp isolated from rectal swab samples of infected domestic and stray dogs from all areas of district Faisalabad. Monitoring of viruses is important, as continuous prevalence of viral infection might be associated with emergence of new virulent strains. In the present study, 40 rectal swab samples were collected from diarrheic dogs from different areas of district Faisalabad, Pakistan, in 2014-15 and screened for the presence of CPV by immunochromatography. Most of these dogs were stray dogs showing symptoms of diarrhea. Viral DNA was isolated and partial VP2 gene was amplified using gene specific primer pair Hfor/Hrev through PCR. Amplified fragments were cloned in pTZ57R/T (Fermentas) and completely sequenced. Sequences were analyzed and assembled by the Lasergene DNA analysis package (v8; DNAStar Inc., Madison, WI, USA). The results with immunochromatography showed that 33/40 (82%) of dogs were positive for CPV. We were able to amplify a fragment of 630 bp from 25 samples. In 25 samples the sequences of CPV-2a were detected showing the amino acid substitution Ser297Ala and presence of amino acid (426-Asn) in partial VP2 protein. Interestingly the BLAST analysis showed the of feline panleukopenia virus (FPV) sequences in 3 samples which were already positive for new CPV-2a, with 99% sequence homology to other FPV sequences present in GenBank. Phylogenetic analysis showed clustering of partial CPV-VP-2 gene with viruses from China, India, Japan and Uruguay identifying a new variant, whereas the 3 FPV sequences showed immediate ancestral relationship with viruses from Portugal, South Africa and USA. Interesting observation was that CPV are clustering away from the commercial vaccine strains. In this work we provide a better understanding of CPV prevailing in Pakistan at molecular level. The detection of FPV could be a case of real co-infection or a case of dual presence, due to ingestion of contaminated food.

  16. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    PubMed

    Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A

    2014-07-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  17. Harnessing Whole Genome Sequencing in Medical Mycology.

    PubMed

    Cuomo, Christina A

    2017-01-01

    Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

  18. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2003-12-23

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.

  19. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, Mark S.

    1999-10-26

    A computer system (1) for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area (814) and sample sequences in another area (816) on a display device (3).

  20. Computer-aided visualization and analysis system for sequence evaluation

    DOEpatents

    Chee, Mark S.

    2001-06-05

    A computer system (1) for analyzing nucleic acid sequences is provided. The computer system is used to perform multiple methods for determining unknown bases by analyzing the fluorescence intensities of hybridized nucleic acid probes. The results of individual experiments may be improved by processing nucleic acid sequences together. Comparative analysis of multiple experiments is also provided by displaying reference sequences in one area (814) and sample sequences in another area (816) on a display device (3).

  1. Possible Human Papillomavirus 38 Contamination of Endometrial Cancer RNA Sequencing Samples in The Cancer Genome Atlas Database

    PubMed Central

    Kazemian, Majid; Ren, Min; Lin, Jian-Xin; Liao, Wei; Spolski, Rosanne

    2015-01-01

    ABSTRACT Viruses are causally associated with a number of human malignancies. In this study, we sought to identify new virus-cancer associations by searching RNA sequencing data sets from >2,000 patients, encompassing 21 cancers from The Cancer Genome Atlas (TCGA), for the presence of viral sequences. In agreement with previous studies, we found human papillomavirus 16 (HPV16) and HPV18 in oropharyngeal cancer and hepatitis B and C viruses in liver cancer. Unexpectedly, however, we found HPV38, a cutaneous form of HPV associated with skin cancer, in 32 of 168 samples from endometrial cancer. In 12 of the HPV38-positive (HPV38+) samples, we observed at least one paired read that mapped to both human and HPV38 genomes, indicative of viral integration into the host DNA, something not previously demonstrated for HPV38. The expression levels of HPV38 transcripts were relatively low, and all 32 HPV38+ samples belonged to the same experimental batch of 40 samples, whereas none of the other 128 endometrial carcinoma samples were HPV38+, raising doubts about the significance of the HPV38 association. Moreover, the HPV38+ samples contained the same 10 novel single nucleotide variations (SNVs), leading us to hypothesize that one patient was infected with this new isolate of HPV38, which was integrated into his/her genome and may have cross-contaminated other TCGA samples within batch 228. Based on our analysis, we propose guidelines to examine the batch effect, virus expression level, and SNVs as part of next-generation sequencing (NGS) data analysis for evaluating the significance of viral/pathogen sequences in clinical samples. IMPORTANCE High-throughput RNA sequencing (RNA-Seq), followed by computational analysis, has vastly accelerated the identification of viral and other pathogenic sequences in clinical samples, but cross-contamination during the processing of the samples remain a major problem that can lead to erroneous conclusions. We found HPV38 sequences specifically present in RNA-Seq samples from endometrial cancer patients from TCGA, a virus not previously associated with this type of cancer. However, multiple lines of evidence suggest possible cross-contamination in these samples, which were processed together in the same batch. Despite this potential cross-contamination, our data indicate that we have detected a new isolate of HPV38 that appears to be integrated into the human genome. We also provide general guidelines for computational detection and interpretation of pathogen-disease associations. PMID:26085148

  2. Possible Human Papillomavirus 38 Contamination of Endometrial Cancer RNA Sequencing Samples in The Cancer Genome Atlas Database.

    PubMed

    Kazemian, Majid; Ren, Min; Lin, Jian-Xin; Liao, Wei; Spolski, Rosanne; Leonard, Warren J

    2015-09-01

    Viruses are causally associated with a number of human malignancies. In this study, we sought to identify new virus-cancer associations by searching RNA sequencing data sets from >2,000 patients, encompassing 21 cancers from The Cancer Genome Atlas (TCGA), for the presence of viral sequences. In agreement with previous studies, we found human papillomavirus 16 (HPV16) and HPV18 in oropharyngeal cancer and hepatitis B and C viruses in liver cancer. Unexpectedly, however, we found HPV38, a cutaneous form of HPV associated with skin cancer, in 32 of 168 samples from endometrial cancer. In 12 of the HPV38-positive (HPV38(+)) samples, we observed at least one paired read that mapped to both human and HPV38 genomes, indicative of viral integration into the host DNA, something not previously demonstrated for HPV38. The expression levels of HPV38 transcripts were relatively low, and all 32 HPV38(+) samples belonged to the same experimental batch of 40 samples, whereas none of the other 128 endometrial carcinoma samples were HPV38(+), raising doubts about the significance of the HPV38 association. Moreover, the HPV38(+) samples contained the same 10 novel single nucleotide variations (SNVs), leading us to hypothesize that one patient was infected with this new isolate of HPV38, which was integrated into his/her genome and may have cross-contaminated other TCGA samples within batch 228. Based on our analysis, we propose guidelines to examine the batch effect, virus expression level, and SNVs as part of next-generation sequencing (NGS) data analysis for evaluating the significance of viral/pathogen sequences in clinical samples. High-throughput RNA sequencing (RNA-Seq), followed by computational analysis, has vastly accelerated the identification of viral and other pathogenic sequences in clinical samples, but cross-contamination during the processing of the samples remain a major problem that can lead to erroneous conclusions. We found HPV38 sequences specifically present in RNA-Seq samples from endometrial cancer patients from TCGA, a virus not previously associated with this type of cancer. However, multiple lines of evidence suggest possible cross-contamination in these samples, which were processed together in the same batch. Despite this potential cross-contamination, our data indicate that we have detected a new isolate of HPV38 that appears to be integrated into the human genome. We also provide general guidelines for computational detection and interpretation of pathogen-disease associations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Sequence analysis of cultivated strawberry (Fragaria × ananassa Duch.) using microdissected single somatic chromosomes.

    PubMed

    Yanagi, Tomohiro; Shirasawa, Kenta; Terachi, Mayuko; Isobe, Sachiko

    2017-01-01

    Cultivated strawberry ( Fragaria  ×  ananassa Duch.) has homoeologous chromosomes because of allo-octoploidy. For example, two homoeologous chromosomes that belong to different sub-genome of allopolyploids have similar base sequences. Thus, when conducting de novo assembly of DNA sequences, it is difficult to determine whether these sequences are derived from the same chromosome. To avoid the difficulties associated with homoeologous chromosomes and demonstrate the possibility of sequencing allopolyploids using single chromosomes, we conducted sequence analysis using microdissected single somatic chromosomes of cultivated strawberry. Three hundred and ten somatic chromosomes of the Japanese octoploid strawberry 'Reiko' were individually selected under a light microscope using a microdissection system. DNA from 288 of the dissected chromosomes was successfully amplified using a DNA amplification kit. Using next-generation sequencing, we decoded the base sequences of the amplified DNA segments, and on the basis of mapping, we identified DNA sequences from 144 samples that were best matched to the reference genomes of the octoploid strawberry, F.  ×  ananassa , and the diploid strawberry, F. vesca . The 144 samples were classified into seven pseudo-molecules of F. vesca . The coverage rates of the DNA sequences from the single chromosome onto all pseudo-molecular sequences varied from 3 to 29.9%. We demonstrated an efficient method for sequence analysis of allopolyploid plants using microdissected single chromosomes. On the basis of our results, we believe that whole-genome analysis of allopolyploid plants can be enhanced using methodology that employs microdissected single chromosomes.

  4. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers

    PubMed Central

    Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M.; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas

    2016-01-01

    Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely available under a GNU General Public License version 3.0 (GPLv3) at https://github.com/tadkeys/tabsat/ and http://demo.platomics.com/. PMID:27467908

  5. Model-based quality assessment and base-calling for second-generation sequencing data.

    PubMed

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in sequencing quality. Our model provides these informative estimates readily usable in quality assessment tools while significantly improving base-calling performance. © 2009, The International Biometric Society.

  6. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed Central

    Bergman, Casey M.; Haddrill, Penelope R.

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center. PMID:25717372

  7. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed

    Bergman, Casey M; Haddrill, Penelope R

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.

  8. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens.

    PubMed

    Wood, Henry M; Belvedere, Ornella; Conway, Caroline; Daly, Catherine; Chalkley, Rebecca; Bickerdike, Melissa; McKinley, Claire; Egan, Phil; Ross, Lisa; Hayward, Bruce; Morgan, Joanne; Davidson, Leslie; MacLennan, Ken; Ong, Thian K; Papagiannopoulos, Kostas; Cook, Ian; Adams, David J; Taylor, Graham R; Rabbitts, Pamela

    2010-08-01

    The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material.

  9. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water

    PubMed Central

    Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.

    2015-01-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. PMID:26231650

  10. Quasi-metagenomics and realtime sequencing aided detection and subtyping of Salmonella enterica from food samples.

    PubMed

    Hyeon, Ji-Yeon; Li, Shaoting; Mann, David A; Zhang, Shaokang; Li, Zhen; Chen, Yi; Deng, Xiangyu

    2017-12-01

    Metagenomics analysis of food samples promises isolation-independent detection and subtyping of foodborne bacterial pathogens in a single workflow. Selective concentration of Salmonella genomic DNA through immunomagnetic separation (IMS) and multiple displacement amplification (MDA) were shown to shorten culture enrichment of Salmonella -spiked raw chicken breast samples by over 12 hours while permitting serotyping and high-fidelity single nucleotide polymorphisms (SNP) typing of the pathogen using short shotgun sequencing reads. The herein termed quasi-metagenomics approach was evaluated on Salmonella -spiked lettuce and black peppercorn samples as well as retail chicken parts naturally contaminated with different serotypes of Salmonella. Between 8 and 24 h culture enrichment was required for detecting and subtyping naturally occurring Salmonella from unspiked chicken parts compared with 4 to 12 h culture enrichment when Salmonella -spiked food samples were analyzed, indicating the likely need for longer culture enrichment to revive low levels of stressed or injured Salmonella cells in food. Further acceleration of the workflow was achieved by real-time nanopore sequencing. After 1.5 hours of analysis on a potable sequencer, sufficient data were generated from sequencing IMS-MDA product of a cultured-enriched lettuce sample to allow serotyping and robust phylogenetic placement of the inoculated isolate. Importance Both culture enrichment and next-generation sequencing remain to be time-consuming processes for food testing where rapid methods for pathogen detection are widely available. Our study demonstrated substantial acceleration of the respective process through IMS-MDA and real-time nanopore sequencing. In one example, the combined use of the two methods delivered a less than 24 h turnaround time from a Salmonella -contaminated lettuce sample to phylogenetic identification of the pathogen. Improved efficiency like this is important for further expanding the use of whole genome and metagenomics sequencing in microbial analysis of food. Our results suggest the potential of the quasi-metagenomics approach in areas where rapid detection and subtyping of foodborne pathogens is important, such as foodborne outbreak response and precision tracking and monitoring of foodborne pathogens in production environments and supply chains. Copyright © 2017 American Society for Microbiology.

  11. Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique.

    PubMed

    Zou, Xiaohui; Tang, Guangpeng; Zhao, Xiang; Huang, Yan; Chen, Tao; Lei, Mingyu; Chen, Wenbing; Yang, Lei; Zhu, Wenfei; Zhuang, Li; Yang, Jing; Feng, Zhaomin; Wang, Dayan; Wang, Dingming; Shu, Yuelong

    2017-03-01

    Many viruses can cause respiratory diseases in humans. Although great advances have been achieved in methods of diagnosis, it remains challenging to identify pathogens in unexplained pneumonia (UP) cases. In this study, we applied next-generation sequencing (NGS) technology and a metagenomic approach to detect and characterize respiratory viruses in UP cases from Guizhou Province, China. A total of 33 oropharyngeal swabs were obtained from hospitalized UP patients and subjected to NGS. An unbiased metagenomic analysis pipeline identified 13 virus species in 16 samples. Human rhinovirus C was the virus most frequently detected and was identified in seven samples. Human measles virus, adenovirus B 55 and coxsackievirus A10 were also identified. Metagenomic sequencing also provided virus genomic sequences, which enabled genotype characterization and phylogenetic analysis. For cases of multiple infection, metagenomic sequencing afforded information regarding the quantity of each virus in the sample, which could be used to evaluate each viruses' role in the disease. Our study highlights the potential of metagenomic sequencing for pathogen identification in UP cases.

  12. Analysis of the distal gut bacterial community by 454-pyrosequencing in captive giraffes (Giraffa camelopardalis).

    PubMed

    AlZahal, Ousama; Valdes, Eduardo V; McBride, Brian W

    2016-01-01

    The objective of this study was to characterize the structure of the fecal bacterial community of five giraffes (Giraffa camelopardalis) at Disney's Animal Kingdom, FL. Fecal genomic DNA was extracted and variable regions 1-3 of the 16S rRNA gene was PCR-amplified and then sequenced. The MOTHUR software-program was used for sequence processing, diversity analysis, and classification. A total of 181,689 non-chimeric bacterial sequences were obtained, and average number of sequences per sample was 36,338 -± 8,818. Sequences were assigned to 8,284 operational taxonomic units (OTU) with 95% of genetic similarity, which included 2,942 singletons (36%). Number of OTUs per sample was 2,554 ± 264. Samples were normalized and alpha (intra-sample) diversity indices; Chao1, Inverse Simpson, Shannon, and coverage were estimated as 3,712 ± 430, 116 -± 70, 6.1 ± 0.4, and 96 ± 1%, respectively. Thirteen phyla were detected and Firmicutes, Bacteroidetes, and Spirochaetes were the most dominant phyla (more than 2% of total sequences), and constituted 92% of the classified sequences, 66% of total sequences, and 43% of total OTUs. Our computation predicted that three OTUs were likely to be present in at least three of the five samples at greater than 1% dominance rate. These OTUs were Treponema, an unidentified OTU belonging to the order Bacteroidales, and Ruminococcus. This report was the first to characterize the bacterial community of the distal gut in giraffes utilizing fecal samples, and it demonstrated that the distal gut of giraffes is likely a potential reservoir for a number of undocumented species of bacteria. © 2015 Wiley Periodicals, Inc.

  13. Implementation of Amplicon Parallel Sequencing Leads to Improvement of Diagnosis and Therapy of Lung Cancer Patients.

    PubMed

    König, Katharina; Peifer, Martin; Fassunke, Jana; Ihle, Michaela A; Künstlinger, Helen; Heydt, Carina; Stamm, Katrin; Ueckeroth, Frank; Vollbrecht, Claudia; Bos, Marc; Gardizi, Masyar; Scheffler, Matthias; Nogova, Lucia; Leenders, Frauke; Albus, Kerstin; Meder, Lydia; Becker, Kerstin; Florin, Alexandra; Rommerscheidt-Fuss, Ursula; Altmüller, Janine; Kloth, Michael; Nürnberg, Peter; Henkel, Thomas; Bikár, Sven-Ernö; Sos, Martin L; Geese, William J; Strauss, Lewis; Ko, Yon-Dschun; Gerigk, Ulrich; Odenthal, Margarete; Zander, Thomas; Wolf, Jürgen; Merkelbach-Bruse, Sabine; Buettner, Reinhard; Heukamp, Lukas C

    2015-07-01

    The Network Genomic Medicine Lung Cancer was set up to rapidly translate scientific advances into early clinical trials of targeted therapies in lung cancer performing molecular analyses of more than 3500 patients annually. Because sequential analysis of the relevant driver mutations on fixated samples is challenging in terms of workload, tissue availability, and cost, we established multiplex parallel sequencing in routine diagnostics. The aim was to analyze all therapeutically relevant mutations in lung cancer samples in a high-throughput fashion while significantly reducing turnaround time and amount of input DNA compared with conventional dideoxy sequencing of single polymerase chain reaction amplicons. In this study, we demonstrate the feasibility of a 102 amplicon multiplex polymerase chain reaction followed by sequencing on an Illumina sequencer on formalin-fixed paraffin-embedded tissue in routine diagnostics. Analysis of a validation cohort of 180 samples showed this approach to require significantly less input material and to be more reliable, robust, and cost-effective than conventional dideoxy sequencing. Subsequently, 2657 lung cancer patients were analyzed. We observed that comprehensive biomarker testing provided novel information in addition to histological diagnosis and clinical staging. In 2657 consecutively analyzed lung cancer samples, we identified driver mutations at the expected prevalence. Furthermore we found potentially targetable DDR2 mutations at a frequency of 3% in both adenocarcinomas and squamous cell carcinomas. Overall, our data demonstrate the utility of systematic sequencing analysis in a clinical routine setting and highlight the dramatic impact of such an approach on the availability of therapeutic strategies for the targeted treatment of individual cancer patients.

  14. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform.

    PubMed

    de Muinck, Eric J; Trosvik, Pål; Gilfillan, Gregor D; Hov, Johannes R; Sundaram, Arvind Y M

    2017-07-06

    Advances in sequencing technologies and bioinformatics have made the analysis of microbial communities almost routine. Nonetheless, the need remains to improve on the techniques used for gathering such data, including increasing throughput while lowering cost and benchmarking the techniques so that potential sources of bias can be better characterized. We present a triple-index amplicon sequencing strategy to sequence large numbers of samples at significantly lower c ost and in a shorter timeframe compared to existing methods. The design employs a two-stage PCR protocol, incorpo rating three barcodes to each sample, with the possibility to add a fourth-index. It also includes heterogeneity spacers to overcome low complexity issues faced when sequencing amplicons on Illumina platforms. The library preparation method was extensively benchmarked through analysis of a mock community in order to assess biases introduced by sample indexing, number of PCR cycles, and template concentration. We further evaluated the method through re-sequencing of a standardized environmental sample. Finally, we evaluated our protocol on a set of fecal samples from a small cohort of healthy adults, demonstrating good performance in a realistic experimental setting. Between-sample variation was mainly related to batch effects, such as DNA extraction, while sample indexing was also a significant source of bias. PCR cycle number strongly influenced chimera formation and affected relative abundance estimates of species with high GC content. Libraries were sequenced using the Illumina HiSeq and MiSeq platforms to demonstrate that this protocol is highly scalable to sequence thousands of samples at a very low cost. Here, we provide the most comprehensive study of performance and bias inherent to a 16S rRNA gene amplicon sequencing method to date. Triple-indexing greatly reduces the number of long custom DNA oligos required for library preparation, while the inclusion of variable length heterogeneity spacers minimizes the need for PhiX spike-in. This design results in a significant cost reduction of highly multiplexed amplicon sequencing. The biases we characterize highlight the need for highly standardized protocols. Reassuringly, we find that the biological signal is a far stronger structuring factor than the various sources of bias.

  15. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples.

    PubMed

    Umetsu, Kazuo; Iwabuchi, Naruki; Yuasa, Isao; Saitou, Naruya; Clark, Paul F; Boxshall, Geoff; Osawa, Motoki; Igarashi, Keiji

    2002-12-01

    The complete mitochondrial DNA (mtNDA) of the tadpole shrimp Triops cancriformis was sequenced. The sequence consisted of 15,101 bp with an A+T content of 69%. Its gene arrangement was identical with those sequences of the water flea (Daphnia pulex) and giant tiger prawn (Penaeus monodon), whereas it differed from that of the brine shrimp (Artemia franciscana) in the arrangement of its genes for tRNAs. Phylogenetic analysis revealed T. cancriformis to be more closely related to the water flea than to the brine shrimp and giant tiger prawn. We also compared the 16S rRNA sequences of five formalin-fixed tadpole shrimps that had been collected in five different locations and stored in a museum. The sequence divergence was in the range of 0-1.51%, suggesting that those samples were closely related to each other.

  16. Nanopore sequencing in microgravity

    PubMed Central

    McIntyre, Alexa B R; Rizzardi, Lindsay; Yu, Angela M; Alexander, Noah; Rosen, Gail L; Botkin, Douglas J; Stahl, Sarah E; John, Kristen K; Castro-Wallace, Sarah L; McGrath, Ken; Burton, Aaron S; Feinberg, Andrew P; Mason, Christopher E

    2016-01-01

    Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space. PMID:28725742

  17. Isolating Viral and Host RNA Sequences from Archival Material and Production of cDNA Libraries for High-Throughput DNA Sequencing

    PubMed Central

    Xiao, Yongli; Sheng, Zong-Mei; Taubenberger, Jeffery K.

    2015-01-01

    The vast majority of surgical biopsy and post-mortem tissue samples are formalin-fixed and paraffin-embedded (FFPE), but this process leads to RNA degradation that limits gene expression analysis. As an example, the viral RNA genome of the 1918 pandemic influenza A virus was previously determined in a 9-year effort by overlapping RT-PCR from post-mortem samples. Using the protocols described here, the full genome of the 1918 virus at high coverage was determined in one high-throughput sequencing run of a cDNA library derived from total RNA of a 1918 FFPE sample after duplex-specific nuclease treatments. This basic methodological approach should assist in the analysis of FFPE tissue samples isolated over the past century from a variety of infectious diseases. PMID:26344216

  18. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    PubMed

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  19. Use of Sequence-Independent, Single-Primer-Amplification (SISPA) for rapid detection, identification, and characterization of avian RNA viruses

    USDA-ARS?s Scientific Manuscript database

    Current technologies with next generation sequencing have revolutionized metagenomics analysis of clinical samples. To achieve the non-selective amplification and recovery of low abundance genetic sequences, a simplified Sequence-Independent, Single-Primer Amplification (SISPA) technique in combinat...

  20. Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping.

    PubMed

    Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Millard, Glenda M; O'Brien, Helen; Roulis, Eileen V; Liew, Yew-Wah; Martin, Jacqueline R; McGrath, Kelli A; Powley, Tanya; Flower, Robert L; Hyland, Catherine A

    2017-04-01

    Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting. © 2017 AABB.

  1. A comprehensive and scalable database search system for metaproteomics.

    PubMed

    Chatterjee, Sandip; Stupp, Gregory S; Park, Sung Kyu Robin; Ducom, Jean-Christophe; Yates, John R; Su, Andrew I; Wolan, Dennis W

    2016-08-16

    Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.

  2. Detection and characterization of hepatitis A virus circulating in Egypt.

    PubMed

    Hamza, Hazem; Abd-Elshafy, Dina Nadeem; Fayed, Sayed A; Bahgat, Mahmoud Mohamed; El-Esnawy, Nagwa Abass; Abdel-Mobdy, Emam

    2017-07-01

    Hepatitis A virus (HAV) still poses a considerable problem worldwide. In the current study, hepatitis A virus was recovered from wastewater samples collected from three wastewater treatment plants over one year. Using RT-PCR, HAV was detected in 43 out of 68 samples (63.2%) representing both inlet and outlet. Eleven positive samples were subjected to sequencing targeting the VP1-2A junction region. Phylogenetic analysis revealed that all samples belonged to subgenotype IB with few substitutions at the amino acid level. The complete sequence of one isolate (HAV/Egy/BI-11/2015) showed that the similarity at the amino acid level was not reflected at the nucleotide level. However, the deduced amino acid sequence derived from the complete nucleotide sequence showed distinct substitutions in the 2B, 2C, and 3A regions. Recombination analysis revealed a recombination event between X75215 (subgenotype IA) and AF268396 (subgenotype IB) involving a portion of the 2B nonstructural protein coding region (nucleotides 3757-3868) assuming the herein characterized sequence an actual recombinant. Despite the role of recombination in picornaviruses evolution, its involvement in HAV evolution has rarely been reported, and this may be due to the limited available complete HAV sequences. To our knowledge, this represents the first characterized complete sequence of an Egyptian isolate and the described recombination event provides an important update on the circulating HAV strains in Egypt.

  3. Whole genome sequencing identifies influenza A H3N2 transmission and offers superior resolution to classical typing methods.

    PubMed

    Meinel, Dominik M; Heinzinger, Susanne; Eberle, Ute; Ackermann, Nikolaus; Schönberger, Katharina; Sing, Andreas

    2018-02-01

    Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations. We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq. We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient. Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.

  4. Using PATIMDB to Create Bacterial Transposon Insertion Mutant Libraries

    PubMed Central

    Urbach, Jonathan M.; Wei, Tao; Liberati, Nicole; Grenfell-Lee, Daniel; Villanueva, Jacinto; Wu, Gang; Ausubel, Frederick M.

    2015-01-01

    PATIMDB is a software package for facilitating the generation of transposon mutant insertion libraries. The software has two main functions: process tracking and automated sequence analysis. The process tracking function specifically includes recording the status and fates of multiwell plates and samples in various stages of library construction. Automated sequence analysis refers specifically to the pipeline of sequence analysis starting with ABI files from a sequencing facility and ending with insertion location identifications. The protocols in this unit describe installation and use of PATIMDB software. PMID:19343706

  5. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures

    PubMed Central

    Lipinski, Leszek; Dziembowski, Andrzej

    2018-01-01

    Abstract Plasmids are mobile genetics elements that play an important role in the environmental adaptation of microorganisms. Although plasmids are usually analyzed in cultured microorganisms, there is a need for methods that allow for the analysis of pools of plasmids (plasmidomes) in environmental samples. To that end, several molecular biology and bioinformatics methods have been developed; however, they are limited to environments with low diversity and cannot recover large plasmids. Here, we present PlasFlow, a novel tool based on genomic signatures that employs a neural network approach for identification of bacterial plasmid sequences in environmental samples. PlasFlow can recover plasmid sequences from assembled metagenomes without any prior knowledge of the taxonomical or functional composition of samples with an accuracy up to 96%. It can also recover sequences of both circular and linear plasmids and can perform initial taxonomical classification of sequences. Compared to other currently available tools, PlasFlow demonstrated significantly better performance on test datasets. Analysis of two samples from heavy metal-contaminated microbial mats revealed that plasmids may constitute an important fraction of their metagenomes and carry genes involved in heavy-metal homeostasis, proving the pivotal role of plasmids in microorganism adaptation to environmental conditions. PMID:29346586

  6. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples.

    PubMed

    Churchill, Jennifer D; Stoljarova, Monika; King, Jonathan L; Budowle, Bruce

    2018-02-22

    The mitochondrial genome has a number of characteristics that provide useful information to forensic investigations. Massively parallel sequencing (MPS) technologies offer improvements to the quantitative analysis of the mitochondrial genome, specifically the interpretation of mixed mitochondrial samples. Two-person mixtures with nuclear DNA ratios of 1:1, 5:1, 10:1, and 20:1 of individuals from different and similar phylogenetic backgrounds and three-person mixtures with nuclear DNA ratios of 1:1:1 and 5:1:1 were prepared using the Precision ID mtDNA Whole Genome Panel and Ion Chef, and sequenced on the Ion PGM or Ion S5 sequencer (Thermo Fisher Scientific, Waltham, MA, USA). These data were used to evaluate whether and to what degree MPS mixtures could be deconvolved. Analysis was effective in identifying the major contributor in each instance, while SNPs from the minor contributor's haplotype only were identified in the 1:1, 5:1, and 10:1 two-person mixtures. While the major contributor was identified from the 5:1:1 mixture, analysis of the three-person mixtures was more complex, and the mixed haplotypes could not be completely parsed. These results indicate that mixed mitochondrial DNA samples may be interpreted with the use of MPS technologies.

  7. Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning

    PubMed Central

    Xu, Shengzhi; Cheng, Xiang; Li, Zhengyi; Xiong, Li

    2016-01-01

    In this paper, we study the problem of mining frequent sequences under the rigorous differential privacy model. We explore the possibility of designing a differentially private frequent sequence mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. We found, in differentially private FSM, the amount of required noise is proportionate to the number of candidate sequences. If we could effectively reduce the number of unpromising candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by leveraging a sampling-based candidate pruning technique, we propose a novel differentially private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample databases to further prune the candidate sequences generated based on the downward closure property. In particular, we use the noisy local support of candidate sequences in the sample databases to estimate which sequences are potentially frequent. To improve the accuracy of such private estimations, a sequence shrinking method is proposed to enforce the length constraint on the sample databases. Moreover, to decrease the probability of misestimating frequent sequences as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can privately find frequent sequences with high accuracy. PMID:26973430

  8. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    PubMed

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  9. Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects

    PubMed Central

    Yeri, Ashish; Courtright, Amanda; Reiman, Rebecca; Carlson, Elizabeth; Beecroft, Taylor; Janss, Alex; Siniard, Ashley; Richholt, Ryan; Balak, Chris; Rozowsky, Joel; Kitchen, Robert; Hutchins, Elizabeth; Winarta, Joseph; McCoy, Roger; Anastasi, Matthew; Kim, Seungchan; Huentelman, Matthew; Van Keuren-Jensen, Kendall

    2017-01-01

    Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18–25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual’s exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals. PMID:28303895

  10. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    PubMed

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.

  11. A generic assay for whole-genome amplification and deep sequencing of enterovirus A71

    PubMed Central

    Tan, Le Van; Tuyen, Nguyen Thi Kim; Thanh, Tran Tan; Ngan, Tran Thuy; Van, Hoang Minh Tu; Sabanathan, Saraswathy; Van, Tran Thi My; Thanh, Le Thi My; Nguyet, Lam Anh; Geoghegan, Jemma L.; Ong, Kien Chai; Perera, David; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Anh, Nguyen To; Ha, Do Quang; Qui, Phan Tu; Viet, Do Chau; Tuan, Ha Manh; Wong, Kum Thong; Holmes, Edward C.; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier

    2015-01-01

    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples. PMID:25704598

  12. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing.

    PubMed

    Oono, Ryoko

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.

  13. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing

    PubMed Central

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889

  14. Monitoring and Surveillance of Marine Invasive Species in Californian Waters by DNA Barcoding: Methodological and Analytical Solutions

    NASA Astrophysics Data System (ADS)

    Campbell, T. L.; Geller, J. B.; Heller, P.; Ruiz, G.; Chang, A.; McCann, L.; Ceballos, L.; Marraffini, M.; Ashton, G.; Larson, K.; Havard, S.; Meagher, K.; Wheelock, M.; Drake, C.; Rhett, G.

    2016-02-01

    The Ballast Water Management Act, the Marine Invasive Species Act, and the Coastal Ecosystem Protection Act require the California Department of Fish and Wildlife to monitor and evaluate the extent of biological invasions in the state's marine and estuarine waters. This has been performed statewide, using a variety of methodologies. Conventional sample collection and processing is laborious, slow and costly, and may require considerable taxonomic expertise requiring detailed time-consuming microscopic study of multiple specimens. These factors limit the volume of biomass that can be searched for introduced species. New technologies continue to reduce the cost and increase the throughput of genetic analyses, which become efficient alternatives to traditional morphological analysis for identification, monitoring and surveillance of marine invasive species. Using next-generation sequencing of mitochondrial Cytochrome c oxidase subunit I (COI) and nuclear large subunit ribosomal RNA (LSU), we analyzed over 15,000 individual marine invertebrates collected in Californian waters. We have created sequence databases of California native and non-native species to assist in molecular identification and surveillance in North American waters. Metagenetics, the next-generation sequencing of environmental samples with comparison to DNA sequence databases, is a faster and cost-effective alternative to individual sample analysis. We have sequenced from biomass collected from whole settlement plates and plankton in California harbors, and used our introduced species database to create species lists. We can combine these species lists for individual marinas with collected environmental data, such as temperature, salinity, and dissolved oxygen to understand the ecology of marine invasions. Here we discuss high throughput sampling, sequencing, and COASTLINE, our data analysis answer to challenges working with hundreds of millions of sequencing reads from tens of thousands of specimens.

  15. Forensic massively parallel sequencing data analysis tool: Implementation of MyFLq as a standalone web- and Illumina BaseSpace(®)-application.

    PubMed

    Van Neste, Christophe; Gansemans, Yannick; De Coninck, Dieter; Van Hoofstat, David; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip

    2015-03-01

    Routine use of massively parallel sequencing (MPS) for forensic genomics is on the horizon. The last few years, several algorithms and workflows have been developed to analyze forensic MPS data. However, none have yet been tailored to the needs of the forensic analyst who does not possess an extensive bioinformatics background. We developed our previously published forensic MPS data analysis framework MyFLq (My-Forensic-Loci-queries) into an open-source, user-friendly, web-based application. It can be installed as a standalone web application, or run directly from the Illumina BaseSpace environment. In the former, laboratories can keep their data on-site, while in the latter, data from forensic samples that are sequenced on an Illumina sequencer can be uploaded to Basespace during acquisition, and can subsequently be analyzed using the published MyFLq BaseSpace application. Additional features were implemented such as an interactive graphical report of the results, an interactive threshold selection bar, and an allele length-based analysis in addition to the sequenced-based analysis. Practical use of the application is demonstrated through the analysis of four 16-plex short tandem repeat (STR) samples, showing the complementarity between the sequence- and length-based analysis of the same MPS data. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    PubMed

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench?

    PubMed

    Seneca, Sara; Vancampenhout, Kim; Van Coster, Rudy; Smet, Joél; Lissens, Willy; Vanlander, Arnaud; De Paepe, Boel; Jonckheere, An; Stouffs, Katrien; De Meirleir, Linda

    2015-01-01

    Next-generation sequencing (NGS), an innovative sequencing technology that enables the successful analysis of numerous gene sequences in a massive parallel sequencing approach, has revolutionized the field of molecular biology. Although NGS was introduced in a rather recent past, the technology has already demonstrated its potential and effectiveness in many research projects, and is now on the verge of being introduced into the diagnostic setting of routine laboratories to delineate the molecular basis of genetic disease in undiagnosed patient samples. We tested a benchtop device on retrospective genomic DNA (gDNA) samples of controls and patients with a clinical suspicion of a mitochondrial DNA disorder. This Ion Torrent Personal Genome Machine platform is a high-throughput sequencer with a fast turnaround time and reasonable running costs. We challenged the chemistry and technology with the analysis and processing of a mutational spectrum composed of samples with single-nucleotide substitutions, indels (insertions and deletions) and large single or multiple deletions, occasionally in heteroplasmy. The output data were compared with previously obtained conventional dideoxy sequencing results and the mitochondrial revised Cambridge Reference Sequence (rCRS). We were able to identify the majority of all nucleotide alterations, but three false-negative results were also encountered in the data set. At the same time, the poor performance of the PGM instrument in regions associated with homopolymeric stretches generated many false-positive miscalls demanding additional manual curation of the data.

  18. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  19. CpG PatternFinder: a Windows-based utility program for easy and rapid identification of the CpG methylation status of DNA.

    PubMed

    Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C

    2007-09-01

    The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.

  20. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Top-down analysis of protein samples by de novo sequencing techniques.

    PubMed

    Vyatkina, Kira; Wu, Si; Dekker, Lennard J M; VanDuijn, Martijn M; Liu, Xiaowen; Tolić, Nikola; Luider, Theo M; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2016-09-15

    Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns. Freely available on the web at http://bioinf.spbau.ru/en/twister vyatkina@spbau.ru or ppevzner@ucsd.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Qualitative and quantitative assessment of Illumina's forensic STR and SNP kits on MiSeq FGx™.

    PubMed

    Sharma, Vishakha; Chow, Hoi Yan; Siegel, Donald; Wurmbach, Elisa

    2017-01-01

    Massively parallel sequencing (MPS) is a powerful tool transforming DNA analysis in multiple fields ranging from medicine, to environmental science, to evolutionary biology. In forensic applications, MPS offers the ability to significantly increase the discriminatory power of human identification as well as aid in mixture deconvolution. However, before the benefits of any new technology can be employed, a thorough evaluation of its quality, consistency, sensitivity, and specificity must be rigorously evaluated in order to gain a detailed understanding of the technique including sources of error, error rates, and other restrictions/limitations. This extensive study assessed the performance of Illumina's MiSeq FGx MPS system and ForenSeq™ kit in nine experimental runs including 314 reaction samples. In-depth data analysis evaluated the consequences of different assay conditions on test results. Variables included: sample numbers per run, targets per run, DNA input per sample, and replications. Results are presented as heat maps revealing patterns for each locus. Data analysis focused on read numbers (allele coverage), drop-outs, drop-ins, and sequence analysis. The study revealed that loci with high read numbers performed better and resulted in fewer drop-outs and well balanced heterozygous alleles. Several loci were prone to drop-outs which led to falsely typed homozygotes and therefore to genotype errors. Sequence analysis of allele drop-in typically revealed a single nucleotide change (deletion, insertion, or substitution). Analyses of sequences, no template controls, and spurious alleles suggest no contamination during library preparation, pooling, and sequencing, but indicate that sequencing or PCR errors may have occurred due to DNA polymerase infidelities. Finally, we found utilizing Illumina's FGx System at recommended conditions does not guarantee 100% outcomes for all samples tested, including the positive control, and required manual editing due to low read numbers and/or allele drop-in. These findings are important for progressing towards implementation of MPS in forensic DNA testing.

  3. An Optimal Bahadur-Efficient Method in Detection of Sparse Signals with Applications to Pathway Analysis in Sequencing Association Studies.

    PubMed

    Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui

    2016-01-01

    Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.

  4. Food Fish Identification from DNA Extraction through Sequence Analysis

    ERIC Educational Resources Information Center

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  5. A comparative analysis of whole genome sequencing of esophageal adenocarcinoma pre- and post-chemotherapy

    PubMed Central

    Noorani, Ayesha; Lynch, Andy G.; Achilleos, Achilleas; Eldridge, Matthew; Bower, Lawrence; Weaver, Jamie M.J.; Crawte, Jason; Ong, Chin-Ann; Shannon, Nicholas; MacRae, Shona; Grehan, Nicola; Nutzinger, Barbara; O'Donovan, Maria; Hardwick, Richard; Tavaré, Simon; Fitzgerald, Rebecca C.

    2017-01-01

    The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer. PMID:28465312

  6. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water.

    PubMed

    Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S

    2015-10-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing

    PubMed Central

    Rocher, Solen; Jean, Martine; Castonguay, Yves; Belzile, François

    2015-01-01

    Genotyping-by-sequencing (GBS) is a relatively low-cost high throughput genotyping technology based on next generation sequencing and is applicable to orphan species with no reference genome. A combination of genome complexity reduction and multiplexing with DNA barcoding provides a simple and affordable way to resolve allelic variation between plant samples or populations. GBS was performed on ApeKI libraries using DNA from 48 genotypes each of two heterogeneous populations of tetraploid alfalfa (Medicago sativa spp. sativa): the synthetic cultivar Apica (ATF0) and a derived population (ATF5) obtained after five cycles of recurrent selection for superior tolerance to freezing (TF). Nearly 400 million reads were obtained from two lanes of an Illumina HiSeq 2000 sequencer and analyzed with the Universal Network-Enabled Analysis Kit (UNEAK) pipeline designed for species with no reference genome. Following the application of whole dataset-level filters, 11,694 single nucleotide polymorphism (SNP) loci were obtained. About 60% had a significant match on the Medicago truncatula syntenic genome. The accuracy of allelic ratios and genotype calls based on GBS data was directly assessed using 454 sequencing on a subset of SNP loci scored in eight plant samples. Sequencing depth in this study was not sufficient for accurate tetraploid allelic dosage, but reliable genotype calls based on diploid allelic dosage were obtained when using additional quality filtering. Principal Component Analysis of SNP loci in plant samples revealed that a small proportion (<5%) of the genetic variability assessed by GBS is able to differentiate ATF0 and ATF5. Our results confirm that analysis of GBS data using UNEAK is a reliable approach for genome-wide discovery of SNP loci in outcrossed polyploids. PMID:26115486

  8. Evaluation of the Abbott RealTime HCV genotype II plus RUO (PLUS) assay with reference to core and NS5B sequencing.

    PubMed

    Mallory, Melanie A; Lucic, Danijela; Ebbert, Mark T W; Cloherty, Gavin A; Toolsie, Dan; Hillyard, David R

    2017-05-01

    HCV genotyping remains a critical tool for guiding initiation of therapy and selecting the most appropriate treatment regimen. Current commercial genotyping assays may have difficulty identifying 1a, 1b and genotype 6. To evaluate the concordance for identifying 1a, 1b, and genotype 6 between two methods: the PLUS assay and core/NS5B sequencing. This study included 236 plasma and serum samples previously genotyped by core/NS5B sequencing. Of these, 25 samples were also previously tested by the Abbott RealTime HCV GT II Research Use Only (RUO) assay and yielded ambiguous results. The remaining 211 samples were routine genotype 1 (n=169) and genotype 6 (n=42). Genotypes obtained from sequence data were determined using a laboratory-developed HCV sequence analysis tool and the NCBI non-redundant database. Agreement between the PLUS assay and core/NS5B sequencing for genotype 1 samples was 95.8% (162/169), with 96% (127/132) and 95% (35/37) agreement for 1a and 1b samples respectively. PLUS results agreed with core/NS5B sequencing for 83% (35/42) of unselected genotype 6 samples, with the remaining seven "not detected" by the PLUS assay. Among the 25 samples with ambiguous GT II results, 15 were concordant by PLUS and core/NS5B sequencing, nine were not detected by PLUS, and one sample had an internal control failure. The PLUS assay is an automated method that identifies 1a, 1b and genotype 6 with good agreement with gold-standard core/NS5B sequencing and can aid in the resolution of certain genotype samples with ambiguous GT II results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Two‐phase designs for joint quantitative‐trait‐dependent and genotype‐dependent sampling in post‐GWAS regional sequencing

    PubMed Central

    Espin‐Garcia, Osvaldo; Craiu, Radu V.

    2017-01-01

    ABSTRACT We evaluate two‐phase designs to follow‐up findings from genome‐wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation‐maximization‐based inference under a semiparametric maximum likelihood formulation tailored for post‐GWAS inference. A GWAS‐SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT‐SNP‐dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme‐QT strata yields significant power improvements compared to marginal QT‐ or SNP‐based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. PMID:29239496

  10. Early Detection of NSCLC Using Stromal Markers in Peripheral Blood

    DTIC Science & Technology

    2016-09-01

    circulating myeloid cells, flow cytometry, RNA -sequencing, expression profiling. 3. ACCOMPLISHMENTS:  What were the major goals of the project...Subtask 2: Flow cytometry sorting of circulating myeloid cells. Subtask 3: RNA -Sequencing Subtask 4: RNA -seq data analysis Subtask 5: Feasible RT-PCR...accomplished the patient recruitment, flow cytometry sorting of circulating myeloid cells, RNA -sequencing of the samples. During the RNA - seq data analysis, we

  11. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes

    USDA-ARS?s Scientific Manuscript database

    In this Genomics Era, vast amounts of next generation sequencing data have become publicly-available for multiple genomes across hundreds of species. Analysis of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset...

  12. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  13. Design and Analysis of Single-Cell Sequencing Experiments.

    PubMed

    Grün, Dominic; van Oudenaarden, Alexander

    2015-11-05

    Recent advances in single-cell sequencing hold great potential for exploring biological systems with unprecedented resolution. Sequencing the genome of individual cells can reveal somatic mutations and allows the investigation of clonal dynamics. Single-cell transcriptome sequencing can elucidate the cell type composition of a sample. However, single-cell sequencing comes with major technical challenges and yields complex data output. In this Primer, we provide an overview of available methods and discuss experimental design and single-cell data analysis. We hope that these guidelines will enable a growing number of researchers to leverage the power of single-cell sequencing. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples

    PubMed Central

    Quick, Josh; Grubaugh, Nathan D; Pullan, Steven T; Claro, Ingra M; Smith, Andrew D; Gangavarapu, Karthik; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rogers, Thomas F; Beutler, Nathan A; Burton, Dennis R; Lewis-Ximenez, Lia Laura; de Jesus, Jaqueline Goes; Giovanetti, Marta; Hill, Sarah; Black, Allison; Bedford, Trevor; Carroll, Miles W; Nunes, Marcio; Alcantara, Luiz Carlos; Sabino, Ester C; Baylis, Sally A; Faria, Nuno; Loose, Matthew; Simpson, Jared T; Pybus, Oliver G; Andersen, Kristian G; Loman, Nicholas J

    2018-01-01

    Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples without isolation remains challenging for viruses such as Zika, where metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence complete genomes comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimised library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved starting with clinical samples in 1-2 days following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. PMID:28538739

  15. Homology difference analysis of invasive mealybug species Phenacoccus solenopsis Tinsley in Southern China with COI gene sequence variability.

    PubMed

    Wu, F Z; Ma, J; Hu, X N; Zeng, L

    2015-02-01

    The mealybug species Phenacoccus solenopsis (P. solenopsis) has caused much agricultural damage since its recent invasion in China. However, the source of this invasion remains unclear. This study uses molecular methods to clarify the relationships among different population of P. solenopsis from China, USA, Pakistan, India, and Vietnam to determine the geographic origin of the introduction of this species into China. P. solenopsis samples were collected from 25 different locations in three provinces of Southern China. Samples from the USA, Pakistan, and Vietnam were also obtained. Parts of the mitochondrial genes for cytochrome oxidase I (COI) were sequenced for each sample. Homologous DNA sequences of the samples from the USA and India were downloaded from Gen Bank. Two haplotypes were found in China. The first was from most samples from the Guangdong, Guangxi, and Hainan populations in the China and Pakistan groups, and the second from a few samples from the Guangdong, Guangxi, Hainan populations in the China, Pakistan, India, and Vietnam groups. As shown in the maximum likelihood of trees constructed using the COI sequences, these samples belonged to two clades. Phylogenetic analysis suggested that most P. solenopsis mealybugs in Southern China are probably closely related to populations in Pakistan. The variation, relationship, expansion, and probable geographic origin of P. solenopsis mealybugs in Southern China are also discussed.

  16. Using Phylogenetic Analysis to Detect Market Substitution of Atlantic Salmon for Pacific Salmon: An Introductory Biology Laboratory Experiment

    ERIC Educational Resources Information Center

    Cline, Erica; Gogarten, Jennifer

    2012-01-01

    We describe a laboratory exercise developed for the cell and molecular biology quarter of a year-long majors' undergraduate introductory biology sequence. In an analysis of salmon samples collected by students in their local stores and restaurants, DNA sequencing and phylogenetic analysis were used to detect market substitution of Atlantic salmon…

  17. Illumina MiSeq Sequencing for Preliminary Analysis of Microbiome Causing Primary Endodontic Infections in Egypt

    PubMed Central

    Azab, Marwa Mohamed; Fayyad, Dalia Mukhtar

    2018-01-01

    The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials. PMID:29849646

  18. [Molecular identification of astragali radix and its adulterants by ITS sequences].

    PubMed

    Cui, Zhan-Hu; Li, Yue; Yuan, Qing-Jun; Zhou, Li-She; Li, Min-Hui

    2012-12-01

    To explore a new method for identification Astragali Radix from its adulterants by using ITS sequence. Thirteen samples of the different Astragali Radix materials and 6 samples of the adulterants of the roots of Hedysarum polybotrys, Medicago sativa and Althaea rosea were collected. ITS sequence was amplified by PCR and sequenced unidirectionally. The interspecific K-2-P distances of Astragali Radix and its adulterants were calculated, and NJ tree and UPGMA tree were constructed by MEGA 4. ITS sequences were obtained from 19 samples respectively, there were Astragali Radix 646-650 bp, H. polybotrys 664 bp, Medicago sativa 659 bp, Althaea rosea 728 bp, which were registered in the GenBank. Phylogeny trees reconstruction using NJ and UPGMA analysis based on ITS nucleotide sequences can effectively distinguish Astragali Radix from adulterants. ITS sequence can be used to identify Astragali Radix from its adulterants successfully and is an efficient molecular marker for authentication of Astragali Radix and its adulterants.

  19. Confirmation of a novel siadenovirus species detected in raptors: partial sequence and phylogenetic analysis.

    PubMed

    Kovács, Endre R; Benko, Mária

    2009-03-01

    Partial genome characterisation of a novel adenovirus, found recently in organ samples of multiple species of dead birds of prey, was carried out by sequence analysis of PCR-amplified DNA fragments. The virus, named as raptor adenovirus 1 (RAdV-1), has originally been detected by a nested PCR method with consensus primers targeting the adenoviral DNA polymerase gene. Phylogenetic analysis with the deduced amino acid sequence of the small PCR product has implied a new siadenovirus type present in the samples. Since virus isolation attempts remained unsuccessful, further characterisation of this putative novel siadenovirus was carried out with the use of PCR on the infected organ samples. The DNA sequence of the central genome part of RAdV-1, encompassing nine full (pTP, 52K, pIIIa, III, pVII, pX, pVI, hexon, protease) and two partial (DNA polymerase and DBP) genes and exceeding 12 kb pairs in size, was determined. Phylogenetic tree reconstructions, based on several genes, unambiguously confirmed the preliminary classification of RAdV-1 as a new species within the genus Siadenovirus. Further study of RAdV-1 is of interest since it represents a rare adenovirus genus of yet undetermined host origin.

  20. Migration pattern of hepatitis A virus genotype IA in North-Central Tunisia.

    PubMed

    Beji-Hamza, Abir; Taffon, Stefania; Mhalla, Salma; Lo Presti, Alessandra; Equestre, Michele; Chionne, Paola; Madonna, Elisabetta; Cella, Eleonora; Bruni, Roberto; Ciccozzi, Massimo; Aouni, Mahjoub; Ciccaglione, Anna Rita

    2015-02-08

    Hepatitis A virus (HAV) epidemiology in Tunisia has changed from high to intermediate endemicity in the last decades. However, several outbreaks continue to occur. The last reported sequences from Tunisian HAV strains date back to 2006. In order to provide an updated overview of the strains currently circulating in Tunisia, a large-scale molecular analysis of samples from hepatitis A cases was performed, the first in Tunisia. Biological samples were collected from patients with laboratory confirmed hepatitis A: 145 sera samples in Tunis, Monastir, Sousse and Kairouan from 2008 to 2013 and 45 stool samples in Mahdia in 2009. HAV isolates were characterised by nested RT-PCR (VP1/2A region) and sequencing. The sequences finally obtained from 81 samples showed 78 genotype IA and 3 genotype IB isolates. A Tunisian genotype IA sequence dataset, including both the 78 newly obtained IA sequences and 51 sequences retrieved from GenBank, was used for phylogenetic investigation, including analysis of migration pattern among six towns. Virus gene flow from Sfax and Monastir was directed to all other towns; in contrast, the gene flows from Sousse, Tunis, Mahdia and Kairouan were directed to three, two, one and no towns, respectively. Several different HAV strains co-circulate in Tunisia, but the predominant genotype still continues to be IA (78/81, 96% isolates). A complex gene flow (migration) of HAV genotype IA was observed, with Sfax and Monastir showing gene flows to all other investigated towns. This approach coupled to a wider sampling can prove useful to investigate the factors underlying the spread of HAV in Tunisia and, thus, to implement appropriate preventing measures.

  1. PathoScope 2.0: a complete computational framework for strain identification in environmental or clinical sequencing samples

    PubMed Central

    2014-01-01

    Background Recent innovations in sequencing technologies have provided researchers with the ability to rapidly characterize the microbial content of an environmental or clinical sample with unprecedented resolution. These approaches are producing a wealth of information that is providing novel insights into the microbial ecology of the environment and human health. However, these sequencing-based approaches produce large and complex datasets that require efficient and sensitive computational analysis workflows. Many recent tools for analyzing metagenomic-sequencing data have emerged, however, these approaches often suffer from issues of specificity, efficiency, and typically do not include a complete metagenomic analysis framework. Results We present PathoScope 2.0, a complete bioinformatics framework for rapidly and accurately quantifying the proportions of reads from individual microbial strains present in metagenomic sequencing data from environmental or clinical samples. The pipeline performs all necessary computational analysis steps; including reference genome library extraction and indexing, read quality control and alignment, strain identification, and summarization and annotation of results. We rigorously evaluated PathoScope 2.0 using simulated data and data from the 2011 outbreak of Shiga-toxigenic Escherichia coli O104:H4. Conclusions The results show that PathoScope 2.0 is a complete, highly sensitive, and efficient approach for metagenomic analysis that outperforms alternative approaches in scope, speed, and accuracy. The PathoScope 2.0 pipeline software is freely available for download at: http://sourceforge.net/projects/pathoscope/. PMID:25225611

  2. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses

    PubMed Central

    Liu, Ruijie; Holik, Aliaksei Z.; Su, Shian; Jansz, Natasha; Chen, Kelan; Leong, Huei San; Blewitt, Marnie E.; Asselin-Labat, Marie-Liesse; Smyth, Gordon K.; Ritchie, Matthew E.

    2015-01-01

    Variations in sample quality are frequently encountered in small RNA-sequencing experiments, and pose a major challenge in a differential expression analysis. Removal of high variation samples reduces noise, but at a cost of reducing power, thus limiting our ability to detect biologically meaningful changes. Similarly, retaining these samples in the analysis may not reveal any statistically significant changes due to the higher noise level. A compromise is to use all available data, but to down-weight the observations from more variable samples. We describe a statistical approach that facilitates this by modelling heterogeneity at both the sample and observational levels as part of the differential expression analysis. At the sample level this is achieved by fitting a log-linear variance model that includes common sample-specific or group-specific parameters that are shared between genes. The estimated sample variance factors are then converted to weights and combined with observational level weights obtained from the mean–variance relationship of the log-counts-per-million using ‘voom’. A comprehensive analysis involving both simulations and experimental RNA-sequencing data demonstrates that this strategy leads to a universally more powerful analysis and fewer false discoveries when compared to conventional approaches. This methodology has wide application and is implemented in the open-source ‘limma’ package. PMID:25925576

  3. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.

    PubMed

    Walsh, Aaron M; Crispie, Fiona; O'Sullivan, Orla; Finnegan, Laura; Claesson, Marcus J; Cotter, Paul D

    2018-03-20

    The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R 2  = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R 2  = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.

  4. ATYPICAL CHLAMYDIACEAE IN WILD POPULATIONS OF HAWKS ( BUTEO SPP.) IN CALIFORNIA.

    PubMed

    Luján-Vega, Charlene; Hawkins, Michelle G; Johnson, Christine K; Briggs, Christopher; Vennum, Chris; Bloom, Peter H; Hull, Joshua M; Cray, Carolyn; Pesti, Denise; Johnson, Lisa; Ciembor, Paula; Ritchie, Branson R

    2018-03-01

    Chlamydiaceae bacteria infect many vertebrate hosts, and previous reports based on polymerase chain reaction (PCR) assays and serologic assays that are prone to cross-reaction among chlamydial organisms have been used to describe the prevalence of either DNA fragments or antibodies to Chlamydia spp. in wild raptorial populations. This study reports the PCR-based prevalence of Chlamydiaceae DNA that does not 100% match any avian or mammalian Chlamydiaceae in wild populations of hawks in California Buteo species. In this study, multimucosal swab samples ( n = 291) for quantitative PCR (qPCR) and plasma ( n = 78) for serology were collected from wild hawks. All available plasma samples were negative for antibodies using a C. psittaci-specific elementary body agglutination test (EBA; n = 78). For IgY antibodies all 51 available samples were negative using the indirect immunofluorescent assay. The overall prevalence of Chlamydiaceae DNA detection in wild Buteo species sampled was 1.37% (4/291) via qPCR-based analysis. Two fledgling Swainson's hawks ( Buteo swainsoni) and two juvenile red-tailed hawks ( Buteo jamaicensis) were positive by qPCR-based assay for an atypical chlamydial sequence that did not 100% match any known C. psittaci genotype. Positive swab samples from these four birds were sequenced based on the ompA gene and compared by high-resolution melt analysis with all known avian and mammalian Chlamydiaceae. The amplicon sequence did not 100% match any known avian chlamydial sequence; however, it was most similar (98.6%) to C. psittaci M56, a genotype that is typically found in muskrats and hares. Culture and full genome sequence analysis of Chlamydia spp. isolated from diseased hawks will be necessary to classify this organism and to better understand its epizootiology and potential health impact on wild Buteo populations in California.

  5. Optimization of whole-transcriptome amplification from low cell density deep-sea microbial samples for metatranscriptomic analysis.

    PubMed

    Wu, Jieying; Gao, Weimin; Zhang, Weiwen; Meldrum, Deirdre R

    2011-01-01

    Limitation in sample quality and quantity is one of the big obstacles for applying metatranscriptomic technologies to explore gene expression and functionality of microbial communities in natural environments. In this study, several amplification methods were evaluated for whole-transcriptome amplification of deep-sea microbial samples, which are of low cell density and high impurity. The best amplification method was identified and incorporated into a complete protocol to isolate and amplify deep-sea microbial samples. In the protocol, total RNA was first isolated by a modified method combining Trizol (Invitrogen, CA) and RNeasy (QIAGEN, CA) method, amplified with a WT-Ovation™ Pico RNA Amplification System (NuGEN, CA), and then converted to double-strand DNA from single-strand cDNA with a WT-Ovation™ Exon Module (NuGEN, CA). The products from the whole-transcriptome amplification of deep-sea microbial samples were assessed first through random clone library sequencing. The BLAST search results showed that marine-based sequences are dominant in the libraries, consistent with the ecological source of the samples. The products were then used for next-generation Roche GS FLX Titanium sequencing to obtain metatranscriptome data. Preliminary analysis of the metatranscriptomic data showed good sequencing quality. Although the protocol was designed and demonstrated to be effective for deep-sea microbial samples, it should be applicable to similar samples from other extreme environments in exploring community structure and functionality of microbial communities. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    PubMed

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  7. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure.

    PubMed

    Marshall, Charla; Sturk-Andreaggi, Kimberly; Daniels-Higginbotham, Jennifer; Oliver, Robert Sean; Barritt-Ross, Suzanne; McMahon, Timothy P

    2017-11-01

    Next-generation ancient DNA technologies have the potential to assist in the analysis of degraded DNA extracted from forensic specimens. Mitochondrial genome (mitogenome) sequencing, specifically, may be of benefit to samples that fail to yield forensically relevant genetic information using conventional PCR-based techniques. This report summarizes the Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory's (AFMES-AFDIL) performance evaluation of a Next-Generation Sequencing protocol for degraded and chemically treated past accounting samples. The procedure involves hybridization capture for targeted enrichment of mitochondrial DNA, massively parallel sequencing using Illumina chemistry, and an automated bioinformatic pipeline for forensic mtDNA profile generation. A total of 22 non-probative samples and associated controls were processed in the present study, spanning a range of DNA quantity and quality. Data were generated from over 100 DNA libraries by ten DNA analysts over the course of five months. The results show that the mitogenome sequencing procedure is reliable and robust, sensitive to low template (one ng control DNA) as well as degraded DNA, and specific to the analysis of the human mitogenome. Haplotypes were overall concordant between NGS replicates and with previously generated Sanger control region data. Due to the inherent risk for contamination when working with low-template, degraded DNA, a contamination assessment was performed. The consumables were shown to be void of human DNA contaminants and suitable for forensic use. Reagent blanks and negative controls were analyzed to determine the background signal of the procedure. This background signal was then used to set analytical and reporting thresholds, which were designated at 4.0X (limit of detection) and 10.0X (limit of quantiation) average coverage across the mitogenome, respectively. Nearly all human samples exceeded the reporting threshold, although coverage was reduced in chemically treated samples resulting in a ∼58% passing rate for these poor-quality samples. A concordance assessment demonstrated the reliability of the NGS data when compared to known Sanger profiles. One case sample was shown to be mixed with a co-processed sample and two reagent blanks indicated the presence of DNA above the analytical threshold. This contamination was attributed to sequencing crosstalk from simultaneously sequenced high-quality samples to include the positive control. Overall this study demonstrated that hybridization capture and Illumina sequencing provide a viable method for mitogenome sequencing of degraded and chemically treated skeletal DNA samples, yet may require alternative measures of quality control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. An Outbreak of Acute Hepatitis Caused by Genotype IB Hepatitis A Viruses Contaminating the Water Supply in Thailand.

    PubMed

    Ruchusatsawat, Kriangsak; Wongpiyabovorn, Jongkonnee; Kawidam, Chonthicha; Thiemsing, Laddawan; Sangkitporn, Somchai; Yoshizaki, Sayaka; Tatsumi, Masashi; Takeda, Naokazu; Ishii, Koji

    2016-01-01

    In 2000, an outbreak of acute hepatitis A was reported in a province adjacent to Bangkok, Thailand. To investigate the cause of the 2000 hepatitis A outbreaks in Thailand using molecular epidemiological analysis. Serum and stool specimens were collected from patients who were clinically diagnosed with acute viral hepatitis. Water samples from drinking water and deep-drilled wells were also collected. These specimens were subjected to polymerase chain reaction (PCR) amplification and sequencing of the VP1/2A region of the hepatitis A virus (HAV) genome. The entire genome sequence of one of the fecal specimens was determined and phylogenetically analyzed with those of known HAV sequences. Eleven of 24 fecal specimens collected from acute viral hepatitis patients were positive as determined by semi- nested reverse transcription PCR targeting the VP1/2A region of HAV. The nucleotide sequence of these samples had an identical genotype IB sequence, suggesting that the same causative agent was present. The complete nucleotide sequence derived from one of the samples indicated that the Thai genotype IB strain should be classified in a unique phylogenetic cluster. The analysis using an adjusted odds ratio showed that the consumption of groundwater was the most likely risk factor associated with the disease. © 2017 S. Karger AG, Basel.

  9. Whole Transcriptome Sequencing Enables Discovery and Analysis of Viruses in Archived Primary Central Nervous System Lymphomas

    PubMed Central

    DeBoever, Christopher; Reid, Erin G.; Smith, Erin N.; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A.

    2013-01-01

    Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples. PMID:24023918

  10. QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model.

    PubMed

    Liu, Lian; Zhang, Shao-Wu; Huang, Yufei; Meng, Jia

    2017-08-31

    As a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now available in the form of count-based data, with which it is often of interests to study the dynamics at epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately estimated due to their low expression level, making differential RNA methylation analysis a difficult task. We present QNB, a statistical approach for differential RNA methylation analysis with count-based small-sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial distributions with their variances and means linked by local regressions, and in the way, the input control samples are also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only for estimating the background, QNB uses a more robust estimator for gene expression by combining information from both input and IP samples, which could largely improve the testing performance for very lowly expressed genes. QNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications, including but not limited to RNA bisulfite sequencing, m 1 A-Seq, Par-CLIP, RIP-Seq, etc.

  11. Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe

    PubMed Central

    Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.

    2002-01-01

    The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182

  12. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.

    PubMed

    Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M

    2002-01-01

    Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.

  13. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions

    PubMed Central

    Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel

    2012-01-01

    The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125

  14. Preserved Proteins from Extinct Bison latifrons Identified by Tandem Mass Spectrometry; Hydroxylysine Glycosides are a Common Feature of Ancient Collagen*

    PubMed Central

    Hill, Ryan C.; Wither, Matthew J.; Nemkov, Travis; Barrett, Alexander; D'Alessandro, Angelo; Dzieciatkowska, Monika; Hansen, Kirk C.

    2015-01-01

    Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827. PMID:25948757

  15. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  16. Novel and canine genotypes of Giardia duodenalis in harbor seals ( Phoca vitulina richardsi).

    PubMed

    Gaydos, J K; Miller, W A; Johnson, C; Zornetzer, H; Melli, A; Packham, A; Jeffries, S J; Lance, M M; Conrad, P A

    2008-12-01

    Feces of harbor seals (Phoca vitulina richardsi) and hybrid glaucous-winged/western gulls (Larus glaucescens / occidentalis) from Washington State's inland marine waters were examined for Giardia and Cryptosporidium spp. to determine if genotypes carried by these wildlife species were the same genotypes that commonly infect humans and domestic animals. Using immunomagnetic separation followed by direct fluorescent antibody detection, Giardia spp. cysts were detected in 42% of seal fecal samples (41/97). Giardia-positive samples came from 90% of the sites (9/10) and the prevalence of positive seal fecal samples differed significantly among study sites. Fecal samples collected from seal haulout sites with over 400 animals were 4.7 times more likely to have Giardia spp. cysts than samples collected at smaller haulout sites. In gulls, a single Giardia sp. cyst was detected in 4% of fecal samples (3/78). Cryptosporidium spp. oocysts were not detected in any of the seals or gulls tested. Sequence analysis of a 398 bp segment of G. duodenalis DNA at the glutamate dehydrogenase locus suggested that 11 isolates originating from seals throughout the region were a novel genotype and 3 isolates obtained from a single site in south Puget Sound were the G. duodenalis canine genotype D. Real-time TaqMan PCR amplification and subsequent sequencing of a 52 bp small subunit ribosomal DNA region from novel harbor seal genotype isolates showed sequence homology to canine genotypes C and D. Sequence analysis of the 52 bp small subunit ribosomal DNA products from the 3 canine genotype isolates from seals produced mixed sequences at could not be evaluated.

  17. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  18. Detection and genetic analysis of human sapoviruses in river water in Japan.

    PubMed

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-04-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples, and a total of 30 SaV strains were identified using six RT-PCR assays followed by cloning and sequence analysis. A newly developed nested RT-PCR assay utilizing a broadly reactive forward primer showed the highest detection efficiency and amplified more diverse SaV genomes in the samples. SaV sequences were frequently detected from November to March, whereas none were obtained in April, July, September, or October. No SaV sequences were detected in the upstream portion of the river, whereas the midstream portion showed high positive rates. Based on phylogenetic analysis, SaV strains identified in the river water samples were classified into nine genotypes, namely, GI/1, GI/2, GI/3, GI/5, GI/untyped, GII/1, GII/2, GII/3, and GV/1. To our knowledge, this is the first study describing seasonal and spatial distributions and genetic diversity of SaVs in river water. A combination of real-time RT-PCR assay and newly developed nested RT-PCR assay is useful for identifying and characterizing SaV strains in a water environment.

  19. The Poultry-Associated Microbiome: Network Analysis and Farm-to-Fork Characterizations

    PubMed Central

    Oakley, Brian B.; Morales, Cesar A.; Line, J.; Berrang, Mark E.; Meinersmann, Richard J.; Tillman, Glenn E.; Wise, Mark G.; Siragusa, Gregory R.; Hiett, Kelli L.; Seal, Bruce S.

    2013-01-01

    Microbial communities associated with agricultural animals are important for animal health, food safety, and public health. Here we combine high-throughput sequencing (HTS), quantitative-PCR assays, and network analysis to profile the poultry-associated microbiome and important pathogens at various stages of commercial poultry production from the farm to the consumer. Analysis of longitudinal data following two flocks from the farm through processing showed a core microbiome containing multiple sequence types most closely related to genera known to be pathogenic for animals and/or humans, including Campylobacter, Clostridium, and Shigella. After the final stage of commercial poultry processing, taxonomic richness was ca. 2–4 times lower than the richness of fecal samples from the same flocks and Campylobacter abundance was significantly reduced. Interestingly, however, carcasses sampled at 48 hr after processing harboured the greatest proportion of unique taxa (those not encountered in other samples), significantly more than expected by chance. Among these were anaerobes such as Prevotella, Veillonella, Leptrotrichia, and multiple Campylobacter sequence types. Retail products were dominated by Pseudomonas, but also contained 27 other genera, most of which were potentially metabolically active and encountered in on-farm samples. Network analysis was focused on the foodborne pathogen Campylobacter and revealed a majority of sequence types with no significant interactions with other taxa, perhaps explaining the limited efficacy of previous attempts at competitive exclusion of Campylobacter. These data represent the first use of HTS to characterize the poultry microbiome across a series of farm-to-fork samples and demonstrate the utility of HTS in monitoring the food supply chain and identifying sources of potential zoonoses and interactions among taxa in complex communities. PMID:23468931

  20. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  1. PANGEA: pipeline for analysis of next generation amplicons

    PubMed Central

    Giongo, Adriana; Crabb, David B; Davis-Richardson, Austin G; Chauliac, Diane; Mobberley, Jennifer M; Gano, Kelsey A; Mukherjee, Nabanita; Casella, George; Roesch, Luiz FW; Walts, Brandon; Riva, Alberto; King, Gary; Triplett, Eric W

    2010-01-01

    High-throughput DNA sequencing can identify organisms and describe population structures in many environmental and clinical samples. Current technologies generate millions of reads in a single run, requiring extensive computational strategies to organize, analyze and interpret those sequences. A series of bioinformatics tools for high-throughput sequencing analysis, including preprocessing, clustering, database matching and classification, have been compiled into a pipeline called PANGEA. The PANGEA pipeline was written in Perl and can be run on Mac OSX, Windows or Linux. With PANGEA, sequences obtained directly from the sequencer can be processed quickly to provide the files needed for sequence identification by BLAST and for comparison of microbial communities. Two different sets of bacterial 16S rRNA sequences were used to show the efficiency of this workflow. The first set of 16S rRNA sequences is derived from various soils from Hawaii Volcanoes National Park. The second set is derived from stool samples collected from diabetes-resistant and diabetes-prone rats. The workflow described here allows the investigator to quickly assess libraries of sequences on personal computers with customized databases. PANGEA is provided for users as individual scripts for each step in the process or as a single script where all processes, except the χ2 step, are joined into one program called the ‘backbone’. PMID:20182525

  2. PANGEA: pipeline for analysis of next generation amplicons.

    PubMed

    Giongo, Adriana; Crabb, David B; Davis-Richardson, Austin G; Chauliac, Diane; Mobberley, Jennifer M; Gano, Kelsey A; Mukherjee, Nabanita; Casella, George; Roesch, Luiz F W; Walts, Brandon; Riva, Alberto; King, Gary; Triplett, Eric W

    2010-07-01

    High-throughput DNA sequencing can identify organisms and describe population structures in many environmental and clinical samples. Current technologies generate millions of reads in a single run, requiring extensive computational strategies to organize, analyze and interpret those sequences. A series of bioinformatics tools for high-throughput sequencing analysis, including pre-processing, clustering, database matching and classification, have been compiled into a pipeline called PANGEA. The PANGEA pipeline was written in Perl and can be run on Mac OSX, Windows or Linux. With PANGEA, sequences obtained directly from the sequencer can be processed quickly to provide the files needed for sequence identification by BLAST and for comparison of microbial communities. Two different sets of bacterial 16S rRNA sequences were used to show the efficiency of this workflow. The first set of 16S rRNA sequences is derived from various soils from Hawaii Volcanoes National Park. The second set is derived from stool samples collected from diabetes-resistant and diabetes-prone rats. The workflow described here allows the investigator to quickly assess libraries of sequences on personal computers with customized databases. PANGEA is provided for users as individual scripts for each step in the process or as a single script where all processes, except the chi(2) step, are joined into one program called the 'backbone'.

  3. Phased genotyping-by-sequencing enhances analysis of genetic diversity and reveals divergent copy number variants in maize

    USDA-ARS?s Scientific Manuscript database

    High-throughput sequencing of reduced representation genomic libraries has ushered in an era of genotyping-by-sequencing (GBS), where genome-wide genotype data can be obtained for nearly any species. However, there remains a need for imputation-free GBS methods for genotyping large samples taken fr...

  4. 40 CFR 92.129 - Exhaust sample analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the span drift between the pre-analysis and post-analysis checks on any range used may exceed 3...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.129 Exhaust sample... and span each range to be used on each analyzer used prior to the beginning of the test sequence. The...

  5. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  6. Microbial community analysis using MEGAN.

    PubMed

    Huson, Daniel H; Weber, Nico

    2013-01-01

    Metagenomics, the study of microbes in the environment using DNA sequencing, depends upon dedicated software tools for processing and analyzing very large sequencing datasets. One such tool is MEGAN (MEtaGenome ANalyzer), which can be used to interactively analyze and compare metagenomic and metatranscriptomic data, both taxonomically and functionally. To perform a taxonomic analysis, the program places the reads onto the NCBI taxonomy, while functional analysis is performed by mapping reads to the SEED, COG, and KEGG classifications. Samples can be compared taxonomically and functionally, using a wide range of different charting and visualization techniques. PCoA analysis and clustering methods allow high-level comparison of large numbers of samples. Different attributes of the samples can be captured and used within analysis. The program supports various input formats for loading data and can export analysis results in different text-based and graphical formats. The program is designed to work with very large samples containing many millions of reads. It is written in Java and installers for the three major computer operating systems are available from http://www-ab.informatik.uni-tuebingen.de. © 2013 Elsevier Inc. All rights reserved.

  7. Two-phase designs for joint quantitative-trait-dependent and genotype-dependent sampling in post-GWAS regional sequencing.

    PubMed

    Espin-Garcia, Osvaldo; Craiu, Radu V; Bull, Shelley B

    2018-02-01

    We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. © 2017 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.

  8. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  9. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  10. Novel application of the MSSCP method in biodiversity studies.

    PubMed

    Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Górecka, Magdalena; Zielenkiewicz, Urszula

    2012-02-01

    Analysis of 16S rRNA sequence diversity is widely performed for characterizing the biodiversity of microbial samples. The number of determined sequences has a considerable impact on complete results. Although the cost of mass sequencing is decreasing, it is often still too high for individual projects. We applied the multi-temperature single-strand conformational polymorphism (MSSCP) method to decrease the number of analysed sequences. This was a novel application of this method. As a control, the same sample was analysed using random sequencing. In this paper, we adapted the MSSCP technique for screening of unique sequences of the 16S rRNA gene library and bacterial strains isolated from biofilms growing on the walls of an ancient gold mine in Poland and determined whether the results obtained by both methods differed and whether random sequencing could be replaced by MSSCP. Although it was biased towards the detection of rare sequences in the samples, the qualitative results of MSSCP were not different than those of random sequencing. Unambiguous discrimination of unique clones and strains creates an opportunity to effectively estimate the biodiversity of natural communities, especially in populations which are numerous but species poor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility.

    PubMed

    Bacchelli, Elena; Battaglia, Agatino; Cameli, Cinzia; Lomartire, Silvia; Tancredi, Raffaella; Thomson, Susanne; Sutcliffe, James S; Maestrini, Elena

    2015-04-01

    Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism. © 2015 Wiley Periodicals, Inc.

  12. Applications of Single-Cell Sequencing for Multiomics.

    PubMed

    Xu, Yungang; Zhou, Xiaobo

    2018-01-01

    Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.

  13. Characterization of microbial communities in heavy crude oil from Saudi Arabia.

    PubMed

    Albokari, Majed; Mashhour, Ibrahim; Alshehri, Mohammed; Boothman, Chris; Al-Enezi, Mousa

    The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus , Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria , Clostridia , Spingobacteria and Flavobacteria . The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria , respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.

  14. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  15. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing.

    PubMed

    Chimukangara, Benjamin; Varyani, Bhavini; Shamu, Tinei; Mutsvangwa, Junior; Manasa, Justen; White, Elizabeth; Chimbetete, Cleophas; Luethy, Ruedi; Katzenstein, David

    2017-05-01

    HIV genotyping is often unavailable in low and middle-income countries due to infrastructure requirements and cost. We compared genotype resistance testing in patients with virologic failure, by amplification of HIV pol gene, followed by "in-house" sequencing and commercial sequencing. Remnant plasma samples from adults and children failing second-line ART were amplified and sequenced using in-house and commercial di-deoxysequencing, and analyzed in Harare, Zimbabwe and at Stanford, U.S.A, respectively. HIV drug resistance mutations were determined using the Stanford HIV drug resistance database. Twenty-six of 28 samples were amplified and 25 were successfully genotyped. Comparison of average percent nucleotide and amino acid identities between 23 pairs sequenced in both laboratories were 99.51 (±0.56) and 99.11 (±0.95), respectively. All pairs clustered together in phylogenetic analysis. Sequencing analysis identified 6/23 pairs with mutation discordances resulting in differences in phenotype, but these did not impact future regimens. The results demonstrate our ability to produce good quality drug resistance data in-house. Despite discordant mutations in some sequence pairs, the phenotypic predictions were not clinically significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dose-Response Analysis of RNA-Seq Profiles in Archival ...

    EPA Pesticide Factsheets

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from two archival studies in mice, one 20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r2 = 0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (2% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r2 = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing q

  17. Method for phosphorothioate antisense DNA sequencing by capillary electrophoresis with UV detection.

    PubMed

    Froim, D; Hopkins, C E; Belenky, A; Cohen, A S

    1997-11-01

    The progress of antisense DNA therapy demands development of reliable and convenient methods for sequencing short single-stranded oligonucleotides. A method of phosphorothioate antisense DNA sequencing analysis using UV detection coupled to capillary electrophoresis (CE) has been developed based on a modified chain termination sequencing method. The proposed method reduces the sequencing cost since it uses affordable CE-UV instrumentation and requires no labeling with minimal sample processing before analysis. Cycle sequencing with ThermoSequenase generates quantities of sequencing products that are readily detectable by UV. Discrimination of undesired components from sequencing products in the reaction mixture, previously accomplished by fluorescent or radioactive labeling, is now achieved by bringing concentrations of undesired components below the UV detection range which yields a 'clean', well defined sequence. UV detection coupled with CE offers additional conveniences for sequencing since it can be accomplished with commercially available CE-UV equipment and is readily amenable to automation.

  18. Method for phosphorothioate antisense DNA sequencing by capillary electrophoresis with UV detection.

    PubMed Central

    Froim, D; Hopkins, C E; Belenky, A; Cohen, A S

    1997-01-01

    The progress of antisense DNA therapy demands development of reliable and convenient methods for sequencing short single-stranded oligonucleotides. A method of phosphorothioate antisense DNA sequencing analysis using UV detection coupled to capillary electrophoresis (CE) has been developed based on a modified chain termination sequencing method. The proposed method reduces the sequencing cost since it uses affordable CE-UV instrumentation and requires no labeling with minimal sample processing before analysis. Cycle sequencing with ThermoSequenase generates quantities of sequencing products that are readily detectable by UV. Discrimination of undesired components from sequencing products in the reaction mixture, previously accomplished by fluorescent or radioactive labeling, is now achieved by bringing concentrations of undesired components below the UV detection range which yields a 'clean', well defined sequence. UV detection coupled with CE offers additional conveniences for sequencing since it can be accomplished with commercially available CE-UV equipment and is readily amenable to automation. PMID:9336449

  19. Hepatitis C infection among intravenous drug users attending therapy programs in Cyprus.

    PubMed

    Demetriou, Victoria L; van de Vijver, David A M C; Hezka, Johana; Kostrikis, Leondios G; Kostrikis, Leondios G

    2010-02-01

    The most high-risk population for HCV transmission worldwide today are intravenous drug users. HCV genotypes in the general population in Cyprus demonstrate a polyphyletic infection and include subtypes associated with intravenous drug users. The prevalence of HCV, HBV, and HIV infection, HCV genotypes and risk factors among intravenous drug users in Cyprus were investigated here for the first time. Blood samples and interviews were obtained from 40 consenting users in treatment centers, and were tested for HCV, HBV, and HIV antibodies. On the HCV-positive samples, viral RNA extraction, RT-PCR and sequencing were performed. Phylogenetic analysis determined subtype and any relationships with database sequences and statistical analysis determined any correlation of risk factors with HCV infection. The prevalence of HCV infection was 50%, but no HBV or HIV infections were found. Of the PCR-positive samples, eight (57%) were genotype 3a, and six (43%) were 1b. No other subtypes, recombinant strains or mixed infections were observed. The phylogenetic analysis of the injecting drug users' strains against database sequences observed no clustering, which does not allow determination of transmission route, possibly due to a limitation of sequences in the database. However, three clusters were discovered among the drug users' sequences, revealing small groups who possibly share injecting equipment. Statistical analysis showed the risk factor associated with HCV infection is drug use duration. Overall, the polyphyletic nature of HCV infection in Cyprus is confirmed, but the transmission route remains unknown. These findings highlight the need for harm-reduction strategies to reduce HCV transmission. (c) 2009 Wiley-Liss, Inc.

  20. Human T-lymphotropic virus type 1 (HTLV-1) genetic typing in Kakeroma Island, an island at the crossroads of the ryukyuans and Wajin in Japan, providing further insights into the origin of the virus in Japan.

    PubMed

    Eguchi, Katsuyuki; Fujii, Hidefumi; Oshima, Kengo; Otani, Masashi; Matsuo, Toshiaki; Yamamoto, Taro

    2009-08-01

    Peripheral blood samples were collected from 23 human T-lymphotropic virus type-1 (HTLV-1) carriers residing in Kakeroma Island, Japan (Kagoshima Prefecture, Oshima County, Setouchi Town), one of the most highly endemic areas in Japan. The samples were subjected to amplification by PCR and sequencing of the Long Terminal Repeat in order to reconstruct a phylogenetic tree of HTLV-1 isolates. Restriction Fragment Length Polymorphism (RFLP) analysis of env region was also conducted for subgrouping of HTLV-1. Although one sample could not be amplified by PCR, and three more could not be sequenced due to the existence of conspicuous nonspecific bands or repeated sequences, the phylogenetic analysis revealed that the remaining 19 isolates obtained from Kakeroma Island belonged to either the Transcontinental or the Japanese subgroups of the Cosmopolitan subtype, one of the three major subtypes. The RFLP data corresponded closely with the typing data throughout the sequencing. The proportion of the Transcontinental subgroup among the isolates was 26.3% (5 of 19) by sequence analysis and 27.3% (6 of 22) by RFLP. Unlike in Taiwan, China and Okinawa, the Japanese subgroup was dominant in Kakeroma Island. The analysis would also suggest that the Japanese subgroup seems not to have derived from the Transcontinental subgroup, but rather that the Transcontinental subgroup came to Japan first and was followed later by the Japanese one. 2009 Wiley-Liss, Inc.

  1. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  2. Canine Lat1: molecular structure, distribution and its expression in cancer samples.

    PubMed

    Ochiai, Hideharu; Morishita, Taiki; Onda, Ken; Sugiyama, Hiroki; Maruo, Takuya

    2012-07-01

    A full-length cDNA sequence of canine L-type amino acid transporter 1 (Lat1) was determined from a canine brain. The sequence was 1828 bp long and was predicted to encode 485 amino acid polypeptides. The deduced amino acid sequence of canine Lat1 showed 93.2% and 91.1% similarities to those of humans and rats, respectively. Northern blot analysis detected Lat1 expression in the cerebellum at 4 kb, and Western blot analysis showed a single band at 40 kDa. RT-PCR analysis revealed a distinct expression of Lat1 in the pancreas and testis in addition to the cerebrum and cerebellum. Notably, Lat1 expression was observed in the tissues of thyroid cancer, melanoma and hemangiopericytoma. Although the cancer samples examined were not enough, Lat1 may serve as a useful biomarker of cancer cells in veterinary clinic.

  3. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    PubMed

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  4. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses.

    PubMed

    Liu, Ruijie; Holik, Aliaksei Z; Su, Shian; Jansz, Natasha; Chen, Kelan; Leong, Huei San; Blewitt, Marnie E; Asselin-Labat, Marie-Liesse; Smyth, Gordon K; Ritchie, Matthew E

    2015-09-03

    Variations in sample quality are frequently encountered in small RNA-sequencing experiments, and pose a major challenge in a differential expression analysis. Removal of high variation samples reduces noise, but at a cost of reducing power, thus limiting our ability to detect biologically meaningful changes. Similarly, retaining these samples in the analysis may not reveal any statistically significant changes due to the higher noise level. A compromise is to use all available data, but to down-weight the observations from more variable samples. We describe a statistical approach that facilitates this by modelling heterogeneity at both the sample and observational levels as part of the differential expression analysis. At the sample level this is achieved by fitting a log-linear variance model that includes common sample-specific or group-specific parameters that are shared between genes. The estimated sample variance factors are then converted to weights and combined with observational level weights obtained from the mean-variance relationship of the log-counts-per-million using 'voom'. A comprehensive analysis involving both simulations and experimental RNA-sequencing data demonstrates that this strategy leads to a universally more powerful analysis and fewer false discoveries when compared to conventional approaches. This methodology has wide application and is implemented in the open-source 'limma' package. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Multilocus Sequence Typing of Cronobacter Strains Isolated from Retail Foods and Environmental Samples.

    PubMed

    Killer, Jiří; Skřivanová, Eva; Hochel, Igor; Marounek, Milan

    2015-06-01

    Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).

  6. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    PubMed

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  7. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    PubMed

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.

  8. Report for the NGFA-5 project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Jackson, P; Thissen, J

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, TaqMan PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. To effectively compare the sensitivity and specificity of the different genomic technologies, we used SNP TaqMan PCR, MLVA, microarray and high-throughput illumine and 454 sequencing to test various strains from B. anthracis, B. thuringiensis, BioWatch aerosol filter extracts or soil samples that were spiked with B. anthracis, and samples that were previously collected during DHS and EPAmore » environmental release exercises that were known to contain B. thuringiensis spores. The results of all the samples against the various assays are discussed in this report.« less

  9. Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    PubMed Central

    Kuhn, Jens H.; Andersen, Kristian G.; Bào, Yīmíng; Bavari, Sina; Becker, Stephan; Bennett, Richard S.; Bergman, Nicholas H.; Blinkova, Olga; Bradfute, Steven; Brister, J. Rodney; Bukreyev, Alexander; Chandran, Kartik; Chepurnov, Alexander A.; Davey, Robert A.; Dietzgen, Ralf G.; Doggett, Norman A.; Dolnik, Olga; Dye, John M.; Enterlein, Sven; Fenimore, Paul W.; Formenty, Pierre; Freiberg, Alexander N.; Garry, Robert F.; Garza, Nicole L.; Gire, Stephen K.; Gonzalez, Jean-Paul; Griffiths, Anthony; Happi, Christian T.; Hensley, Lisa E.; Herbert, Andrew S.; Hevey, Michael C.; Hoenen, Thomas; Honko, Anna N.; Ignatyev, Georgy M.; Jahrling, Peter B.; Johnson, Joshua C.; Johnson, Karl M.; Kindrachuk, Jason; Klenk, Hans-Dieter; Kobinger, Gary; Kochel, Tadeusz J.; Lackemeyer, Matthew G.; Lackner, Daniel F.; Leroy, Eric M.; Lever, Mark S.; Mühlberger, Elke; Netesov, Sergey V.; Olinger, Gene G.; Omilabu, Sunday A.; Palacios, Gustavo; Panchal, Rekha G.; Park, Daniel J.; Patterson, Jean L.; Paweska, Janusz T.; Peters, Clarence J.; Pettitt, James; Pitt, Louise; Radoshitzky, Sheli R.; Ryabchikova, Elena I.; Saphire, Erica Ollmann; Sabeti, Pardis C.; Sealfon, Rachel; Shestopalov, Aleksandr M.; Smither, Sophie J.; Sullivan, Nancy J.; Swanepoel, Robert; Takada, Ayato; Towner, Jonathan S.; van der Groen, Guido; Volchkov, Viktor E.; Volchkova, Valentina A.; Wahl-Jensen, Victoria; Warren, Travis K.; Warfield, Kelly L.; Weidmann, Manfred; Nichol, Stuart T.

    2014-01-01

    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences. PMID:25256396

  10. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.

  11. Evaluating information content of SNPs for sample-tagging in re-sequencing projects.

    PubMed

    Hu, Hao; Liu, Xiang; Jin, Wenfei; Hilger Ropers, H; Wienker, Thomas F

    2015-05-15

    Sample-tagging is designed for identification of accidental sample mix-up, which is a major issue in re-sequencing studies. In this work, we develop a model to measure the information content of SNPs, so that we can optimize a panel of SNPs that approach the maximal information for discrimination. The analysis shows that as low as 60 optimized SNPs can differentiate the individuals in a population as large as the present world, and only 30 optimized SNPs are in practice sufficient in labeling up to 100 thousand individuals. In the simulated populations of 100 thousand individuals, the average Hamming distances, generated by the optimized set of 30 SNPs are larger than 18, and the duality frequency, is lower than 1 in 10 thousand. This strategy of sample discrimination is proved robust in large sample size and different datasets. The optimized sets of SNPs are designed for Whole Exome Sequencing, and a program is provided for SNP selection, allowing for customized SNP numbers and interested genes. The sample-tagging plan based on this framework will improve re-sequencing projects in terms of reliability and cost-effectiveness.

  12. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    PubMed

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  13. Company profile: Complete Genomics Inc.

    PubMed

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.

  14. A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

    PubMed Central

    Alioto, Tyler S.; Buchhalter, Ivo; Derdak, Sophia; Hutter, Barbara; Eldridge, Matthew D.; Hovig, Eivind; Heisler, Lawrence E.; Beck, Timothy A.; Simpson, Jared T.; Tonon, Laurie; Sertier, Anne-Sophie; Patch, Ann-Marie; Jäger, Natalie; Ginsbach, Philip; Drews, Ruben; Paramasivam, Nagarajan; Kabbe, Rolf; Chotewutmontri, Sasithorn; Diessl, Nicolle; Previti, Christopher; Schmidt, Sabine; Brors, Benedikt; Feuerbach, Lars; Heinold, Michael; Gröbner, Susanne; Korshunov, Andrey; Tarpey, Patrick S.; Butler, Adam P.; Hinton, Jonathan; Jones, David; Menzies, Andrew; Raine, Keiran; Shepherd, Rebecca; Stebbings, Lucy; Teague, Jon W.; Ribeca, Paolo; Giner, Francesc Castro; Beltran, Sergi; Raineri, Emanuele; Dabad, Marc; Heath, Simon C.; Gut, Marta; Denroche, Robert E.; Harding, Nicholas J.; Yamaguchi, Takafumi N.; Fujimoto, Akihiro; Nakagawa, Hidewaki; Quesada, Víctor; Valdés-Mas, Rafael; Nakken, Sigve; Vodák, Daniel; Bower, Lawrence; Lynch, Andrew G.; Anderson, Charlotte L.; Waddell, Nicola; Pearson, John V.; Grimmond, Sean M.; Peto, Myron; Spellman, Paul; He, Minghui; Kandoth, Cyriac; Lee, Semin; Zhang, John; Létourneau, Louis; Ma, Singer; Seth, Sahil; Torrents, David; Xi, Liu; Wheeler, David A.; López-Otín, Carlos; Campo, Elías; Campbell, Peter J.; Boutros, Paul C.; Puente, Xose S.; Gerhard, Daniela S.; Pfister, Stefan M.; McPherson, John D.; Hudson, Thomas J.; Schlesner, Matthias; Lichter, Peter; Eils, Roland; Jones, David T. W.; Gut, Ivo G.

    2015-01-01

    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy. PMID:26647970

  15. Complete mitochondrial genome of the fennec fox (Vulpes zerda).

    PubMed

    Yang, Xiufeng; Zhao, Chao; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the fennec fox (Vulpes zerda) was sequenced using blood samples obtained from a female individual in Shanghai wildlife Park. Sequence analysis showed that the content of T (26.7%) in total composition was no more than C (27.2%), which is different from most of Canide individuals sequenced previously.

  16. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing.

    PubMed

    Willems, Sander; Fraiture, Marie-Alice; Deforce, Dieter; De Keersmaecker, Sigrid C J; De Loose, Marc; Ruttink, Tom; Herman, Philippe; Van Nieuwerburgh, Filip; Roosens, Nancy

    2016-02-01

    Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure.

    PubMed

    Waldispühl, Jérôme; Ponty, Yann

    2011-11-01

    The analysis of the relationship between sequences and structures (i.e., how mutations affect structures and reciprocally how structures influence mutations) is essential to decipher the principles driving molecular evolution, to infer the origins of genetic diseases, and to develop bioengineering applications such as the design of artificial molecules. Because their structures can be predicted from the sequence data only, RNA molecules provide a good framework to study this sequence-structure relationship. We recently introduced a suite of algorithms called RNAmutants which allows a complete exploration of RNA sequence-structure maps in polynomial time and space. Formally, RNAmutants takes an input sequence (or seed) to compute the Boltzmann-weighted ensembles of mutants with exactly k mutations, and sample mutations from these ensembles. However, this approach suffers from major limitations. Indeed, since the Boltzmann probabilities of the mutations depend of the free energy of the structures, RNAmutants has difficulties to sample mutant sequences with low G+C-contents. In this article, we introduce an unbiased adaptive sampling algorithm that enables RNAmutants to sample regions of the mutational landscape poorly covered by classical algorithms. We applied these methods to sample mutations with low G+C-contents. These adaptive sampling techniques can be easily adapted to explore other regions of the sequence and structural landscapes which are difficult to sample. Importantly, these algorithms come at a minimal computational cost. We demonstrate the insights offered by these techniques on studies of complete RNA sequence structures maps of sizes up to 40 nucleotides. Our results indicate that the G+C-content has a strong influence on the size and shape of the evolutionary accessible sequence and structural spaces. In particular, we show that low G+C-contents favor the apparition of internal loops and thus possibly the synthesis of tertiary structure motifs. On the other hand, high G+C-contents significantly reduce the size of the evolutionary accessible mutational landscapes.

  18. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

    PubMed Central

    2012-01-01

    Background RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Results Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. Conclusions This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates. PMID:22985019

  19. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing.

    PubMed

    Robles, José A; Qureshi, Sumaira E; Stephen, Stuart J; Wilson, Susan R; Burden, Conrad J; Taylor, Jennifer M

    2012-09-17

    RNA sequencing (RNA-Seq) has emerged as a powerful approach for the detection of differential gene expression with both high-throughput and high resolution capabilities possible depending upon the experimental design chosen. Multiplex experimental designs are now readily available, these can be utilised to increase the numbers of samples or replicates profiled at the cost of decreased sequencing depth generated per sample. These strategies impact on the power of the approach to accurately identify differential expression. This study presents a detailed analysis of the power to detect differential expression in a range of scenarios including simulated null and differential expression distributions with varying numbers of biological or technical replicates, sequencing depths and analysis methods. Differential and non-differential expression datasets were simulated using a combination of negative binomial and exponential distributions derived from real RNA-Seq data. These datasets were used to evaluate the performance of three commonly used differential expression analysis algorithms and to quantify the changes in power with respect to true and false positive rates when simulating variations in sequencing depth, biological replication and multiplex experimental design choices. This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edgeR and NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

  20. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples.

    PubMed

    Quick, Joshua; Grubaugh, Nathan D; Pullan, Steven T; Claro, Ingra M; Smith, Andrew D; Gangavarapu, Karthik; Oliveira, Glenn; Robles-Sikisaka, Refugio; Rogers, Thomas F; Beutler, Nathan A; Burton, Dennis R; Lewis-Ximenez, Lia Laura; de Jesus, Jaqueline Goes; Giovanetti, Marta; Hill, Sarah C; Black, Allison; Bedford, Trevor; Carroll, Miles W; Nunes, Marcio; Alcantara, Luiz Carlos; Sabino, Ester C; Baylis, Sally A; Faria, Nuno R; Loose, Matthew; Simpson, Jared T; Pybus, Oliver G; Andersen, Kristian G; Loman, Nicholas J

    2017-06-01

    Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab.

  1. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    PubMed

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  2. Genetic Analysis of Norovirus Strains that Caused Gastroenteritis Outbreaks Among River Rafters in the Grand Canyon, Arizona.

    PubMed

    Kitajima, Masaaki; Iker, Brandon C; Magill-Collins, Anne; Gaither, Marlene; Stoehr, James D; Gerba, Charles P

    2017-06-01

    Toilet solid waste samples collected from five outbreaks among rafters in the Grand Canyon were subjected to sequencing analysis of norovirus partial capsid gene. The results revealed that a GI.3 strain was associated with one outbreak, whereas the other outbreaks were caused by GII.5 whose sequences shared >98.9% homology.

  3. Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort.

    PubMed

    Crespo, Bibiana G; Wallhead, Philip J; Logares, Ramiro; Pedrós-Alió, Carlos

    2016-01-01

    High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.

  4. Deep Sequencing Analysis of Apple Infecting Viruses in Korea

    PubMed Central

    Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun

    2016-01-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time. PMID:27721694

  5. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle.

    PubMed

    Bárcenas-Reyes, I; Loza-Rubio, E; Cantó-Alarcón, G J; Luna-Cozar, J; Enríquez-Vázquez, A; Barrón-Rodríguez, R J; Milián-Suazo, F

    2017-08-01

    Phylogenetic analysis of the rabies virus in molecular epidemiology has been traditionally performed on partial sequences of the genome, such as the N, G, and P genes; however, that approach raises concerns about the discriminatory power compared to whole genome sequencing. In this study we characterized four strains of the rabies virus isolated from cattle in Querétaro, Mexico by comparing the whole genome sequence to that of strains from the American, European and Asian continents. Four cattle brain samples positive to rabies and characterized as AgV11, genotype 1, were used in the study. A cDNA sequence was generated by reverse transcription PCR (RT-PCR) using oligo dT. cDNA samples were sequenced in an Illumina NextSeq 500 platform. The phylogenetic analysis was performed with MEGA 6.0. Minimum evolution phylogenetic trees were constructed with the Neighbor-Joining method and bootstrapped with 1000 replicates. Three large and seven small clusters were formed with the 26 sequences used. The largest cluster grouped strains from different species in South America: Brazil, and the French Guyana. The second cluster grouped five strains from Mexico. A Mexican strain reported in a different study was highly related to our four strains, suggesting common source of infection. The phylogenetic analysis shows that the type of host is different for the different regions in the American Continent; rabies is more related to bats. It was concluded that the rabies virus in central Mexico is genetically stable and that it is transmitted by the vampire bat Desmodus rotundus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rolling circle amplification-based analysis of Sri Lankan cassava mosaic virus isolates from Tamil Nadu, India, suggests a low level of genetic variability.

    PubMed

    Kushawaha, Akhilesh Kumar; Rabindran, Ramalingam; Dasgupta, Indranil

    2018-03-01

    Cassava mosaic disease is a widespread disease of cassava in south Asia and the African continent. In India, CMD is known to be caused by two single-stranded DNA viruses (geminiviruses), Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosdaic virus (SLCMV). Previously, the diversity of ICMV and SLCMV in India has been studied using PCR, a sequence-dependent method. To have a more in-depth study of the variability of the above viruses and to detect any novel geminiviruses associated with CMD, sequence-independent amplification using rolling circle amplification (RCA)-based methods were used. CMD affected cassava plants were sampled across eighty locations in nine districts of the southern Indian state of Tamil Nadu. Twelve complete sequence of coat protein genes of the resident geminiviruses, comprising 256 amino acid residues were generated from the above samples, which indicated changes at only six positions. RCA followed by RFLP of the 80 samples indicated that most samples (47) contained only SLCMV, followed by 8, which were infected jointly with ICMV and SLCMV. In 11 samples, the pattern did not match the expected patterns from either of the two viruses and hence, were variants. Sequence analysis of an average of 700 nucleotides from 31 RCA-generated fragments of the variants indicated identities of 97-99% with the sequence of a previously reported infectious clone of SLCMV. The evidence suggests low levels of genetic variability in the begomoviruses infecting cassava, mainly in the form of scattered single nucleotide changes.

  7. [Identification of antler powder components based on DNA barcoding technology].

    PubMed

    Jia, Jing; Shi, Lin-chun; Xu, Zhi-chao; Xin, Tian-yi; Song, Jing-yuan; Chen Shi, Lin

    2015-10-01

    In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine

  8. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags.

    PubMed

    Wu, Gary D; Lewis, James D; Hoffmann, Christian; Chen, Ying-Yu; Knight, Rob; Bittinger, Kyle; Hwang, Jennifer; Chen, Jun; Berkowsky, Ronald; Nessel, Lisa; Li, Hongzhe; Bushman, Frederic D

    2010-07-30

    Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80 degrees C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method.

  9. Distribution of Blastocystis subtypes isolated from humans from an urban community in Rio de Janeiro, Brazil.

    PubMed

    Valença Barbosa, Carolina; de Jesus Batista, Rosemary; Pereira Igreja, Ricardo; d'Avila Levy, Claudia Masini; Werneck de Macedo, Heloisa; Carneiro Santos, Helena Lúcia

    2017-10-25

    Blastocystis is a cosmopolitan protist parasite found in the human gastrointestinal tract and is highly prevalent in developing countries. Recent molecular studies have revealed extensive genetic diversity, which has been classified into different subtypes (STs) based on sequence analysis of small subunit ribosomal RNA gene. Blastocystis is one of the most common fecal parasites in Brazil, but the diversity of subtypes remains unknown in the country. This study aimed to determine the distribution of Blastocystis STs in an urban community in Duque de Caxias, Rio de Janeiro, Brazil. A total of 64 stool samples positive for Blastocystis in Pavlova's medium were subtyped by PCR and sequenced using primers targeting the small subunit rRNA gene, in addition to phylogenetic analysis and subtype-specific PCR using sequence-tagged-site (STS) primers. Endolimax nana (14%), Entamoeba complex (10.5%), Taenia sp. (0.6%), Trichuris trichiura (1.3%) and Enterobius vermicularis (1.3%) were detected in Blastocystis-positive samples. Of the 64 samples tested by PCR/DNA sequencing, 55 were identified as ST1 (42%), ST3 (49%), ST2 (7%) and ST4 (2%), and the presence of mixed ST (ST1 + ST3) infection was detected in nine samples (14%). DNA sequencing and phylogenetic analysis of Brazilian Blastocystis isolates identified four different subtypes. To our knowledge, this study provided the first genetic characterization of Blastocystis subtypes in an urban area of Rio de Janeiro, Brazil. We also identified ST4 for the first time in Brazil. Further studies are necessary to determine the distribution of STs across human populations in Rio de Janeiro.

  10. Development of a swine-specific fecal pollution marker based on host differences in methanogen mcrA genes.

    PubMed

    Ufnar, Jennifer A; Ufnar, David F; Wang, Shiao Y; Ellender, R D

    2007-08-01

    The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10(-6) g of wet pig feces in 500 ml of phosphate-buffered saline and 10(-4) g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker.

  11. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics.

    PubMed

    Tin, Mandy Man-Ying; Economo, Evan Philip; Mikheyev, Alexander Sergeyevich

    2014-01-01

    Ancient and archival DNA samples are valuable resources for the study of diverse historical processes. In particular, museum specimens provide access to biotas distant in time and space, and can provide insights into ecological and evolutionary changes over time. However, archival specimens are difficult to handle; they are often fragile and irreplaceable, and typically contain only short segments of denatured DNA. Here we present a set of tools for processing such samples for state-of-the-art genetic analysis. First, we report a protocol for minimally destructive DNA extraction of insect museum specimens, which produced sequenceable DNA from all of the samples assayed. The 11 specimens analyzed had fragmented DNA, rarely exceeding 100 bp in length, and could not be amplified by conventional PCR targeting the mitochondrial cytochrome oxidase I gene. Our approach made these samples amenable to analysis with commonly used next-generation sequencing-based molecular analytic tools, including RAD-tagging and shotgun genome re-sequencing. First, we used museum ant specimens from three species, each with its own reference genome, for RAD-tag mapping. Were able to use the degraded DNA sequences, which were sequenced in full, to identify duplicate reads and filter them prior to base calling. Second, we re-sequenced six Hawaiian Drosophila species, with millions of years of divergence, but with only a single available reference genome. Despite a shallow coverage of 0.37 ± 0.42 per base, we could recover a sufficient number of overlapping SNPs to fully resolve the species tree, which was consistent with earlier karyotypic studies, and previous molecular studies, at least in the regions of the tree that these studies could resolve. Although developed for use with degraded DNA, all of these techniques are readily applicable to more recent tissue, and are suitable for liquid handling automation.

  12. Novel Degenerate PCR Method for Whole-Genome Amplification Applied to Peru Margin (ODP Leg 201) Subsurface Samples

    PubMed Central

    Martino, Amanda J.; Rhodes, Matthew E.; Biddle, Jennifer F.; Brandt, Leah D.; Tomsho, Lynn P.; House, Christopher H.

    2011-01-01

    A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g., Illumina, Ion Torrent). The method, which we have called random amplification metagenomic PCR (RAMP), involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3′ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10×. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin), and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa identified illustrates well the generally accepted view that community analysis is sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low-biomass samples. PMID:22319519

  13. Development of a Swine-Specific Fecal Pollution Marker Based on Host Differences in Methanogen mcrA Genes▿

    PubMed Central

    Ufnar, Jennifer A.; Ufnar, David F.; Wang, Shiao Y.; Ellender, R. D.

    2007-01-01

    The goal of this study was to evaluate methanogen diversity in animal hosts to develop a swine-specific archaeal molecular marker for fecal source tracking in surface waters. Phylogenetic analysis of swine mcrA sequences compared to mcrA sequences from the feces of five animals (cow, deer, sheep, horse, and chicken) and sewage showed four distinct swine clusters, with three swine-specific clades. From this analysis, six sequences were chosen for molecular marker development and initial testing. Only one mcrA sequence (P23-2) showed specificity for swine and therefore was used for environmental testing. PCR primers for the P23-2 clone mcrA sequence were developed and evaluated for swine specificity. The P23-2 primers amplified products in P23-2 plasmid DNA (100%), pig feces (84%), and swine waste lagoon surface water samples (100%) but did not amplify a product in 47 bacterial and archaeal stock cultures and 477 environmental bacterial isolates and sewage and water samples from a bovine waste lagoon and a polluted creek. Amplification was observed in only one sheep sample out of 260 human and nonswine animal fecal samples. Sequencing of PCR products from pig feces demonstrated 100% similarity to pig mcrA sequence from clone P23-2. The minimal amount of DNA required for the detection was 1 pg for P23-2 plasmid, 1 ng for pig feces, 50 ng for swine waste lagoon surface water, 1 ng for sow waste influent, and 10 ng for lagoon sludge samples. Lower detection limits of 10−6 g of wet pig feces in 500 ml of phosphate-buffered saline and 10−4 g of lagoon waste in estuarine water were established for the P23-2 marker. This study was the first to utilize methanogens for the development of a swine-specific fecal contamination marker. PMID:17586669

  14. Estimation of a Killer Whale (Orcinus orca) Population’s Diet Using Sequencing Analysis of DNA from Feces

    PubMed Central

    Ford, Michael J.; Hempelmann, Jennifer; Hanson, M. Bradley; Ayres, Katherine L.; Baird, Robin W.; Emmons, Candice K.; Lundin, Jessica I.; Schorr, Gregory S.; Wasser, Samuel K.; Park, Linda K.

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population’s summer diet. PMID:26735849

  15. Estimation of a Killer Whale (Orcinus orca) Population's Diet Using Sequencing Analysis of DNA from Feces.

    PubMed

    Ford, Michael J; Hempelmann, Jennifer; Hanson, M Bradley; Ayres, Katherine L; Baird, Robin W; Emmons, Candice K; Lundin, Jessica I; Schorr, Gregory S; Wasser, Samuel K; Park, Linda K

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.

  16. Flow cytometric detection method for DNA samples

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA; Langlois, Richard G [Livermore, CA; Venkateswaran, Kodumudi S [Round Rock, TX

    2011-07-05

    Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM.TM. on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA.TM., on the 5' end.

  17. Flow cytometric detection method for DNA samples

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA; Langlois, Richard G [Livermore, CA; Venkateswaran, Kodumudi S [Livermore, CA

    2006-08-01

    Disclosed herein are two methods for rapid multiplex analysis to determine the presence and identity of target DNA sequences within a DNA sample. Both methods use reporting DNA sequences, e.g., modified conventional Taqman.RTM. probes, to combine multiplex PCR amplification with microsphere-based hybridization using flow cytometry means of detection. Real-time PCR detection can also be incorporated. The first method uses a cyanine dye, such as, Cy3.TM., as the reporter linked to the 5' end of a reporting DNA sequence. The second method positions a reporter dye, e.g., FAM, on the 3' end of the reporting DNA sequence and a quencher dye, e.g., TAMRA, on the 5' end.

  18. Is High Resolution Melting Analysis (HRMA) Accurate for Detection of Human Disease-Associated Mutations? A Meta Analysis

    PubMed Central

    Ma, Feng-Li; Jiang, Bo; Song, Xiao-Xiao; Xu, An-Gao

    2011-01-01

    Background High Resolution Melting Analysis (HRMA) is becoming the preferred method for mutation detection. However, its accuracy in the individual clinical diagnostic setting is variable. To assess the diagnostic accuracy of HRMA for human mutations in comparison to DNA sequencing in different routine clinical settings, we have conducted a meta-analysis of published reports. Methodology/Principal Findings Out of 195 publications obtained from the initial search criteria, thirty-four studies assessing the accuracy of HRMA were included in the meta-analysis. We found that HRMA was a highly sensitive test for detecting disease-associated mutations in humans. Overall, the summary sensitivity was 97.5% (95% confidence interval (CI): 96.8–98.5; I2 = 27.0%). Subgroup analysis showed even higher sensitivity for non-HR-1 instruments (sensitivity 98.7% (95%CI: 97.7–99.3; I2 = 0.0%)) and an eligible sample size subgroup (sensitivity 99.3% (95%CI: 98.1–99.8; I2 = 0.0%)). HRMA specificity showed considerable heterogeneity between studies. Sensitivity of the techniques was influenced by sample size and instrument type but by not sample source or dye type. Conclusions/Significance These findings show that HRMA is a highly sensitive, simple and low-cost test to detect human disease-associated mutations, especially for samples with mutations of low incidence. The burden on DNA sequencing could be significantly reduced by the implementation of HRMA, but it should be recognized that its sensitivity varies according to the number of samples with/without mutations, and positive results require DNA sequencing for confirmation. PMID:22194806

  19. Species identification in mixed tuna samples with next-generation sequencing targeting two short cytochrome b gene fragments.

    PubMed

    Kappel, Kristina; Haase, Ilka; Käppel, Christine; Sotelo, Carmen G; Schröder, Ute

    2017-11-01

    Conventional Sanger sequencing of PCR products is the gold standard for species authentication of seafood products. However, this method is inappropriate for the analysis of products that might contain mixtures of species, such as tinned tuna. The purpose of this study was to test whether next-generation sequencing (NGS) can be a solution for the authentication of mixed products. Nine tuna samples containing mixtures of up to four species were prepared and subjected to an NGS approach targeting two short cytochrome b gene (cytb) fragments on the Illumina MiSeq platform. Sequence recovery was precise and admixtures of as low as 1% could be identified, depending on the species composition of the mixtures. Duplicate samples as well as two individual NGS runs produced very similar results. A first test of three commercial tinned tuna samples indicated the presence of different species in the same tin, although this is forbidden by EU law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Influence of PCR cycle number on microbial diversity analysis through next generation sequencing].

    PubMed

    An, Yunhe; Gao, Lijuan; Li, Junbo; Tian, Yanjie; Wang, Jinlong; Zheng, Xuejuan; Wu, Huijuan

    2016-08-25

    Using of high throughput sequencing technology to study the microbial diversity in complex samples has become one of the hottest issues in the field of microbial diversity research. In this study, the soil and sheep rumen chyme samples were used to extract DNA, respectively. Then the 25 ng total DNA was used to amplify the 16S rRNA V3 region with 20, 25, 30 PCR cycles, and the final sequencing library was constructed by mixing equal amounts of purified PCR products. Finally, the operational taxonomic unit (OUT) amount, rarefaction curve, microbial number and species were compared through data analysis. It was found that at the same amount of DNA template, the proportion of the community composition was not the best with more numbers of PCR cycle, although the species number was much more. In all, when the PCR cycle number is 25, the number of species and proportion of the community composition were the most optimal both in soil or chyme samples.

  1. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  2. Modified midi- and mini-multiplex PCR systems for mitochondrial DNA control region sequence analysis in degraded samples.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-05-01

    Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.

  3. Molecular evidence for piroplasms in wild Reeves' muntjac (Muntiacus reevesi) in China.

    PubMed

    Yang, Ji-fei; Li, You-quan; Liu, Zhi-jie; Liu, Jun-long; Guan, Gui-quan; Chen, Ze; Luo, Jian-xun; Wang, Xiao-long; Yin, Hong

    2014-10-01

    DNA from liver samples of 17 free-ranging wild Reeves' muntjac (Muntiacus reevesi) was used for PCR amplification of piropalsm 18S rRNA gene. Of 17 samples, 14 (82.4%) showed a specific PCR product which were cloned and sequenced. BLAST analysis of the sequences obtained showed similarities to Babesia sp., Theileria capreoli, Theileria uilenbergi and Theileria sp. BO302-SE. Phylogenetic analysis showed that the Babesia sp. detected in the present study was distantly separated from known Babesia species of wild and domestic animals. Six sequences showed 100% similarity to T. capreoli while five sequences were separated from all known Theileria species and constituted an independent clade with Theileria sp. BO302-SE derived from roe deer in Italy; two sequences were close to T. uilenbergi with 97% similarity. This is the first description of hemoparasite infection in free-ranging wild Reeves' muntjac in China. Our results indicate that wild Reeves' muntjac may play an important reservoir role for hemoparasites. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The Mitochondrial Genomes of the Zoonotic Canine Filarial Parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) Honkongensis Provide Evidence for Presence of Cryptic Species

    PubMed Central

    Yilmaz, Esra; Fritzenwanker, Moritz; Pantchev, Nikola; Lendner, Mathias; Wongkamchai, Sirichit; Otranto, Domenico; Kroidl, Inge; Dennebaum, Martin; Le, Thanh Hoa; Anh Le, Tran; Ramünke, Sabrina; Schaper, Roland; von Samson-Himmelstjerna, Georg; Poppert, Sven; Krücken, Jürgen

    2016-01-01

    Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLUMINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus phylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. ‘Thailand II’, or a quite divergent population of C. D. hongkongensis. PMID:27727270

  5. Performance comparison of two commercial human whole-exome capture systems on formalin-fixed paraffin-embedded lung adenocarcinoma samples.

    PubMed

    Bonfiglio, Silvia; Vanni, Irene; Rossella, Valeria; Truini, Anna; Lazarevic, Dejan; Dal Bello, Maria Giovanna; Alama, Angela; Mora, Marco; Rijavec, Erika; Genova, Carlo; Cittaro, Davide; Grossi, Francesco; Coco, Simona

    2016-08-30

    Next Generation Sequencing (NGS) has become a valuable tool for molecular landscape characterization of cancer genomes, leading to a better understanding of tumor onset and progression, and opening new avenues in translational oncology. Formalin-fixed paraffin-embedded (FFPE) tissue is the method of choice for storage of clinical samples, however low quality of FFPE genomic DNA (gDNA) can limit its use for downstream applications. To investigate the FFPE specimen suitability for NGS analysis and to establish the performance of two solution-based exome capture technologies, we compared the whole-exome sequencing (WES) data of gDNA extracted from 5 fresh frozen (FF) and 5 matched FFPE lung adenocarcinoma tissues using: SeqCap EZ Human Exome v.3.0 (Roche NimbleGen) and SureSelect XT Human All Exon v.5 (Agilent Technologies). Sequencing metrics on Illumina HiSeq were optimal for both exome systems and comparable among FFPE and FF samples, with a slight increase of PCR duplicates in FFPE, mainly in Roche NimbleGen libraries. Comparison of single nucleotide variants (SNVs) between FFPE-FF pairs reached overlapping values >90 % in both systems. Both WES showed high concordance with target re-sequencing data by Ion PGM™ in 22 lung-cancer genes, regardless the source of samples. Exon coverage of 623 cancer-related genes revealed high coverage efficiency of both kits, proposing WES as a valid alternative to target re-sequencing. High-quality and reliable data can be successfully obtained from WES of FFPE samples starting from a relatively low amount of input gDNA, suggesting the inclusion of NGS-based tests into clinical contest. In conclusion, our analysis suggests that the WES approach could be extended to a translational research context as well as to the clinic (e.g. to study rare malignancies), where the simultaneous analysis of the whole coding region of the genome may help in the detection of cancer-linked variants.

  6. Phylogenetic reconstruction and polymorphism analysis of BK virus VP2 gene isolated from renal transplant recipients in China

    PubMed Central

    WANG, ZHANG-YANG; HONG, WEI-LONG; ZHU, ZHE-HUI; CHEN, YUN-HAO; YE, WEN-LE; CHU, GUANG-YU; LI, JIA-LIN; CHEN, BI-CHENG; XIA, PENG

    2015-01-01

    BK polyomavirus (BKV) is important pathogen for kidney transplant recipients, as it is frequently re-activated, leading to nephropathy. The aim of this study was to investigate the phylogenetic reconstruction and polymorphism of the VP2 gene in BKV isolated from Chinese kidney transplant recipients. Phylogenetic analysis was carried out in the VP2 region from 135 BKV-positive samples and 28 reference strains retrieved from GenBank. The unweighted pair-group method with arithmetic mean (UPGMA) grouped all strains into subtypes, but failed to subdivide strains into subgroups. Among the plasma and urine samples, all plasma (23/23) and 82 urine samples (82/95) were identified to contain subtype I; the other 10 urine samples contained subtype IV. A 86-bp fragment was identified as a highly conserved sequence. Following alignment with 36 published BKV sequences from China, 92 sites of polymorphism were identified, including 11 single nucleotide polymorphisms (SNPs) prevalent in Chinese individuals and 30 SNPs that were specific to the two predominant subtypes I and IV. The limitations of the VP2 gene segment in subgrouping were confirmed by phylogenetic analysis. The conserved sequence and polymorphism identified in this study may be helpful in the detection and genotyping of BKV. PMID:26640547

  7. Pse-Analysis: a python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods.

    PubMed

    Liu, Bin; Wu, Hao; Zhang, Deyuan; Wang, Xiaolong; Chou, Kuo-Chen

    2017-02-21

    To expedite the pace in conducting genome/proteome analysis, we have developed a Python package called Pse-Analysis. The powerful package can automatically complete the following five procedures: (1) sample feature extraction, (2) optimal parameter selection, (3) model training, (4) cross validation, and (5) evaluating prediction quality. All the work a user needs to do is to input a benchmark dataset along with the query biological sequences concerned. Based on the benchmark dataset, Pse-Analysis will automatically construct an ideal predictor, followed by yielding the predicted results for the submitted query samples. All the aforementioned tedious jobs can be automatically done by the computer. Moreover, the multiprocessing technique was adopted to enhance computational speed by about 6 folds. The Pse-Analysis Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/Pse-Analysis/, and can be directly run on Windows, Linux, and Unix.

  8. Library preparation and data analysis packages for rapid genome sequencing.

    PubMed

    Pomraning, Kyle R; Smith, Kristina M; Bredeweg, Erin L; Connolly, Lanelle R; Phatale, Pallavi A; Freitag, Michael

    2012-01-01

    High-throughput sequencing (HTS) has quickly become a valuable tool for comparative genetics and genomics and is now regularly carried out in laboratories that are not connected to large sequencing centers. Here we describe an updated version of our protocol for constructing single- and paired-end Illumina sequencing libraries, beginning with purified genomic DNA. The present protocol can also be used for "multiplexing," i.e. the analysis of several samples in a single flowcell lane by generating "barcoded" or "indexed" Illumina sequencing libraries in a way that is independent from Illumina-supported methods. To analyze sequencing results, we suggest several independent approaches but end users should be aware that this is a quickly evolving field and that currently many alignment (or "mapping") and counting algorithms are being developed and tested.

  9. HLA genotyping by next-generation sequencing of complementary DNA.

    PubMed

    Segawa, Hidenobu; Kukita, Yoji; Kato, Kikuya

    2017-11-28

    Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of cDNA is a viable option for HLA genotyping.

  10. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing

    PubMed Central

    Takahashi, Shunsuke; Tomita, Junko; Nishioka, Kaori; Hisada, Takayoshi; Nishijima, Miyuki

    2014-01-01

    For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples. PMID:25144201

  11. A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.

    PubMed

    Bansal, Vikas

    2017-03-14

    PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .

  12. Bi-PROF

    PubMed Central

    Gries, Jasmin; Schumacher, Dirk; Arand, Julia; Lutsik, Pavlo; Markelova, Maria Rivera; Fichtner, Iduna; Walter, Jörn; Sers, Christine; Tierling, Sascha

    2013-01-01

    The use of next generation sequencing has expanded our view on whole mammalian methylome patterns. In particular, it provides a genome-wide insight of local DNA methylation diversity at single nucleotide level and enables the examination of single chromosome sequence sections at a sufficient statistical power. We describe a bisulfite-based sequence profiling pipeline, Bi-PROF, which is based on the 454 GS-FLX Titanium technology that allows to obtain up to one million sequence stretches at single base pair resolution without laborious subcloning. To illustrate the performance of the experimental workflow connected to a bioinformatics program pipeline (BiQ Analyzer HT) we present a test analysis set of 68 different epigenetic marker regions (amplicons) in five individual patient-derived xenograft tissue samples of colorectal cancer and one healthy colon epithelium sample as a control. After the 454 GS-FLX Titanium run, sequence read processing and sample decoding, the obtained alignments are quality controlled and statistically evaluated. Comprehensive methylation pattern interpretation (profiling) assessed by analyzing 102-104 sequence reads per amplicon allows an unprecedented deep view on pattern formation and methylation marker heterogeneity in tissues concerned by complex diseases like cancer. PMID:23803588

  13. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  14. Extrahuman Epidemiology of Acinetobacter baumannii in Lebanon

    PubMed Central

    Rafei, Rayane; Hamze, Monzer; Pailhoriès, Hélène; Eveillard, Matthieu; Marsollier, Laurent; Joly-Guillou, Marie-Laure; Dabboussi, Fouad

    2015-01-01

    The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated. PMID:25616788

  15. Phylogenetic analysis of HTLV-1 in Iranian blood donors, HIV-1 positive patients and patients with beta thalassemia.

    PubMed

    Pirayeshfard, Leila; Sharifi, Zohreh; Amini-Kafiabad, Sedigheh; Haghnazari Sadaghiani, Nasrin

    2018-04-16

    Human T-cell lymphoma virus (HTLV) has been associated with various disease types. Since the discovery of the virus in 1980, seven subtypes of the virus have been identified. HTLV is widespread and endemic in some regions, such as Japan, Africa, South America, and northeast Iran. This study aimed to identify HTLV-1 genotype and also to analyze the nucleotide sequence of the LTR region in three groups, including blood donors, HIV-1+ patients, and β-thalassemia patients. In this cross-sectional study, 2200 samples were collected from blood donors in Tehran (2000 samples), HIV-1+ patients (100 samples) and β-thalassemia patients (100 samples). All samples were screened for anti-HTLV-I&II antibodies by ELISA. Then, genomic DNA was extracted from repeatedly positive samples, and nested PCR was performed for both the TAX and LTR regions. Purified PCR products were sequenced and analyzed, and finally, a phylogenetic tree was constructed using Mega7 software. The prevalence of the anti-HTLV-I&II antibody among blood donors and HIV-1+ patients was 1.7% (34/2000) and 12% (12/100), respectively. The PCR results confirmed that 0.05% (1/2000) of blood donors, 5% (5/100) of HIV-1+ patients, and 8% (8/100) of β-thalassemia patients were HTLV-I positive. All sequences were matched to HTLV-1 subtype a, subgroup A. Our phylogenetic analysis revealed that all sequenced samples belong to the endemic clusters of Iran. HTLV-1 genotypes in all samples were similar in three groups and were derived from the strains, which had been previously reported from Iran (AF00300/Mashhad and KT190712.1/Sabzevar). © 2018 Wiley Periodicals, Inc.

  16. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  17. Molecular analysis of microbial community in a groundwater sample polluted by landfill leachate and seawater*

    PubMed Central

    Tian, Yang-jie; Yang, Hong; Wu, Xiu-juan; Li, Dao-tang

    2005-01-01

    Seashore landfill aquifers are environments of special physicochemical conditions (high organic load and high salinity), and microbes in leachate-polluted aquifers play a significant role for intrinsic bioremediation. In order to characterize microbial diversity and look for clues on the relationship between microbial community structure and hydrochemistry, a culture-independent examination of a typical groundwater sample obtained from a seashore landfill was conducted by sequence analysis of 16S rDNA clone library. Two sets of universal 16S rDNA primers were used to amplify DNA extracted from the groundwater so that problems arising from primer efficiency and specificity could be reduced. Of 74 clones randomly selected from the libraries, 30 contained unique sequences whose analysis showed that the majority of them belonged to bacteria (95.9%), with Proteobacteria (63.5%) being the dominant division. One archaeal sequence and one eukaryotic sequence were found as well. Bacterial sequences belonging to the following phylogenic groups were identified: Bacteroidetes (20.3%), β, γ, δ and ε-subdivisions of Proteobacteria (47.3%, 9.5%, 5.4% and 1.3%, respectively), Firmicutes (1.4%), Actinobacteria (2.7%), Cyanobacteria (2.7%). The percentages of Proteobacteria and Bacteroides in seawater were greater than those in the groundwater from a non-seashore landfill, indicating a possible influence of seawater. Quite a few sequences had close relatives in marine or hypersaline environments. Many sequences showed affiliations with microbes involved in anaerobic fermentation. The remarkable abundance of sequences related to (per)chlorate-reducing bacteria (ClRB) in the groundwater was significant and worthy of further study. PMID:15682499

  18. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    PubMed

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  19. Pipeline for large-scale microdroplet bisulfite PCR-based sequencing allows the tracking of hepitype evolution in tumors.

    PubMed

    Herrmann, Alexander; Haake, Andrea; Ammerpohl, Ole; Martin-Guerrero, Idoia; Szafranski, Karol; Stemshorn, Kathryn; Nothnagel, Michael; Kotsopoulos, Steve K; Richter, Julia; Warner, Jason; Olson, Jeff; Link, Darren R; Schreiber, Stefan; Krawczak, Michael; Platzer, Matthias; Nürnberg, Peter; Siebert, Reiner; Hampe, Jochen

    2011-01-01

    Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho = 0.96) and to pyrosequencing (rho = 0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into "hepitypes" and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer.

  20. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica).

    PubMed

    He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  1. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing.

    PubMed

    Buttitta, Fiamma; Felicioni, Lara; Del Grammastro, Maela; Filice, Giampaolo; Di Lorito, Alessia; Malatesta, Sara; Viola, Patrizia; Centi, Irene; D'Antuono, Tommaso; Zappacosta, Roberta; Rosini, Sandra; Cuccurullo, Franco; Marchetti, Antonio

    2013-02-01

    The therapeutic choice for patients with lung adenocarcinoma depends on the presence of EGF receptor (EGFR) mutations. In many cases, only cytologic samples are available for molecular diagnosis. Bronchoalveolar lavage (BAL) and pleural fluid, which represent a considerable proportion of cytologic specimens, cannot always be used for molecular testing because of low rate of tumor cells. We tested the feasibility of EGFR mutation analysis on BAL and pleural fluid samples by next-generation sequencing (NGS), an innovative and extremely sensitive platform. The study was devised to extend the EGFR test to those patients who could not get it due to the paucity of biologic material. A series of 830 lung cytology specimens was used to select 48 samples (BAL and pleural fluid) from patients with EGFR mutations in resected tumors. These samples included 36 cases with 0.3% to 9% of neoplastic cells (series A) and 12 cases without evidence of tumor (series B). All samples were analyzed by Sanger sequencing and NGS on 454 Roche platform. A mean of 21,130 ± 2,370 sequences per sample were obtained by NGS. In series A, EGFR mutations were detected in 16% of cases by Sanger sequencing and in 81% of cases by NGS. Seventy-seven percent of cases found to be negative by Sanger sequencing showed mutations by NGS. In series B, all samples were negative for EGFR mutation by Sanger sequencing whereas 42% of them were positive by NGS. The very sensitive EGFR-NGS assay may open up to the possibility of specific treatments for patients otherwise doomed to re-biopsies or nontargeted therapies.

  2. Specifics of the methodological approach to the study of nanoparticle impact on human health in the production of non-metallic nanomaterials for construction purposes

    NASA Astrophysics Data System (ADS)

    Ayzenshtadt, A. M.; Frolova, M. A.; Makhova, T. A.; Danilov, V. E.; Gupta, Piyush K.; Verma, Rama S.

    2018-01-01

    Minerals samples of mixed-genesis rocks in a finely dispersed state were obtained and studied, namely sand deposit (Kholmogory district) and basalt (Myandukha deposit, Plesetsk district) in Arkhangelsk region. The paper provides the chemical composition data used to calculate the specific mass atomization energy of rocks. The energy parameters of the micro and nano systems of the rock samples - free surface energy and surface activity - were calculated. For toxicological evaluation of the materials obtained, next-generation sequencing (NGS) was used to perform metagenomic analysis which allowed determining the species diversity of microorganisms in the samples under study. It was shown that the sequencing method and metagenomic analysis are applicable and provide good reproducibility for the analysis of the toxicological properties of selected rock samples. The correlation of the surface activity of finely dispersed rock systems and the species diversity of cultivated microorganisms on the raw material was observed.

  3. Genomic characterization of two new enterovirus types, EV-A114 and EV-A121.

    PubMed

    Deshpande, Jagadish M; Sharma, Deepa K; Saxena, Vinay K; Shetty, Sushmitha A; Qureshi, Tarique Husain I H; Nalavade, Uma P

    2016-12-01

    Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.

  4. RNA-Seq for Bacterial Gene Expression.

    PubMed

    Poulsen, Line Dahl; Vinther, Jeppe

    2018-06-01

    RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads. The protocol is based on the Illumina platform and allows easy multiplexing of samples and the removal of sequencing reads that are PCR duplicates. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  5. Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing

    PubMed Central

    Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José

    2013-01-01

    Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859

  6. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  7. Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3

    DTIC Science & Technology

    2013-05-01

    the DNA sequences (~25^6 reads/sample) were mapped to the human genome reference sequence (hg19...tumor the AR has a genomic abnormality, placing the novel sequence 3’ of the transcriptional start site. However, it is unclear if a genomic alteration...exon/intron organization of the CHES1 gene was determined by BLAST analysis of the human genome using the 1,473-bp CHES1 cDNA sequence

  8. Bacterial examination of endodontic infections by clonal analysis in concert with denaturing high-performance liquid chromatography.

    PubMed

    Jacinto, R C; Gomes, B P F A; Desai, M; Rajendram, D; Shah, H N

    2007-12-01

    The aim of this study was to examine the diversity of bacterial species in the infected root canals of teeth associated with endodontic abscesses by cloning and sequencing techniques in concert with denaturing high-performance liquid chromatography. Samples collected from five infected root canals were subjected to polymerase chain reaction (PCR) with universal 16S ribosomal DNA primers. Products of these PCRs were cloned and sequenced. Denaturing high-performance liquid chromatography (DHPLC) was used as a screening method to reduce the number of clones necessary for DNA sequencing. All samples were positive for the presence of bacteria and a range of 7-13 different bacteria were found per root canal sample. In total, 48 different oral clones were detected among the five root canal samples. Olsenella profusa was the only species present in all samples. Porphyromonas gingivalis, Dialister pneumosintes, Dialister invisus, Lachnospiraceae oral clone, Staphylococcus aureus, Pseudoramibacter alactolyticus, Peptostreptococcus micros and Enterococcus faecalis were found in two of the five samples. The majority of the taxa were present in only one sample, for example Tannerella forsythia, Shuttleworthia satelles and Filifactor alocis. Some facultative anaerobes that are frequently isolated from endodontic infections such as E. faecalis, Streptococcus anginosus and Lactobacillus spp. were also found in this study. Clonal analysis of the microflora associated with endodontic infections revealed a wide diversity of oral species.

  9. Genomic Analysis of Vaccine-Derived Poliovirus Strains in Stool Specimens by Combination of Full-Length PCR and Oligonucleotide Microarray Hybridization

    PubMed Central

    Laassri, Majid; Dragunsky, Eugenia; Enterline, Joan; Eremeeva, Tatiana; Ivanova, Olga; Lottenbach, Kathleen; Belshe, Robert; Chumakov, Konstantin

    2005-01-01

    Sabin strains of poliovirus used in the manufacture of oral poliovirus vaccine (OPV) are prone to genetic variations that occur during growth in cell cultures and the organisms of vaccine recipients. Such derivative viruses often have increased neurovirulence and transmissibility, and in some cases they can reestablish chains of transmission in human populations. Monitoring for vaccine-derived polioviruses is an important part of the worldwide campaign to eradicate poliomyelitis. Analysis of vaccine-derived polioviruses requires, as a first step, their isolation in cell cultures, which takes significant time and may yield viral stocks that are not fully representative of the strains present in the original sample. Here we demonstrate that full-length viral cDNA can be PCR amplified directly from stool samples and immediately subjected to genomic analysis by oligonucleotide microarray hybridization and nucleotide sequencing. Most fecal samples from healthy children who received OPV were found to contain variants of Sabin vaccine viruses. Sequence changes in the 5′ untranslated region were common, as were changes in the VP1-coding region, including changes in a major antigenic site. Analysis of stool samples taken from cases of acute flaccid paralysis revealed the presence of mixtures of recombinant polioviruses, in addition to the emergence of new sequence variants. Avoiding the need for cell culture isolation dramatically shortened the time needed for identification and analysis of vaccine-derived polioviruses and could be useful for preliminary screening of clinical samples. The amplified full-length viral cDNA can be archived and used to recover live virus for further virological studies. PMID:15956413

  10. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.

    PubMed

    Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K

    2011-11-01

    In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An algorithm for extraction of periodic signals from sparse, irregularly sampled data

    NASA Technical Reports Server (NTRS)

    Wilcox, J. Z.

    1994-01-01

    Temporal gaps in discrete sampling sequences produce spurious Fourier components at the intermodulation frequencies of an oscillatory signal and the temporal gaps, thus significantly complicating spectral analysis of such sparsely sampled data. A new fast Fourier transform (FFT)-based algorithm has been developed, suitable for spectral analysis of sparsely sampled data with a relatively small number of oscillatory components buried in background noise. The algorithm's principal idea has its origin in the so-called 'clean' algorithm used to sharpen images of scenes corrupted by atmospheric and sensor aperture effects. It identifies as the signal's 'true' frequency that oscillatory component which, when passed through the same sampling sequence as the original data, produces a Fourier image that is the best match to the original Fourier space. The algorithm has generally met with succession trials with simulated data with a low signal-to-noise ratio, including those of a type similar to hourly residuals for Earth orientation parameters extracted from VLBI data. For eight oscillatory components in the diurnal and semidiurnal bands, all components with an amplitude-noise ratio greater than 0.2 were successfully extracted for all sequences and duty cycles (greater than 0.1) tested; the amplitude-noise ratios of the extracted signals were as low as 0.05 for high duty cycles and long sampling sequences. When, in addition to these high frequencies, strong low-frequency components are present in the data, the low-frequency components are generally eliminated first, by employing a version of the algorithm that searches for non-integer multiples of the discrete FET minimum frequency.

  12. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Evaluation of the Bacterial Diversity in the Human Tongue Coating Based on Genus-Specific Primers for 16S rRNA Sequencing.

    PubMed

    Sun, Beili; Zhou, Dongrui; Tu, Jing; Lu, Zuhong

    2017-01-01

    The characteristics of tongue coating are very important symbols for disease diagnosis in traditional Chinese medicine (TCM) theory. As a habitat of oral microbiota, bacteria on the tongue dorsum have been proved to be the cause of many oral diseases. The high-throughput next-generation sequencing (NGS) platforms have been widely applied in the analysis of bacterial 16S rRNA gene. We developed a methodology based on genus-specific multiprimer amplification and ligation-based sequencing for microbiota analysis. In order to validate the efficiency of the approach, we thoroughly analyzed six tongue coating samples from lung cancer patients with different TCM types, and more than 600 genera of bacteria were detected by this platform. The results showed that ligation-based parallel sequencing combined with enzyme digestion and multiamplification could expand the effective length of sequencing reads and could be applied in the microbiota analysis.

  14. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates.

    PubMed

    Li, Yan; Khalafalla, Abdelmalik Ibrahim; Paden, Clinton R; Yusof, Mohammed F; Eltahir, Yassir M; Al Hammadi, Zulaikha M; Tao, Ying; Queen, Krista; Hosani, Farida Al; Gerber, Susan I; Hall, Aron J; Al Muhairi, Salama; Tong, Suxiang

    2017-01-01

    Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.

  15. Molecular characterization of canine parvovirus (CPV) infection in dogs in Turkey.

    PubMed

    Timurkan, Mehmet; Oğuzoğlu, Tuba

    2015-01-01

    This study provides data about canine parvovirus (CPV) types circulating among dogs in Turkey. Sixty-five samples from dogs with and without clinical signs of parvovirus infection were collected between April 2009 and February 2010. The samples were subsequently tested for CPV using polymerase chain reaction (PCR). Twenty-five samples (38.4%) were positive; when positive samples were characterized by sequence analysis, results showed that both CPV-2a (17/25, 68%) and CPV-2b (8/25, 32%) strains are circulating among domestic dogs in Turkey. This is the first molecular characterization study of CPVs from dogs based on partial VP2 gene sequences in Turkey.

  16. Contribution of PCR Denaturing Gradient Gel Electrophoresis Combined with Mixed Chromatogram Software Separation for Complex Urinary Sample Analysis.

    PubMed

    Kotásková, Iva; Mališová, Barbora; Obručová, Hana; Holá, Veronika; Peroutková, Tereza; Růžička, Filip; Freiberger, Tomáš

    2017-01-01

    Complex samples are a challenge for sequencing-based broad-range diagnostics. We analysed 19 urinary catheter, ureteral Double-J catheter, and urine samples using 3 methodological approaches. Out of the total 84 operational taxonomic units, 37, 61, and 88% were identified by culture, PCR-DGGE-SS (PCR denaturing gradient gel electrophoresis followed by Sanger sequencing), and PCR-DGGE-RM (PCR- DGGE combined with software chromatogram separation by RipSeq Mixed tool), respectively. The latter approach was shown to be an efficient tool to complement culture in complex sample assessment. © 2017 S. Karger AG, Basel.

  17. MetaSeq: privacy preserving meta-analysis of sequencing-based association studies.

    PubMed

    Singh, Angad Pal; Zafer, Samreen; Pe'er, Itsik

    2013-01-01

    Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. The problem arises when considering privacy of the genetic information during the data-exchange process. Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for metaanalysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The key idea is that parties encrypt identity of genes and variants. When they transfer information about frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol although not trusted to learn about the raw data. We show applicability of this method to publicly available exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-analysis. The MetaSeq software is publicly available as open source.

  18. [A new herbs traceability method based on DNA barcoding-origin-morphology analysis--an example from an adulterant of 'Heiguogouqi'].

    PubMed

    Gu, Xuan; Zhang, Xiao-qin; Song, Xiao-na; Zang, Yi-mei; Li Yan-peng; Ma, Chang-hua; Zhao, Bai-xiao; Liu, Chun-sheng

    2014-12-01

    The fruit of Lycium ruthenicum is a common folk medicine in China. Now it is popular for its antioxidative effect and other medical functions. The adulterants of the herb confuse consumers. In order to identify a new adulterant of L. ruthenicum, a research was performed based on NCBI Nucleotide Database ITS Sequence, combined analysis of the origin and morphology of the adulterant to traceable varieties. Total genomic DNA was isolated from the materials, and nuclear DNA ITS sequences were amplified and sequenced; DNA fragments were collated and matched by using ContingExpress. Similarity identification of BLAST analysis was performed. Besides, the distribution of plant origin and morphology were considered to further identification and verification. Families and genera were identified by molecular identification method. The adulterant was identified as plant belonging to Berberis. Origin analysis narrowed the range of sample identification. Seven different kinds of plants in Berberis were potential sources of the sample. Adulterants variety was traced by morphological analysis. The united molecular identification-origin-morphology research proves to be a preceding way to medical herbs traceability with time-saving and economic advantages and the results showed the new adulterant of L. ruthenicum was B. kaschgarica. The main differences between B. kaschgarica and L. ruthenicum are as follows: in terms of the traits, the surface of B. kaschgarica is smooth and crispy, and that of L. ruthenicum is shrinkage, solid and hard. In microscopic characteristics, epicarp cells of B. aschgarica thickening like a string of beads, stone cells as the rectangle, and the stone cell walls of L. ruthenicum is wavy, obvious grain layer. In molecular sequences, the length of ITS sequence of B. kaschgarica is 606 bp, L. ruthenicum is 654 bp, the similarity of the two sequences is 53.32%.

  19. Technical Report on Modeling for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLoughlin, K.

    2016-01-11

    The overall aim of this project is to develop a software package, called MetaQuant, that can determine the constituents of a complex microbial sample and estimate their relative abundances by analysis of metagenomic sequencing data. The goal for Task 1 is to create a generative model describing the stochastic process underlying the creation of sequence read pairs in the data set. The stages in this generative process include the selection of a source genome sequence for each read pair, with probability dependent on its abundance in the sample. The other stages describe the evolution of the source genome from itsmore » nearest common ancestor with a reference genome, breakage of the source DNA into short fragments, and the errors in sequencing the ends of the fragments to produce read pairs.« less

  20. The molecular characteristics of avian influenza viruses (H9N2) derived from air samples in live poultry markets.

    PubMed

    Wu, Yanheng; Lin, Jinsi; Yang, Shuhuan; Xie, Ying; Wang, Man; Chen, Xueqin; Zhu, Yayang; Luo, Le; Shi, Wuyang

    2018-06-01

    To study the molecular characteristics of H9N2-subtype avian influenza viruses (AIVs) isolated from air samples collected in live poultry markets (LPMs) and explore their sequence identities with AIVs that caused human infection. Weekly surveillance of H9N2-subtype AIVs in the air of LPMs was conducted from 2015 to 2016. H9-positive samples were isolated from chicken embryos. Whole genome sequences of the isolated AIVs were obtained through high-throughput sequencing. Phylogenetic analysis and key loci variations of the sequences were further analyzed. A total of 327 aerosol samples were collected from LPMs. Nine samples were positive for H9-subtype AIVs based on quantitative real-time reverse transcription polymerase chain reaction (qRRT-PCR). According to the whole genome sequence analysis and phylogenetic analysis, except for the A/Environment/Zhongshan/ZS201505/2015 (ZS201505) strain, 8 gene segments of 8 aerosol H9N2 isolates and 2 H9N2 human isolates in 2015 were located in the same clade. Among key loci variations, except for the ZS201505 strain, H9N2-subtype AIVs had no mutations in eight receptor binding sites of hemagglutinin (HA), and stalks of neuraminidase (NA) proteins exhibited a deletion site of three bases. The PA gene of ZS201503 and ZS201602 exhibited an L336M mutation. The N30D and T215A mutations in the M1 gene and amino acid residues L89V in PB2, P42S in NS1 and S31N in M2 were retained in these 9 strains of H9N2 isolates, which could enhance the virus's virulence. Live H9N2 AIVs survived in the aerosol of LPMs in Zhongshan City. The aerosol viruses had a close evolutionary relationship with human epidemic strains, indicating that there might be a risk of AIV transmission from polluted aerosols in LPMs to humans. Mutations in H9N2-subtype AIVs isolated from air samples collected from LPMs suggested their pathogenicity was enhanced to infect humans. Copyright © 2018. Published by Elsevier B.V.

  1. Re-Analysis of Metagenomic Sequences from Acute Flaccidmyelitis Patients Reveals Alternatives to Enterovirus D68 Infection

    DTIC Science & Technology

    2015-07-13

    swab sample an overwhelming presence of bacterial sequences from Haemophilus influenzae, a known cause of meningitis and neurological complications...Aguilar J, Urday-Cornejo V, Donabedian S, et al.: Staphylococcus aureus meningitis : case series and literature review. Medicine (Baltimore). 2010

  2. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. A Universal Method for Species Identification of Mammals Utilizing Next Generation Sequencing for the Analysis of DNA Mixtures

    PubMed Central

    Tillmar, Andreas O.; Dell'Amico, Barbara; Welander, Jenny; Holmlund, Gunilla

    2013-01-01

    Species identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample. The introduction of next generation sequencing opens new possibilities for such challenging samples. In this study we present a universal deep sequencing method using 454 GS Junior sequencing of a target on the mitochondrial gene 16S rRNA. The method was designed through phylogenetic analyses of DNA reference sequences from more than 300 mammal species. Experiments were performed on artificial species-species mixture samples in order to verify the method’s robustness and its ability to detect all species within a mixture. The method was also tested on samples from authentic forensic casework. The results showed to be promising, discriminating over 99.9 % of mammal species and the ability to detect multiple donors within a mixture and also to detect minor components as low as 1 % of a mixed sample. PMID:24358309

  4. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    PubMed

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  5. Necessary Sequencing Depth and Clustering Method to Obtain Relatively Stable Diversity Patterns in Studying Fish Gut Microbiota.

    PubMed

    Xiao, Fanshu; Yu, Yuhe; Li, Jinjin; Juneau, Philippe; Yan, Qingyun

    2018-05-25

    The 16S rRNA gene is one of the most commonly used molecular markers for estimating bacterial diversity during the past decades. However, there is no consistency about the sequencing depth (from thousand to millions of sequences per sample), and the clustering methods used to generate OTUs may also be different among studies. These inconsistent premises make effective comparisons among studies difficult or unreliable. This study aims to examine the necessary sequencing depth and clustering method that would be needed to ensure a stable diversity patterns for studying fish gut microbiota. A total number of 42 samples dataset of Siniperca chuatsi (carnivorous fish) gut microbiota were used to test how the sequencing depth and clustering may affect the alpha and beta diversity patterns of fish intestinal microbiota. Interestingly, we found that the sequencing depth (resampling 1000-11,000 per sample) and the clustering methods (UPARSE and UCLUST) did not bias the estimates of the diversity patterns during the fish development from larva to adult. Although we should acknowledge that a suitable sequencing depth may differ case by case, our finding indicates that a shallow sequencing such as 1000 sequences per sample may be also enough to reflect the general diversity patterns of fish gut microbiota. However, we have shown in the present study that strict pre-processing of the original sequences is required to ensure reliable results. This study provides evidences to help making a strong scientific choice of the sequencing depth and clustering method for future studies on fish gut microbiota patterns, but at the same time reducing as much as possible the costs related to the analysis.

  6. Zooanthroponotic transmission of rotavirus in Haryana State of Northern India.

    PubMed

    Choudhary, P; Minakshi, P; Ranjan, K; Basanti, B

    Rotaviruses are the major cause of severe gastroenteritis and mortality in young children and animals. Due to segmented nature of dsRNA genome and wide host range, vast genetic and antigenic diversity exists amongst different isolates of rotaviruses. A total of 230 fecal ovine and caprine samples collected from organized farms and villages in Haryana were screened for rotavirus detection. Samples were screened by latex agglutination test and RNA-PAGE followed by RT-PCR and nucleic acid sequencing. The latex agglutination test showed 25 newborn lamb and 4 kid fecal samples positive for rotavirus. However, RNA-PAGE showed only 9 lamb fecal samples positive for rotavirus. All the samples were subjected to RT-PCR employing vp4 and vp7 gene specific primers of group A rotavirus of ovine, bovine and human origin. Only two samples from lamb (Sheep18/Hisar/2013 and Sheep22/Hisar/2013) showed vp4 and vp7 gene specific amplification with human group A rotavirus (GAR) specific primer. However, they did not show any amplification with ovine and bovine rotavirus specific primers. The nucleotide as well as deduced amino acid sequence analysis of vp4 gene of these isolates showed >98/97% and vp7 gene >95/94% nt/aa identity with human GAR from different regions of the world. Based on nucleotide similarity search, Sheep18/Hisar/2013 and Sheep22/Hisar/2013 isolates were genotyped as G1P[8] and G1P[4]. Phylogenetic analysis also confirmed that these isolates were clustered closely with human rotaviruses from different regions of the world. Earlier, higher prevalence of human rotaviruses was reported from the sample collecting area. The amplification of ovine samples with human rotavirus gene specific primers, sequence identity and phylogenetic analysis strongly suggests the zoonotic transmission of human GAR to sheep.

  7. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River

    NASA Astrophysics Data System (ADS)

    Cannon, M. V.; Hester, J.; Shalkhauser, A.; Chan, E. R.; Logue, K.; Small, S. T.; Serre, D.

    2016-03-01

    Analysis of environmental DNA (eDNA) enables the detection of species of interest from water and soil samples, typically using species-specific PCR. Here, we describe a method to characterize the biodiversity of a given environment by amplifying eDNA using primer pairs targeting a wide range of taxa and high-throughput sequencing for species identification. We tested this approach on 91 water samples of 40 mL collected along the Cuyahoga River (Ohio, USA). We amplified eDNA using 12 primer pairs targeting mammals, fish, amphibians, birds, bryophytes, arthropods, copepods, plants and several microorganism taxa and sequenced all PCR products simultaneously by high-throughput sequencing. Overall, we identified DNA sequences from 15 species of fish, 17 species of mammals, 8 species of birds, 15 species of arthropods, one turtle and one salamander. Interestingly, in addition to aquatic and semi-aquatic animals, we identified DNA from terrestrial species that live near the Cuyahoga River. We also identified DNA from one Asian carp species invasive to the Great Lakes but that had not been previously reported in the Cuyahoga River. Our study shows that analysis of eDNA extracted from small water samples using wide-range PCR amplification combined with high-throughput sequencing can provide a broad perspective on biological diversity.

  8. A case study to determine the geographical origin of unknown GM papaya in routine food sample analysis, followed by identification of papaya events 16-0-1 and 18-2-4.

    PubMed

    Prins, Theo W; Scholtens, Ingrid M J; Bak, Arno W; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Laurensse, Emile J; Kok, Esther J

    2016-12-15

    During routine monitoring for GMOs in food in the Netherlands, papaya-containing food supplements were found positive for the genetically modified (GM) elements P-35S and T-nos. The goal of this study was to identify the unknown and EU unauthorised GM papaya event(s). A screening strategy was applied using additional GM screening elements including a newly developed PRSV coat protein PCR. The detected PRSV coat protein PCR product was sequenced and the nucleotide sequence showed identity to PRSV YK strains indigenous to China and Taiwan. The GM events 16-0-1 and 18-2-4 could be identified by amplifying and sequencing events-specific sequences. Further analyses showed that both papaya event 16-0-1 and event 18-2-4 were transformed with the same construct. For use in routine analysis, derived TaqMan qPCR methods for events 16-0-1 and 18-2-4 were developed. Event 16-0-1 was detected in all samples tested whereas event 18-2-4 was detected in one sample. This study presents a strategy for combining information from different sources (literature, patent databases) and novel sequence data to identify unknown GM papaya events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River

    PubMed Central

    Cannon, M. V.; Hester, J.; Shalkhauser, A.; Chan, E. R.; Logue, K.; Small, S. T.; Serre, D.

    2016-01-01

    Analysis of environmental DNA (eDNA) enables the detection of species of interest from water and soil samples, typically using species-specific PCR. Here, we describe a method to characterize the biodiversity of a given environment by amplifying eDNA using primer pairs targeting a wide range of taxa and high-throughput sequencing for species identification. We tested this approach on 91 water samples of 40 mL collected along the Cuyahoga River (Ohio, USA). We amplified eDNA using 12 primer pairs targeting mammals, fish, amphibians, birds, bryophytes, arthropods, copepods, plants and several microorganism taxa and sequenced all PCR products simultaneously by high-throughput sequencing. Overall, we identified DNA sequences from 15 species of fish, 17 species of mammals, 8 species of birds, 15 species of arthropods, one turtle and one salamander. Interestingly, in addition to aquatic and semi-aquatic animals, we identified DNA from terrestrial species that live near the Cuyahoga River. We also identified DNA from one Asian carp species invasive to the Great Lakes but that had not been previously reported in the Cuyahoga River. Our study shows that analysis of eDNA extracted from small water samples using wide-range PCR amplification combined with high-throughput sequencing can provide a broad perspective on biological diversity. PMID:26965911

  10. Status of the Microbial Census

    PubMed Central

    Schloss, Patrick D.; Handelsman, Jo

    2004-01-01

    Over the past 20 years, more than 78,000 16S rRNA gene sequences have been deposited in GenBank and the Ribosomal Database Project, making the 16S rRNA gene the most widely studied gene for reconstructing bacterial phylogeny. While there is a general appreciation that these sequences are largely unique and derived from diverse species of bacteria, there has not been a quantitative attempt to describe the extent of sequencing efforts to date. We constructed rarefaction curves for each bacterial phylum and for the entire bacterial domain to assess the current state of sampling and the relative taxonomic richness of each phylum. This analysis quantifies the general sense among microbiologists that we are a long way from a complete census of the bacteria on Earth. Moreover, the analysis indicates that current sampling strategies might not be the most effective ones to describe novel diversity because there remain numerous phyla that are globally distributed yet poorly sampled. Based on the current level of sampling, it is not possible to estimate the total number of bacterial species on Earth, but the minimum species richness is 35,498. Considering previous global species richness estimates of 107 to 109, we are certain that this estimate will increase with additional sequencing efforts. The data support previous calls for extensive surveys of multiple chemically disparate environments and of specific phylogenetic groups to advance the census most rapidly. PMID:15590780

  11. Microbial Profiling of Combat Wound Infection through Detection Microarray and Next-Generation Sequencing

    PubMed Central

    Allen, Jonathan E.; Brown, Trevor S.; Gardner, Shea N.; McLoughlin, Kevin S.; Forsberg, Jonathan A.; Kirkup, Benjamin C.; Chromy, Brett A.; Luciw, Paul A.; Elster, Eric A.

    2014-01-01

    Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden. PMID:24829242

  12. A NASTRAN primer for the analysis of rotating flexible blades

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.

    1987-01-01

    This primer provides documentation for using MSC NASTRAN in analyzing rotating flexible blades. The analysis of these blades includes geometrically nonlinear (large displacement) analysis under centrifugal loading, and frequency and mode shape (normal modes) determination. The geometrically nonlinear analysis using NASTRAN Solution sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. A sample problem with the complete NASTRAN input data is included. Items unique to rotating blade analyses, such as setting angle and centrifugal softening effects are emphasized.

  13. Retrospective comparison of three-dimensional imaging sequences in the visualization of posterior fossa cranial nerves.

    PubMed

    Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif

    2017-12-01

    To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Open science resources for the discovery and analysis of Tara Oceans data

    PubMed Central

    Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; Vargas, Colomban De; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Krzic, Uros; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Reynaud, Emmanuel G.; Sardet, Christian; Sieracki, Mike; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Velayoudon, Didier; Weissenbach, Jean; Wincker, Patrick

    2015-01-01

    The Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events. PMID:26029378

  15. Open science resources for the discovery and analysis of Tara Oceans data

    NASA Astrophysics Data System (ADS)

    2015-05-01

    The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.

  16. Open science resources for the discovery and analysis of Tara Oceans data.

    PubMed

    Pesant, Stéphane; Not, Fabrice; Picheral, Marc; Kandels-Lewis, Stefanie; Le Bescot, Noan; Gorsky, Gabriel; Iudicone, Daniele; Karsenti, Eric; Speich, Sabrina; Troublé, Romain; Dimier, Céline; Searson, Sarah

    2015-01-01

    The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.

  17. Exome capture sequencing reveals new insights into hepatitis B virus-induced hepatocellular carcinoma at the early stage of tumorigenesis.

    PubMed

    Chen, Yong; Wang, Lijuan; Xu, Hexiang; Liu, Xingxiang; Zhao, Yingren

    2013-10-01

    Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the third primary cause of cancer-related mortality worldwide. The molecular mechanisms underlying the initiation and formation of HCC remain obscure. In the present study, we performed exome sequencing using tumor and normal tissues from 3 hepatitis B virus (HBV)-positive BCLC stage A HCC patients. Bioinformatic analysis was performed to find candidate protein-altering somatic mutations. Eighty damaging mutations were validated and 59 genes were reported to be mutated in HBV-related HCCs for the first time here. Further analysis using whole genome sequencing (WGS) data of 88 HBV-related HCC patients from the European Genome-phenome Archive database showed that mutations in 33 of the 59 genes were also detected in other samples. Variants of two newly found genes, ZNF717 and PARP4, were detected in more than 10% of the WGS samples. Several other genes, such as FLNA and CNTN2, are also noteworthy. Thus, the exome sequencing analysis of three BCLC stage A patients provides new insights into the molecular events governing the early steps of HBV-induced HCC tumorigenesis.

  18. Phylogenetic analysis of rubella virus strains during an outbreak in São Paulo, 2007-2008.

    PubMed

    Figueiredo, C A; Oliveira, M I; Curti, S P; Afonso, A M S; Frugi Yu, A L; Gualberto, F; Durigon, E L

    2012-10-01

    Rubella virus (RV) is an important human pathogen that causes rubella, an acute contagious disease. It also causes severe birth defects collectively known as congenital rubella syndrome when infection occurs during the first trimester of pregnancy. Here, we present the phylogenetic analysis of RV that circulated in São Paulo during the 2007-2008 outbreak. Samples collected from patients diagnosed with rubella were isolated in cell culture and sequenced. RV RNA was obtained from samples or RV-infected cell cultures and amplified by reverse transcriptase-polymerase chain reaction. Sequences were assigned to genotypes by phylogenetic analysis using RV reference sequences. Seventeen sequences were analyzed, and three genotypes were identified: 1a, 1G, and 2B. Genotypes 1a and 1G, which were isolated in 2007, were responsible for sporadic rubella cases in São Paulo. Thereafter, in late 2007, the epidemiological conditions changed, resulting in a large RV outbreak with the clear dominance of genotype 2B. The results of this study provide new approaches for monitoring the progress of elimination of rubella from São Paulo, Brazil. Copyright © 2012 Wiley Periodicals, Inc.

  19. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    PubMed

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  20. Detection of Somatic Mutations by High-Resolution DNA Melting (HRM) Analysis in Multiple Cancers

    PubMed Central

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S.; Garcia-Closas, Montserrat; Sherman, Mark E.; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P.; Khan, Javed; Chanock, Stephen

    2011-01-01

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples. PMID:21264207

  1. Molecular identification and phylogenetic analysis of Dipetalonema evansi (LEWIS, 1882) in camels (Camelus dromedarius) of Iran.

    PubMed

    Sazmand, Alireza; Eigner, Barbara; Mirzaei, Mohammad; Hekmatimoghaddam, Seyedhossein; Harl, Josef; Duscher, Georg Gerhard; Fuehrer, Hans-Peter; Joachim, Anja

    2016-04-01

    Despite the economic importance of camels, the parasites that affect them have not received adequate attention so far and molecular studies are scarce compared to other livestock. In this study, we characterized peripheral blood microfilariae in 200 healthy one-humped camels (Camelus dromedarius) from south-east Iran by microscopy and molecular tools to receive a more detailed insight into prevalence and species that affect them. Moreover, adult specimens of the filarial nematode Dipetalonema evansi were collected from the carcass of an infected animal. Microscopic examination was performed on Giemsa-stained blood smears, and blood was also spotted on Whatman FTA(®) cards for DNA analysis. Genomic DNA was extracted, and PCR was carried out for the detection of filaroid helminths, followed by sequence analysis of positive samples. Four samples were positive for microfilariae by microscopy, while 16 animals (8 %) were positive by PCR. Sequence analysis revealed D. evansi in all cases. Phylogenetic analysis of a cytochrome C oxidase subunit I (COI) sequence of filaroid nematodes showed that most species in a single genus cluster in the same clade; however, D. evansi and D. gracile are not monophyletic and branch rather at the base of the tree. Further studies on the life cycle of D. evansi, specifically the identification of intermediate host(s), have become feasible with the provision of the first specific COI sequences in this study.

  2. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    PubMed

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  3. RIKEN Integrated Sequence Analysis (RISA) System—384-Format Sequencing Pipeline with 384 Multicapillary Sequencer

    PubMed Central

    Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Nagaoka, Sumiharu; Sasaki, Nobuya; Carninci, Piero; Konno, Hideaki; Akiyama, Junichi; Nishi, Katsuo; Kitsunai, Tokuji; Tashiro, Hideo; Itoh, Mari; Sumi, Noriko; Ishii, Yoshiyuki; Nakamura, Shin; Hazama, Makoto; Nishine, Tsutomu; Harada, Akira; Yamamoto, Rintaro; Matsumoto, Hiroyuki; Sakaguchi, Sumito; Ikegami, Takashi; Kashiwagi, Katsuya; Fujiwake, Syuji; Inoue, Kouji; Togawa, Yoshiyuki; Izawa, Masaki; Ohara, Eiji; Watahiki, Masanori; Yoneda, Yuko; Ishikawa, Tomokazu; Ozawa, Kaori; Tanaka, Takumi; Matsuura, Shuji; Kawai, Jun; Okazaki, Yasushi; Muramatsu, Masami; Inoue, Yorinao; Kira, Akira; Hayashizaki, Yoshihide

    2000-01-01

    The RIKEN high-throughput 384-format sequencing pipeline (RISA system) including a 384-multicapillary sequencer (the so-called RISA sequencer) was developed for the RIKEN mouse encyclopedia project. The RISA system consists of colony picking, template preparation, sequencing reaction, and the sequencing process. A novel high-throughput 384-format capillary sequencer system (RISA sequencer system) was developed for the sequencing process. This system consists of a 384-multicapillary auto sequencer (RISA sequencer), a 384-multicapillary array assembler (CAS), and a 384-multicapillary casting device. The RISA sequencer can simultaneously analyze 384 independent sequencing products. The optical system is a scanning system chosen after careful comparison with an image detection system for the simultaneous detection of the 384-capillary array. This scanning system can be used with any fluorescent-labeled sequencing reaction (chain termination reaction), including transcriptional sequencing based on RNA polymerase, which was originally developed by us, and cycle sequencing based on thermostable DNA polymerase. For long-read sequencing, 380 out of 384 sequences (99.2%) were successfully analyzed and the average read length, with more than 99% accuracy, was 654.4 bp. A single RISA sequencer can analyze 216 kb with >99% accuracy in 2.7 h (90 kb/h). For short-read sequencing to cluster the 3′ end and 5′ end sequencing by reading 350 bp, 384 samples can be analyzed in 1.5 h. We have also developed a RISA inoculator, RISA filtrator and densitometer, RISA plasmid preparator which can handle throughput of 40,000 samples in 17.5 h, and a high-throughput RISA thermal cycler which has four 384-well sites. The combination of these technologies allowed us to construct the RISA system consisting of 16 RISA sequencers, which can process 50,000 DNA samples per day. One haploid genome shotgun sequence of a higher organism, such as human, mouse, rat, domestic animals, and plants, can be revealed by seven RISA systems within one month. PMID:11076861

  4. Molecular diagnostics and ITS-based phylogenic analysis of Streptococcus suis serotype 2 in central Vietnam.

    PubMed

    Nguyen, Bach Hoang; Phan, Dieu Hong Nu; Nguyen, Hien Xuan; Le, An Van; Alberti, Alberto

    2015-07-04

    Streptococcus suis (S. suis) serotype 2 has recently become the most prevalent cause of meningitis in adults in many areas of Vietnam. This study provides data on S. suis molecular diagnosis in central Vietnam using a real-time polymerase chain reaction (PCR) assay targeting the S. suis serotype 2 cps2J gene. Additionally, 16S-23S rDNA intragenic spacer (ITS)-based phylogenic analysis of strains isolated from cerebrospinal fluid (CSF) in Thua Thien Hue Province, Vietnam, is presented and discussed. Pathogenic bacteria were isolated from 40 CSF samples, and 18 were identified as S. suis by culture-dependent methods. Capsular serotyping was assessed by real-time PCR. ITS sequences were obtained after traditional PCR and were used in phylogenic analyses. Pathogenic bacteria were isolated from 36 out of 40 CSF samples. A total of 18 S. suis strains were isolated and assigned to serotype 2 by real-time PCR. One CSF sample, negative when tested by culture-dependent methods, was positive to S. suis serotype 2 by real-time PCR. Pairwise alignments of the 18 ITS sequences did not reveal any variable nucleotide position, and resulted in a single sequence type. Sequences were similar to S. suis serotype 2 reference ITS sequences (> 98.1%), and there was no lack of an ITS spacer region in the isolates. S. suis serotype 2 is the most prevalent serotype in central Vietnam. Real-time PCR assay proved to be a reliable diagnostic method for early detection of S. suis 2 in CSF samples.

  5. Phylogenetic analysis of Austrian canine distemper virus strains from clinical samples from dogs and wild carnivores.

    PubMed

    Benetka, V; Leschnik, M; Affenzeller, N; Möstl, K

    2011-04-09

    Austrian field cases of canine distemper (14 dogs, one badger [Meles meles] and one stone marten [Martes foina]) from 2002 to 2007 were investigated and the case histories were summarised briefly. Phylogenetic analysis of fusion (F) and haemagglutinin (H) gene sequences revealed different canine distemper virus (CDV) lineages circulating in Austria. The majority of CDV strains detected from 2002 to 2004 were well embedded in the European lineage. One Austrian canine sample detected in 2003, with a high similarity to Hungarian sequences from 2005 to 2006, could be assigned to the Arctic group (phocine distemper virus type 2-like). The two canine sequences from 2007 formed a clearly distinct group flanked by sequences detected previously in China and the USA on an intermediate position between the European wildlife and the Asia-1 cluster. The Austrian wildlife strains (2006 and 2007) could be assigned to the European wildlife group and were most closely related to, yet clearly different from, the 2007 canine samples. To elucidate the epidemiological role of Austrian wildlife in the transmission of the disease to dogs and vice versa, H protein residues related to receptor and host specificity (residues 530 and 549) were analysed. All samples showed the amino acids expected for their host of origin, with the exception of a canine sequence from 2007, which had an intermediate position between wildlife and canine viral strains. In the period investigated, canine strains circulating in Austria could be assigned to four different lineages reflecting both a high diversity and probably different origins of virus introduction to Austria in different years.

  6. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  7. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  8. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  9. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data

    PubMed Central

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-01

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data—previously only browseable through our FTP site—by focusing on particular samples, populations or data sets of interest. PMID:27638885

  10. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    EPA Science Inventory

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  11. An epidemiological study of enteric viruses in sewage with molecular characterization by RT-PCR and sequence analysis.

    PubMed

    Arraj, A; Bohatier, J; Aumeran, C; Bailly, J L; Laveran, H; Traoré, O

    2008-09-01

    The aim of this study was to assess the presence and seasonal frequency of various enteric viruses in wastewater treatment. The detection of astrovirus, norovirus, enterovirus, hepatitis A virus (HAV) and rotavirus was carried out by molecular analyses in concentrated water samples collected over 18 months at the entrance and exit of an activated sludge sewage treatment plant. The reverse transcriptase-polymerase chain reaction (RT-PCR) results were confirmed by sequencing, and comparative phylogenetic analysis was performed on the isolated strains. Genomes of human astrovirus and human rotavirus were identified in 26/29 and 11/29 samples of raw sewage, respectively, and in 12/29 and 13/29 treated effluent samples, respectively. Some rotavirus sequences detected in environmental samples were very close to those of clinical strains. Noroviruses, enteroviruses and HAV were not detected during the study period. This could be related to the small sample volume, to the sensitivity of the detection methods or to local epidemiological situations. Frequent detection of viral RNA, whether infectious or not, in the exit effluent of sewage treatment indicates wide dispersion of enteric viruses in the environment. Consequently, viral contamination resulting from the use of these treated waters is a risk that needs to be addressed.

  12. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    EPA Science Inventory

    Mitochondrial signature sequences have frequently been used to study the demographics of many different populations around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individu...

  13. Identification and characterization of unrecognized viruses in stool samples of non-polio acute flaccid paralysis children by simplified VIDISCA.

    PubMed

    Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Jebbink, Maarten F; Deijs, Martin; Canuti, Marta; Sharif, Salmaan; de Vries, Michel; Khurshid, Adnan; Mahmood, Tariq; van der Hoek, Lia; Zaidi, Syed Sohail Zahoor

    2014-08-12

    The use of sequence independent methods combined with next generation sequencing for identification purposes in clinical samples appears promising and exciting results have been achieved to understand unexplained infections. One sequence independent method, Virus Discovery based on cDNA Amplified Fragment Length Polymorphism (VIDISCA) is capable of identifying viruses that would have remained unidentified in standard diagnostics or cell cultures. VIDISCA is normally combined with next generation sequencing, however, we set up a simplified VIDISCA which can be used in case next generation sequencing is not possible. Stool samples of 10 patients with unexplained acute flaccid paralysis showing cytopathic effect in rhabdomyosarcoma cells and/or mouse cells were used to test the efficiency of this method. To further characterize the viruses, VIDISCA-positive samples were amplified and sequenced with gene specific primers. Simplified VIDISCA detected seven viruses (70%) and the proportion of eukaryotic viral sequences from each sample ranged from 8.3 to 45.8%. Human enterovirus EV-B97, EV-B100, echovirus-9 and echovirus-21, human parechovirus type-3, human astrovirus probably a type-3/5 recombinant, and tetnovirus-1 were identified. Phylogenetic analysis based on the VP1 region demonstrated that the human enteroviruses are more divergent isolates circulating in the community. Our data support that a simplified VIDISCA protocol can efficiently identify unrecognized viruses grown in cell culture with low cost, limited time without need of advanced technical expertise. Also complex data interpretation is avoided thus the method can be used as a powerful diagnostic tool in limited resources. Redesigning the routine diagnostics might lead to additional detection of previously undiagnosed viruses in clinical samples of patients.

  14. Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing

    PubMed Central

    Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill

    2015-01-01

    Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080

  15. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation.

    PubMed

    Nakato, Ryuichiro; Shirahige, Katsuhiko

    2017-03-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis can detect protein/DNA-binding and histone-modification sites across an entire genome. Recent advances in sequencing technologies and analyses enable us to compare hundreds of samples simultaneously; such large-scale analysis has potential to reveal the high-dimensional interrelationship level for regulatory elements and annotate novel functional genomic regions de novo. Because many experimental considerations are relevant to the choice of a method in a ChIP-seq analysis, the overall design and quality management of the experiment are of critical importance. This review offers guiding principles of computation and sample preparation for ChIP-seq analyses, highlighting the validity and limitations of the state-of-the-art procedures at each step. We also discuss the latest challenges of single-cell analysis that will encourage a new era in this field. © The Author 2016. Published by Oxford University Press.

  16. Mutation Analysis of SLC26A4 for Pendred Syndrome and Nonsyndromic Hearing Loss by High-Resolution Melting

    PubMed Central

    Chen, Neng; Tranebjærg, Lisbeth; Rendtorff, Nanna Dahl; Schrijver, Iris

    2011-01-01

    Pendred syndrome and DFNB4 (autosomal recessive nonsyndromic congenital deafness, locus 4) are associated with autosomal recessive congenital sensorineural hearing loss and mutations in the SLC26A4 gene. Extensive allelic heterogeneity, however, necessitates analysis of all exons and splice sites to identify mutations for individual patients. Although Sanger sequencing is the gold standard for mutation detection, screening methods supplemented with targeted sequencing can provide a cost-effective alternative. One such method, denaturing high-performance liquid chromatography, was developed for clinical mutation detection in SLC26A4. However, this method inherently cannot distinguish homozygous changes from wild-type sequences. High-resolution melting (HRM), on the other hand, can detect heterozygous and homozygous changes cost-effectively, without any post-PCR modifications. We developed a closed-tube HRM mutation detection method specific for SLC26A4 that can be used in the clinical diagnostic setting. Twenty-eight primer pairs were designed to cover all 21 SLC26A4 exons and splice junction sequences. Using the resulting amplicons, initial HRM analysis detected all 45 variants previously identified by sequencing. Subsequently, a 384-well plate format was designed for up to three patient samples per run. Blinded HRM testing on these plates of patient samples collected over 1 year in a clinical diagnostic laboratory accurately detected all variants identified by sequencing. In conclusion, HRM with targeted sequencing is a reliable, simple, and cost-effective method for SLC26A4 mutation screening and detection. PMID:21704276

  17. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

    PubMed

    Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David

    2016-03-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia.

    PubMed

    Triviño-Valencia, Jessica; Lora, Fabiana; Zuluaga, Juan David; Gomez-Marin, Jorge E

    2016-05-01

    We evaluated the presence of DNA of Giardia, Toxoplasma, and Cryptosporidium by PCR, and of Giardia and Cryptosporidium genera by immunofluorescence antibody test (IFAT), in water samples, before, during, and after plant treatment for drinkable water. We applied this method in 38 samples of 10 l of water taken from each of the water treatment steps and in 8 samples taken at home (only for Toxoplasma PCR) in Quindio region in Colombia. There were 8 positive samples for Cryptosporidium parvum (21 %), 4 for Cryptosporidium hominis (10.5 %), 27 for Toxoplasma gondii (58.6 %), 2 for Giardia duodenalis assemblage A (5.2 %), and 5 for G. duodenalis assemblage B (13.1 %). By IFAT, 23 % were positive for Giardia and 21 % for Cryptosporidium. An almost perfect agreement was found between IFAT and combined results of PCR, by Kappa composite proportion analysis. PCR positive samples were significantly more frequent in untreated raw water for C. parvum (p = 0.02). High mean of fecal coliforms, high pH values, and low mean of chlorine residuals were strongly correlated with PCR positivity for G. duodenalis assemblage B. High pH value was correlated with PCR positivity for C. parvum. Phylogenetic analysis of DNA sequences was possible, showing water and human clinical sequences for Toxoplasma within the same phylogenetic group for B1 repeated sequence. PCR assay is complementary to IFAT assay for monitoring of protozoa in raw and drinkable water, enabling species identification and to look for phylogenetic analysis in protozoa from human and environmental sources.

  19. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing

    PubMed Central

    2014-01-01

    Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312

  20. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.

    PubMed

    Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang

    2014-03-05

    RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.

  1. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): taxonomic implications for the Great Lakes species flock.

    PubMed

    Reed, K M; Dorschner, M O; Todd, T N; Phillips, R B

    1998-09-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens of C. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  2. Genetic characterization of measles virus in the Philippines, 2008-2011.

    PubMed

    Centeno, Rex; Fuji, Naoko; Okamoto, Michiko; Dapat, Clyde; Saito, Mariko; Tandoc, Amado; Lupisan, Socorro; Oshitani, Hitoshi

    2015-06-03

    Large outbreaks of measles occurred in the Philippines in 2010 and 2011. Genetic analysis was performed to identify the genotype of measles virus (MeV) that was responsible for the large outbreaks. A total of 114 representative MeVs that were detected in the Philippines from 2008 to 2011 were analyzed by sequencing the C-terminal region of nucleocapsid (N) gene and partial hemagglutinin (H) gene and by inferring the phylogenetic trees. Genetic analysis showed that genotype D9 was the predominant circulating strain during the 4-year study period. Genotype D9 was detected in 23 samples (92%) by N gene sequencing and 93 samples (94%) by H gene analysis. Sporadic cases of genotype G3 MeV were identified in 2 samples (8%) by N gene sequencing and 6 samples (6%) by H gene analysis. Genotype G3 MeV was detected mainly in Panay Island in 2009 and 2010. Molecular clock analysis of N gene showed that the recent genotype D9 viruses that caused the big outbreaks in 2010 and 2011 diverged from a common ancestor in 2005 in one of the neighboring Southeast Asian countries, where D9 was endemic. These big outbreaks of measles resulted in a spillover and were associated with genotype D9 MeV importation to Japan and the USA. Genotype D9 MeV became endemic and caused two big outbreaks in the Philippines in 2010 and 2011. Genotype G3 MeV was detected sporadically with limited geographic distribution. This study highlights the importance of genetic analysis not only in helping with the assessment of measles elimination program in the country but also in elucidating the transmission dynamics of measles virus.

  3. [Community composition and diversity of endophytic fungi from roots of Sinopodophyllum hexandrum in forest of Upper-north mountain of Qinghai province].

    PubMed

    Ning, Yi; Li, Yan-Ling; Zhou, Guo-Ying; Yang, Lu-Cun; Xu, Wen-Hua

    2016-04-01

    High throughput sequencing technology is also called Next Generation Sequencing (NGS), which can sequence hundreds and thousands sequences in different samples at the same time. In the present study, the culture-independent high throughput sequencing technology was applied to sequence the fungi metagenomic DNA of the fungal internal transcribed spacer 1(ITS 1) in the root of Sinopodophyllum hexandrum. Sequencing data suggested that after the quality control, 22 565 reads were remained. Cluster similarity analysis was done based on 97% sequence similarity, which obtained 517 OTUs for the three samples (LD1, LD2 and LD3). All the fungi which identified from all the reads of OTUs based on 0.8 classification thresholds using the software of RDP classifier were classified as 13 classes, 35 orders, 44 family, 55 genera. Among these genera, the genus of Tetracladium was the dominant genera in all samples(35.49%, 68.55% and 12.96%).The Shannon's diversity indices and the Simpson indices of the endophytic fungi in the samples ranged from 1.75-2.92, 0.11-0.32, respectively.This is the first time for applying high through put sequencing technol-ogyto analyze the community composition and diversity of endophytic fungi in the medicinal plant, and the results showed that there were hyper diver sity and high community composition complexity of endophytic fungi in the root of S. hexandrum. It is also proved that the high through put sequencing technology has great advantage for analyzing ecommunity composition and diversity of endophtye in the plant. Copyright© by the Chinese Pharmaceutical Association.

  4. Characterisation and Next-generation Sequencing Analysis of Unknown Arboviruses

    DTIC Science & Technology

    2012-09-01

    on the development of real- time PCR detection assays for Vibrio cholerae, a water-borne bacterium responsible for severe enteric disease. From...specific sequence [22]. The length of time from harvesting virus to generating samples that are ready for sequencing takes about two weeks, which is a...two viruses, and on day 4 post infection significant and widespread cytopathic effect was observed. The viruses were harvested by ultracentrifugation

  5. High prevalence of Hepatitis C virus genotype 6 in Vietnam.

    PubMed

    Pham, Duc Anh; Leuangwutiwong, Pornsawan; Jittmittraphap, Akanitt; Luplertlop, Nattanej; Bach, Hoa Khanh; Akkarathamrongsin, Srunthron; Theamboonlers, Apiradee; Poovorawan, Yong

    2009-01-01

    This study aimed to update the prevalence of the various Hepatitis C virus genotypes in Vietnamese blood donors. One hundred and three HCV antibody-positive plasma samples were collected from blood donors at the National Institute of Hematology and Blood Transfusion, Hanoi, Vietnam. All specimens were subjected to RT-PCR of the 5' untranslated region (UTR) to confirm the presence of HCV RNA. The core and NS5B regions of thh positive samples were subsequently amplified by RT-PCR followed by direct sequencing and phylogenetic analysis. Seventy out of 103 samples (68.0%) were RNA positive. Core and NS5B were successfully amplified and sequences were obtained for 70 and 65 samples, respectively. Phylogenetic analysis revealed that genotype 6a was the most predominant among Vietnamese blood donors with a prevalence of 37.1% (26/70), followed by genotype 1a at 30.0% (21/70) and genotype 1b at 17.1% (12/70). The prevalence of two other genotype 6 variants, 6e and 61 was 8.6% and 1.4%, respectively. Further analysis of recent studies showed that the geographic distribution of genotype 6 covered mainly southern China and the mainland of Southeast Asia including Vietnam, Laos, Thailand, and Myanmar. The GenBank accession numbers for the sequences reported in this study are FJ768772-FJ768906.

  6. Nearing saturation of cancer driver gene discovery.

    PubMed

    Hsiehchen, David; Hsieh, Antony

    2018-06-15

    Extensive sequencing efforts of cancer genomes such as The Cancer Genome Atlas (TCGA) have been undertaken to uncover bona fide cancer driver genes which has enhanced our understanding of cancer and revealed therapeutic targets. However, the number of driver gene mutations is bounded, indicating that there must be a point when further sequencing efforts will be excessive. We found that there was a significant positive correlation between sample size and identified driver gene mutations across 33 cancers sequenced by the TCGA, which is expected if additional sequencing is still leading to the identification of more driver genes. However, the rate of new cancer driver genes being discovered with larger samples is declining rapidly. Our analysis provides a general guide for determining which cancer types would likely benefit from additional sequencing efforts, particularly those with relatively high rates of cancer driver gene discovery. Our results argue that past strategies of indiscriminately sequencing as many specimens as possible for all cancer types is becoming inefficient. In addition, without significant investments into applying our knowledge of cancer genomes, we risk sequencing more cancer genomes for the sake of sequencing rather than meaningful patient benefit.

  7. Impact of sequencing depth on the characterization of the microbiome and resistome.

    PubMed

    Zaheer, Rahat; Noyes, Noelle; Ortega Polo, Rodrigo; Cook, Shaun R; Marinier, Eric; Van Domselaar, Gary; Belk, Keith E; Morley, Paul S; McAllister, Tim A

    2018-04-12

    Developments in high-throughput next generation sequencing (NGS) technology have rapidly advanced the understanding of overall microbial ecology as well as occurrence and diversity of specific genes within diverse environments. In the present study, we compared the ability of varying sequencing depths to generate meaningful information about the taxonomic structure and prevalence of antimicrobial resistance genes (ARGs) in the bovine fecal microbial community. Metagenomic sequencing was conducted on eight composite fecal samples originating from four beef cattle feedlots. Metagenomic DNA was sequenced to various depths, D1, D0.5 and D0.25, with average sample read counts of 117, 59 and 26 million, respectively. A comparative analysis of the relative abundance of reads aligning to different phyla and antimicrobial classes indicated that the relative proportions of read assignments remained fairly constant regardless of depth. However, the number of reads being assigned to ARGs as well as to microbial taxa increased significantly with increasing depth. We found a depth of D0.5 was suitable to describe the microbiome and resistome of cattle fecal samples. This study helps define a balance between cost and required sequencing depth to acquire meaningful results.

  8. Oil Analysis.

    DTIC Science & Technology

    1982-08-23

    LUBRICATION, FAILURE PROGRESSION WNITORING OIL-ANALYSIS, FAILURE ANALYSIS, TRIBOLOGY WEAR DEBRIS ANALYSIS, WEAR REGIMS DIAGNOSTICS, BENCH TESTING, FERROGRApHy ...Spectrometric Oil Analysis . ............... 400 G. Analytical Ferrography ............................. 411 3 NAEC-92-153 TABLE OF CONTENTS (Continued...of ferrography entry deposit mnicrographs of these sequences, which can be directly related to sample debris concentration levels. These micrographs

  9. Assessment of fungal diversity in a water-damaged office building.

    PubMed

    Green, Brett J; Lemons, Angela R; Park, Yeonmi; Cox-Ganser, Jean M; Park, Ju-Hyeong

    2017-04-01

    Recent studies have described fungal communities in indoor environments using gene sequencing-based approaches. In this study, dust-borne fungal communities were elucidated from a water-damaged office building located in the northeastern region of the United States using internal transcribed spacer (ITS) rRNA gene sequencing. Genomic DNA was extracted from 5 mg of floor dust derived from 22 samples collected from either the lower floors (n = 8) or a top floor (n = 14) of the office building. ITS gene sequencing resolved a total of 933 ITS sequences and was clustered into 216 fungal operational taxonomic units (OTUs). Analysis of fungal OTUs at the 97% similarity threshold showed a difference between the lower and top floors that was marginally significant (p = 0.049). Species richness and diversity indices were reduced in the lower floor samples compared to the top floor samples and there was a high degree of compositional dissimilarity within and between the two different areas within the building. Fungal OTUs were placed in the phyla Ascomycota (55%), Basidiomycota (41%), Zygomycota (3%), Glomeromycota (0.4%), Chytridiomycota (0.3%), and unassigned fungi (0.5%). The Ascomycota classes with the highest relative abundances included the Dothideomycetes (30%) and Eurotiomycetes (16%). The Basidiomycota consisted of the classes Ustilaginomycetes (14%), Tremellomycetes (11%), and Agaricomycetes (8%). Sequence reads derived from the plant pathogen Ustilago syntherismae were the most abundant in the analysis as were obligate Basidiomycota yeast species that accounted for 12% and 11% of fungal ITS sequences, respectively. ITS gene sequencing provides additional insight into the diversity of fungal OTUs. These data further highlight the contribution of fungi placed in the phylum Basidiomycota, obligate yeasts, as well as xerophilic species that are typically not resolved using traditional culture methods.

  10. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.

    PubMed

    Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques

    2017-09-20

    The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.

  11. A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system.

    PubMed

    Oba, Mami; Tsuchiaka, Shinobu; Omatsu, Tsutomu; Katayama, Yukie; Otomaru, Konosuke; Hirata, Teppei; Aoki, Hiroshi; Murata, Yoshiteru; Makino, Shinji; Nagai, Makoto; Mizutani, Tetsuya

    2018-01-08

    We tested usefulness of a target enrichment system SureSelect, a comprehensive viral nucleic acid detection method, for rapid identification of viral pathogens in feces samples of cattle, pigs and goats. This system enriches nucleic acids of target viruses in clinical/field samples by using a library of biotinylated RNAs with sequences complementary to the target viruses. The enriched nucleic acids are amplified by PCR and subjected to next generation sequencing to identify the target viruses. In many samples, SureSelect target enrichment method increased efficiencies for detection of the viruses listed in the biotinylated RNA library. Furthermore, this method enabled us to determine nearly full-length genome sequence of porcine parainfluenza virus 1 and greatly increased Breadth, a value indicating the ratio of the mapping consensus length in the reference genome, in pig samples. Our data showed usefulness of SureSelect target enrichment system for comprehensive analysis of genomic information of various viruses in field samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. First molecular detection and characterization of Hepatozoon and Sarcocystis spp. in field mice and voles from Japan.

    PubMed

    Moustafa, Mohamed Abdallah Mohamed; Shimozuru, Michito; Mohamed, Wessam; Taylor, Kyle Rueben; Nakao, Ryo; Sashika, Mariko; Tsubota, Toshio

    2017-08-01

    Sarcocystis and Hepatozoon species are protozoan parasites that are frequently detected in domestic and wild animals. Rodents are considered common intermediate and paratenic hosts for several Sarcocystis and Hepatozoon species. Here, blood DNA samples from a total of six rodents, including one Myodes rutilus, one Myodes rufocanus, and four Apodemus speciosus, collected from Hokkaido, Japan, were shown by conventional PCR of the 18S ribosomal RNA (rRNA) gene to contain Sarcocystis and Hepatozoon DNA. Sequencing of the DNA detected one Sarcocystis sp. in the M. rufocanus sample and two different Hepatozoon spp. in the M. rutilus and A. speciosus samples. Phylogenetic analysis showed that the detected Sarcocystis sp. sequence grouped with GenBank Sarcocystis sequences from rodents, snakes, and raccoons from Japan and China. The 18S rRNA partial gene sequences of both detected Hepatozoon spp. clustered with GenBank Hepatozoon sequences from snakes, geckos and voles in Europe, Africa, and Asia. This study provides evidence that wild rodents have a role in the maintenance of Sarcocystis and Hepatozoon species on the island of Hokkaido.

  13. Identification of Microbial Profile of Koji Using Single Molecule, Real-Time Sequencing Technology.

    PubMed

    Hui, Wenyan; Hou, Qiangchuan; Cao, Chenxia; Xu, Haiyan; Zhen, Yi; Kwok, Lai-Yu; Sun, Tiansong; Zhang, Heping; Zhang, Wenyi

    2017-05-01

    Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples. © 2017 Institute of Food Technologists®.

  14. Application of FTA technology for sampling, recovery and molecular characterization of viral pathogens and virus-derived transgenes from plant tissues.

    PubMed

    Ndunguru, Joseph; Taylor, Nigel J; Yadav, Jitender; Aly, Haytham; Legg, James P; Aveling, Terry; Thompson, Graham; Fauquet, Claude M

    2005-05-18

    Plant viral diseases present major constraints to crop production. Effective sampling of the viruses infecting plants is required to facilitate their molecular study and is essential for the development of crop protection and improvement programs. Retaining integrity of viral pathogens within sampled plant tissues is often a limiting factor in this process, most especially when sample sizes are large and when operating in developing counties and regions remote from laboratory facilities. FTA is a paper-based system designed to fix and store nucleic acids directly from fresh tissues pressed into the treated paper. We report here the use of FTA as an effective technology for sampling and retrieval of DNA and RNA viruses from plant tissues and their subsequent molecular analysis. DNA and RNA viruses were successfully recovered from leaf tissues of maize, cassava, tomato and tobacco pressed into FTA Classic Cards. Viral nucleic acids eluted from FTA cards were found to be suitable for diagnostic molecular analysis by PCR-based techniques and restriction analysis, and for cloning and nucleotide sequencing in a manner equivalent to that offered by tradition isolation methods. Efficacy of the technology was demonstrated both from sampled greenhouse-grown plants and from leaf presses taken from crop plants growing in farmer's fields in East Africa. In addition, FTA technology was shown to be suitable for recovery of viral-derived transgene sequences integrated into the plant genome. Results demonstrate that FTA is a practical, economical and sensitive method for sampling, storage and retrieval of viral pathogens and plant genomic sequences, when working under controlled conditions and in the field. Application of this technology has the potential to significantly increase ability to bring modern analytical techniques to bear on the viral pathogens infecting crop plants.

  15. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples

    PubMed Central

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti

    2016-01-01

    Objective Currently, there is a disconnect between finding a patient’s relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. Methods and materials The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. Results IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. Conclusion IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine. IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. PMID:27026619

  16. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples.

    PubMed

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti; Robinson, William A; Tan, Aik Choon

    2016-07-01

    Currently, there is a disconnect between finding a patient's relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine.IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Preparation of highly multiplexed small RNA sequencing libraries.

    PubMed

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  18. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial darkmore » matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.« less

  19. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia.

    PubMed

    Klubal, Radek; Kopecky, Jan; Nesvorna, Marta; Sparagano, Olivier A E; Thomayerova, Jana; Hubert, Jan

    2016-01-01

    Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1-7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71% of cloned sequences), followed by Diplorickettsia (13%), Spiroplasma (3%), Rickettsia (3%), Pasteurella (3%), Morganella (3%), Pseudomonas (2%), Bacillus (1%), Methylobacterium (1%) and Phyllobacterium (1%). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20% of the 142 samples), Rickettsia (12%), Spiroplasma (5%), Diplorickettsia (5%) and Anaplasma (2%). In total, 68% of I. ricinus samples (97/142) contained detectable bacteria and 13% contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.

  20. Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome

    DOE PAGES

    Miller, Ian J.; Weyna, Theodore R.; Fong, Stephen S.; ...

    2016-09-29

    Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial darkmore » matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Lastly, our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.« less

  1. Serological detection and molecular characterization of piroplasmids in equids in Brazil.

    PubMed

    Vieira, Maria Isabel Botelho; Costa, Márcio Machado; de Oliveira, Mateus Tonial; Gonçalves, Luiz Ricardo; André, Marcos Rogério; Machado, Rosangela Zacarias

    2018-03-01

    Equine piroplasmosis is a disease caused by the hemoparasites Babesia caballi and Theileria equi and is considered to be the most important parasitic infection affecting Equidae. The objective of the present study was to carry out an epidemiological molecular and serological survey for the presence of these two protozoal organisms in equids from the northwestern region of the State of Rio Grande do Sul (RS), south Brazil. For this purpose, blood samples were collected from 90 equids in the city of Passo Fundo, RS, Brazil. Those were animals used for sport activities, outdoor recreational riding, and work including cattle herding and mounted patrol. Anti-T. equi and anti-B. caballi IgG antibodies were detected in the sera of those animals by commercial ELISA kits. The molecular diagnosis of equine piroplasmosis due to T. equi or B. caballi (or both) consisted in the amplification of the 18S rRNA gene by nested PCR followed by sequencing of the amplified PCR product and sequence comparison and phylogenetic analysis of the isolates; 17 (18.9%) and 5 (5.55%) out of the 90 serum samples tested in this study were positive for T. equi and B. caballi, respectively. Piroplasmid 18S rRNA gene fragments were detected by PCR in 24.4% (22/90) of the samples analysed and shared 99-100% identity with sequences of T. equi by BLASTn. Samples for the phylogenetic analysis were divided into 2 groups. In group A, there was close phylogenetic relationship between 4 sequences and sequences previously reported along the US-Mexico border, in South Africa, and in Brazil. There was a phylogenetic proximity between 5 samples from group B and samples tested by other authors in the US and Spain. Variation of the 18S rRNA gene allowed the identification of 9 new T. equi genotypes in the geographical region studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Insights into the Performance of SD Bioline Malaria Ag P.f/Pan Rapid Diagnostic Test and Plasmodium falciparum Histidine-Rich Protein 2 Gene Variation in Madagascar.

    PubMed

    Willie, Nigani; Mehlotra, Rajeev K; Howes, Rosalind E; Rakotomanga, Tovonahary A; Ramboarina, Stephanie; Ratsimbasoa, Arsène C; Zimmerman, Peter A

    2018-06-01

    Plasmodium falciparum histidine-rich protein 2 (PfHRP2) forms the basis of many current malaria rapid diagnostic tests (RDTs). However, the parasites lacking part or all of the pfhrp2 gene do not express the PfHRP2 protein and are, therefore, not identifiable by PfHRP2-detecting RDTs. We evaluated the performance of the SD Bioline Malaria Ag P.f/Pan RDT together with pfhrp2 variation in Madagascar. Genomic DNA isolated from 260 patient blood samples were polymerase chain reaction (PCR)-amplified for the parasite 18S rRNA and pfhrp2 genes. Post-PCR ligation detection reaction-fluorescent microsphere assay (LDR-FMA) was performed for the identification of parasite species. Plasmodium falciparum histidine-rich protein 2 amplicons were sequenced. Polymerase chain reaction diagnosis of patient samples showed that 29% (75/260) were infected and P. falciparum was present in 95% (71/75) of these PCR-positive samples. Comparing RDT and P. falciparum detection by LDR-FMA, eight samples were RDT negative but P. falciparum positive (false negatives), all of which were pfhrp2 positive. The sensitivity and specificity of the RDT were 87% and 90%, respectively. Seventy-three samples were amplified for pfhrp2 , from which nine randomly selected amplicons were sequenced, yielding 13 sequences. Amplification of pfhrp2 , combined with RDT analysis and P. falciparum detection by LDR-FMA, showed that there was no indication of pfhrp2 deletion. Sequence analysis of pfhrp2 showed that the correlation between pfhrp2 sequence structure and RDT detection rates was unclear. Although the observed absence of pfhrp2 deletion from the samples screened here is encouraging, continued monitoring of the efficacy of the SD Bioline Malaria Ag P.f/Pan RDT for malaria diagnosis in Madagascar is warranted.

  3. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    PubMed Central

    Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther

    2017-01-01

    The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125

  4. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    PubMed

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  5. [Study on correlation between ITS sequence of Arctium lappa and quality of Fructus Arctii].

    PubMed

    Xu, Liang; Dou, Deqiang; Wang, Bing; Yang, Yanyun; Kang, Tingguo

    2011-07-01

    To study the correlation between ITS sequence of Arctium lappa and Fructus Arctii quality of different origin. The samples of Fructu arctii materials were collected from 26 different producing areas. Their ITS sequence were determined after polymerase chain reaction (PCR) and quality were evaluated through the determination of arctiin content by HPLC. Genetic diversity, genotype and correlation were analyzed by ClustalX (1.81), Mage 4.0, SPSS 13.0 statistical software. ITS sequence of A. was obtained from 26 samples, and was registered in the GenBank. Corresponding arctiin content of Fructus arctii and 1000-grain weight were determined. A. lappa genotype correlated with Fructus arctii quality by statistical analysis. The research provided a foundation for revealing the molecular mechanism of Fructus arctii geoherbs.

  6. Proteome Studies of Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel basedmore » proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.« less

  7. TriageTools: tools for partitioning and prioritizing analysis of high-throughput sequencing data.

    PubMed

    Fimereli, Danai; Detours, Vincent; Konopka, Tomasz

    2013-04-01

    High-throughput sequencing is becoming a popular research tool but carries with it considerable costs in terms of computation time, data storage and bandwidth. Meanwhile, some research applications focusing on individual genes or pathways do not necessitate processing of a full sequencing dataset. Thus, it is desirable to partition a large dataset into smaller, manageable, but relevant pieces. We present a toolkit for partitioning raw sequencing data that includes a method for extracting reads that are likely to map onto pre-defined regions of interest. We show the method can be used to extract information about genes of interest from DNA or RNA sequencing samples in a fraction of the time and disk space required to process and store a full dataset. We report speedup factors between 2.6 and 96, depending on settings and samples used. The software is available at http://www.sourceforge.net/projects/triagetools/.

  8. Proteome studies of filamentous fungi.

    PubMed

    Baker, Scott E; Panisko, Ellen A

    2011-01-01

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide variety of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, nongel-based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of variations on the general methods and technologies for identifying peptides in a given sample. We present a method that can serve as a "baseline" for proteomic studies of fungi.

  9. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d.

    PubMed

    Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja

    2015-07-01

    The oldest porcine circovirus type 2 (PCV2) sequence dates back to 1962 and is among several hundreds of publicly available PCV2 sequences. Despite this resource, few studies have investigated the global genetic diversity of PCV2. To evaluate the phylogenetic relationship of PCV2 strains, 1680 PCV2 open reading frame 2 (ORF2) sequences were compared and analysed by methods of neighbour-joining, maximum-likelihood, Bayesian inference and network analysis. Four distinct clades were consistently identified and included PCV2a, PCV2b, PCV2c and PCV2d; the p-distance between PCV2d and PCV2b was 0.055±0.008, larger than the PCV2 genotype-definition cut-off of 0.035, supporting PCV2d as an independent genotype. Among the 1680 sequences, 278-285 (16.5-17 %) were classified as PCV2a, 1007-1058 (59.9-63 %) as PCV2b, three (0.2 %) as PCV2c and 322-323 (19.2 %) as PCV2d, with the remaining 12-78 sequences (0.7-4.6 %) classified as intermediate clades or strains by the various methods. Classification of strains to genotypes differed based on the number of sequences used for the analysis, indicating that sample size is important when determining classification and assessing PCV2 trends and shifts. PCV2d was initially identified in 1999 in samples collected in Switzerland, now appears to be widespread in China and has been present in North America since 2012. During 2012-2013, 37 % of all investigated PCV2 sequences from US pigs were classified as PCV2d and overall data analysis suggests an ongoing genotype shift from PCV2b towards PCV2d. The present analyses indicate that PCV2d emerged approximately 20 years ago.

  10. Clinical Validation and Implementation of a Targeted Next-Generation Sequencing Assay to Detect Somatic Variants in Non-Small Cell Lung, Melanoma, and Gastrointestinal Malignancies

    PubMed Central

    Fisher, Kevin E.; Zhang, Linsheng; Wang, Jason; Smith, Geoffrey H.; Newman, Scott; Schneider, Thomas M.; Pillai, Rathi N.; Kudchadkar, Ragini R.; Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Lawson, David H.; Delman, Keith A.; El-Rayes, Bassel F.; Wilson, Malania M.; Sullivan, H. Clifford; Morrison, Annie S.; Balci, Serdar; Adsay, N. Volkan; Gal, Anthony A.; Sica, Gabriel L.; Saxe, Debra F.; Mann, Karen P.; Hill, Charles E.; Khuri, Fadlo R.; Rossi, Michael R.

    2017-01-01

    We tested and clinically validated a targeted next-generation sequencing (NGS) mutation panel using 80 formalin-fixed, paraffin-embedded (FFPE) tumor samples. Forty non-small cell lung carcinoma (NSCLC), 30 melanoma, and 30 gastrointestinal (12 colonic, 10 gastric, and 8 pancreatic adenocarcinoma) FFPE samples were selected from laboratory archives. After appropriate specimen and nucleic acid quality control, 80 NGS libraries were prepared using the Illumina TruSight tumor (TST) kit and sequenced on the Illumina MiSeq. Sequence alignment, variant calling, and sequencing quality control were performed using vendor software and laboratory-developed analysis workflows. TST generated ≥500× coverage for 98.4% of the 13,952 targeted bases. Reproducible and accurate variant calling was achieved at ≥5% variant allele frequency with 8 to 12 multiplexed samples per MiSeq flow cell. TST detected 112 variants overall, and confirmed all known single-nucleotide variants (n = 27), deletions (n = 5), insertions (n = 3), and multinucleotide variants (n = 3). TST detected at least one variant in 85.0% (68/80), and two or more variants in 36.2% (29/80), of samples. TP53 was the most frequently mutated gene in NSCLC (13 variants; 13/32 samples), gastrointestinal malignancies (15 variants; 13/25 samples), and overall (30 variants; 28/80 samples). BRAF mutations were most common in melanoma (nine variants; 9/23 samples). Clinically relevant NGS data can be obtained from routine clinical FFPE solid tumor specimens using TST, benchtop instruments, and vendor-supplied bioinformatics pipelines. PMID:26801070

  11. Unconventional P-35S sequence identified in genetically modified maize

    PubMed Central

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan’s markets during the period 2009 and 2012. PMID:24495911

  12. Noninvasive Prenatal Testing and Incidental Detection of Occult Maternal Malignancies.

    PubMed

    Bianchi, Diana W; Chudova, Darya; Sehnert, Amy J; Bhatt, Sucheta; Murray, Kathryn; Prosen, Tracy L; Garber, Judy E; Wilkins-Haug, Louise; Vora, Neeta L; Warsof, Stephen; Goldberg, James; Ziainia, Tina; Halks-Miller, Meredith

    2015-07-14

    Understanding the relationship between aneuploidy detection on noninvasive prenatal testing (NIPT) and occult maternal malignancies may explain results that are discordant with the fetal karyotype and improve maternal clinical care. To evaluate massively parallel sequencing data for patterns of copy-number variations that might prospectively identify occult maternal malignancies. Case series identified from 125,426 samples submitted between February 15, 2012, and September 30, 2014, from asymptomatic pregnant women who underwent plasma cell-free DNA sequencing for clinical prenatal aneuploidy screening. Analyses were conducted in a clinical laboratory that performs DNA sequencing. Among the clinical samples, abnormal results were detected in 3757 (3%); these were reported to the ordering physician with recommendations for further evaluation. NIPT for fetal aneuploidy screening (chromosomes 13, 18, 21, X, and Y). Detailed genome-wide bioinformatics analysis was performed on available sequencing data from 8 of 10 women with known cancers. Genome-wide copy-number changes in the original NIPT samples and in subsequent serial samples from individual patients when available are reported. Copy-number changes detected in NIPT sequencing data in the known cancer cases were compared with the types of aneuploidies detected in the overall cohort. From a cohort of 125,426 NIPT results, 3757 (3%) were positive for 1 or more aneuploidies involving chromosomes 13, 18, 21, X, or Y. From this set of 3757 samples, 10 cases of maternal cancer were identified. Detailed clinical and sequencing data were obtained in 8. Maternal cancers most frequently occurred with the rare NIPT finding of more than 1 aneuploidy detected (7 known cancers among 39 cases of multiple aneuploidies by NIPT, 18% [95% CI, 7.5%-33.5%]). All 8 cases that underwent further bioinformatics analysis showed unique patterns of nonspecific copy-number gains and losses across multiple chromosomes. In 1 case, blood was sampled after completion of treatment for colorectal cancer and the abnormal pattern was no longer evident. In this preliminary study, a small number of cases of occult malignancy were subsequently diagnosed among pregnant women whose noninvasive prenatal testing results showed discordance with the fetal karyotype. The clinical importance of these findings will require further research.

  13. Application of SCAR (sequence characterized amplified region) analysis to authenticate Lycium barbarum (wolfberry) and its adulterants.

    PubMed

    Sze, Stephen Cho-Wing; Song, Ju-Xian; Wong, Ricky Ngok-Shun; Feng, Yi-Bin; Ng, Tzi-Bun; Tong, Yao; Zhang, Kalin Yan-Bo

    2008-09-01

    Fructus Lycii (Gouqizi) is well known in Chinese herbal medicine for its restorative function of benefiting the liver and kidney, replenishing vital essence and improving eyesight. However, ten species and varieties of Lycium have benn found to be substitutes or adulterants of Lycium barbarum (wolfberry) in commercial markets in the Hong Kong Special Administrative Region and in China generally. L. barbarum cv. 'Tianjinense' and Lycium chinense var. potaninii are the most common examples. It is difficult to differentiate among the Lycium species by traditional morphological and histological analyses. An easy and reliable approach based on SCAR (sequence characterized amplified region) analysis was developed in the present study to differentiate L. barbarum from other Lycium species. Two characteristic bands of approx. 700 and 650 bp were detected on the RAPD (random amplification of polymorphic DNA) profiles generated from samples of L. barbarum and L. chinense var. potaninii using the primer OPC-7. They were isolated and sequenced. Two primer sets, based on the sequences, could amplify a single specific band in samples of L. barbarum respectively, whereas no bands were detected in samples of L. chinense var. potaninii. The results confirmed that the SCAR technique can be employed for authenticating L. barbarum and its adulterants.

  14. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution

    PubMed Central

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  15. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.

    PubMed

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.

  16. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  17. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags

    PubMed Central

    2010-01-01

    Intense interest centers on the role of the human gut microbiome in health and disease, but optimal methods for analysis are still under development. Here we present a study of methods for surveying bacterial communities in human feces using 454/Roche pyrosequencing of 16S rRNA gene tags. We analyzed fecal samples from 10 individuals and compared methods for storage, DNA purification and sequence acquisition. To assess reproducibility, we compared samples one cm apart on a single stool specimen for each individual. To analyze storage methods, we compared 1) immediate freezing at -80°C, 2) storage on ice for 24 or 3) 48 hours. For DNA purification methods, we tested three commercial kits and bead beating in hot phenol. Variations due to the different methodologies were compared to variation among individuals using two approaches--one based on presence-absence information for bacterial taxa (unweighted UniFrac) and the other taking into account their relative abundance (weighted UniFrac). In the unweighted analysis relatively little variation was associated with the different analytical procedures, and variation between individuals predominated. In the weighted analysis considerable variation was associated with the purification methods. Particularly notable was improved recovery of Firmicutes sequences using the hot phenol method. We also carried out surveys of the effects of different 454 sequencing methods (FLX versus Titanium) and amplification of different 16S rRNA variable gene segments. Based on our findings we present recommendations for protocols to collect, process and sequence bacterial 16S rDNA from fecal samples--some major points are 1) if feasible, bead-beating in hot phenol or use of the PSP kit improves recovery; 2) storage methods can be adjusted based on experimental convenience; 3) unweighted (presence-absence) comparisons are less affected by lysis method. PMID:20673359

  18. HIV-1 diversity, transmission dynamics and primary drug resistance in Angola.

    PubMed

    Bártolo, Inês; Zakovic, Suzana; Martin, Francisco; Palladino, Claudia; Carvalho, Patrícia; Camacho, Ricardo; Thamm, Sven; Clemente, Sofia; Taveira, Nuno

    2014-01-01

    To assess HIV-1 diversity, transmission dynamics and prevalence of transmitted drug resistance (TDR) in Angola, five years after ART scale-up. Population sequencing of the pol gene was performed on 139 plasma samples collected in 2009 from drug-naive HIV-1 infected individuals living in Luanda. HIV-1 subtypes were determined using phylogenetic analysis. Drug resistance mutations were identified using the Calibrated Population Resistance Tool (CPR). Transmission networks were determined using phylogenetic analysis of all Angolan sequences present in the databases. Evolutionary trends were determined by comparison with a similar survey performed in 2001. 47.1% of the viruses were pure subtypes (all except B), 47.1% were recombinants and 5.8% were untypable. The prevalence of subtype A decreased significantly from 2001 to 2009 (40.0% to 10.8%, P = 0.0019) while the prevalence of unique recombinant forms (URFs) increased > 2-fold (40.0% to 83.1%, P < 0.0001). The most frequent URFs comprised untypable sequences with subtypes H (U/H, n = 7, 10.8%), A (U/A, n = 6, 9.2%) and G (G/U, n = 4, 6.2%). Newly identified U/H recombinants formed a highly supported monophyletic cluster suggesting a local and common origin. TDR mutation K103N was found in one (0.7%) patient (1.6% in 2001). Out of the 364 sequences sampled for transmission network analysis, 130 (35.7%) were part of a transmission network. Forty eight transmission clusters were identified; the majority (56.3%) comprised sequences sampled in 2008-2010 in Luanda which is consistent with a locally fuelled epidemic. Very low genetic distance was found in 27 transmission pairs sampled in the same year, suggesting recent transmission events. Transmission of drug resistant strains was still negligible in Luanda in 2009, five years after the scale-up of ART. The dominance of small and recent transmission clusters and the emergence of new URFs are consistent with a rising HIV-1 epidemics mainly driven by heterosexual transmission.

  19. SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.

    PubMed

    Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao

    2014-08-08

    Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.

  20. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development.

    PubMed

    Vera-Rodriguez, M; Diez-Juan, A; Jimenez-Almazan, J; Martinez, S; Navarro, R; Peinado, V; Mercader, A; Meseguer, M; Blesa, D; Moreno, I; Valbuena, D; Rubio, C; Simon, C

    2018-04-01

    What is the origin and composition of cell-free DNA in human embryo spent culture media? Cell-free DNA from human embryo spent culture media represents a mix of maternal and embryonic DNA, and the mixture can be more complex for mosaic embryos. In 2016, ~300 000 human embryos were chromosomally and/or genetically analyzed using preimplantation genetic testing for aneuploidies (PGT-A) or monogenic disorders (PGT-M) before transfer into the uterus. While progress in genetic techniques has enabled analysis of the full karyotype in a single cell with high sensitivity and specificity, these approaches still require an embryo biopsy. Thus, non-invasive techniques are sought as an alternative. This study was based on a total of 113 human embryos undergoing trophectoderm biopsy as part of PGT-A analysis. For each embryo, the spent culture media used between Day 3 and Day 5 of development were collected for cell-free DNA analysis. In addition to the 113 spent culture media samples, 28 media drops without embryo contact were cultured in parallel under the same conditions to use as controls. In total, 141 media samples were collected and divided into two groups: one for direct DNA quantification (53 spent culture media and 17 controls), the other for whole-genome amplification (60 spent culture media and 11 controls) and subsequent quantification. Some samples with amplified DNA (N = 56) were used for aneuploidy testing by next-generation sequencing; of those, 35 samples underwent single-nucleotide polymorphism (SNP) sequencing to detect maternal contamination. Finally, from the 35 spent culture media analyzed by SNP sequencing, 12 whole blastocysts were analyzed by fluorescence in situ hybridization (FISH) to determine the level of mosaicism in each embryo, as a possible origin for discordance between sample types. Trophectoderm biopsies and culture media samples (20 μl) underwent whole-genome amplification, then libraries were generated and sequenced for an aneuploidy study. For SNP sequencing, triads including trophectoderm DNA, cell-free DNA, and follicular fluid DNA were analyzed. In total, 124 SNPs were included with 90 SNPs distributed among all autosomes and 34 SNPs located on chromosome Y. Finally, 12 whole blastocysts were fixed and individual cells were analyzed by FISH using telomeric/centromeric probes for the affected chromosomes. We found a higher quantity of cell-free DNA in spent culture media co-cultured with embryos versus control media samples (P ≤ 0.001). The presence of cell-free DNA in the spent culture media enabled a chromosomal diagnosis, although results differed from those of trophectoderm biopsy analysis in most cases (67%). Discordant results were mainly attributable to a high percentage of maternal DNA in the spent culture media, with a median percentage of embryonic DNA estimated at 8%. Finally, from the discordant cases, 91.7% of whole blastocysts analyzed by FISH were mosaic and 75% of the analyzed chromosomes were concordant with the trophectoderm DNA diagnosis instead of the cell-free DNA result. This study was limited by the sample size and the number of cells analyzed by FISH. This is the first study to combine chromosomal analysis of cell-free DNA, SNP sequencing to identify maternal contamination, and whole-blastocyst analysis for detecting mosaicism. Our results provide a better understanding of the origin of cell-free DNA in spent culture media, offering an important step toward developing future non-invasive karyotyping that must rely on the specific identification of DNA released from human embryos. This work was funded by Igenomix S.L. There are no competing interests.

  1. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  2. High-throughput sequencing: a failure mode analysis.

    PubMed

    Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A

    2005-01-04

    Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.

  3. Random sampling causes the low reproducibility of rare eukaryotic OTUs in Illumina COI metabarcoding.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2017-01-01

    DNA metabarcoding, the PCR-based profiling of natural communities, is becoming the method of choice for biodiversity monitoring because it circumvents some of the limitations inherent to traditional ecological surveys. However, potential sources of bias that can affect the reproducibility of this method remain to be quantified. The interpretation of differences in patterns of sequence abundance and the ecological relevance of rare sequences remain particularly uncertain. Here we used one artificial mock community to explore the significance of abundance patterns and disentangle the effects of two potential biases on data reproducibility: indexed PCR primers and random sampling during Illumina MiSeq sequencing. We amplified a short fragment of the mitochondrial Cytochrome c Oxidase Subunit I (COI) for a single mock sample containing equimolar amounts of total genomic DNA from 34 marine invertebrates belonging to six phyla. We used seven indexed broad-range primers and sequenced the resulting library on two consecutive Illumina MiSeq runs. The total number of Operational Taxonomic Units (OTUs) was ∼4 times higher than expected based on the composition of the mock sample. Moreover, the total number of reads for the 34 components of the mock sample differed by up to three orders of magnitude. However, 79 out of 86 of the unexpected OTUs were represented by <10 sequences that did not appear consistently across replicates. Our data suggest that random sampling of rare OTUs (e.g., small associated fauna such as parasites) accounted for most of variation in OTU presence-absence, whereas biases associated with indexed PCRs accounted for a larger amount of variation in relative abundance patterns. These results suggest that random sampling during sequencing leads to the low reproducibility of rare OTUs. We suggest that the strategy for handling rare OTUs should depend on the objectives of the study. Systematic removal of rare OTUs may avoid inflating diversity based on common β descriptors but will exclude positive records of taxa that are functionally important. Our results further reinforce the need for technical replicates (parallel PCR and sequencing from the same sample) in metabarcoding experimental designs. Data reproducibility should be determined empirically as it will depend upon the sequencing depth, the type of sample, the sequence analysis pipeline, and the number of replicates. Moreover, estimating relative biomasses or abundances based on read counts remains elusive at the OTU level.

  4. Identification of diverse viruses in upper respiratory samples in dromedary camels from United Arab Emirates

    PubMed Central

    Eltahir, Yassir M.; Al Hammadi, Zulaikha M.; Tao, Ying; Queen, Krista; Hosani, Farida Al; Gerber, Susan I.; Hall, Aron J.; Al Muhairi, Salama

    2017-01-01

    Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population. PMID:28902913

  5. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES)

    PubMed Central

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong

    2018-01-01

    Background Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. Material/Methods Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. Results From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10−4). Conclusions This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations. PMID:29505555

  6. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    PubMed

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (P<0.05); variants in FOXL2 and MYH6 were found in patients with isolated, sporadic ASD (P<5×10^-4). CONCLUSIONS This was the first study that demonstrated variants in FOXL2 and HYDIN associated with sporadic ASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  7. Characterization of full genome sequences of chicken anemia viruses circulating in Egypt reveals distinct genetic diversity and evidence of recombination.

    PubMed

    Erfan, Ahmed M; Selim, Abdullah A; Naguib, Mahmoud M

    2018-06-02

    Chicken anemia virus (CAV) is one of the commercially important diseases of poultry worldwide. In Egypt, CAV has been reported to be a potential threat to the commercial poultry sectors. Hence, this study was aimed at isolation and full genomic analysis of CAVs circulating in chicken populations in different geographical location in Egypt. A total of 42 samples were collected from broiler chicken flocks in 9 governorates in Egypt from 12 to 42 days of age. The mortality rate observed among chickens was ranging from 3% to 22%. Nineteen out of 42 farms were found positive for the CAV genome by polymerase chain reaction (PCR). Full genome sequencing was conducted for 18 positive samples. Genetic analysis revealed a high similarity of >99% in 11 viruses with the vaccine strain Del-Ros; while the other seven samples shared close similarity to CAV field strains isolated from China, Taiwan, and Brazil. The data also indicated Q139 and Q144 amino acids substitutions among the VP1 of Egyptian field strains, which are known to be important in virus replication and spread. Phylogenetic analysis of the sequenced viruses (n = 18) based on either the full gene nucleotide sequence or VP1 coding sequence, suggested the circulation of four distinct genotypes in Egypt designated as group A, B, C and D. Moreover, evidence of recombination was detected among four Egyptian CAVs located within group A. The findings of this study succeeded to elucidate the epidemiological and genetic features of CAVs circulating in Egypt, and underscores the important of CAVs surveillance. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Suitability and setup of next-generation sequencing-based method for taxonomic characterization of aquatic microbial biofilm.

    PubMed

    Bakal, Tomas; Janata, Jiri; Sabova, Lenka; Grabic, Roman; Zlabek, Vladimir; Najmanova, Lucie

    2018-06-16

    A robust and widely applicable method for sampling of aquatic microbial biofilm and further sample processing is presented. The method is based on next-generation sequencing of V4-V5 variable regions of 16S rRNA gene and further statistical analysis of sequencing data, which could be useful not only to investigate taxonomic composition of biofilm bacterial consortia but also to assess aquatic ecosystem health. Five artificial materials commonly used for biofilm growth (glass, stainless steel, aluminum, polypropylene, polyethylene) were tested to determine the one giving most robust and reproducible results. The effect of used sampler material on total microbial composition was not statistically significant; however, the non-plastic materials (glass, metal) gave more stable outputs without irregularities among sample parallels. The bias of the method is assessed with respect to the employment of a non-quantitative step (PCR amplification) to obtain quantitative results (relative abundance of identified taxa). This aspect is often overlooked in ecological and medical studies. We document that sequencing of a mixture of three merged primary PCR reactions for each sample and further evaluation of median values from three technical replicates for each sample enables to overcome this bias and gives robust and repeatable results well distinguishing among sampling localities and seasons.

  9. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    PubMed

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  10. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons.

    PubMed

    Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2016-05-01

    The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    PubMed

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Towards proteomic analysis of milk proteins in historical building materials

    NASA Astrophysics Data System (ADS)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  13. Pulling out the 1%: Whole-Genome Capture for the Targeted Enrichment of Ancient DNA Sequencing Libraries

    PubMed Central

    Carpenter, Meredith L.; Buenrostro, Jason D.; Valdiosera, Cristina; Schroeder, Hannes; Allentoft, Morten E.; Sikora, Martin; Rasmussen, Morten; Gravel, Simon; Guillén, Sonia; Nekhrizov, Georgi; Leshtakov, Krasimir; Dimitrova, Diana; Theodossiev, Nikola; Pettener, Davide; Luiselli, Donata; Sandoval, Karla; Moreno-Estrada, Andrés; Li, Yingrui; Wang, Jun; Gilbert, M. Thomas P.; Willerslev, Eske; Greenleaf, William J.; Bustamante, Carlos D.

    2013-01-01

    Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples. PMID:24568772

  14. Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing

    PubMed Central

    Be, Nicholas A.; Thissen, James B.; Gardner, Shea N.; McLoughlin, Kevin S.; Fofanov, Viacheslav Y.; Koshinsky, Heather; Ellingson, Sally R.; Brettin, Thomas S.; Jackson, Paul J.; Jaing, Crystal J.

    2013-01-01

    Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy. PMID:24039948

  15. FastID: Extremely Fast Forensic DNA Comparisons

    DTIC Science & Technology

    2017-05-19

    FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA

  16. TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.

    PubMed

    Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee

    2016-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper. © 2016 American Academy of Forensic Sciences.

  17. Detection and molecular characterization of ascarid nematode infection (Toxascaris leonina and Toxocara cati) in captive Asiatic lions (Panthera leo persica).

    PubMed

    Pawar, Rahul Mohanchandra; Lakshmikantan, Uthandaraman; Hasan, Shakir; Poornachandar, Anantula; Shivaji, Sisinthy

    2012-03-01

    The objective of this study was to investigate the ascarid infection in Asiatic lions using scat samples, based on microscopic analysis, PCR amplification of the ITS-2 region of ribosomal DNA and sequence analysis of the amplicons. Microscopic analysis indicated the presence of eggs of Toxascaris leonina in eleven of the sixteen scat samples analysed and in one of these eleven scats eggs of Toxocara cati were also detected. In five of the scats eggs were not detectable. The presence of T. leonina in all the infected samples was also confirmed by PCR amplification of the ITS-2 of ribosomal RNA gene and five of these also showed amplicons corresponding to T. cati, respectively. Toxocara canis infection was not observed in any of the scat samples. Nucleotide sequence analysis of the ITS-2 region indicated 97% to 99% similarity with T. leonina and T. cati, respectively. To our knowledge, this is the first molecular characterization of ascarid infection in captive Asiatic lions from a zoological garden of India. This study also indicates that Asiatic lions are more prone to infection either with T. leonina or T. cati and the parasite is not host specific.

  18. Ancient DNA studies: new perspectives on old samples

    PubMed Central

    2012-01-01

    In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611

  19. Biodiversity of fungi in hot desert sands.

    PubMed

    Murgia, Manuela; Fiamma, Maura; Barac, Aleksandra; Deligios, Massimo; Mazzarello, Vittorio; Paglietti, Bianca; Cappuccinelli, Pietro; Al-Qahtani, Ahmed; Squartini, Andrea; Rubino, Salvatore; Al-Ahdal, Mohammed N

    2018-03-05

    The fungal community of six sand samples from Saudi Arabia and Jordan deserts was characterized by culture-independent analysis via next generation sequencing of the 18S rRNA genes and by culture-dependent methods followed by sequencing of internal transcribed spacer (ITS) region. By 18S sequencing were identified from 163 to 507 OTUs per sample, with a percentage of fungi ranging from 3.5% to 82.7%. The identified fungal Phyla were Ascomycota, Basal fungi, and Basidiomycota and the most abundant detected classes were Dothideomycetes, Pezizomycetes, and Sordariomycetes. A total of 11 colonies of filamentous fungi were isolated and cultured from six samples, and the ITS sequencing pointed toward five different species of the class Sordariomycetes, belonging to genera Fusarium (F. redolens, F. solani, F. equiseti), Chaetomium (C. madrasense), and Albifimbria (A. terrestris). The results of this study show an unexpectedly large fungal biodiversity in the Middle East desert sand and their possible role and implications on human health. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Defining the healthy "core microbiome" of oral microbial communities

    PubMed Central

    2009-01-01

    Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health. PMID:20003481

  1. Complete genome sequence of genotype VI Newcastle disease viruses isolated from pigeons in Pakistan

    USDA-ARS?s Scientific Manuscript database

    Two complete genome sequences of Newcastle disease virus (NDV) are described here. Virulent isolates pigeon/Pakistan/Lahore/21A/2015 and pigeon/Pakistan/Lahore/25A/2015 were obtained from racing pigeons sampled in the Pakistani province of Punjab during 2015. Phylogenetic analysis of the fusion prot...

  2. Molecular Characterization of Watermelon Chlorotic Stunt Virus (WmCSV) from Palestine

    PubMed Central

    Ali-Shtayeh, Mohammed S.; Jamous, Rana M.; Mallah, Omar B.; Abu-Zeitoun, Salam Y.

    2014-01-01

    The incidence of watermelon chlorotic stunt disease and molecular characterization of the Palestinian isolate of Watermelon chlorotic stunt virus (WmCSV-[PAL]) are described in this study. Symptomatic leaf samples obtained from watermelon Citrullus lanatus (Thunb.), and cucumber (Cucumis sativus L.) plants were tested for WmCSV-[PAL] infection by polymerase chain reaction (PCR) and Rolling Circle Amplification (RCA). Disease incidence ranged between 25%–98% in watermelon fields in the studied area, 77% of leaf samples collected from Jenin were found to be mixed infected with WmCSV-[PAL] and SLCV. The full-length DNA-A and DNA-B genomes of WmCSV-[PAL] were amplified and sequenced, and the sequences were deposited in the GenBank. Sequence analysis of virus genomes showed that DNA-A and DNA-B had 97.6%–99.42% and 93.16%–98.26% nucleotide identity with other virus isolates in the region, respectively. Sequence analysis also revealed that the Palestinian isolate of WmCSV shared the highest nucleotide identity with an isolate from Israel suggesting that the virus was introduced to Palestine from Israel. PMID:24956181

  3. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  4. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.

    PubMed

    Wagle, Prerana; Nikolić, Miloš; Frommolt, Peter

    2015-07-01

    Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.

  5. Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest vertical phreatic sinkhole.

    PubMed

    Sahl, Jason W; Fairfield, Nathaniel; Harris, J Kirk; Wettergreen, David; Stone, William C; Spear, John R

    2010-03-01

    The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.

  6. It's all relative: ranking the diversity of aquatic bacterial communities.

    PubMed

    Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H

    2008-09-01

    The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.

  7. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    PubMed Central

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  8. Mutation detection of E6 and LCR genes from HPV 16 associated with carcinogenesis.

    PubMed

    Mosmann, Jessica P; Monetti, Marina S; Frutos, Maria C; Kiguen, Ana X; Venezuela, Raul F; Cuffini, Cecilia G

    2015-01-01

    Human papillomavirus (HPV) is responsible for one of the most frequent sexually transmitted infections. The first phylogenetic analysis was based on a LCR region fragment. Nowadays, 4 variants are known: African (Af-1, Af-2), Asian-American (AA) and European (E). However the existence of sub-lineages of the European variant havs been proposed, specific mutations in the E6 and LCR sequences being possibly related to persistent viral infections. The aim of this study was a phylogenetic study of HPV16 sequences of endocervical samples from Cordoba, in order to detect the circulating lineages and analyze the presence of mutations that could be correlated with malignant disease. The phylogenetic analysis determined that 86% of the samples belonged to the E variant, 7% to AF-1 and the remaining 7% to AF-2. The most frequent mutation in LCR sequences was G7521A, in 80% of the analyzed samples; it affects the binding site of a transcription factor that could contribute to carcinogenesis. In the E6 sequences, the most common mutation was T350G (L83V), detected in 67% of the samples, associated with increased risk of persistent infection. The high detection rate of the European lineage correlated with patterns of human migration. This study emphasizes the importance of recognizing circulating lineages, as well as the detection of mutations associated with high-grade neoplastic lesions that could be correlated to the development of carcinogenic lesions.

  9. Coxiella Detection in Ticks from Wildlife and Livestock in Malaysia

    PubMed Central

    Khoo, Jing-Jing; Lim, Fang-Shiang; Chen, Fezshin; Phoon, Wai-Hong; Khor, Chee-Sieng; Pike, Brian L.; Chang, Li-Yen

    2016-01-01

    Abstract Recent studies have shown that ticks harbor Coxiella-like bacteria, which are potentially tick-specific endosymbionts. We recently described the detection of Coxiella-like bacteria and possibly Coxiella burnetii in ticks found from rural areas in Malaysia. In the present study, we collected ticks, including Haemaphysalis bispinosa, Haemaphysalis hystricis, Dermacentor compactus, Dermacentor steini, and Amblyomma sp. from wildlife and domesticated goats from four different locations in Malaysia. Coxiella 16s rRNA genomic sequences were detected by PCR in 89% of ticks tested. Similarity analysis and phylogenetic analyses of the 16s rRNA and rpoB partial sequences were performed for 10 representative samples selected based on the tick species, sex, and location. The findings here suggested the presence of C. burnetii in two samples, each from D. steini and H. hystricis. The sequences of both samples clustered with published C. burnetii sequences. The remaining eight tick samples were shown to harbor 16s rRNA sequences of Coxiella-like bacteria, which clustered phylogenetically according to the respective tick host species. The findings presented here added to the growing evidence of the association between Coxiella-like bacteria and ticks across species and geographical boundaries. The importance of C. burnetii found in ticks in Malaysia warrants further investigation. PMID:27763821

  10. Phylogenetic analysis of VP2 gene of canine parvovirus and comparison with Indian and world isolates.

    PubMed

    Kaur, G; Chandra, M; Dwivedi, P N

    2016-03-01

    Canine parvovirus (CPV) causes hemorrhagic enteritis, especially in young dogs, leading to high morbidity and mortality. It has four main antigenic types CPV-2, CPV-2a, CPV-2b and CPV-2c. Virus protein 2 (VP2) is the main capsid protein and mutations affecting VP2 gene are responsible for the evolution of various antigenic types of CPV. Full length VP2 gene from field isolates was amplified and cloned for sequence analysis. The sequences were submitted to the GenBank and were assigned Acc. Nos., viz. KP406928.1 for P12, KP406927.1 for P15, KP406930.1 for P32, KP406926.1 for Megavac-6 and KP406929.1 for NobivacDHPPi. Phylogenetic analysis indicated that the samples were forming a separate clad with vaccine strains. When the samples were compared with the world and Indian isolates, it was observed that samples formed a separate node indicating regional genetic variation in CPV.

  11. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples.

    PubMed

    Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2002-05-28

    Nuclear mtDNA sequences (numts) are a widespread family of paralogs evolving as pseudogenes in chromosomal DNA [Zhang, D. E. & Hewitt, G. M. (1996) TREE 11, 247-251 and Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. (2001) TREE 16, 314-321]. When trying to identify the species origin of an unknown DNA sample by way of an mtDNA locus, PCR may amplify both mtDNA and numts. Indeed, occasionally numts dominate confounding attempts at species identification [Bensasson, D., Zhang, D. X. & Hewitt, G. M. (2000) Mol. Biol. Evol. 17, 406-415; Wallace, D. C., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14900-14905]. Rhesus and cynomolgus macaque mtDNA haplotypes were identified in a study of oral polio vaccine samples dating from the late 1950s [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046]. They were accompanied by a number of putative numts. To confirm that these putative numts were of macaque origin, a library of numts corresponding to a small segment of 12S rDNA locus has been made by using DNA from a Chinese rhesus macaque. A broad distribution was found with up to 30% sequence variation. Phylogenetic analysis showed that the evolutionary trajectories of numts and bona fide mtDNA haplotypes do not overlap with the signal exception of the host species; mtDNA fragments are continually crossing over into the germ line. In the case of divergent mtDNA sequences from old oral polio vaccine samples [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046], all were closely related to numts in the Chinese macaque library.

  12. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis

    DOE PAGES

    Woebken, Dagmar; Burow, Luke C.; Prufert-Bebout, Leslie; ...

    2012-01-12

    N 2 fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N 2 and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. Detailed analysis of dinitrogenase reductase (nifH) transcript clone libraries from mat samples that fixed N 2 at night indicated that cyanobacterialmore » nifH transcripts were abundant and formed a novel monophyletic lineage. Independent NanoSIMS analysis of 15N2-incubated samples revealed significant incorporation of 15N into small, non-heterocystous cyanobacterial filaments. Mat-derived enrichment cultures yielded a unicyanobacterial culture with similar filaments (named Elkhorn Slough Filamentous Cyanobacterium-1 (ESFC-1)) that contained nifH gene sequences grouping with the novel cyanobacterial lineage identified in the transcript clone libraries, displaying up to 100% amino-acid sequence identity. The 16S rRNA gene sequence recovered from this enrichment allowed for the identification of related sequences from Elkhorn Slough mats and revealed great sequence diversity in this cluster. Furthermore, by combining 15N 2 tracer experiments, fluorescence in situ hybridization and NanoSIMS, in situ N 2 fixation activity by the novel ESFC-1 group was demonstrated, suggesting that this group may be the most active cyanobacterial diazotroph in the Elkhorn Slough mat. Pyrotag sequences affiliated with ESFC-1 were recovered from mat samples throughout 2009, demonstrating the prevalence of this group. Here, this work illustrates that combining standard and single-cell analyses can link phylogeny and function to identify previously unknown key functional groups in complex ecosystems.« less

  13. Direct Detection of Rifampin and Isoniazid Resistance in Sputum Samples from Tuberculosis Patients by High-Resolution Melt Curve Analysis

    PubMed Central

    Anthwal, Divya; Gupta, Rakesh Kumar; Bhalla, Manpreet; Bhatnagar, Shinjini

    2017-01-01

    ABSTRACT Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases. PMID:28330890

  14. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample

    PubMed Central

    Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Gimmel, Matthew L.; Kutty, Sujatha Narayanan; Cockerill, Timothy D.; Vun Khen, Chey; Vogler, Alfried P.

    2015-01-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA “superbarcodes” for testing hypotheses regarding global patterns of diversity. PMID:25957318

  15. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies.

    PubMed

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  16. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.

    PubMed

    Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L

    2010-07-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.

  17. Studies of a Biochemical Factory: Tomato Trichome Deep Expressed Sequence Tag Sequencing and Proteomics1[W][OA

    PubMed Central

    Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.

    2010-01-01

    Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087

  18. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    PubMed

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P < 0.001). However, the microsatellite analysis revealed that most isolates contained mixed genotypes, even those that had no detectable genome sequence heterogeneity. Random sampling of different numbers of SNPs showed that an F ws index derived from ten or more SNPs with minor allele frequencies of >10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  19. Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing.

    PubMed

    Ivy, Morgan I; Thoendel, Matthew J; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Hanssen, Arlen D; Abdel, Matthew P; Chia, Nicholas; Yao, Janet Z; Tande, Aaron J; Mandrekar, Jayawant N; Patel, Robin

    2018-05-30

    Background: Metagenomic shotgun sequencing has the potential to transform how serious infections are diagnosed by offering universal, culture-free pathogen detection. This may be especially advantageous for microbial diagnosis of prosthetic joint infection (PJI) by synovial fluid analysis, since synovial fluid cultures are not universally positive, and synovial fluid is easily obtained pre-operatively. We applied a metagenomics-based approach to synovial fluid in an attempt to detect microorganisms in 168 failed total knee arthroplasties. Results: Genus- and species-level analysis of metagenomic sequencing yielded the known pathogen in 74 (90%) and 68 (83%) of the 82 culture-positive PJIs analyzed, respectively, with testing of two (2%) and three (4%) samples, respectively, yielding additional pathogens not detected by culture. For the 25 culture-negative PJIs tested, genus- and species-level analysis yielded 19 (76%) and 21 (84%) samples with insignificant findings, respectively, and 6 (24%) and 4 (16%) with potential pathogens detected, respectively. Genus- and species-level analysis of the 60 culture-negative aseptic failure cases yielded 53 (88.3%) and 56 (93.3%) cases with insignificant findings, and 7 (11.7%) and 4 (6.7%) with potential clinically-significant organisms detected, respectively. There was one case of aseptic failure with synovial fluid culture growth; metagenomic analysis showed insignificant findings, suggesting possible synovial fluid culture contamination. Conclusion: Metagenomic shotgun sequencing can detect pathogens involved in PJI when applied to synovial fluid and may be particularly useful for culture-negative cases. Copyright © 2018 American Society for Microbiology.

  20. Early history of European domestic cattle as revealed by ancient DNA.

    PubMed

    Bollongino, R; Edwards, C J; Alt, K W; Burger, J; Bradley, D G

    2006-03-22

    We present an extensive ancient DNA analysis of mainly Neolithic cattle bones sampled from archaeological sites along the route of Neolithic expansion, from Turkey to North-Central Europe and Britain. We place this first reasonable population sample of Neolithic cattle mitochondrial DNA sequence diversity in context to illustrate the continuity of haplotype variation patterns from the first European domestic cattle to the present. Interestingly, the dominant Central European pattern, a starburst phylogeny around the modal sequence, T3, has a Neolithic origin, and the reduced diversity within this cluster in the ancient samples accords with their shorter history of post-domestic accumulation of mutation.

  1. Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.

    PubMed

    Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A

    2018-06-01

    Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA.

    PubMed

    Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha

    2017-08-31

    Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.

  3. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.

    PubMed

    Kelly, Benjamin J; Fitch, James R; Hu, Yangqiu; Corsmeier, Donald J; Zhong, Huachun; Wetzel, Amy N; Nordquist, Russell D; Newsom, David L; White, Peter

    2015-01-20

    While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

  4. Genome sequence analysis of five Canadian isolates of strawberry mottle virus reveals extensive intra-species diversity and a longer RNA2 with increased coding capacity compared to a previously characterized European isolate.

    PubMed

    Bhagwat, Basdeo; Dickison, Virginia; Ding, Xinlun; Walker, Melanie; Bernardy, Michael; Bouthillier, Michel; Creelman, Alexa; DeYoung, Robyn; Li, Yinzi; Nie, Xianzhou; Wang, Aiming; Xiang, Yu; Sanfaçon, Hélène

    2016-06-01

    In this study, we report the genome sequence of five isolates of strawberry mottle virus (family Secoviridae, order Picornavirales) from strawberry field samples with decline symptoms collected in Eastern Canada. The Canadian isolates differed from the previously characterized European isolate 1134 in that they had a longer RNA2, resulting in a 239-amino-acid extension of the C-terminal region of the polyprotein. Sequence analysis suggests that reassortment and recombination occurred among the isolates. Phylogenetic analysis revealed that the Canadian isolates are diverse, grouping in two separate branches along with isolates from Europe and the Americas.

  5. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): Taxonomic implications for the Great Lakes species flock

    USGS Publications Warehouse

    Reed, Kent M.; Dorschner, Michael O.; Todd, Thomas N.; Phillips, Ruth B.

    1998-01-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens ofC. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  6. Microfluidics for rapid detection of isocitrate dehydrogenase 1 mutation for intraoperative application.

    PubMed

    Aibaidula, Abudumijiti; Zhao, Wang; Wu, Jin-Song; Chen, Hong; Shi, Zhi-Feng; Zheng, Lu-Lu; Mao, Ying; Zhou, Liang-Fu; Sui, Guo-Dong

    2016-06-01

    OBJECT Conventional methods for isocitrate dehydrogenase 1 (IDH1) detection, such as DNA sequencing and immunohistochemistry, are time- and labor-consuming and cannot be applied for intraoperative analysis. To develop a new approach for rapid analysis of IDH1 mutation from tiny tumor samples, this study used microfluidics as a method for IDH1 mutation detection. METHODS Forty-seven glioma tumor samples were used; IDH1 mutation status was investigated by immunohistochemistry and DNA sequencing. The microfluidic device was fabricated from polydimethylsiloxane following standard soft lithography. The immunoanalysis was conducted in the microfluidic chip. Fluorescence images of the on-chip microcolumn taken by the charge-coupled device camera were collected as the analytical results readout. Fluorescence signals were analyzed by NIS-Elements software to gather detailed information about the IDH1 concentration in the tissue samples. RESULTS DNA sequencing identified IDH1 R132H mutation in 33 of 47 tumor samples. The fluorescence signal for IDH1-mutant samples was 5.49 ± 1.87 compared with 3.90 ± 1.33 for wild type (p = 0.005). Thus, microfluidics was capable of distinguishing IDH1-mutant tumor samples from wild-type samples. When the cutoff value was 4.11, the sensitivity of microfluidics was 87.9% and the specificity was 64.3%. CONCLUSIONS This new approach was capable of analyzing IDH1 mutation status of tiny tissue samples within 30 minutes using intraoperative microsampling. This approach might also be applied for rapid pathological diagnosis of diffuse gliomas, thus guiding personalized resection.

  7. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    PubMed

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    PubMed

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  9. Preliminary report for analysis of genome wide mutations from four ciprofloxacin resistant B. anthracis Sterne isolates generated by Illumina, 454 sequencing and microarrays for DHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, Crystal; Vergez, Lisa; Hinckley, Aubree

    2011-06-21

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. As the result of a different DHS project, we have selected for and isolated a large number of ciprofloxacin resistant B. anthracis Sterne isolates. These isolates vary in the concentrations of ciprofloxacin that they can tolerate, suggesting multiple mutations in the samples. In collaboration with University of Houston, Eureka Genomics and Oak Ridge National Laboratory, we analyzedmore » the ciprofloxacin resistant B. anthracis Sterne isolates by microarray hybridization, Illumina and Roche 454 sequencing to understand the error rates and sensitivity of the different methods. The report provides an assessment of the results and a complete set of all protocols used and all data generated along with information to interpret the protocols and data sets.« less

  10. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    PubMed Central

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Bazire, Pascal; Beluche, Odette; Bertrand, Laurie; Besnard-Gonnet, Marielle; Bordelais, Isabelle; Boutard, Magali; Dubois, Maria; Dumont, Corinne; Ettedgui, Evelyne; Fernandez, Patricia; Garcia, Espérance; Aiach, Nathalie Giordanenco; Guerin, Thomas; Hamon, Chadia; Brun, Elodie; Lebled, Sandrine; Lenoble, Patricia; Louesse, Claudine; Mahieu, Eric; Mairey, Barbara; Martins, Nathalie; Megret, Catherine; Milani, Claire; Muanga, Jacqueline; Orvain, Céline; Payen, Emilie; Perroud, Peggy; Petit, Emmanuelle; Robert, Dominique; Ronsin, Murielle; Vacherie, Benoit; Acinas, Silvia G.; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M.; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E.; Stepanauskas, Ramunas; Sullivan, Matthew B.; Brum, Jennifer R.; Duhaime, Melissa B.; Poulos, Bonnie T.; Hurwitz, Bonnie L.; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; De Vargas, Colomban; Follows, Michael; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Karp-Boss, Lee; Karsenti, Eric; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Raes, Jeroen; Sardet, Christian; Sieracki, Michael E.; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-01-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems. PMID:28763055

  11. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition.

    PubMed

    Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel; Albini, Guillaume; Aury, Jean-Marc; Belser, Caroline; Bertrand, Alexis; Cruaud, Corinne; Da Silva, Corinne; Dossat, Carole; Gavory, Frédérick; Gas, Shahinaz; Guy, Julie; Haquelle, Maud; Jacoby, E'krame; Jaillon, Olivier; Lemainque, Arnaud; Pelletier, Eric; Samson, Gaëlle; Wessner, Mark; Acinas, Silvia G; Royo-Llonch, Marta; Cornejo-Castillo, Francisco M; Logares, Ramiro; Fernández-Gómez, Beatriz; Bowler, Chris; Cochrane, Guy; Amid, Clara; Hoopen, Petra Ten; De Vargas, Colomban; Grimsley, Nigel; Desgranges, Elodie; Kandels-Lewis, Stefanie; Ogata, Hiroyuki; Poulton, Nicole; Sieracki, Michael E; Stepanauskas, Ramunas; Sullivan, Matthew B; Brum, Jennifer R; Duhaime, Melissa B; Poulos, Bonnie T; Hurwitz, Bonnie L; Pesant, Stéphane; Karsenti, Eric; Wincker, Patrick

    2017-08-01

    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.

  12. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.

    PubMed

    Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu

    2016-05-01

    High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. © 2016 John Wiley & Sons Ltd.

  13. Modified electrokinetic sample injection method in chromatography and electrophoresis analysis

    DOEpatents

    Davidson, J. Courtney; Balch, Joseph W.

    2001-01-01

    A sample injection method for horizontal configured multiple chromatography or electrophoresis units, each containing a number of separation/analysis channels, that enables efficient introduction of analyte samples. This method for loading when taken in conjunction with horizontal microchannels allows much reduced sample volumes and a means of sample stacking to greatly reduce the concentration of the sample. This reduction in the amount of sample can lead to great cost savings in sample preparation, particularly in massively parallel applications such as DNA sequencing. The essence of this method is in preparation of the input of the separation channel, the physical sample introduction, and subsequent removal of excess material. By this method, sample volumes of 100 nanoliter to 2 microliters have been used successfully, compared to the typical 5 microliters of sample required by the prior separation/analysis method.

  14. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing

    PubMed Central

    Hykin, Sarah M.; Bi, Ke; McGuire, Jimmy A.

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens—particularly for use in phylogenetic analyses—has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis. PMID:26505622

  15. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    PubMed

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis.

  16. High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification

    PubMed Central

    Velmurugan, K R; Varghese, R T; Fonville, N C; Garner, H R

    2017-01-01

    There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x±315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer. PMID:28759038

  17. High-depth, high-accuracy microsatellite genotyping enables precision lung cancer risk classification.

    PubMed

    Velmurugan, K R; Varghese, R T; Fonville, N C; Garner, H R

    2017-11-16

    There remains a large discrepancy between the known genetic contributions to cancer and that which can be explained by genomic variants, both inherited and somatic. Recently, understudied repetitive DNA regions called microsatellites have been identified as genetic risk markers for a number of diseases including various cancers (breast, ovarian and brain). In this study, we demonstrate an integrated process for identifying and further evaluating microsatellite-based risk markers for lung cancer using data from the cancer genome atlas and the 1000 genomes project. Comparing whole-exome germline sequencing data from 488 TCGA lung cancer samples to germline exome data from 390 control samples from the 1000 genomes project, we identified 119 potentially informative microsatellite loci. These loci were found to be able to distinguish between cancer and control samples with sensitivity and specificity ratios over 0.8. Then these loci, supplemented with additional loci from other cancers and controls, were evaluated using a target enrichment kit and sample-multiplexed nextgen sequencing. Thirteen of the 119 risk markers were found to be informative in a well powered study (>0.99 for a 0.95 confidence interval) using high-depth (579x±315) nextgen sequencing of 30 lung cancer and 89 control samples, resulting in sensitivity and specificity ratios of 0.90 and 0.94, respectively. When 8 loci harvested from the bioinformatic analysis of other cancers are added to the classifier, then the sensitivity and specificity rise to 0.93 and 0.97, respectively. Analysis of the genes harboring these loci revealed two genes (ARID1B and REL) and two significantly enriched pathways (chromatin organization and cellular stress response) suggesting that the process of lung carcinogenesis is linked to chromatin remodeling, inflammation, and tumor microenvironment restructuring. We illustrate that high-depth sequencing enables a high-precision microsatellite-based risk classifier analysis approach. This microsatellite-based platform confirms the potential to create clinically actionable diagnostics for lung cancer.

  18. Candidate new rotavirus species in Schreiber's bats, Serbia.

    PubMed

    Bányai, Krisztián; Kemenesi, Gábor; Budinski, Ivana; Földes, Fanni; Zana, Brigitta; Marton, Szilvia; Varga-Kugler, Renáta; Oldal, Miklós; Kurucz, Kornélia; Jakab, Ferenc

    2017-03-01

    The genus Rotavirus comprises eight species designated A to H and one tentative species, Rotavirus I. In a virus metagenomic analysis of Schreiber's bats sampled in Serbia in 2014 we obtained sequences likely representing novel rotavirus species. Whole genome sequencing and phylogenetic analysis classified the representative strain into a tentative tenth rotavirus species, we provisionally called Rotavirus J. The novel virus shared a maximum of 50% amino acid sequence identity within the VP6 gene to currently known members of the genus. This study extends our understanding of the genetic diversity of rotaviruses in bats. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico.

    PubMed

    Sahl, Jason W; Gary, Marcus O; Harris, J Kirk; Spear, John R

    2011-01-01

    Sistema Zacatón in north-eastern Mexico is host to several deep, water-filled, anoxic, karstic sinkholes (cenotes). These cenotes were explored, mapped, and geochemically and microbiologically sampled by the autonomous underwater vehicle deep phreatic thermal explorer (DEPTHX). The community structure of the filterable fraction of the water column and extensive microbial mats that coat the cenote walls was investigated by comparative analysis of small-subunit (SSU) 16S rRNA gene sequences. Full-length Sanger gene sequence analysis revealed novel microbial diversity that included three putative bacterial candidate phyla and three additional groups that showed high intra-clade distance with poorly characterized bacterial candidate phyla. Limited functional gene sequence analysis in these anoxic environments identified genes associated with methanogenesis, sulfate reduction and anaerobic ammonium oxidation. A directed, barcoded amplicon, multiplex pyrosequencing approach was employed to compare ∼100,000 bacterial SSU gene sequences from water column and wall microbial mat samples from five cenotes in Sistema Zacatón. A new, high-resolution sequence distribution profile (SDP) method identified changes in specific phylogenetic types (phylotypes) in microbial mats at varied depths; Mantel tests showed a correlation of the genetic distances between mat communities in two cenotes and the geographic location of each cenote. Community structure profiles from the water column of three neighbouring cenotes showed distinct variation; statistically significant differences in the concentration of geochemical constituents suggest that the variation observed in microbial communities between neighbouring cenotes are due to geochemical variation. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise.

    PubMed

    Hoogenboom, Jerry; van der Gaag, Kristiaan J; de Leeuw, Rick H; Sijen, Titia; de Knijff, Peter; Laros, Jeroen F J

    2017-03-01

    Massively parallel sequencing (MPS) is on the advent of a broad scale application in forensic research and casework. The improved capabilities to analyse evidentiary traces representing unbalanced mixtures is often mentioned as one of the major advantages of this technique. However, most of the available software packages that analyse forensic short tandem repeat (STR) sequencing data are not well suited for high throughput analysis of such mixed traces. The largest challenge is the presence of stutter artefacts in STR amplifications, which are not readily discerned from minor contributions. FDSTools is an open-source software solution developed for this purpose. The level of stutter formation is influenced by various aspects of the sequence, such as the length of the longest uninterrupted stretch occurring in an STR. When MPS is used, STRs are evaluated as sequence variants that each have particular stutter characteristics which can be precisely determined. FDSTools uses a database of reference samples to determine stutter and other systemic PCR or sequencing artefacts for each individual allele. In addition, stutter models are created for each repeating element in order to predict stutter artefacts for alleles that are not included in the reference set. This information is subsequently used to recognise and compensate for the noise in a sequence profile. The result is a better representation of the true composition of a sample. Using Promega Powerseq™ Auto System data from 450 reference samples and 31 two-person mixtures, we show that the FDSTools correction module decreases stutter ratios above 20% to below 3%. Consequently, much lower levels of contributions in the mixed traces are detected. FDSTools contains modules to visualise the data in an interactive format allowing users to filter data with their own preferred thresholds. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    PubMed

    Sachsenröder, Jana; Twardziok, Sven; Hammerl, Jens A; Janczyk, Pawel; Wrede, Paul; Hertwig, Stefan; Johne, Reimar

    2012-01-01

    Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus. The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for further method optimization.

  2. Comparative Analysis of the Peanut Witches'-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors

    PubMed Central

    Lo, Wen-Sui; Lin, Chan-Pin; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches'-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution. PMID:23626855

  3. Re-examination of population structure and phylogeography of hawksbill turtles in the wider Caribbean using longer mtDNA sequences.

    PubMed

    Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth

    2012-01-01

    Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.

  4. Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in Littorina sitkana (Mollusca, Gastropoda).

    PubMed

    Azuma, Noriko; Yamazaki, Tomoyasu; Chiba, Susumu

    2011-12-01

    We investigated mitochondrial and nuclear DNA genotypes in nominal Littorina sitkana samples from 2 localities in Eastern Hokkaido, northern Japan. Our results indicated the existence of cryptic species. In the analysis of partial mitochondrial Cytchrome b gene sequences, haplotypes of L. sitkana samples were monophyletic in a phylogenetic tree with orthologous sequences from other Littorina species, but were apparently separated in 2 clades. One included typical L. sitkana (CBa clade) samples, which formed a clade with an allopatric species, L. horikawai. The other, CBb, was independent from CBa and L. horikawai. Haplotypes of the mitochondrial 16S rRNA gene also separated into 2 clades. We additionally examined intron sequence of the heat shock cognate 70 (HSC70) nuclear gene and identified 17 haplotypes. These were also separated into 2 clades, HSCa and HSCb. Among the examined Hokkaido samples, 60% of individuals were heterozygotes. However, each heterozygote consisted of haplotypes from the same clade, HSCa or HSCb, and no admixture of HSCa and HSCb haplotypes was observed. These results indicate reproductive isolation between the 2 clades. Among the genotyped Hokkaido samples, 93% of individuals had CBa + HSCa or CBb + HSCb genotypes, and 7% had CBb + HSCa genotypes. The discrepancy between the mtDNA and nuclear DNA haplotypes in a few individuals may have been caused by genetic introgression due to past hybridization.

  5. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    PubMed

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Examining inter-family differences in intra-family (parent-adolescent) dynamics using grid-sequence analysis.

    PubMed

    Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam

    2017-12-01

    Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Mobile Genome Express (MGE): A comprehensive automatic genetic analyses pipeline with a mobile device.

    PubMed

    Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin

    2017-01-01

    The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.

  8. The complete genome sequence of a new polerovirus in strawberry plants from eastern Canada showing strawberry decline symptoms.

    PubMed

    Xiang, Yu; Bernardy, Mike; Bhagwat, Basdeo; Wiersma, Paul A; DeYoung, Robyn; Bouthillier, Michel

    2015-02-01

    Strawberry decline disease, probably caused by synergistic reactions of mixed virus infections, threatens the North American strawberry industry. Deep sequencing of strawberry plant samples from eastern Canada resulted in the identification of a new virus genome resembling poleroviruses in sequence and genome structure. Phylogenetic analysis suggests that it is a new member of the genus Polerovirus, family Luteoviridae. The virus is tentatively named "strawberry polerovirus 1" (SPV1).

  9. Generation of Some First-Order Autoregressive Markovian Sequences of Positive Random Variables with Given Marginal Distributions,

    DTIC Science & Technology

    1981-03-01

    Again E( XnX 1 Xn) Xn + (l-aB)/X PlXn-1 + (l-Pl)/x 2.11) and X0 E0 gives a stationary sequence. Thus the correla- tions and regressions are the...sequence, although the sample paths will tend to have runs-up. A similar analysis given in Lawrance and Lewis [5] shows that 1 1 + i a + au (3.7) E( XnX

  10. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.

    PubMed

    Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2011-12-01

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.

  11. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples

    EPA Science Inventory

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from ...

  12. Sequence and phylogenetic analysis of chicken anaemia virus obtained from backyard and commercial chickens in Nigeria.

    PubMed

    Oluwayelu, D O; Todd, D; Olaleye, O D

    2008-12-01

    This work reports the first molecular analysis study of chicken anaemia virus (CAV) in backyard chickens in Africa using molecular cloning and sequence analysis to characterize CAV strains obtained from commercial chickens and Nigerian backyard chickens. Partial VP1 gene sequences were determined for three CAVs from commercial chickens and for six CAV variants present in samples from a backyard chicken. Multiple alignment analysis revealed that the 6% and 4% nucleotide diversity obtained respectively for the commercial and backyard chicken strains translated to only 2% amino acid diversity for each breed. Overall, the amino acid composition of Nigerian CAVs was found to be highly conserved. Since the partial VP1 gene sequence of two backyard chicken cloned CAV strains (NGR/CI-8 and NGR/CI-9) were almost identical and evolutionarily closely related to the commercial chicken strains NGR-1, and NGR-4 and NGR-5, respectively, we concluded that CAV infections had crossed the farm boundary.

  13. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  14. Bacteria community study of combined periodontal-endodontic lesions using denaturing gradient gel electrophoresis and sequencing analysis.

    PubMed

    Li, Hong; Guan, Rui; Sun, Jinghua; Hou, Benxiang

    2014-10-01

    The entire microbial population and predominant microflora of root canals (RCs) and adjacent periodontal pockets (PPs) from teeth with combined periodontal-endodontic lesions were determined and compared. Pooled RC and PP samples were collected from the molars of 20 patients diagnosed with combined periodontal-endodontic lesions. DNA was extracted for polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE), cloning, and sequence analysis. A coefficient of similarity (Cs) was used to determine the similarity of the bacterial profiles from RCs and PPs. Significantly fewer bands were produced by PCR-DGGE from RCs (5.9 ± 1.7) than from PPs (8.0 ± 1.8) (P <0.001). The average Cs of the RC and PP samples was 93.81% ± 10.26%. Overall, 60 genera/species were identified by sequencing. Of these, the predominant genera in RCs were Porphyromonas sp. (13.9%), Filifactor sp. (12.5%), and Parvimonas sp. (11.1%), similar to the genera obtained from PP samples. In total, 43 genera/species were common to the RC and PP samples. The most prevalent bacteria in both the RC and PP samples were (in descending order) Filifactor alocis, Parvimonas micra, Porphyromonas gingivalis, and Tannerella forsythia. The high similarity in the sets of organisms present in both RC and PP samples in this study suggests that the pocket could be a source of RC infection. The data also demonstrate that combined periodontal-endodontic lesions consist of a diverse and complex microbial community.

  15. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    PubMed Central

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  16. An Appropriate Cutoff Value for Determining the Colonization of Helicobacter pylori by the Pyrosequencing Method: Comparison with Conventional Methods.

    PubMed

    Kim, Jaeyeon; Kim, Nayoung; Jo, Hyun Jin; Park, Ji Hyun; Nam, Ryoung Hee; Seok, Yeong-Jae; Kim, Yeon-Ran; Kim, Joo Sung; Kim, Jung Mogg; Kim, Jung Min; Lee, Dong Ho; Jung, Hyun Chae

    2015-10-01

    Sequencing of 16S ribosomal RNA (rRNA) gene has improved the characterization of microbial communities. It enabled the detection of low abundance gastric Helicobacter pylori sequences even in subjects that were found to be H. pylori negative with conventional methods. The objective of this study was to obtain a cutoff value for H. pylori colonization in gastric mucosa samples by pyrosequencing method. Gastric mucosal biopsies were taken from 63 subjects whose H. pylori status was determined by a combination of serology, rapid urease test, culture, and histology. Microbial DNA from mucosal samples was amplified by PCR using universal bacterial primers. 16S rDNA amplicons were pyrosequenced. ROC curve analysis was performed to determine the cutoff value for H. pylori colonization by pyrosequencing. In addition, temporal changes in the stomach microbiota were observed in eight initially H. pylori-positive and eight H. pylori-negative subjects at a single time point 1-8 years later. Of the 63 subjects, the presence of H. pylori sequences was detected in all (28/28) conventionally H. pylori-positive samples and in 60% (21/35) of H. pylori-negative samples. The average percent of H. pylori reads in each sample was 0.67 ± 1.09% in the H. pylori-negative group. Cutoff value for clinically positive H. pylori status was approximately 1.22% based on ROC curve analysis (AUC = 0.957; p < .001). Helicobacter pylori was successfully eradicated in five of seven treated H. pylori-positive subjects (71.4%), and the percentage of H. pylori reads in these five subjects dropped from 1.3-95.18% to 0-0.16% after eradication. These results suggest that the cutoff value of H. pylori sequence percentage for H. pylori colonization by pyrosequencing could be set at approximately 1%. It might be helpful to analyze gastric microbiota related to H. pylori sequence status. © 2015 John Wiley & Sons Ltd.

  17. MetaGenSense: A web-application for analysis and exploration of high throughput sequencing metagenomic data

    PubMed Central

    Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie

    2016-01-01

    The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users’ input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user’s input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy’s main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members. PMID:28451381

  18. MetaGenSense: A web-application for analysis and exploration of high throughput sequencing metagenomic data.

    PubMed

    Correia, Damien; Doppelt-Azeroual, Olivia; Denis, Jean-Baptiste; Vandenbogaert, Mathias; Caro, Valérie

    2015-01-01

    The detection and characterization of emerging infectious agents has been a continuing public health concern. High Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies have proven to be promising approaches for efficient and unbiased detection of pathogens in complex biological samples, providing access to comprehensive analyses. As NGS approaches typically yield millions of putatively representative reads per sample, efficient data management and visualization resources have become mandatory. Most usually, those resources are implemented through a dedicated Laboratory Information Management System (LIMS), solely to provide perspective regarding the available information. We developed an easily deployable web-interface, facilitating management and bioinformatics analysis of metagenomics data-samples. It was engineered to run associated and dedicated Galaxy workflows for the detection and eventually classification of pathogens. The web application allows easy interaction with existing Galaxy metagenomic workflows, facilitates the organization, exploration and aggregation of the most relevant sample-specific sequences among millions of genomic sequences, allowing them to determine their relative abundance, and associate them to the most closely related organism or pathogen. The user-friendly Django-Based interface, associates the users' input data and its metadata through a bio-IT provided set of resources (a Galaxy instance, and both sufficient storage and grid computing power). Galaxy is used to handle and analyze the user's input data from loading, indexing, mapping, assembly and DB-searches. Interaction between our application and Galaxy is ensured by the BioBlend library, which gives API-based access to Galaxy's main features. Metadata about samples, runs, as well as the workflow results are stored in the LIMS. For metagenomic classification and exploration purposes, we show, as a proof of concept, that integration of intuitive exploratory tools, like Krona for representation of taxonomic classification, can be achieved very easily. In the trend of Galaxy, the interface enables the sharing of scientific results to fellow team members.

  19. A novel diagnostic method for malaria using loop-mediated isothermal amplification (LAMP) and MinION™ nanopore sequencer.

    PubMed

    Imai, Kazuo; Tarumoto, Norihito; Misawa, Kazuhisa; Runtuwene, Lucky Ronald; Sakai, Jun; Hayashida, Kyoko; Eshita, Yuki; Maeda, Ryuichiro; Tuda, Josef; Murakami, Takashi; Maesaki, Shigefumi; Suzuki, Yutaka; Yamagishi, Junya; Maeda, Takuya

    2017-09-13

    A simple and accurate molecular diagnostic method for malaria is urgently needed due to the limitations of conventional microscopic examination. In this study, we demonstrate a new diagnostic procedure for human malaria using loop mediated isothermal amplification (LAMP) and the MinION™ nanopore sequencer. We generated specific LAMP primers targeting the 18S-rRNA gene of all five human Plasmodium species including two P. ovale subspecies (P. falciparum, P. vivax, P. ovale wallikeri, P. ovale curtisi, P. knowlesi and P. malariae) and examined human blood samples collected from 63 malaria patients in Indonesia. Additionally, we performed amplicon sequencing of our LAMP products using MinION™ nanopore sequencer to identify each Plasmodium species. Our LAMP method allowed amplification of all targeted 18S-rRNA genes of the reference plasmids with detection limits of 10-100 copies per reaction. Among the 63 clinical samples, 54 and 55 samples were positive by nested PCR and our LAMP method, respectively. Identification of the Plasmodium species by LAMP amplicon sequencing analysis using the MinION™ was consistent with the reference plasmid sequences and the results of nested PCR. Our diagnostic method combined with LAMP and MinION™ could become a simple and accurate tool for the identification of human Plasmodium species, even in resource-limited situations.

  20. Disambiguate: An open-source application for disambiguating two species in next generation sequencing data from grafted samples.

    PubMed

    Ahdesmäki, Miika J; Gray, Simon R; Johnson, Justin H; Lai, Zhongwu

    2016-01-01

    Grafting of cell lines and primary tumours is a crucial step in the drug development process between cell line studies and clinical trials. Disambiguate is a program for computationally separating the sequencing reads of two species derived from grafted samples. Disambiguate operates on DNA or RNA-seq alignments to the two species and separates the components at very high sensitivity and specificity as illustrated in artificially mixed human-mouse samples. This allows for maximum recovery of data from target tumours for more accurate variant calling and gene expression quantification. Given that no general use open source algorithm accessible to the bioinformatics community exists for the purposes of separating the two species data, the proposed Disambiguate tool presents a novel approach and improvement to performing sequence analysis of grafted samples. Both Python and C++ implementations are available and they are integrated into several open and closed source pipelines. Disambiguate is open source and is freely available at https://github.com/AstraZeneca-NGS/disambiguate.

  1. Molecular characterization of canine parvovirus in Vientiane, Laos.

    PubMed

    Vannamahaxay, Soulasack; Vongkhamchanh, Souliya; Intanon, Montira; Tangtrongsup, Sahatchai; Tiwananthagorn, Saruda; Pringproa, Kidsadagon; Chuammitri, Phongsakorn

    2017-05-01

    The global emergence of canine parvovirus type 2c (CPV-2c) has been well documented. In the present study, 139 rectal swab samples collected from diarrheic dogs living in Vientiane, Laos, in 2016 were tested for the presence of the canine parvovirus (CPV) VP2 gene by PCR. The results showed that 82.73% (115/139) of dogs were CPV positive by PCR. The partial VP2 gene was sequenced in 94 of the positive samples; 91 samples belonged to CPV-2c (426Glu) subtype, while 3 samples belonged to the CPV-2a (426Asn) subtype. Notably, phylogenetic analysis of amino acid sequences revealed a close relationship between Laotian isolates and novel Chinese CPV-2c isolates. In Laotian CPV isolates, aligned protein sequences indicated a high rate of residue substitutions at positions 305, 324, 345, 370, 375, and 426 in the GH loop. The mutation at residue 370 (Q370R), a single mutation, was characterized as a unique mutant residue specific to the Laotian CPV-2c variant.

  2. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification.

    PubMed

    Schoone, G J; Oskam, L; Kroon, N C; Schallig, H D; Omar, S A

    2000-11-01

    A quantitative nucleic acid sequence-based amplification (QT-NASBA) assay for the detection of Plasmodium parasites has been developed. Primers and probes were selected on the basis of the sequence of the small-subunit rRNA gene. Quantification was achieved by coamplification of the RNA in the sample with one modified in vitro RNA as a competitor in a single-tube NASBA reaction. Parasite densities ranging from 10 to 10(8) Plasmodium falciparum parasites per ml could be demonstrated and quantified in whole blood. This is approximately 1,000 times more sensitive than conventional microscopy analysis of thick blood smears. Comparison of the parasite densities obtained by microscopy and QT-NASBA with 120 blood samples from Kenyan patients with clinical malaria revealed that for 112 of 120 (93%) of the samples results were within a 1-log difference. QT-NASBA may be especially useful for the detection of low parasite levels in patients with early-stage malaria and for the monitoring of the efficacy of drug treatment.

  3. The Nature of Red-Sequence Cluster Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kashur, Lane; Barkhouse, Wayne; Sultanova, Madina; Kalawila Vithanage, Sandanuwa; Archer, Haylee; Foote, Gregory; Mathew, Elijah; Rude, Cody; Lopez-Cruz, Omar

    2017-01-01

    Preliminary analysis of the red-sequence galaxy population from a sample of 57 low-redshift galaxy clusters observed using the KPNO 0.9m telescope and 74 clusters from the WINGS dataset, indicates that a small fraction of red-sequence galaxies have a morphology consistent with spiral systems. For spiral galaxies to acquire the color of elliptical/S0s at a similar luminosity, they must either have been stripped of their star-forming gas at an earlier epoch, or contain a larger than normal fraction of dust. To test these ideas we have compiled a sample of red-sequence spiral galaxies and examined their infrared properties as measured by 2MASS, WISE, Spitzer, and Herschel. These IR data allows us to estimate the amount of dust in each of our red-sequence spiral galaxies. We compare the estimated dust mass in each of these red-sequence late-type galaxies with spiral galaxies located in the same cluster field but having colors inconsistent with the red-sequence. We thus provide a statistical measure to discriminate between purely passive spiral galaxy evolution and dusty spirals to explain the presence of these late-type systems in cluster red-sequences.

  4. Performance of amplicon-based next generation DNA sequencing for diagnostic gene mutation profiling in oncopathology.

    PubMed

    Sie, Daoud; Snijders, Peter J F; Meijer, Gerrit A; Doeleman, Marije W; van Moorsel, Marinda I H; van Essen, Hendrik F; Eijk, Paul P; Grünberg, Katrien; van Grieken, Nicole C T; Thunnissen, Erik; Verheul, Henk M; Smit, Egbert F; Ylstra, Bauke; Heideman, Daniëlle A M

    2014-10-01

    Next generation DNA sequencing (NGS) holds promise for diagnostic applications, yet implementation in routine molecular pathology practice requires performance evaluation on DNA derived from routine formalin-fixed paraffin-embedded (FFPE) tissue specimens. The current study presents a comprehensive analysis of TruSeq Amplicon Cancer Panel-based NGS using a MiSeq Personal sequencer (TSACP-MiSeq-NGS) for somatic mutation profiling. TSACP-MiSeq-NGS (testing 212 hotspot mutation amplicons of 48 genes) and a data analysis pipeline were evaluated in a retrospective learning/test set approach (n = 58/n = 45 FFPE-tumor DNA samples) against 'gold standard' high-resolution-melting (HRM)-sequencing for the genes KRAS, EGFR, BRAF and PIK3CA. Next, the performance of the validated test algorithm was assessed in an independent, prospective cohort of FFPE-tumor DNA samples (n = 75). In the learning set, a number of minimum parameter settings was defined to decide whether a FFPE-DNA sample is qualified for TSACP-MiSeq-NGS and for calling mutations. The resulting test algorithm revealed 82% (37/45) compliance to the quality criteria and 95% (35/37) concordant assay findings for KRAS, EGFR, BRAF and PIK3CA with HRM-sequencing (kappa = 0.92; 95% CI = 0.81-1.03) in the test set. Subsequent application of the validated test algorithm to the prospective cohort yielded a success rate of 84% (63/75), and a high concordance with HRM-sequencing (95% (60/63); kappa = 0.92; 95% CI = 0.84-1.01). TSACP-MiSeq-NGS detected 77 mutations in 29 additional genes. TSACP-MiSeq-NGS is suitable for diagnostic gene mutation profiling in oncopathology.

  5. First molecular detection and phylogenetic analysis of Anaplasma phagocytophilum in shelter dogs in Seoul, Korea.

    PubMed

    Lee, Sukyee; Lee, Seung-Hun; VanBik, Dorene; Kim, Neung-Hee; Kim, Kyoo-Tae; Goo, Youn-Kyoung; Rhee, Man Hee; Kwon, Oh-Deog; Kwak, Dongmi

    2016-07-01

    In this study, the status of Anaplasma phagocytophilum infection was assessed in shelter dogs in Seoul, Korea, with PCR and phylogenetic analyses. Nested PCR on 1058 collected blood samples revealed only one A. phagocytophilum positive sample (female, age <1year, mixed breed, collected from the north of the Han River). The genetic variability of A. phagocytophilum was evaluated by genotyping, using the 16S rRNA, groEL, and msp2 gene sequences of the positive sample. BLASTn analysis revealed that the 16S rRNA, groEL, and msp2 genes had 99.6%, 99.9%, and 100% identity with the following sequences deposited in GenBank: a cat 16S rRNA sequence from Korea (KR021166), a rat groEL sequence from Korea (KT220194), and a water deer msp2 sequence from Korea (HM752099), respectively. Phylogenetic analyses classified the groEL gene into two distinct groups (serine and alanine), whereas the msp2 gene showed a general classification into two groups (USA and Europe) that were further subgrouped according to region. To the best of our knowledge, this study is the first to describe the molecular diagnosis of A. phagocytophilum in dogs reared in Korea. In addition, the high genetic identity of the 16S rRNA and groEL sequences between humans and dogs from the same region suggests a possible epidemiological relation. Given the conditions of climate change, tick ecology, and recent incidence of human granulocytic anaplasmosis in Korea, the findings of this study underscore the need to establish appropriate control programs for tick-borne diseases in Korea. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Prevalence and genome characteristics of canine astrovirus in southwest China.

    PubMed

    Li, Mingxiang; Yan, Nan; Ji, Conghui; Wang, Min; Zhang, Bin; Yue, Hua; Tang, Cheng

    2018-05-30

    The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3 %) were positive for CaAstV by RT-PCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV.

  7. Bacterial communities in Great Barrier Reef calcareous sediments: Contrasting 16S rDNA libraries from nearshore and outer shelf reefs

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; McGuire, K.

    2007-03-01

    Bacterial communities in eight 16S rDNA clone libraries from calcareous sediments were investigated to provide an assessment of the bacterial diversity on sediments of the Great Barrier Reef (GBR) and to investigate differences due to decreased water quality. Sample effort was spread across two locations on each of four coral reefs, with two reefs located nearshore and two reefs on the outer shelf to allow robust statistical comparison of nearshore reefs (subjected to enhanced runoff) and outer shelf reefs (pristine conditions). Out of 221 non-chimeric sequences, 189 (85.5%) were unique and only one sequence occurred in more than one library. Rarefaction analyses and coverage calculations indicated that only a small fraction of the diversity was sampled. Cluster analyses and comparison to published sequences indicated that sequences retrieved belonged to the α, γ and δ subdivision of the Proteobacteria (6.8, 29.4 and 13.6% of the total, respectively), Cytophaga-Flavobacteria-Bacteroidetes (CFB) group (20.4%), Cyanobacteria (5.4%), Planctomycetaceae (7.7%), Verrucomicrobiaceae (6.8%), Acidobacteriaceae (2.7%). Analysis of Similarity (ANOSIM, based on grouping all retrieved sequences into 9 phylogenetic groups) indicated that subtle differences do exist in the community composition between nearshore and outer shelf reefs. Similarity percentage analysis (SIMPER) indicated that Acidobacteriaceae and Cyanobacteriaceae were the main contributors to the dissimilarity. A significant difference between bacteria on nearshore and outer shelf reefs also existed on the molecular level ( FST = 0.008, p = 0.007 for all samples, 0.006, p = 0.022 when repeated sequences within libraries were removed). Thus, bacterial communities on carbonate sediments investigated were highly diverse and differences in community composition may provide important leads for the search for indicator species or communities for water quality differences.

  8. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    PubMed

    Kato, Hirotomo; Gomez, Eduardo A; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-07-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas.

  9. Comparative evaluation of the identification of rapidly growing non-tuberculous mycobacteria by mass spectrometry (MALDI-TOF MS), GenoType Mycobacterium CM/AS assay and partial sequencing of the rpoβ gene with phylogenetic analysis as a reference method.

    PubMed

    Costa-Alcalde, José Javier; Barbeito-Castiñeiras, Gema; González-Alba, José María; Aguilera, Antonio; Galán, Juan Carlos; Pérez-Del-Molino, María Luisa

    2018-06-02

    The American Thoracic Society and the Infectious Diseases Society of America recommend that clinically significant non-tuberculous mycobacteria (NTM) should be identified to the species level in order to determine their clinical significance. The aim of this study was to evaluate identification of rapidly growing NTM (RGM) isolated from clinical samples by using MALDI-TOF MS and a commercial molecular system. The results were compared with identification using a reference method. We included 46 clinical isolates of RGM and identified them using the commercial molecular system GenoType ® CM/AS (Hain, Lifescience, Germany), MALDI-TOF MS (Bruker) and, as reference method, partial rpoβ gene sequencing followed by BLAST and phylogenetic analysis with the 1093 sequences available in the GeneBank. The degree of agreement between GenoType ® and MALDI-TOF MS and the reference method, partial rpoβ sequencing, was 27/43 (62.8%) and 38/43 cases (88.3%) respectively. For all the samples correctly classified by GenoType ® , we obtained the same result with MALDI-TOF MS (27/27). However, MALDI-TOF MS also correctly identified 68.75% (11/16) of the samples that GenoType ® had misclassified (p=0.005). MALDI-TOF MS classified significantly better than GenoType ® . When a MALDI-TOF MS score >1.85 was achieved, MALDI-TOF MS and partial rpoβ gene sequencing were equivalent. GenoType ® was not able to distinguish between species belonging to the M. fortuitum complex. MALDI-TOF MS methodology is simple, rapid and associated with lower consumable costs than GenoType ® . The partial rpoβ sequencing methods with BLAST and phylogenetic analysis were not able to identify some RGM unequivocally. Therefore, sequencing of additional regions would be indicated in these cases. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data.

    PubMed

    Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-04-01

    We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).

  11. A generic, cost-effective, and scalable cell lineage analysis platform

    PubMed Central

    Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud

    2016-01-01

    Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250

  12. Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting.

    PubMed

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-04-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment rather than the type or batch of flour largely determines the development of a stable LAB population in sourdoughs.

  13. Taxonomic Structure and Stability of the Bacterial Community in Belgian Sourdough Ecosystems as Assessed by Culture and Population Fingerprinting▿ †

    PubMed Central

    Scheirlinck, Ilse; Van der Meulen, Roel; Van Schoor, Ann; Vancanneyt, Marc; De Vuyst, Luc; Vandamme, Peter; Huys, Geert

    2008-01-01

    A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment rather than the type or batch of flour largely determines the development of a stable LAB population in sourdoughs. PMID:18310426

  14. rpoB gene mutations among Mycobacterium tuberculosis isolates from extrapulmonary sites.

    PubMed

    Khosravi, Azar Dokht; Meghdadi, Hossein; Ghadiri, Ata A; Alami, Ameneh; Sina, Amir Hossein; Mirsaeidi, Mehdi

    2018-03-01

    The aim of this study was to analyze mutations occurring in the rpoB gene of Mycobacterium tuberculosis (MTB) isolates from clinical samples of extrapulmonary tuberculosis (EPTB). Seventy formalin-fixed, paraffin-embedded samples and fresh tissue samples from confirmed EPTB cases were analyzed. Nested PCR based on the rpoB gene was performed on the extracted DNAs, combined with cloning and subsequent sequencing. Sixty-seven (95.7%) samples were positive for nester PCR. Sequence analysis of the 81 bp region of the rpoB gene demonstrated mutations in 41 (61.2%) of 67 sequenced samples. Several point mutations including deletion mutations at codons 510, 512, 513 and 515, with 45% and 51% of the mutations in codons 512 and 513 respectively were seen, along with 26% replacement mutations at codons 509, 513, 514, 518, 520, 524 and 531. The most common alteration was Gln → His, at codon 513, presented in 30 (75.6%) isolates. This study demonstrated sequence alterations in codon 513 of the 81 bp region of the rpoB gene as the most common mutation occurred in 75.6% of molecularly confirmed rifampin-resistant strains. In addition, simultaneous mutation at codons 512 and 513 was demonstrated in 34.3% of the isolates. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  15. Novel gastric helicobacters and oral campylobacters are present in captive and wild cetaceans

    PubMed Central

    Goldman, Cinthia G.; Matteo, Mario J.; Loureiro, Julio D.; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Catalano, Mariana; Heredia, Sergio Rodríguez; Mantero, Paula; Boccio, Jose R.; Zubillaga, Marcela B.; Cremaschi, Graciela A.; Solnick, Jay V.; Perez-Perez, Guillermo I.; Blaser, Martin J.

    2011-01-01

    The mammalian gastric and oral mucosa may be colonized by mixed Helicobacter and Campylobacter species, respectively, in individual animals. To better characterize the presence and distribution of Helicobacter and Campylobacter among marine mammals, we used PCR and 16S rDNA sequence analysis to examine gastric and oral samples from ten dolphins (Tursiops gephyreus), one killer whale (Orcinus orca), one false killer whale (Pseudorca crassidens), and three wild La Plata river dolphins (Pontoporia blainvillei). Helicobacter spp. DNA was widely distributed in gastric and oral samples from both captive and wild cetaceans. Phylogenetic analysis demonstrated two Helicobacter sequence clusters, one closely related to H. cetorum, a species isolated from dolphins and whales in North America. The second related cluster was to sequences obtained from dolphins in Australia and to gastric non-Helicobacter pylori helicobacters, and may represent a novel taxonomic group. Dental plaque sequences from four dolphins formed a third cluster within the Campylobacter genus that likely represents a novel species isolated from marine mammals. Identification of identical Helicobacter spp. DNA sequences from dental plaque, saliva and gastric fluids from the same hosts, suggests that the oral cavity may be involved in transmission. These results demonstrate that Helicobacter and Campylobacter species are commonly distributed in marine mammals, and identify taxonomic clusters that may represent novel species. PMID:21592686

  16. First report of Rangelia vitalii infection (canine rangeliosis) in Argentina.

    PubMed

    Eiras, Diego Fernando; Craviotto, María Belén; Baneth, Gad; Moré, Gastón

    2014-10-01

    A 12-year old mixed breed neutered bitch from Misiones, Argentina, was presented with a history of fever and epistaxis. Blood, bone marrow, and lymph node samples were collected for hematology and cytology. Mild regenerative anemia was recorded and large, round, poorly stained piroplasms (>2.5 μm) were found within erythrocytes in blood and lymph node smears. Nested PCR-RFLP on blood and bone marrow samples was positive for piroplasm DNA. The 18S rRNA gene of piroplasms was targeted. A restriction pattern of a previously unreported piroplasm was observed. The PCR product was sequenced, and the sequence obtained had 99% identity with the Rangelia vitalii sequences from Brazil when compared by BLAST analysis. Further characterization of the detected piroplasm consisted of nearly full-length sequencing (1668 bp) of the 18S rRNA gene of this organism. Those sequences were deposited in GenBank. A phylogenetic analysis indicated that they clustered together with R. vitalii from Brazil but separately from large Babesia species of dogs such as Babesia canis, and from species of Theileria of dogs as well. This is the first report of R. vitalii infection in Argentina, and the first case of canine rangeliosis diagnosed outside Brazil. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa.

    PubMed

    Geldenhuys, Marike; Mortlock, Marinda; Weyer, Jacqueline; Bezuidt, Oliver; Seamark, Ernest C J; Kearney, Teresa; Gleasner, Cheryl; Erkkila, Tracy H; Cui, Helen; Markotter, Wanda

    2018-01-01

    Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard.

  18. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa

    PubMed Central

    Geldenhuys, Marike; Mortlock, Marinda; Weyer, Jacqueline; Bezuidt, Oliver; Seamark, Ernest C. J.; Kearney, Teresa; Gleasner, Cheryl; Erkkila, Tracy H.; Cui, Helen; Markotter, Wanda

    2018-01-01

    Species within the Neoromicia bat genus are abundant and widely distributed in Africa. It is common for these insectivorous bats to roost in anthropogenic structures in urban regions. Additionally, Neoromicia capensis have previously been identified as potential hosts for Middle East respiratory syndrome (MERS)-related coronaviruses. This study aimed to ascertain the gastrointestinal virome of these bats, as viruses excreted in fecal material or which may be replicating in rectal or intestinal tissues have the greatest opportunities of coming into contact with other hosts. Samples were collected in five regions of South Africa over eight years. Initial virome composition was determined by viral metagenomic sequencing by pooling samples and enriching for viral particles. Libraries were sequenced on the Illumina MiSeq and NextSeq500 platforms, producing a combined 37 million reads. Bioinformatics analysis of the high throughput sequencing data detected the full genome of a novel species of the Circoviridae family, and also identified sequence data from the Adenoviridae, Coronaviridae, Herpesviridae, Parvoviridae, Papillomaviridae, Phenuiviridae, and Picornaviridae families. Metagenomic sequencing data was insufficient to determine the viral diversity of certain families due to the fragmented coverage of genomes and lack of suitable sequencing depth, as some viruses were detected from the analysis of reads-data only. Follow up conventional PCR assays targeting conserved gene regions for the Adenoviridae, Coronaviridae, and Herpesviridae families were used to confirm metagenomic data and generate additional sequences to determine genetic diversity. The complete coding genome of a MERS-related coronavirus was recovered with additional amplicon sequencing on the MiSeq platform. The new genome shared 97.2% overall nucleotide identity to a previous Neoromicia-associated MERS-related virus, also from South Africa. Conventional PCR analysis detected diverse adenovirus and herpesvirus sequences that were widespread throughout Neoromicia populations in South Africa. Furthermore, similar adenovirus sequences were detected within these populations throughout several years. With the exception of the coronaviruses, the study represents the first report of sequence data from several viral families within a Southern African insectivorous bat genus; highlighting the need for continued investigations in this regard. PMID:29579103

  19. Using populations of human and microbial genomes for organism detection in metagenomes

    DOE PAGES

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel; ...

    2015-04-29

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-freemore » human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. In conclusion, left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.« less

  20. The application of magnetic bead hybridization for the recovery and STR amplification of degraded and inhibited forensic DNA.

    PubMed

    Wang, Jing; McCord, Bruce

    2011-06-01

    A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Using populations of human and microbial genomes for organism detection in metagenomes.

    PubMed

    Ames, Sasha K; Gardner, Shea N; Marti, Jose Manuel; Slezak, Tom R; Gokhale, Maya B; Allen, Jonathan E

    2015-07-01

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected. © 2015 Ames et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Using populations of human and microbial genomes for organism detection in metagenomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, Sasha K.; Gardner, Shea N.; Marti, Jose Manuel

    Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-freemore » human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. In conclusion, left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected.« less

  3. Genetic variability of Baylisascaris schroederi from the Qinling subspecies of the giant panda in China revealed by sequences of three mitochondrial genes.

    PubMed

    Zhao, Zhong-Hui; Bian, Qing-Qing; Ren, Wan-Xin; Cheng, Wen-Yu; Jia, Yan-Qing; Fang, Yan-Qin; Zhao, Guang-Hui

    2014-06-01

    The present study examined the variations in three mitochondrial (mt) DNA sequences, namely cytochrome b (cytb), cytochrome c oxidase subunit 3 (cox3) and NADH dehydrogenase subunit 5 (nad5), among Baylisascaris schroederi isolates from the Qinling subspecies of the giant panda in Shaanxi province, northwestern China. No differences in length were detected in the three mt fragments from different isolates. The intra-specific sequence variations within all B. schroederi samples were 0-2.6% for pcytb, 0-1.8% for pcox3 and 0-2.1% for pnad5, while the inter-specific sequence differences among members of the genus Baylisascaris were 8.2-15.2%, 6.2-15.9% and 8.4-16.0% for pcytb, pcox3, pnad5, respectively. A phylogenetic analysis of the combined sequences of pcytb, pcox3 and pnad 5 showed that all B. schroederi samples in the present study were located in two large clusters, with one cluster containing samples from giant pandas in Sichuan province. These findings provide basic information for further study of molecular epidemiology and control of B. schroederi infection in the Qinling subspecies of the giant panda and throughout China.

  4. DNA pooling: a comprehensive, multi-stage association analysis of ACSL6 and SIRT5 polymorphisms in schizophrenia.

    PubMed

    Chowdari, K V; Northup, A; Pless, L; Wood, J; Joo, Y H; Mirnics, K; Lewis, D A; Levitt, P R; Bacanu, S-A; Nimgaonkar, V L

    2007-04-01

    Many candidate gene association studies have evaluated incomplete, unrepresentative sets of single nucleotide polymorphisms (SNPs), producing non-significant results that are difficult to interpret. Using a rapid, efficient strategy designed to investigate all common SNPs, we tested associations between schizophrenia and two positional candidate genes: ACSL6 (Acyl-Coenzyme A synthetase long-chain family member 6) and SIRT5 (silent mating type information regulation 2 homologue 5). We initially evaluated the utility of DNA sequencing traces to estimate SNP allele frequencies in pooled DNA samples. The mean variances for the DNA sequencing estimates were acceptable and were comparable to other published methods (mean variance: 0.0008, range 0-0.0119). Using pooled DNA samples from cases with schizophrenia/schizoaffective disorder (Diagnostic and Statistical Manual of Mental Disorders edition IV criteria) and controls (n=200, each group), we next sequenced all exons, introns and flanking upstream/downstream sequences for ACSL6 and SIRT5. Among 69 identified SNPs, case-control allele frequency comparisons revealed nine suggestive associations (P<0.2). Each of these SNPs was next genotyped in the individual samples composing the pools. A suggestive association with rs 11743803 at ACSL6 remained (allele-wise P=0.02), with diminished evidence in an extended sample (448 cases, 554 controls, P=0.062). In conclusion, we propose a multi-stage method for comprehensive, rapid, efficient and economical genetic association analysis that enables simultaneous SNP detection and allele frequency estimation in large samples. This strategy may be particularly useful for research groups lacking access to high throughput genotyping facilities. Our analyses did not yield convincing evidence for associations of schizophrenia with ACSL6 or SIRT5.

  5. A standard MIGS/MIMS compliant XML Schema: toward the development of the Genomic Contextual Data Markup Language (GCDML).

    PubMed

    Kottmann, Renzo; Gray, Tanya; Murphy, Sean; Kagan, Leonid; Kravitz, Saul; Lombardot, Thierry; Field, Dawn; Glöckner, Frank Oliver

    2008-06-01

    The Genomic Contextual Data Markup Language (GCDML) is a core project of the Genomic Standards Consortium (GSC) that implements the "Minimum Information about a Genome Sequence" (MIGS) specification and its extension, the "Minimum Information about a Metagenome Sequence" (MIMS). GCDML is an XML Schema for generating MIGS/MIMS compliant reports for data entry, exchange, and storage. When mature, this sample-centric, strongly-typed schema will provide a diverse set of descriptors for describing the exact origin and processing of a biological sample, from sampling to sequencing, and subsequent analysis. Here we describe the need for such a project, outline design principles required to support the project, and make an open call for participation in defining the future content of GCDML. GCDML is freely available, and can be downloaded, along with documentation, from the GSC Web site (http://gensc.org).

  6. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing.

    PubMed

    Avershina, Ekaterina; Angell, Inga Leena; Simpson, Melanie; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; Rudi, Knut

    2018-05-01

    The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types ( Bifidobacterium longum and Enterococcus faecalis ). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis . We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation.

  7. Low Maternal Microbiota Sharing across Gut, Breast Milk and Vagina, as Revealed by 16S rRNA Gene and Reduced Metagenomic Sequencing

    PubMed Central

    Angell, Inga Leena; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; Rudi, Knut

    2018-01-01

    The maternal microbiota plays an important role in infant gut colonization. In this work we have investigated which bacterial species are shared across the breast milk, vaginal and stool microbiotas of 109 women shortly before and after giving birth using 16S rRNA gene sequencing and a novel reduced metagenomic sequencing (RMS) approach in a subgroup of 16 women. All the species predicted by the 16S rRNA gene sequencing were also detected by RMS analysis and there was good correspondence between their relative abundances estimated by both approaches. Both approaches also demonstrate a low level of maternal microbiota sharing across the population and RMS analysis identified only two species common to most women and in all sample types (Bifidobacterium longum and Enterococcus faecalis). Breast milk was the only sample type that had significantly higher intra- than inter- individual similarity towards both vaginal and stool samples. We also searched our RMS dataset against an in silico generated reference database derived from bacterial isolates in the Human Microbiome Project. The use of this reference-based search enabled further separation of Bifidobacterium longum into Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis. We also detected the Lactobacillus rhamnosus GG strain, which was used as a probiotic supplement by some women, demonstrating the potential of RMS approach for deeper taxonomic delineation and estimation. PMID:29724017

  8. Hookworm infections among migrant workers in Malaysia: Molecular identification of Necator americanus and Ancylostoma duodenale.

    PubMed

    Sahimin, Norhidayu; Lim, Yvonne Ai Lian; Douadi, Benacer; Mohd Khalid, Mohd Khairul Nizam; Wilson, John-James; Behnke, Jerzy M; Mohd Zain, Siti Nursheena

    2017-09-01

    Ongoing urbanisation of the working population as well as cross-border migration of workers particularly into large cities has contributed to the development and growth of urban slums. These deprived areas are conducive for the transmission of intestinal pathogens including hookworm. The aim of this study was to determine both the prevalence and species identity of hookworm infections among the migrant worker community in Malaysia. A total of 388 faecal samples were collected from migrant workers between September 2014 and August 2015, representing workers from five employment sectors: construction, manufacturing, agriculture and plantations, food services and domestic services. Faecal samples were examined by microscopy and positive samples were subjected to molecular analysis. A total of 51 samples (13.1%) were positive by microscopy for hookworm infections. A two-step PCR based method amplifying a fragment of the 28S rRNA-ITS2 region was used to identify infections by Necator americanus and Ancylostoma spp. PCR products positive for Ancylostoma spp. were sequenced bidirectionally, and sequences analysed through BLAST and phylogenetic analysis. Samples containing Ancylostoma duodenale were further characterized by amplification and sequencing a fragment of cytochrome c oxidase subunit 1 (cox1) gene. PCR amplicons were successfully obtained from 42 (82.4%) of 51 samples, with 81.0% (34 of 42) identified as Necator americanus, 16.7% (7 of 42) as Ancylostoma spp. and 2.4% (1 of 42) as mixed infections of both species. All eight Ancylostoma spp. were confirmed to be Ancylostoma duodenale and this is the first time A. duodenale was reported in Malaysia. Samples containing A. duodenale from Nepalese and Indonesian workers shared high-similarity and were distinct compared to sequences from other countries. This study highlights the prevalence of hookworm infections among migrant workers living in Malaysia. Our findings underscore the necessity of screening migrant workers for hookworm infections, particularly those working in food-related services and industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of a Real-Time PCR Test for the Detection and Discrimination of Theileria Species in the African Buffalo (Syncerus caffer)

    PubMed Central

    Chaisi, Mamohale E.; Janssens, Michiel E.; Vermeiren, Lieve; Oosthuizen, Marinda C.; Collins, Nicola E.; Geysen, Dirk

    2013-01-01

    A quantitative real-time PCR (qPCR) assay based on the cox III gene was evaluated for the simultaneous detection and discrimination of Theileria species in buffalo and cattle blood samples from South Africa and Mozambique using melting curve analysis. The results obtained were compared to those of the reverse line blot (RLB) hybridization assay for the simultaneous detection and differentiation of Theileria spp. in mixed infections, and to the 18S rRNA qPCR assay results for the specific detection of Theileria parva. Theileria parva, Theileria sp. (buffalo), Theileria taurotragi, Theileria buffeli and Theileria mutans were detected by the cox III assay. Theileria velifera was not detected from any of the samples analysed. Seventeen percent of the samples had non-species specific melting peaks and 4.5% of the samples were negative or below the detection limit of the assay. The cox III assay identified more T. parva and Theileria sp. (buffalo) positive samples than the RLB assay, and also detected more T. parva infections than the 18S assay. However, only a small number of samples were positive for the benign Theileria spp. To our knowledge T. taurotragi has never been identified from the African buffalo, its identification in some samples by the qPCR assay was unexpected. Because of these discrepancies in the results, cox III qPCR products were cloned and sequenced. Sequence analysis indicated extensive inter- and intra-species variations in the probe target regions of the cox III gene sequences of the benign Theileria spp. and therefore explains their low detection. The cox III assay is specific for the detection of T. parva infections in cattle and buffalo. Sequence data generated from this study can be used for the development of a more inclusive assay for detection and differentiation of all variants of the mildly pathogenic and benign Theileria spp. of buffalo and cattle. PMID:24146782

  10. Evaluation of a real-time PCR test for the detection and discrimination of theileria species in the African buffalo (Syncerus caffer).

    PubMed

    Chaisi, Mamohale E; Janssens, Michiel E; Vermeiren, Lieve; Oosthuizen, Marinda C; Collins, Nicola E; Geysen, Dirk

    2013-01-01

    A quantitative real-time PCR (qPCR) assay based on the cox III gene was evaluated for the simultaneous detection and discrimination of Theileria species in buffalo and cattle blood samples from South Africa and Mozambique using melting curve analysis. The results obtained were compared to those of the reverse line blot (RLB) hybridization assay for the simultaneous detection and differentiation of Theileria spp. in mixed infections, and to the 18S rRNA qPCR assay results for the specific detection of Theileria parva. Theileria parva, Theileria sp. (buffalo), Theileria taurotragi, Theileria buffeli and Theileria mutans were detected by the cox III assay. Theileria velifera was not detected from any of the samples analysed. Seventeen percent of the samples had non-species specific melting peaks and 4.5% of the samples were negative or below the detection limit of the assay. The cox III assay identified more T. parva and Theileria sp. (buffalo) positive samples than the RLB assay, and also detected more T. parva infections than the 18S assay. However, only a small number of samples were positive for the benign Theileria spp. To our knowledge T. taurotragi has never been identified from the African buffalo, its identification in some samples by the qPCR assay was unexpected. Because of these discrepancies in the results, cox III qPCR products were cloned and sequenced. Sequence analysis indicated extensive inter- and intra-species variations in the probe target regions of the cox III gene sequences of the benign Theileria spp. and therefore explains their low detection. The cox III assay is specific for the detection of T. parva infections in cattle and buffalo. Sequence data generated from this study can be used for the development of a more inclusive assay for detection and differentiation of all variants of the mildly pathogenic and benign Theileria spp. of buffalo and cattle.

  11. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  12. Comparative analysis of the prion protein gene sequences in African lion.

    PubMed

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  13. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  14. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  15. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    PubMed

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  16. Molecular diagnosis of echovirus 30 as the etiological agent in an outbreak of aseptic meningitis in Panama: May-June 2008.

    PubMed

    Martinez, Alexander A; Castillo, Juan; Sanchez, Mirla C; Zaldivar, Yamitzel; Mendoza, Yaxelis; Tribaldos, Maribel; Acosta, Pablo; Smith, Rebecca E; Pascale, Juan Miguel

    2012-12-15

    Aseptic meningitis outbreaks are commonly caused by viral pathogens with enterovirus a common etiological agent. Between May and June of 2008, an outbreak of 173 cases of aseptic meningitis occurred in the Chiriqui Province of Panama. Molecular techniques were used to identify the etiological agent. Cerebrospinal fluid (CSF) samples from 75 patients were received at the Gorgas Memorial Institute for Health Studies.  RNA extraction and one-step RT-PCR were performed on each sample to determine the presence of enterovirus.  Thirty-four samples which were positive for enterovirus were subject to group-specific PCR, sequencing, and phylogenetic analysis to identify the etiological agent of the outbreak. The CSF of 58 subjects was found positive for the enterovirus family using RT-PCR. Thirty-four samples were found to belong to the enterovirus B group. Phylogenetic analysis of four successfully sequenced samples revealed echovirus 30 as the etiological agent. Echovirus 30 is reported as the likely cause of an outbreak of aseptic meningitis in Panama, the first since the 1980s.

  17. Detrital zircon analysis of Mesoproterozoic and neoproterozoic metasedimentary rocks of northcentral idaho: Implications for development of the Belt-Purcell basin

    USGS Publications Warehouse

    Lewis, R.S.; Vervoort, J.D.; Burmester, R.F.; Oswald, P.J.

    2010-01-01

    The authors analyzed detrital zircon grains from 10 metasedimentary rock samples of the Priest River complex and three other amphibolite-facies metamorphic sequences in north-central Idaho to test the previous assignment of these rocks to the Mesoproterozoic Belt-Purcell Supergroup. Zircon grains from two samples of the Prichard Formation (lower Belt) and one sample of Cambrian quartzite were also analyzed as controls with known depositional ages. U-Pb zircon analysis by laser ablation - inductively coupled plasma - mass spectrometry reveals that 6 of the 10 samples contain multiple age populations between 1900 and 1400 Ma and a scatter of older ages, similar to results reported from the Belt- Purcell Supergroup to the north and east. Results from the Priest River metamorphic complex confirm previous correlations with the Prichard Formation. Samples from the Golden and Elk City sequences have significant numbers of 1500-1380 Ma grains, which indicates that they do not predate the Belt. Rather, they are probably from a relatively young, southwestern part of the Belt Supergroup (Lemhi subbasin). Non-North American (1610-1490 Ma) grains are rare in these rocks. Three samples of quartzite from the Syringa metamorphic sequence northwest of the Idaho batholith contain zircon grains younger than the Belt Supergroup and support a Neoproterozoic age. A single Cambrian sample has abundant 1780 Ma grains and none younger than ~1750 Ma. These results indicate that the likely protoliths of many high-grade metamorphic rocks in northern Idaho were strata of the Belt-Purcell Supergroup or overlying rocks of the Neoproterozoic Windermere Supergroup and not basement rocks.

  18. Molecular detection and identification of hemoparasites in pampas deer (Ozotoceros bezoarticus Linnaeus, 1758) from the Pantanal Brazil.

    PubMed

    Silveira, Júlia A G; Rabelo, Elida M L; Lacerda, Ana C R; Borges, Paulo A L; Tomás, Walfrido M; Pellegrin, Aiesca O; Tomich, Renata G P; Ribeiro, Múcio F B

    2013-06-01

    Hemoparasites were surveyed in 60 free-living pampas deer Ozotoceros bezoarticus from the central area of the Pantanal, known as Nhecolândia, State of Mato Grosso do Sul, Brazil, through the analysis of nested PCR assays and nucleotide sequencing. Blood samples were tested for Babesia/Theileria, Anaplasma spp., and Trypanosoma spp. using nPCR assays and sequencing of the 18S rRNA, msp4, ITS, and cathepsin L genes. The identity of each sequence was confirmed by comparison with sequences from GenBank using BLAST software. Forty-six (77%) pampas deer were positive for at least one hemoparasite, according to PCR assays. Co-infection occurred in 13 (22%) animals. Based on the sequencing results, 29 (48%) tested positive for A. marginale. Babesia/Theileria were detected in 23 (38%) samples, and according to the sequencing results 52% (12/23) of the samples were similar to T. cervi, 13% (3/23) were similar to Babesia bovis, and 9% (2/23) were similar to B. bigemina. No samples were amplified with the primers for T. vivax, while 11 (18%) were amplified with the ITS primers for T. evansi. The results showed pampas deer to be co-infected with several hemoparasites, including species that may cause serious disease in cattle. Pampas deer is an endangered species in Brazil, and the consequences of these infections to their health are poorly understood. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Real-time, portable genome sequencing for Ebola surveillance.

    PubMed

    Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W

    2016-02-11

    The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.

  20. Metagenomic Analysis of Milk of Healthy and Mastitis-Suffering Women.

    PubMed

    Jiménez, Esther; de Andrés, Javier; Manrique, Marina; Pareja-Tobes, Pablo; Tobes, Raquel; Martínez-Blanch, Juan F; Codoñer, Francisco M; Ramón, Daniel; Fernández, Leónides; Rodríguez, Juan M

    2015-08-01

    Some studies have been conducted to assess the composition of the bacterial communities inhabiting human milk, but they did not evaluate the presence of other microorganisms, such as fungi, archaea, protozoa, or viruses. This study aimed to compare the metagenome of human milk samples provided by healthy and mastitis-suffering women. DNA was isolated from human milk samples collected from 10 healthy women and 10 women with symptoms of lactational mastitis. Shotgun libraries from total extracted DNA were constructed and the libraries were sequenced by 454 pyrosequencing. The amount of human DNA sequences was ≥ 90% in all the samples. Among the bacterial sequences, the predominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes. The healthy core microbiome included the genera Staphylococcus, Streptococcus, Bacteroides, Faecalibacterium, Ruminococcus, Lactobacillus, and Propionibacterium. At the species level, a high degree of inter-individual variability was observed among healthy women. In contrast, Staphylococcus aureus clearly dominated the microbiome in the samples from the women with acute mastitis whereas high increases in Staphylococcus epidermidis-related reads were observed in the milk of those suffering from subacute mastitis. Fungal and protozoa-related reads were identified in most of the samples, whereas Archaea reads were absent in samples from women with mastitis. Some viral-related sequence reads were also detected. Human milk contains a complex microbial metagenome constituted by the genomes of bacteria, archaea, viruses, fungi, and protozoa. In mastitis cases, the milk microbiome reflects a loss of bacterial diversity and a high increase of the sequences related to the presumptive etiological agents. © The Author(s) 2015.

  1. Molecular prevalence and genetic diversity of bovine Theileria orientalis in Myanmar.

    PubMed

    Bawm, Saw; Shimizu, Kohei; Hirota, Jun-Ichi; Tosa, Yusuke; Htun, Lat Lat; Maw, Ni Ni; Thein, Myint; Kato, Hirotomo; Sakurai, Tatsuya; Katakura, Ken

    2014-08-01

    Theileria orientalis is a causative agent of benign theileriosis in cattle and distributed in mainly Asian countries. In the present study, we examined the prevalence of T. orientalis infection by PCR based on the major piroplasm surface protein gene (MPSP) sequences in cattle in Myanmar, followed by phylogenetic analysis of the MPSP genes. The MPSP gene was amplified in 258 of 713 (36.2%) cattle blood DNA samples collected from five cities in different geographical regions of Myanmar. Phylogenetic analysis of MPSP sequences from 54 T. orientalis-positive DNA samples revealed the presence of six allelic genotypes, including Types 1, 3, 4, 5, 7, and N-3. Types 5 and 7 were the predominant types detected. Sequences of the MPSP genes detected in Myanmar were closely related to those from Thailand, Vietnam or Mongolia. These findings suggest that movement of animals carrying T. orientalis parasites between Southeast Asian countries could be a reason for the similar genotype distribution of the parasites in Myanmar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Metagenomic analysis of Sichuan takin fecal sample viromes reveals novel enterovirus and astrovirus.

    PubMed

    Guan, Tian-Pei; Teng, Jade L L; Yeong, Kai-Yan; You, Zhang-Qiang; Liu, Hao; Wong, Samson S Y; Lau, Susanna K P; Woo, Patrick C Y

    2018-06-07

    The Sichuan takin inhabits the bamboo forests in the Eastern Himalayas and is considered as a national treasure of China with the highest legal protection and conservation status considered as vulnerable according to The IUCN Red List of Threatened Species. In this study, fecal samples of 71 Sichuan takins were pooled and deep sequenced. Among the 103,553 viral sequences, 21,961 were assigned to mammalian viruses. De novo assembly revealed genomes of an enterovirus and an astrovirus and contigs of circoviruses and genogroup I picobirnaviruses. Complete genome sequencing and phylogenetic analysis showed that Sichuan takin enterovirus is a novel serotype/genotype of the species Enterovirus G, with evidence of recombination. Sichuan takin astrovirus is a new subtype of bovine astrovirus, probably belonging to a new genogroup in the genus Mamastrovirus. Further studies will reveal whether these viruses can also be found in Mishmi takin and Shaanxi takin and their pathogenic potentials. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Detection of a novel herpesvirus from bats in the Philippines.

    PubMed

    Sano, Kaori; Okazaki, Sachiko; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Quibod, Niña; Kondo, Taisuke; Shimoda, Hiroshi; Hatta, Yuuki; Mitomo, Shumpei; Oba, Mami; Katayama, Yukie; Sassa, Yukiko; Furuya, Tetsuya; Nagai, Makoto; Une, Yumi; Maeda, Ken; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi; Omatsu, Tsutomu; Mizutani, Tetsuya

    2015-08-01

    Bats are natural hosts of many zoonotic viruses. Monitoring bat viruses is important to detect novel bat-borne infectious diseases. In this study, next generation sequencing techniques and conventional PCR were used to analyze intestine, lung, and blood clot samples collected from wild bats captured at three locations in Davao region, in the Philippines in 2012. Different viral genes belonging to the Retroviridae and Herpesviridae families were identified using next generation sequencing. The existence of herpesvirus in the samples was confirmed by PCR using herpesvirus consensus primers. The nucleotide sequences of the resulting PCR amplicons were 166-bp. Further phylogenetic analysis identified that the virus from which this nucleotide sequence was obtained belonged to the Gammaherpesvirinae subfamily. PCR using primers specific to the nucleotide sequence obtained revealed that the infection rate among the captured bats was 30 %. In this study, we present the partial genome of a novel gammaherpesvirus detected from wild bats. Our observations also indicate that this herpesvirus may be widely distributed in bat populations in Davao region.

  4. Large-Scale Biomonitoring of Remote and Threatened Ecosystems via High-Throughput Sequencing

    PubMed Central

    Gibson, Joel F.; Shokralla, Shadi; Curry, Colin; Baird, Donald J.; Monk, Wendy A.; King, Ian; Hajibabaei, Mehrdad

    2015-01-01

    Biodiversity metrics are critical for assessment and monitoring of ecosystems threatened by anthropogenic stressors. Existing sorting and identification methods are too expensive and labour-intensive to be scaled up to meet management needs. Alternately, a high-throughput DNA sequencing approach could be used to determine biodiversity metrics from bulk environmental samples collected as part of a large-scale biomonitoring program. Here we show that both morphological and DNA sequence-based analyses are suitable for recovery of individual taxonomic richness, estimation of proportional abundance, and calculation of biodiversity metrics using a set of 24 benthic samples collected in the Peace-Athabasca Delta region of Canada. The high-throughput sequencing approach was able to recover all metrics with a higher degree of taxonomic resolution than morphological analysis. The reduced cost and increased capacity of DNA sequence-based approaches will finally allow environmental monitoring programs to operate at the geographical and temporal scale required by industrial and regulatory end-users. PMID:26488407

  5. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  6. NIPTmer: rapid k-mer-based software package for detection of fetal aneuploidies.

    PubMed

    Sauk, Martin; Žilina, Olga; Kurg, Ants; Ustav, Eva-Liina; Peters, Maire; Paluoja, Priit; Roost, Anne Mari; Teder, Hindrek; Palta, Priit; Brison, Nathalie; Vermeesch, Joris R; Krjutškov, Kaarel; Salumets, Andres; Kaplinski, Lauris

    2018-04-04

    Non-invasive prenatal testing (NIPT) is a recent and rapidly evolving method for detecting genetic lesions, such as aneuploidies, of a fetus. However, there is a need for faster and cheaper laboratory and analysis methods to make NIPT more widely accessible. We have developed a novel software package for detection of fetal aneuploidies from next-generation low-coverage whole genome sequencing data. Our tool - NIPTmer - is based on counting pre-defined per-chromosome sets of unique k-mers from raw sequencing data, and applying linear regression model on the counts. Additionally, the filtering process used for k-mer list creation allows one to take into account the genetic variance in a specific sample, thus reducing the source of uncertainty. The processing time of one sample is less than 10 CPU-minutes on a high-end workstation. NIPTmer was validated on a cohort of 583 NIPT samples and it correctly predicted 37 non-mosaic fetal aneuploidies. NIPTmer has the potential to reduce significantly the time and complexity of NIPT post-sequencing analysis compared to mapping-based methods. For non-commercial users the software package is freely available at http://bioinfo.ut.ee/NIPTMer/ .

  7. Prevalence and phylogenetic analysis of hepatitis E virus in pigs, wild boars, roe deer, red deer and moose in Lithuania.

    PubMed

    Spancerniene, Ugne; Grigas, Juozas; Buitkuviene, Jurate; Zymantiene, Judita; Juozaitiene, Vida; Stankeviciute, Milda; Razukevicius, Dainius; Zienius, Dainius; Stankevicius, Arunas

    2018-02-23

    Hepatitis E virus (HEV) is one of the major causes of acute viral hepatitis worldwide. In Europe, food-borne zoonotic transmission of HEV genotype 3 has been associated with domestic pigs and wild boar. Controversial data are available on the circulation of the virus in animals that are used for human consumption, and to date, no gold standard has yet been defined for the diagnosis of HEV-associated hepatitis. To investigate the current HEV infection status in Lithuanian pigs and wild ungulates, the presence of viral RNA was analyzed by nested reverse transcription polymerase chain reaction (RT-nPCR) in randomly selected samples, and the viral RNA was subsequently genotyped. In total, 32.98 and 22.55% of the domestic pig samples were HEV-positive using RT-nPCR targeting the ORF1 and ORF2 fragments, respectively. Among ungulates, 25.94% of the wild boar samples, 22.58% of the roe deer samples, 6.67% of the red deer samples and 7.69% of the moose samples were positive for HEV RNA using primers targeting the ORF1 fragment. Using primers targeting the ORF2 fragment of the HEV genome, viral RNA was only detected in 17.03% of the wild boar samples and 12.90% of the roe deer samples. Phylogenetic analysis based on a 348-nucleotide-long region of the HEV ORF2 showed that all obtained sequences detected in Lithuanian domestic pigs and wildlife belonged to genotype 3. In this study, the sequences identified from pigs, wild boars and roe deer clustered within the 3i subtype reference sequences from the GenBank database. The sequences obtained from pig farms located in two different counties of Lithuania were of the HEV 3f subtype. The wild boar sequences clustered within subtypes 3i and 3h, clearly indicating that wild boars can harbor additional subtypes of HEV. For the first time, the ORF2 nucleotide sequences obtained from roe deer proved that HEV subtype 3i can be found in a novel host. The results of the viral prevalence and phylogenetic analyses clearly demonstrated viral infection in Lithuanian pigs and wild ungulates, thus highlighting a significant concern for zoonotic virus transmission through both the food chain and direct contact with animals. Unexpected HEV genotype 3 subtype diversity in Lithuania and neighboring countries revealed that further studies are necessary to understand the mode of HEV transmission between animals and humans in the Baltic States region.

  8. SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    PubMed

    Jeong, Seongmun; Kim, Jiwoong; Park, Won; Jeon, Hongmin; Kim, Namshin

    2017-01-01

    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD.

  9. Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to plum pox virus infection.

    PubMed

    Rodamilans, Bernardo; San León, David; Mühlberger, Louisa; Candresse, Thierry; Neumüller, Michael; Oliveros, Juan Carlos; García, Juan Antonio

    2014-01-01

    Plum pox virus (PPV) infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named 'Jojo', develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected 'Jojo' trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01). Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.

  10. Prediction of HIV-1 coreceptor usage (tropism) by sequence analysis using a genotypic approach.

    PubMed

    Sierra, Saleta; Kaiser, Rolf; Lübke, Nadine; Thielen, Alexander; Schuelter, Eugen; Heger, Eva; Däumer, Martin; Reuter, Stefan; Esser, Stefan; Fätkenheuer, Gerd; Pfister, Herbert; Oette, Mark; Lengauer, Thomas

    2011-12-01

    Maraviroc (MVC) is the first licensed antiretroviral drug from the class of coreceptor antagonists. It binds to the host coreceptor CCR5, which is used by the majority of HIV strains in order to infect the human immune cells (Fig. 1). Other HIV isolates use a different coreceptor, the CXCR4. Which receptor is used, is determined in the virus by the Env protein (Fig. 2). Depending on the coreceptor used, the viruses are classified as R5 or X4, respectively. MVC binds to the CCR5 receptor inhibiting the entry of R5 viruses into the target cell. During the course of disease, X4 viruses may emerge and outgrow the R5 viruses. Determination of coreceptor usage (also called tropism) is therefore mandatory prior to administration of MVC, as demanded by EMA and FDA. The studies for MVC efficiency MOTIVATE, MERIT and 1029 have been performed with the Trofile assay from Monogram, San Francisco, U.S.A. This is a high quality assay based on sophisticated recombinant tests. The acceptance for this test for daily routine is rather low outside of the U.S.A., since the European physicians rather tend to work with decentralized expert laboratories, which also provide concomitant resistance testing. These laboratories have undergone several quality assurance evaluations, the last one being presented in 2011. For several years now, we have performed tropism determinations based on sequence analysis from the HIV env-V3 gene region (V3). This region carries enough information to perform a reliable prediction. The genotypic determination of coreceptor usage presents advantages such as: shorter turnover time (equivalent to resistance testing), lower costs, possibility to adapt the results to the patients' needs and possibility of analysing clinical samples with very low or even undetectable viral load (VL), particularly since the number of samples analysed with VL < 1000 copies/μl roughly increased in the last years (Fig. 3). The main steps for tropism testing (Fig. 4) demonstrated in this video: Collection of a blood sample Isolation of the HIV RNA from the plasma and/or HIV proviral DNA from blood mononuclear cells Amplification of the env region Amplification of the V3 region Sequence reaction of the V3 amplicon Purification of the sequencing samples Sequencing the purified samples Sequence editing Sequencing data interpretation and tropism prediction.

  11. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination.

    PubMed

    Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai

    2017-06-01

    Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The complete mitochondrial genome sequence of the maned wolf (Chrysocyon brachyurus).

    PubMed

    Zhao, Chao; Yang, Xiufeng; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the maned wolf (Chrysocyon brachyurus), the unique species in Chrysocyon, was sequenced and reported for the first time using blood samples obtained from a female individual in Shanghai Zoo, China. Sequence analysis showed that the genome structure was in accordance with other Canidae species and it contained 12 S rRNA gene, 16 S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region.

  13. Special Focus

    PubMed Central

    Nawrocki, Eric P.; Burge, Sarah W.

    2013-01-01

    The development of RNA bioinformatic tools began more than 30 y ago with the description of the Nussinov and Zuker dynamic programming algorithms for single sequence RNA secondary structure prediction. Since then, many tools have been developed for various RNA sequence analysis problems such as homology search, multiple sequence alignment, de novo RNA discovery, read-mapping, and many more. In this issue, we have collected a sampling of reviews and original research that demonstrate some of the many ways bioinformatics is integrated with current RNA biology research. PMID:23948768

  14. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    PubMed

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Influenza A Virus Surveillance Based on Pre-Weaning Piglet Oral Fluid Samples.

    PubMed

    Panyasing, Y; Goodell, C; Kittawornrat, A; Wang, C; Levis, I; Desfresne, L; Rauh, R; Gauger, P C; Zhang, J; Lin, X; Azeem, S; Ghorbani-Nezami, S; Yoon, K-J; Zimmerman, J

    2016-10-01

    Influenza A virus (IAV) surveillance using pre-weaning oral fluid samples from litters of piglets was evaluated in four ˜12 500 sow and IAV-vaccinated, breeding herds. Oral fluid samples were collected from 600 litters and serum samples from their dams at weaning. Litter oral fluid samples were tested for IAV by virus isolation, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), RT-PCR subtyping and sequencing. Commercial nucleoprotein (NP) enzyme-linked immunosorbent assay (ELISA) kits and NP isotype-specific assays (IgM, IgA and IgG) were used to characterize NP antibody in litter oral fluid and sow serum. All litter oral fluid specimens (n = 600) were negative by virus isolation. Twenty-five oral fluid samples (25/600 = 4.2%) were qRT-PCR positive based on screening (Laboratory 1) and confirmatory testing (Laboratory 2). No hemagglutinin (HA) and neuraminidase (NA) gene sequences were obtained, but matrix (M) gene sequences were obtained for all qRT-PCR-positive samples submitted for sequencing (n = 18). Genetic analysis revealed that all M genes sequences were identical (GenBank accession no. KF487544) and belonged to the triple reassortant influenza A virus M gene (TRIG M) previously identified in swine. The proportion of IgM- and IgA-positive samples was significantly higher in sow serum and litter oral fluid samples, respectively (P < 0.01). Consistent with the extensive use of IAV vaccine, no difference was detected in the proportion of IgG- and blocking ELISA-positive sow serum and litter oral fluids. This study supported the use of oral fluid sampling as a means of conducting IAV surveillance in pig populations and demonstrated the inapparent circulation of IAV in piglets. Future work on IAV oral fluid diagnostics should focus on improved procedures for virus isolation, subtyping and sequencing of HA and NA genes. The role of antibody in IAV surveillance remains to be elucidated, but longitudinal assessment of specific antibody has the potential to provide information regarding patterns of infection, vaccination status and herd immunity. © 2014 Blackwell Verlag GmbH.

  16. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing.

    PubMed

    Jacob, Jacob H; Hussein, Emad I; Shakhatreh, Muhamad Ali K; Cornelison, Christopher T

    2017-10-01

    Amplicon sequencing using next-generation technology (bTEFAP ® ) has been utilized in describing the diversity of Dead Sea microbiota. The investigated area is a well-known salt lake in the western part of Jordan found in the lowest geographical location in the world (more than 420 m below sea level) and characterized by extreme salinity (approximately, 34%) in addition to other extreme conditions (low pH, unique ionic composition different from sea water). DNA was extracted from Dead Sea water. A total of 314,310 small subunit RNA (SSU rRNA) sequences were parsed, and 288,452 sequences were then clustered. For alpha diversity analysis, sample was rarefied to 3,000 sequences. The Shannon-Wiener index curve plot reached a plateau at approximately 3,000 sequences indicating that sequencing depth was sufficient to capture the full scope of microbial diversity. Archaea was found to be dominating the sequences (52%), whereas Bacteria constitute 45% of the sequences. Altogether, prokaryotic sequences (which constitute 97% of all sequences) were found to predominate. The findings expand on previous studies by using high-throughput amplicon sequencing to describe the microbial community in an environment which in recent years has been shown to hide some interesting diversity. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Total RNA Sequencing Analysis of DCIS Progressing to Invasive Breast Cancer

    DTIC Science & Technology

    2015-09-01

    EPICOPY to obtain reliable copy number variation ( CNV ) data from the methylome array data, thereby decreasing the DNA requirements in half...in the R statistical environment. Samples were assessed for good performance on the array using detection p-values, a metric implemented by...Illumina to identify probes detected with confidence. Samples less than 90% of probes detected were removed from the analysis and probes undetected in any

  19. First report on Babesia vogeli infection in dogs in the Philippines.

    PubMed

    Ybañez, Adrian P; Ybañez, Rochelle Haidee D; Talle, MaxFrancis G; Liu, Mingming; Moumouni, Paul Franck Adjou; Xuan, Xuenan

    2017-02-01

    Babesia vogeli is a tick-borne protozoal pathogen that infects erythrocytes. In Southeast Asia, this pathogen has only been reported in Thailand. In this study, nine dogs presented at three different veterinary clinics in Cebu City, Philippines were found positive for B. vogeli. DNA was extracted from blood samples and tested using a PCR for genus Babesia and a PCR specific for B. vogeli (both based on the 18S rRNA gene). Blood smears (triplicate) from each sample were found negative. All positive amplicons were sequenced and were found to be 99.4% identical to registered B. vogeli sequences at Genbank. Phylogenetic analysis revealed monophyletic grouping of Philippine sequences with the registered A. platys Genbank sequences. This is the first report of B. vogeli infection in dogs in the Philippines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Sequencing of the large dsDNA genome of Oryctes rhinoceros nudivirus using multiple displacement amplification of nanogram amounts of virus DNA.

    PubMed

    Wang, Yongjie; Kleespies, Regina G; Ramle, Moslim B; Jehle, Johannes A

    2008-09-01

    The genomic sequence analysis of many large dsDNA viruses is hampered by the lack of enough sample materials. Here, we report a whole genome amplification of the Oryctes rhinoceros nudivirus (OrNV) isolate Ma07 starting from as few as about 10 ng of purified viral DNA by application of phi29 DNA polymerase- and exonuclease-resistant random hexamer-based multiple displacement amplification (MDA) method. About 60 microg of high molecular weight DNA with fragment sizes of up to 25 kbp was amplified. A genomic DNA clone library was generated using the product DNA. After 8-fold sequencing coverage, the 127,615 bp of OrNV whole genome was sequenced successfully. The results demonstrate that the MDA-based whole genome amplification enables rapid access to genomic information from exiguous virus samples.

  1. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data.

    PubMed

    Heinrich, Verena; Kamphans, Tom; Mundlos, Stefan; Robinson, Peter N; Krawitz, Peter M

    2017-01-01

    Next generation sequencing technology considerably changed the way we screen for pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-causing mutation amongst thousands of variants of partly unknown relevance is still challenging and efficient techniques that reduce the genomic search space play a decisive role. Often segregation- or linkage analysis are used to prioritize candidates, however, these approaches require correct information about the degree of relationship among the sequenced samples. For quality assurance an automated control of pedigree structures and sample assignment is therefore highly desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis. We developed an algorithm based on likelihood ratios that discriminates between different classes of relationship for an arbitrary number of genotyped samples. By identifying the most likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous families. We tested our approach on exome data of different sequencing studies and achieved high precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci. A java standalone application that computes the relationships between multiple samples as well as a Rscript that visualizes the pedigree information is available for download as well as a web service at www.gene-talk.de CONTACT: heinrich@molgen.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  2. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data

    PubMed Central

    Kamphans, Tom; Mundlos, Stefan; Robinson, Peter N.; Krawitz, Peter M.

    2017-01-01

    Motivation: Next generation sequencing technology considerably changed the way we screen for pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-causing mutation amongst thousands of variants of partly unknown relevance is still challenging and efficient techniques that reduce the genomic search space play a decisive role. Often segregation- or linkage analysis are used to prioritize candidates, however, these approaches require correct information about the degree of relationship among the sequenced samples. For quality assurance an automated control of pedigree structures and sample assignment is therefore highly desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis. Results: We developed an algorithm based on likelihood ratios that discriminates between different classes of relationship for an arbitrary number of genotyped samples. By identifying the most likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous families. We tested our approach on exome data of different sequencing studies and achieved high precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci. Availability and Implementation: A java standalone application that computes the relationships between multiple samples as well as a Rscript that visualizes the pedigree information is available for download as well as a web service at www.gene-talk.de. Contact: heinrich@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27565584

  3. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Tan, L; Wang, H; Li, C; Pan, Y

    2014-12-01

    Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are leading causes of mortality in hospital intensive care units. We sought to determine whether dental plaque biofilms might harbor pathogenic bacteria that can eventually cause lung infections in patients with severe AE-COPD. Paired samples of subgingival plaque biofilm and tracheal aspirate were collected from 53 patients with severe AE-COPD. Total bacterial DNA was extracted from each sample individually for polymerase chain reaction amplification and/or generation of bacterial 16S rDNA sequences and cDNA libraries. We used a metagenomic approach, based on bacterial 16S rDNA sequences, to compare the distribution of species present in dental plaque and lung. Analysis of 1060 sequences (20 clones per patient) revealed a wide range of aerobic, anaerobic, pathogenic, opportunistic, novel and uncultivable bacterial species. Species indistinguishable between the paired subgingival plaque and tracheal aspirate samples (97-100% similarity in 16S rDNA sequence) were dental plaque pathogens (Aggregatibacter actinomycetemcomitans, Capnocytophaga sputigena, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola) and lung pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Streptococcus pneumoniae). Real-time polymerase chain reaction of 16S rDNA indicated lower levels of Pseudomonas aeruginosa and Porphyromonas gingivalis colonizing the dental plaques compared with the paired tracheal aspirate samples. These results support the hypothesis that dental bacteria may contribute to the pathology of severe AE-COPD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples.

    PubMed

    Lin, Jake; Kramna, Lenka; Autio, Reija; Hyöty, Heikki; Nykter, Matti; Cinek, Ondrej

    2017-05-15

    Next generation sequencing (NGS) technology allows laboratories to investigate virome composition in clinical and environmental samples in a culture-independent way. There is a need for bioinformatic tools capable of parallel processing of virome sequencing data by exactly identical methods: this is especially important in studies of multifactorial diseases, or in parallel comparison of laboratory protocols. We have developed a web-based application allowing direct upload of sequences from multiple virome samples using custom parameters. The samples are then processed in parallel using an identical protocol, and can be easily reanalyzed. The pipeline performs de-novo assembly, taxonomic classification of viruses as well as sample analyses based on user-defined grouping categories. Tables of virus abundance are produced from cross-validation by remapping the sequencing reads to a union of all observed reference viruses. In addition, read sets and reports are created after processing unmapped reads against known human and bacterial ribosome references. Secured interactive results are dynamically plotted with population and diversity charts, clustered heatmaps and a sortable and searchable abundance table. The Vipie web application is a unique tool for multi-sample metagenomic analysis of viral data, producing searchable hits tables, interactive population maps, alpha diversity measures and clustered heatmaps that are grouped in applicable custom sample categories. Known references such as human genome and bacterial ribosomal genes are optionally removed from unmapped ('dark matter') reads. Secured results are accessible and shareable on modern browsers. Vipie is a freely available web-based tool whose code is open source.

  5. Enhancing the detection of barcoded reads in high throughput DNA sequencing data by controlling the false discovery rate.

    PubMed

    Buschmann, Tilo; Zhang, Rong; Brash, Douglas E; Bystrykh, Leonid V

    2014-08-07

    DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position identified. In some cases (e.g., with PacBio SMRT), the position of the barcode and DNA context is not well defined. Many reads start inside the genomic insert so that adjacent primers might be missed. The matter is further complicated by coincidental similarities between barcode sequences and reference DNA. Therefore, a robust strategy is required in order to detect barcoded reads and avoid a large number of false positives or negatives.For mass inference problems such as this one, false discovery rate (FDR) methods are powerful and balanced solutions. Since existing FDR methods cannot be applied to this particular problem, we present an adapted FDR method that is suitable for the detection of barcoded reads as well as suggest possible improvements. In our analysis, barcode sequences showed high rates of coincidental similarities with the Mus musculus reference DNA. This problem became more acute when the length of the barcode sequence decreased and the number of barcodes in the set increased. The method presented in this paper controls the tail area-based false discovery rate to distinguish between barcoded and unbarcoded reads. This method helps to establish the highest acceptable minimal distance between reads and barcode sequences. In a proof of concept experiment we correctly detected barcodes in 83% of the reads with a precision of 89%. Sensitivity improved to 99% at 99% precision when the adjacent primer sequence was incorporated in the analysis. The analysis was further improved using a paired end strategy. Following an analysis of the data for sequence variants induced in the Atp1a1 gene of C57BL/6 murine melanocytes by ultraviolet light and conferring resistance to ouabain, we found no evidence of cross-contamination of DNA material between samples. Our method offers a proper quantitative treatment of the problem of detecting barcoded reads in a noisy sequencing environment. It is based on the false discovery rate statistics that allows a proper trade-off between sensitivity and precision to be chosen.

  6. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    PubMed Central

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  7. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  8. Improved multiple displacement amplification (iMDA) and ultraclean reagents.

    PubMed

    Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W

    2014-06-06

    Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome. The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.

  9. PCR detection of Anaplasma phagocytophilum in goat flocks in an area endemic for tick-borne fever in Switzerland.

    PubMed

    Silaghi, C; Scheuerle, M C; Friche Passos, L M; Thiel, C; Pfister, K

    2011-02-01

    Central Switzerland is a highly endemic region for tick-borne fever (TBF) in cattle, however, little is known about A. phagocytophilum in goats. In the present study, 72 animals from six goat flocks (373 EDTA blood-samples) in Central Switzerland were analysed for A. phagocytophilum DNA. A real-time PCR targeting the msp2 gene of A. phagocytophilum was performed and in positive samples the partial 165 rRNA, groEL and msp4 gene were amplified for sequence analysis. Four DNA extracts were positive. Different sequence types on basis of the amplified genes were found. For comparison, sequences of A. phagocytophilum from 12 cattle (originating from Switzerland and Southern Germany) were analysed. The 165 rRNA gene sequences from cattle were all identical amongst each other, but the groEL and msp4 gene differed depending on the origin of the cattle samples and differed from the variants from goats. This study clearly provides molecular evidence for the presence of different types of A. phagocytophilum in goat flocks in Switzerland, a fact which deserves more thorough attention in clinical studies.

  10. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection.

    PubMed

    Mannelli, Ilaria; Minunni, Maria; Tombelli, Sara; Mascini, Marco

    2003-03-01

    A DNA piezoelectric sensor has been developed for the detection of genetically modified organisms (GMOs). Single stranded DNA (ssDNA) probes were immobilised on the sensor surface of a quartz crystal microbalance (QCM) device and the hybridisation between the immobilised probe and the target complementary sequence in solution was monitored. The probe sequences were internal to the sequence of the 35S promoter (P) and Nos terminator (T), which are inserted sequences in the genome of GMOs regulating the transgene expression. Two different probe immobilisation procedures were applied: (a) a thiol-dextran procedure and (b) a thiol-derivatised probe and blocking thiol procedure. The system has been optimised using synthetic oligonucleotides, which were then applied to samples of plasmidic and genomic DNA isolated from the pBI121 plasmid, certified reference materials (CRM), and real samples amplified by the polymerase chain reaction (PCR). The analytical parameters of the sensor have been investigated (sensitivity, reproducibility, lifetime etc.). The results obtained showed that both immobilisation procedures enabled sensitive and specific detection of GMOs, providing a useful tool for screening analysis in food samples.

  11. Genome-Scale Transcriptome Analysis in Response to Nitric Oxide in Birch Cells: Implications of the Triterpene Biosynthetic Pathway

    PubMed Central

    Zeng, Fansuo; Sun, Fengkun; Li, Leilei; Liu, Kun; Zhan, Yaguang

    2014-01-01

    Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10−5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis. PMID:25551661

  12. DNA Clutch Probes for Circulating Tumor DNA Analysis.

    PubMed

    Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O

    2016-08-31

    Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.

  13. Meta sequence analysis of human blood peptides and their parent proteins.

    PubMed

    Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G

    2010-04-18

    Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins. Copyright 2010. Published by Elsevier B.V.

  14. Dynamic learning and context-dependence in sequential, attribute-based, stated-preference valuation questions

    Treesearch

    Thomas P. Holmes; Kevin J. Boyle

    2005-01-01

    A hybrid stated-preference model is presented that combines the referendum contingent valuation response format with an experimentally designed set of attributes. A sequence of valuation questions is asked to a random sample in a mailout mail-back format. Econometric analysis shows greater discrimination between alternatives in the final choice in the sequence, and the...

  15. Complete genome sequence of a genotype XVII Newcastle disease virus, isolated from an apparently healthy domestic duck in Nigeria

    USDA-ARS?s Scientific Manuscript database

    The first complete genome sequence of a strain of Newcastle disease virus (NDV) of genotype XVII is described here. A velogenic strain (duck/Nigeria/903/KUDU-113/1992) was isolated from an apparently healthy free-roaming domestic duck sampled in Kuru, Nigeria, in 1992. Phylogenetic analysis of the f...

  16. Short-read, high-throughput sequencing technology for STR genotyping

    PubMed Central

    Bornman, Daniel M.; Hester, Mark E.; Schuetter, Jared M.; Kasoji, Manjula D.; Minard-Smith, Angela; Barden, Curt A.; Nelson, Scott C.; Godbold, Gene D.; Baker, Christine H.; Yang, Boyu; Walther, Jacquelyn E.; Tornes, Ivan E.; Yan, Pearlly S.; Rodriguez, Benjamin; Bundschuh, Ralf; Dickens, Michael L.; Young, Brian A.; Faith, Seth A.

    2013-01-01

    DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples. PMID:25621315

  17. [Detection of pathogenic mutations in Marfan syndrome by targeted next-generation semiconductor sequencing].

    PubMed

    Lu, Chaoxia; Wu, Wei; Xiao, Jifang; Meng, Yan; Zhang, Shuyang; Zhang, Xue

    2013-06-01

    To detect pathogenic mutations in Marfan syndrome (MFS) using an Ion Torrent Personal Genome Machine (PGM) and to validate the result of targeted next-generation semiconductor sequencing for the diagnosis of genetic disorders. Peripheral blood samples were collected from three MFS patients and a normal control with informed consent. Genomic DNA was isolated by standard method and then subjected to targeted sequencing using an Ion Ampliseq(TM) Inherited Disease Panel. Three multiplex PCR reactions were carried out to amplify the coding exons of 328 genes including FBN1, TGFBR1 and TGFBR2. DNA fragments from different samples were ligated with barcoded sequencing adaptors. Template preparation and emulsion PCR, and Ion Sphere Particles enrichment were carried out using an Ion One Touch system. The ion sphere particles were sequenced on a 318 chip using the PGM platform. Data from the PGM runs were processed using an Ion Torrent Suite 3.2 software to generate sequence reads. After sequence alignment and extraction of SNPs and indels, all the variants were filtered against dbSNP137. DNA sequences were visualized with an Integrated Genomics Viewer. The most likely disease-causing variants were analyzed by Sanger sequencing. The PGM sequencing has yielded an output of 855.80 Mb, with a > 100 × median sequencing depth and a coverage of > 98% for the targeted regions in all the four samples. After data analysis and database filtering, one known missense mutation (p.E1811K) and two novel premature termination mutations (p.E2264X and p.L871FfsX23) in the FBN1 gene were identified in the three MFS patients. All mutations were verified by conventional Sanger sequencing. Pathogenic FBN1 mutations have been identified in all patients with MFS, indicating that the targeted next-generation sequencing on the PGM sequencers can be applied for accurate and high-throughput testing of genetic disorders.

  18. Bidirectional Retroviral Integration Site PCR Methodology and Quantitative Data Analysis Workflow.

    PubMed

    Suryawanshi, Gajendra W; Xu, Song; Xie, Yiming; Chou, Tom; Kim, Namshin; Chen, Irvin S Y; Kim, Sanggu

    2017-06-14

    Integration Site (IS) assays are a critical component of the study of retroviral integration sites and their biological significance. In recent retroviral gene therapy studies, IS assays, in combination with next-generation sequencing, have been used as a cell-tracking tool to characterize clonal stem cell populations sharing the same IS. For the accurate comparison of repopulating stem cell clones within and across different samples, the detection sensitivity, data reproducibility, and high-throughput capacity of the assay are among the most important assay qualities. This work provides a detailed protocol and data analysis workflow for bidirectional IS analysis. The bidirectional assay can simultaneously sequence both upstream and downstream vector-host junctions. Compared to conventional unidirectional IS sequencing approaches, the bidirectional approach significantly improves IS detection rates and the characterization of integration events at both ends of the target DNA. The data analysis pipeline described here accurately identifies and enumerates identical IS sequences through multiple steps of comparison that map IS sequences onto the reference genome and determine sequencing errors. Using an optimized assay procedure, we have recently published the detailed repopulation patterns of thousands of Hematopoietic Stem Cell (HSC) clones following transplant in rhesus macaques, demonstrating for the first time the precise time point of HSC repopulation and the functional heterogeneity of HSCs in the primate system. The following protocol describes the step-by-step experimental procedure and data analysis workflow that accurately identifies and quantifies identical IS sequences.

  19. Literature Reference for Entamoeba histolytica (Journal of Clinical Microbiology. 2005. 43(11): 5491–5497)

    EPA Pesticide Factsheets

    Procedures are described for analysis of clinical samples and may be adapted for assessment of solid, particulate, liquid and water samples. The method is a real-time PCR assay that targets the 18S rRNA gene sequence of Entamoeba histolytica.

  20. Dose-Response Analysis of RNA-Seq Profiles in Archival Formalin-Fixed Paraffin-Embedded (FFPE) Samples.

    EPA Science Inventory

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses us...

Top