Sample records for sampling molecular dynamics

  1. Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2014-04-03

    Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.

  2. Enhanced sampling techniques in molecular dynamics simulations of biological systems.

    PubMed

    Bernardi, Rafael C; Melo, Marcelo C R; Schulten, Klaus

    2015-05-01

    Molecular dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    PubMed

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  5. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    PubMed

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å 2 for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å 2 for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  6. Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics.

    PubMed

    Jiang, Ping; Yaşar, Fatih; Hansmann, Ulrich H E

    2013-08-13

    We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β -sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β -sheet formed by the two chain ends.

  7. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins.

    PubMed

    Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben

    2015-07-14

    Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.

  8. Enhanced sampling of molecular dynamics simulation of peptides and proteins by double coupling to thermal bath.

    PubMed

    Chen, Changjun; Huang, Yanzhao; Xiao, Yi

    2013-01-01

    Low sampling efficiency in conformational space is the well-known problem for conventional molecular dynamics. It greatly increases the difficulty for molecules to find the transition path to native state, and costs amount of CPU time. To accelerate the sampling, in this paper, we re-couple the critical degrees of freedom in the molecule to environment temperature, like dihedrals in generalized coordinates or nonhydrogen atoms in Cartesian coordinate. After applying to ALA dipeptide model, we find that this modified molecular dynamics greatly enhances the sampling behavior in the conformational space and provides more information about the state-to-state transition, while conventional molecular dynamics fails to do so. Moreover, from the results of 16 independent 100 ns simulations by the new method, it shows that trpzip2 has one-half chances to reach the naive state in all the trajectories, which is greatly higher than conventional molecular dynamics. Such an improvement would provide a potential way for searching the conformational space or predicting the most stable states of peptides and proteins.

  9. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms☆

    PubMed Central

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-01-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins. Guest Editors: J.C. Gumbart and Sergei Noskov. PMID:26766517

  10. Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods.

    PubMed

    Roe, Daniel R; Bergonzo, Christina; Cheatham, Thomas E

    2014-04-03

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency.

  11. Molecular dynamics based enhanced sampling of collective variables with very large time steps.

    PubMed

    Chen, Pei-Yang; Tuckerman, Mark E

    2018-01-14

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  12. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  13. Molecular dynamics in principal component space.

    PubMed

    Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L

    2012-07-26

    A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.

  14. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  15. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods

    PubMed Central

    2015-01-01

    Many problems studied via molecular dynamics require accurate estimates of various thermodynamic properties, such as the free energies of different states of a system, which in turn requires well-converged sampling of the ensemble of possible structures. Enhanced sampling techniques are often applied to provide faster convergence than is possible with traditional molecular dynamics simulations. Hamiltonian replica exchange molecular dynamics (H-REMD) is a particularly attractive method, as it allows the incorporation of a variety of enhanced sampling techniques through modifications to the various Hamiltonians. In this work, we study the enhanced sampling of the RNA tetranucleotide r(GACC) provided by H-REMD combined with accelerated molecular dynamics (aMD), where a boosting potential is applied to torsions, and compare this to the enhanced sampling provided by H-REMD in which torsion potential barrier heights are scaled down to lower force constants. We show that H-REMD and multidimensional REMD (M-REMD) combined with aMD does indeed enhance sampling for r(GACC), and that the addition of the temperature dimension in the M-REMD simulations is necessary to efficiently sample rare conformations. Interestingly, we find that the rate of convergence can be improved in a single H-REMD dimension by simply increasing the number of replicas from 8 to 24 without increasing the maximum level of bias. The results also indicate that factors beyond replica spacing, such as round trip times and time spent at each replica, must be considered in order to achieve optimal sampling efficiency. PMID:24625009

  16. Monte Carlo and Molecular Dynamics in the Multicanonical Ensemble: Connections between Wang-Landau Sampling and Metadynamics

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Perez, Danny; Junghans, Christoph

    2014-03-01

    We show direct formal relationships between the Wang-Landau iteration [PRL 86, 2050 (2001)], metadynamics [PNAS 99, 12562 (2002)] and statistical temperature molecular dynamics [PRL 97, 050601 (2006)], the major Monte Carlo and molecular dynamics work horses for sampling from a generalized, multicanonical ensemble. We aim at helping to consolidate the developments in the different areas by indicating how methodological advancements can be transferred in a straightforward way, avoiding the parallel, largely independent, developments tracks observed in the past.

  17. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    PubMed

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.

    PubMed

    Kubitzki, Marcus B; de Groot, Bert L

    2007-06-15

    Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.

  19. Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity

    DOE PAGES

    Gordiz, Kiarash; Singh, David J.; Henry, Asegun

    2015-01-29

    In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such asmore » first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.« less

  20. Extended Phase-Space Methods for Enhanced Sampling in Molecular Simulations: A Review.

    PubMed

    Fujisaki, Hiroshi; Moritsugu, Kei; Matsunaga, Yasuhiro; Morishita, Tetsuya; Maragliano, Luca

    2015-01-01

    Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein, and protein-DNA/RNA interactions. Straightforward applications, however, are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD), Logarithmic Mean Force Dynamics (LogMFD), and Multiscale Enhanced Sampling (MSES) algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free-energy landscape via automatic exploration.

  1. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling

    NASA Astrophysics Data System (ADS)

    Awasthi, Shalini; Nair, Nisanth N.

    2017-03-01

    Biased sampling of collective variables is widely used to accelerate rare events in molecular simulations and to explore free energy surfaces. However, computational efficiency of these methods decreases with increasing number of collective variables, which severely limits the predictive power of the enhanced sampling approaches. Here we propose a method called Temperature Accelerated Sliced Sampling (TASS) that combines temperature accelerated molecular dynamics with umbrella sampling and metadynamics to sample the collective variable space in an efficient manner. The presented method can sample a large number of collective variables and is advantageous for controlled exploration of broad and unbound free energy basins. TASS is also shown to achieve quick free energy convergence and is practically usable with ab initio molecular dynamics techniques.

  2. Enhanced conformational sampling via novel variable transformations and very large time-step molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tuckerman, Mark

    2006-03-01

    One of the computational grand challenge problems is to develop methodology capable of sampling conformational equilibria in systems with rough energy landscapes. If met, many important problems, most notably protein folding, could be significantly impacted. In this talk, two new approaches for addressing this problem will be presented. First, it will be shown how molecular dynamics can be combined with a novel variable transformation designed to warp configuration space in such a way that barriers are reduced and attractive basins stretched. This method rigorously preserves equilibrium properties while leading to very large enhancements in sampling efficiency. Extensions of this approach to the calculation/exploration of free energy surfaces will be discussed. Next, a new very large time-step molecular dynamics method will be introduced that overcomes the resonances which plague many molecular dynamics algorithms. The performance of the methods is demonstrated on a variety of systems including liquid water, long polymer chains simple protein models, and oligopeptides.

  3. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules

    NASA Astrophysics Data System (ADS)

    Hamelberg, Donald; Mongan, John; McCammon, J. Andrew

    2004-06-01

    Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.

  4. Reaching multi-nanosecond timescales in combined QM/MM molecular dynamics simulations through parallel horsetail sampling.

    PubMed

    Martins-Costa, Marilia T C; Ruiz-López, Manuel F

    2017-04-15

    We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid-vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall-clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Free-Energy Profiles of Membrane Insertion of the M2 Transmembrane Peptide from Influenza A Virus

    DTIC Science & Technology

    2008-12-01

    ABSTRACT The insertion of the M2 transmembrane peptide from influenza A virus into a membrane has been studied with molecular - dynamics simulations ...performed replica-exchange molecular - dynamics simulations with umbrella-sampling techniques to characterize the probability distribution and conformation...atomic- detailed molecular dynamics (MD) simulation techniques represent a valuable complementary methodology to inves- tigate membrane-insertion of

  6. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.

    PubMed

    Allnér, Olof; Foloppe, Nicolas; Nilsson, Lennart

    2015-01-22

    Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities.

  7. Free energy surface of an intrinsically disordered protein: comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics.

    PubMed

    Zerze, Gül H; Miller, Cayla M; Granata, Daniele; Mittal, Jeetain

    2015-06-09

    Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.

  8. Exploiting molecular dynamics in Nested Sampling simulations of small peptides

    NASA Astrophysics Data System (ADS)

    Burkoff, Nikolas S.; Baldock, Robert J. N.; Várnai, Csilla; Wild, David L.; Csányi, Gábor

    2016-04-01

    Nested Sampling (NS) is a parameter space sampling algorithm which can be used for sampling the equilibrium thermodynamics of atomistic systems. NS has previously been used to explore the potential energy surface of a coarse-grained protein model and has significantly outperformed parallel tempering when calculating heat capacity curves of Lennard-Jones clusters. The original NS algorithm uses Monte Carlo (MC) moves; however, a variant, Galilean NS, has recently been introduced which allows NS to be incorporated into a molecular dynamics framework, so NS can be used for systems which lack efficient prescribed MC moves. In this work we demonstrate the applicability of Galilean NS to atomistic systems. We present an implementation of Galilean NS using the Amber molecular dynamics package and demonstrate its viability by sampling alanine dipeptide, both in vacuo and implicit solvent. Unlike previous studies of this system, we present the heat capacity curves of alanine dipeptide, whose calculation provides a stringent test for sampling algorithms. We also compare our results with those calculated using replica exchange molecular dynamics (REMD) and find good agreement. We show the computational effort required for accurate heat capacity estimation for small peptides. We also calculate the alanine dipeptide Ramachandran free energy surface for a range of temperatures and use it to compare the results using the latest Amber force field with previous theoretical and experimental results.

  9. Development of a Computational Assay for the Estrogen Receptor

    DTIC Science & Technology

    2006-07-01

    University Ashley Deline, Senior Thesis in chemistry, " Molecular Dynamic Simulations of a Glycoform and its Constituent Parts Related to Rheumatoid Arthritis...involves running a long molecular dynamics (MD) simulation of the uncoupled receptor in order to sample the protein’s unique conformations. The second...Receptor binding domain. * Performed several long molecular dynamics simulations (800 ps - 3 ns) on the ligand-ER system using ligands with known

  10. Coarse-Grained Lattice Model Simulations of Sequence-Structure Fitness of a Ribosome-Inactivating Protein

    DTIC Science & Technology

    2007-11-05

    limits of what is considered practical when applying all-atom molecular - dynamics simulation methods. Lattice models provide computationally robust...of expectation values from the density of states. All-atom molecular - dynamics simulations provide the most rigorous sampling method to generate con... molecular - dynamics simulations of protein folding,6–9 reported studies of computing a heat capacity or other calorimetric observables have been limited to

  11. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations.

    PubMed

    Sinko, William; de Oliveira, César Augusto F; Pierce, Levi C T; McCammon, J Andrew

    2012-01-10

    Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.

  12. Free-energy analyses of a proton transfer reaction by simulated-tempering umbrella sampling and first-principles molecular dynamics simulations.

    PubMed

    Mori, Yoshiharu; Okamoto, Yuko

    2013-02-01

    A simulated tempering method, which is referred to as simulated-tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed to study the intramolecular proton transfer reaction of malonaldehyde in an aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated-tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.

  13. An integrate-over-temperature approach for enhanced sampling.

    PubMed

    Gao, Yi Qin

    2008-02-14

    A simple method is introduced to achieve efficient random walking in the energy space in molecular dynamics simulations which thus enhances the sampling over a large energy range. The approach is closely related to multicanonical and replica exchange simulation methods in that it allows configurations of the system to be sampled in a wide energy range by making use of Boltzmann distribution functions at multiple temperatures. A biased potential is quickly generated using this method and is then used in accelerated molecular dynamics simulations.

  14. Some connections between importance sampling and enhanced sampling methods in molecular dynamics.

    PubMed

    Lie, H C; Quer, J

    2017-11-21

    In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.

  15. Some connections between importance sampling and enhanced sampling methods in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lie, H. C.; Quer, J.

    2017-11-01

    In molecular dynamics, enhanced sampling methods enable the collection of better statistics of rare events from a reference or target distribution. We show that a large class of these methods is based on the idea of importance sampling from mathematical statistics. We illustrate this connection by comparing the Hartmann-Schütte method for rare event simulation (J. Stat. Mech. Theor. Exp. 2012, P11004) and the Valsson-Parrinello method of variationally enhanced sampling [Phys. Rev. Lett. 113, 090601 (2014)]. We use this connection in order to discuss how recent results from the Monte Carlo methods literature can guide the development of enhanced sampling methods.

  16. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. PMID:23663843

  17. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-07

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Multiscale investigation of chemical interference in proteins

    NASA Astrophysics Data System (ADS)

    Samiotakis, Antonios; Homouz, Dirar; Cheung, Margaret S.

    2010-05-01

    We developed a multiscale approach (MultiSCAAL) that integrates the potential of mean force obtained from all-atomistic molecular dynamics simulations with a knowledge-based energy function for coarse-grained molecular simulations in better exploring the energy landscape of a small protein under chemical interference such as chemical denaturation. An excessive amount of water molecules in all-atomistic molecular dynamics simulations often negatively impacts the sampling efficiency of some advanced sampling techniques such as the replica exchange method and it makes the investigation of chemical interferences on protein dynamics difficult. Thus, there is a need to develop an effective strategy that focuses on sampling structural changes in protein conformations rather than solvent molecule fluctuations. In this work, we address this issue by devising a multiscale simulation scheme (MultiSCAAL) that bridges the gap between all-atomistic molecular dynamics simulation and coarse-grained molecular simulation. The two key features of this scheme are the Boltzmann inversion and a protein atomistic reconstruction method we previously developed (SCAAL). Using MultiSCAAL, we were able to enhance the sampling efficiency of proteins solvated by explicit water molecules. Our method has been tested on the folding energy landscape of a small protein Trp-cage with explicit solvent under 8M urea using both the all-atomistic replica exchange molecular dynamics and MultiSCAAL. We compared computational analyses on ensemble conformations of Trp-cage with its available experimental NOE distances. The analysis demonstrated that conformations explored by MultiSCAAL better agree with the ones probed in the experiments because it can effectively capture the changes in side-chain orientations that can flip out of the hydrophobic pocket in the presence of urea and water molecules. In this regard, MultiSCAAL is a promising and effective sampling scheme for investigating chemical interference which presents a great challenge when modeling protein interactions in vivo.

  19. Gaussian Accelerated Molecular Dynamics: Theory, Implementation, and Applications

    PubMed Central

    Miao, Yinglong; McCammon, J. Andrew

    2018-01-01

    A novel Gaussian Accelerated Molecular Dynamics (GaMD) method has been developed for simultaneous unconstrained enhanced sampling and free energy calculation of biomolecules. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of the biomolecules. Furthermore, by constructing a boost potential that follows a Gaussian distribution, accurate reweighting of GaMD simulations is achieved via cumulant expansion to the second order. The free energy profiles obtained from GaMD simulations allow us to identify distinct low energy states of the biomolecules and characterize biomolecular structural dynamics quantitatively. In this chapter, we present the theory of GaMD, its implementation in the widely used molecular dynamics software packages (AMBER and NAMD), and applications to the alanine dipeptide biomolecular model system, protein folding, biomolecular large-scale conformational transitions and biomolecular recognition. PMID:29720925

  20. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    PubMed

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  1. Protonation-induced stereoisomerism in nicotine: Conformational studies using classical (AMBER) and ab initio (Car Parrinello) molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hammond, Philip S.; Wu, Yudong; Harris, Rebecca; Minehardt, Todd J.; Car, Roberto; Schmitt, Jeffrey D.

    2005-01-01

    A variety of biologically active small molecules contain prochiral tertiary amines, which become chiral centers upon protonation. S-nicotine, the prototypical nicotinic acetylcholine receptor agonist, produces two diastereomers on protonation. Results, using both classical (AMBER) and ab initio (Car-Parrinello) molecular dynamical studies, illustrate the significant differences in conformational space explored by each diastereomer. As is expected, this phenomenon has an appreciable effect on nicotine's energy hypersurface and leads to differentiation in molecular shape and divergent sampling. Thus, protonation induced isomerism can produce dynamic effects that may influence the behavior of a molecule in its interaction with a target protein. We also examine differences in the conformational dynamics for each diastereomer as quantified by both molecular dynamics methods.

  2. PyRETIS: A well-done, medium-sized python library for rare events.

    PubMed

    Lervik, Anders; Riccardi, Enrico; van Erp, Titus S

    2017-10-30

    Transition path sampling techniques are becoming common approaches in the study of rare events at the molecular scale. More efficient methods, such as transition interface sampling (TIS) and replica exchange transition interface sampling (RETIS), allow the investigation of rare events, for example, chemical reactions and structural/morphological transitions, in a reasonable computational time. Here, we present PyRETIS, a Python library for performing TIS and RETIS simulations. PyRETIS directs molecular dynamics (MD) simulations in order to sample rare events with unbiased dynamics. PyRETIS is designed to be easily interfaced with any molecular simulation package and in the present release, it has been interfaced with GROMACS and CP2K, for classical and ab initio MD simulations, respectively. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  4. Modelling and enhanced molecular dynamics to steer structure-based drug discovery.

    PubMed

    Kalyaanamoorthy, Subha; Chen, Yi-Ping Phoebe

    2014-05-01

    The ever-increasing gap between the availabilities of the genome sequences and the crystal structures of proteins remains one of the significant challenges to the modern drug discovery efforts. The knowledge of structure-dynamics-functionalities of proteins is important in order to understand several key aspects of structure-based drug discovery, such as drug-protein interactions, drug binding and unbinding mechanisms and protein-protein interactions. This review presents a brief overview on the different state of the art computational approaches that are applied for protein structure modelling and molecular dynamics simulations of biological systems. We give an essence of how different enhanced sampling molecular dynamics approaches, together with regular molecular dynamics methods, assist in steering the structure based drug discovery processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  6. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2015-05-01

    Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A LAMMPS implementation of volume-temperature replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Liang-Chun; Kuo, Jer-Lai

    2015-04-01

    A driver module for executing volume-temperature replica exchange molecular dynamics (VTREMD) was developed for the LAMMPS package. As a patch code, the VTREMD module performs classical molecular dynamics (MD) with Monte Carlo (MC) decisions between MD runs. The goal of inserting the MC step was to increase the breadth of sampled configurational space. In this method, states receive better sampling by making temperature or density swaps with their neighboring states. As an accelerated sampling method, VTREMD is particularly useful to explore states at low temperatures, where systems are easily trapped in local potential wells. As functional examples, TIP4P/Ew and TIP4P/2005 water models were analyzed using VTREMD. The phase diagram in this study covered the deeply supercooled regime, and this test served as a suitable demonstration of the usefulness of VTREMD in overcoming the slow dynamics problem. To facilitate using the current code, attention was also paid on how to optimize the exchange efficiency by using grid allocation. VTREMD was useful for studying systems with rough energy landscapes, such as those with numerous local minima or multiple characteristic time scales.

  8. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    PubMed

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  9. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics

    PubMed Central

    Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.

    2009-01-01

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879

  10. Leap-dynamics: efficient sampling of conformational space of proteins and peptides in solution.

    PubMed

    Kleinjung, J; Bayley, P; Fraternali, F

    2000-03-31

    A molecular simulation scheme, called Leap-dynamics, that provides efficient sampling of protein conformational space in solution is presented. The scheme is a combined approach using a fast sampling method, imposing conformational 'leaps' to force the system over energy barriers, and molecular dynamics (MD) for refinement. The presence of solvent is approximated by a potential of mean force depending on the solvent accessible surface area. The method has been successfully applied to N-acetyl-L-alanine-N-methylamide (alanine dipeptide), sampling experimentally observed conformations inaccessible to MD alone under the chosen conditions. The method predicts correctly the increased partial flexibility of the mutant Y35G compared to native bovine pancreatic trypsin inhibitor. In particular, the improvement over MD consists of the detection of conformational flexibility that corresponds closely to slow motions identified by nuclear magnetic resonance techniques.

  11. Characterizing Conformational Dynamics of Proteins Using Evolutionary Couplings.

    PubMed

    Feng, Jiangyan; Shukla, Diwakar

    2018-01-25

    Understanding of protein conformational dynamics is essential for elucidating molecular origins of protein structure-function relationship. Traditionally, reaction coordinates, i.e., some functions of protein atom positions and velocities have been used to interpret the complex dynamics of proteins obtained from experimental and computational approaches such as molecular dynamics simulations. However, it is nontrivial to identify the reaction coordinates a priori even for small proteins. Here, we evaluate the power of evolutionary couplings (ECs) to capture protein dynamics by exploring their use as reaction coordinates, which can efficiently guide the sampling of a conformational free energy landscape. We have analyzed 10 diverse proteins and shown that a few ECs are sufficient to characterize complex conformational dynamics of proteins involved in folding and conformational change processes. With the rapid strides in sequencing technology, we expect that ECs could help identify reaction coordinates a priori and enhance the sampling of the slow dynamical process associated with protein folding and conformational change.

  12. Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.

    PubMed

    Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal

    2018-01-01

    Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.

  13. Using simulation to interpret experimental data in terms of protein conformational ensembles.

    PubMed

    Allison, Jane R

    2017-04-01

    In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Faster protein folding using enhanced conformational sampling of molecular dynamics simulation.

    PubMed

    Kamberaj, Hiqmet

    2018-05-01

    In this study, we applied swarm particle-like molecular dynamics (SPMD) approach to enhance conformational sampling of replica exchange simulations. In particular, the approach showed significant improvement in sampling efficiency of conformational phase space when combined with replica exchange method (REM) in computer simulation of peptide/protein folding. First we introduce the augmented dynamical system of equations, and demonstrate the stability of the algorithm. Then, we illustrate the approach by using different fully atomistic and coarse-grained model systems, comparing them with the standard replica exchange method. In addition, we applied SPMD simulation to calculate the time correlation functions of the transitions in a two dimensional surface to demonstrate the enhancement of transition path sampling. Our results showed that folded structure can be obtained in a shorter simulation time using the new method when compared with non-augmented dynamical system. Typically, in less than 0.5 ns using replica exchange runs assuming that native folded structure is known and within simulation time scale of 40 ns in the case of blind structure prediction. Furthermore, the root mean square deviations from the reference structures were less than 2Å. To demonstrate the performance of new method, we also implemented three simulation protocols using CHARMM software. Comparisons are also performed with standard targeted molecular dynamics simulation method. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Novel methodology developments in modern molecular simulations

    NASA Astrophysics Data System (ADS)

    Minary, Peter

    The present thesis aims to summarize novel methodological developments and their uses in the rapidly expanding field of molecular simulations. A new formalism designed to treat long range interactions on surfaces/wires, systems which are infinitely replicated in two/one spatial directions but have finite extent in the remaining dimensions, is developed in the first part of this thesis. The method is tested on both model and realistic problems and is found to be accurate, efficient and a marked improvement over existing formulations in speed, accuracy and utility. In the second part of this thesis, a novel ab initio molecular dynamics technique capable of treating metallic systems and highly exothermic chemical reactions is presented. The combination of the aforementioned methods are applied in the next part to study functionalization reactions at the Si(100)-2x1 semiconductor interface. Here, a set of forty finite temperature ab initio molecular dynamics trajectories is employed to investigate the microscopic mechanism of the addition of 1,3-butadiene to the Si(100)-2x1 surface. The detailed study of the trajectories indicate a common non-concerted stepwise mechanism that proceeds via an intermediate carbocation. In the remaining parts of the thesis, a novel set of methods is introduced to significantly enhance conformational sampling in molecular dynamics simulations of biomolecular systems. First, a new set of equations of motion and a reversible, resonance free, integrator are developed which permits step sizes on the order of 100 fs to be used. The new technique provides sufficient sampling to impact studies of the 200--300 residue proteins of greatest interest. Second, it is shown that combining molecular dynamics with novel variable transformations designed to warp configuration space so as to reduce barrier regions and enhance attractive basins lead to substantial gains in conformational sampling efficiency. Here, new transformations designed to overcome barriers induced by intermolecular interactions are introduced. The method is shown to substantially enhance conformational sampling in long alkane chains and in a model protein over standard molecular dynamics as well as parallel tempering.

  16. Essential energy space random walk via energy space metadynamics method to accelerate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei

    2007-09-01

    To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.

  17. Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams

    NASA Astrophysics Data System (ADS)

    Ohya, Kaoru

    2017-03-01

    The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.

  18. Density-based clustering of small peptide conformations sampled from a molecular dynamics simulation.

    PubMed

    Kim, Minkyoung; Choi, Seung-Hoon; Kim, Junhyoung; Choi, Kihang; Shin, Jae-Min; Kang, Sang-Kee; Choi, Yun-Jaie; Jung, Dong Hyun

    2009-11-01

    This study describes the application of a density-based algorithm to clustering small peptide conformations after a molecular dynamics simulation. We propose a clustering method for small peptide conformations that enables adjacent clusters to be separated more clearly on the basis of neighbor density. Neighbor density means the number of neighboring conformations, so if a conformation has too few neighboring conformations, then it is considered as noise or an outlier and is excluded from the list of cluster members. With this approach, we can easily identify clusters in which the members are densely crowded in the conformational space, and we can safely avoid misclustering individual clusters linked by noise or outliers. Consideration of neighbor density significantly improves the efficiency of clustering of small peptide conformations sampled from molecular dynamics simulations and can be used for predicting peptide structures.

  19. Coarse-grained molecular dynamics simulations for giant protein-DNA complexes

    NASA Astrophysics Data System (ADS)

    Takada, Shoji

    Biomolecules are highly hierarchic and intrinsically flexible. Thus, computational modeling calls for multi-scale methodologies. We have been developing a coarse-grained biomolecular model where on-average 10-20 atoms are grouped into one coarse-grained (CG) particle. Interactions among CG particles are tuned based on atomistic interactions and the fluctuation matching algorithm. CG molecular dynamics methods enable us to simulate much longer time scale motions of much larger molecular systems than fully atomistic models. After broad sampling of structures with CG models, we can easily reconstruct atomistic models, from which one can continue conventional molecular dynamics simulations if desired. Here, we describe our CG modeling methodology for protein-DNA complexes, together with various biological applications, such as the DNA duplication initiation complex, model chromatins, and transcription factor dynamics on chromatin-like environment.

  20. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sampling enhancement for the quantum mechanical potential based molecular dynamics simulations: a general algorithm and its extension for free energy calculation on rugged energy surface.

    PubMed

    Li, Hongzhi; Yang, Wei

    2007-03-21

    An approach is developed in the replica exchange framework to enhance conformational sampling for the quantum mechanical (QM) potential based molecular dynamics simulations. Importantly, with our enhanced sampling treatment, a decent convergence for electronic structure self-consistent-field calculation is robustly guaranteed, which is made possible in our replica exchange design by avoiding direct structure exchanges between the QM-related replicas and the activated (scaled by low scaling parameters or treated with high "effective temperatures") molecular mechanical (MM) replicas. Although the present approach represents one of the early efforts in the enhanced sampling developments specifically for quantum mechanical potentials, the QM-based simulations treated with the present technique can possess the similar sampling efficiency to the MM based simulations treated with the Hamiltonian replica exchange method (HREM). In the present paper, by combining this sampling method with one of our recent developments (the dual-topology alchemical HREM approach), we also introduce a method for the sampling enhanced QM-based free energy calculations.

  2. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    PubMed

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  3. Preparation of a pure molecular quantum gas.

    PubMed

    Herbig, Jens; Kraemer, Tobias; Mark, Michael; Weber, Tino; Chin, Cheng; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-09-12

    An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.

  4. Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein.

    PubMed

    Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2012-09-28

    The ability of molecular dynamics simulation to capturing the transient states within the folding pathway of protein is important to the understanding of protein folding mechanism. In the present study, the integrated-tempering-sampling molecular dynamics (ITS-MD) simulation was performed to investigate the transient states including intermediate and unfolded ones in the folding pathway of a miniprotein, Trp-cage. Three force fields (FF03, FF99SB, and FF96) were tested, and both intermediate and unfolded states with their characteristics in good agreement with experiments were observed during the simulations, which supports the hypothesis that observable intermediates might present in the folding pathway of small polypeptides. In addition, it was demonstrated that FF03 force field as combined with ITS-MD is in overall a more proper force field than the others in reproducing experimentally recorded properties in UVRS, ECD, and NMR, Photo-CIDNP NMR, and IR T-jump experiments, and the folding∕unfolding thermodynamics parameters, such as ΔG(U), ΔC(p), and ΔH(U) (T(m)). In summary, the present study showed that using suitable force field and energy sampling method, molecular dynamics simulation could capture the transient states within the folding pathway of protein which are consistent with the experimental measurements, and thus provide information of protein folding mechanism and thermodynamics.

  5. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

  6. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

  7. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  8. A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Tiwary, Pratyush; van de Walle, Axel

    Molecular dynamics (MD) simulations have become a tool of immense use and popularity for simulating a variety of systems. With the advent of massively parallel computer resources, one now routinely sees applications of MD to systems as large as hundreds of thousands to even several million atoms, which is almost the size of most nanomaterials. However, it is not yet possible to reach laboratory timescales of milliseconds and beyond with MD simulations. Due to the essentially sequential nature of time, parallel computers have been of limited use in solving this so-called timescale problem. Instead, over the years a large range of statistical mechanics based enhanced sampling approaches have been proposed for accelerating molecular dynamics, and accessing timescales that are well beyond the reach of the fastest computers. In this review we provide an overview of these approaches, including the underlying theory, typical applications, and publicly available software resources to implement them.

  9. Weighted Distance Functions Improve Analysis of High-Dimensional Data: Application to Molecular Dynamics Simulations.

    PubMed

    Blöchliger, Nicolas; Caflisch, Amedeo; Vitalis, Andreas

    2015-11-10

    Data mining techniques depend strongly on how the data are represented and how distance between samples is measured. High-dimensional data often contain a large number of irrelevant dimensions (features) for a given query. These features act as noise and obfuscate relevant information. Unsupervised approaches to mine such data require distance measures that can account for feature relevance. Molecular dynamics simulations produce high-dimensional data sets describing molecules observed in time. Here, we propose to globally or locally weight simulation features based on effective rates. This emphasizes, in a data-driven manner, slow degrees of freedom that often report on the metastable states sampled by the molecular system. We couple this idea to several unsupervised learning protocols. Our approach unmasks slow side chain dynamics within the native state of a miniprotein and reveals additional metastable conformations of a protein. The approach can be combined with most algorithms for clustering or dimensionality reduction.

  10. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review

    PubMed Central

    Miao, Yinglong; McCammon, J. Andrew

    2016-01-01

    Free energy calculations are central to understanding the structure, dynamics and function of biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of the main sources of error. Many enhanced sampling techniques have been developed to address this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review enhanced sampling methods that do not require predefined system-dependent CVs for biomolecular simulations and as such do not suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. These methods include, but are not limited to, replica exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space random walk and accelerated molecular dynamics. While it is overwhelming to describe all details of each method, we provide a summary of the methods along with the applications and offer our perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling methods for accurate biomolecular free energy calculations. PMID:27453631

  11. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review.

    PubMed

    Miao, Yinglong; McCammon, J Andrew

    Free energy calculations are central to understanding the structure, dynamics and function of biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of the main sources of error. Many enhanced sampling techniques have been developed to address this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review enhanced sampling methods that do not require predefined system-dependent CVs for biomolecular simulations and as such do not suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. These methods include, but are not limited to, replica exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space random walk and accelerated molecular dynamics. While it is overwhelming to describe all details of each method, we provide a summary of the methods along with the applications and offer our perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling methods for accurate biomolecular free energy calculations.

  12. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.

    PubMed

    Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M

    2009-12-14

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.

  13. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples

    NASA Astrophysics Data System (ADS)

    Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.

    2009-12-01

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.

  14. System and method for chromatography and electrophoresis using circular optical scanning

    DOEpatents

    Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.

    2001-01-01

    A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.

  15. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations. © 2014 Wiley Periodicals, Inc.

  16. Capillary waves' dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Chacón, Enrique; Tarazona, Pedro

    2008-12-01

    We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier modes to get the frequency and damping rate Γd(q) of each mode, with wavenumber q. Continuum hydrodynamics predicts \\Gamma (q) \\propto q\\gamma (q) and thus provides a dynamic measure of the q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal estimation of the intrinsic surface, we obtain quantitative agreement between the structural and dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at shorter scales, whereby a transition to a molecular diffusion regime is observed.

  17. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

    PubMed

    Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

  18. Well-tempered metadynamics as a tool for characterizing multi-component, crystalline molecular machines.

    PubMed

    Ilott, Andrew J; Palucha, Sebastian; Hodgkinson, Paul; Wilson, Mark R

    2013-10-10

    The well-tempered, smoothly converging form of the metadynamics algorithm has been implemented in classical molecular dynamics simulations and used to obtain an estimate of the free energy surface explored by the molecular rotations in the plastic crystal, octafluoronaphthalene. The biased simulations explore the full energy surface extremely efficiently, more than 4 orders of magnitude faster than unbiased molecular dynamics runs. The metadynamics collective variables used have also been expanded to include the simultaneous orientations of three neighboring octafluoronaphthalene molecules. Analysis of the resultant three-dimensional free energy surface, which is sampled to a very high degree despite its significant complexity, demonstrates that there are strong correlations between the molecular orientations. Although this correlated motion is of limited applicability in terms of exploiting dynamical motion in octafluoronaphthalene, the approach used is extremely well suited to the investigation of the function of crystalline molecular machines.

  19. Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0-->A(1-3) transition from ten 400 picosecond simulations.

    PubMed

    Loccisano, Anne E; Acevedo, Orlando; DeChancie, Jason; Schulze, Brita G; Evanseck, Jeffrey D

    2004-05-01

    The utility of multiple trajectories to extend the time scale of molecular dynamics simulations is reported for the spectroscopic A-states of carbonmonoxy myoglobin (MbCO). Experimentally, the A0-->A(1-3) transition has been observed to be 10 micros at 300 K, which is beyond the time scale of standard molecular dynamics simulations. To simulate this transition, 10 short (400 ps) and two longer time (1.2 ns) molecular dynamics trajectories, starting from five different crystallographic and solution phase structures with random initial velocities centered in a 37 A radius sphere of water, have been used to sample the native-fold of MbCO. Analysis of the ensemble of structures gathered over the cumulative 5.6 ns reveals two biomolecular motions involving the side chains of His64 and Arg45 to explain the spectroscopic states of MbCO. The 10 micros A0-->A(1-3) transition involves the motion of His64, where distance between His64 and CO is found to vary up to 8.8 +/- 1.0 A during the transition of His64 from the ligand (A(1-3)) to bulk solvent (A0). The His64 motion occurs within a single trajectory only once, however the multiple trajectories populate the spectroscopic A-states fully. Consequently, multiple independent molecular dynamics simulations have been found to extend biomolecular motion from 5 ns of total simulation to experimental phenomena on the microsecond time scale.

  20. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    NASA Astrophysics Data System (ADS)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  1. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.

    PubMed

    Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal

    2014-05-15

    We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.

  2. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    NASA Astrophysics Data System (ADS)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and coupling algorithmics are abstracted and incorporated in MaMiCo. Once an algorithm is set up in MaMiCo, it can be used and extended, even if other solvers are used (as soon as the respective interfaces are implemented/available). Reasons for the new version: We have incorporated a new algorithm to simulate transient molecular-continuum systems and to automatically sample data over multiple MD runs that can be executed simultaneously (on, e.g., a compute cluster). MaMiCo has further been extended by an interface to incorporate boundary forcing to account for open molecular dynamics boundaries. Besides support for coupling with various MD and CFD frameworks, the new version contains a test case that allows to run molecular-continuum Couette flow simulations out-of-the-box. No external tools or simulation codes are required anymore. However, the user is free to switch from the included MD simulation package to LAMMPS. For details on how to run the transient Couette problem, see the file README in the folder coupling/tests, Remark on MaMiCo V1.1. Summary of revisions: Open boundary forcing; Multi-instance MD sampling; support for transient molecular-continuum systems Restrictions: Currently, only single-centered systems are supported. For access to the LAMMPS-based implementation of DPD boundary forcing, please contact Xin Bian, xin.bian@tum.de. Additional comments: Please see file license_mamico.txt for further details regarding distribution and advertising of this software.

  3. Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol

    PubMed Central

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2017-01-01

    In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447

  4. Automated sampling assessment for molecular simulations using the effective sample size

    PubMed Central

    Zhang, Xin; Bhatt, Divesh; Zuckerman, Daniel M.

    2010-01-01

    To quantify the progress in the development of algorithms and forcefields used in molecular simulations, a general method for the assessment of the sampling quality is needed. Statistical mechanics principles suggest the populations of physical states characterize equilibrium sampling in a fundamental way. We therefore develop an approach for analyzing the variances in state populations, which quantifies the degree of sampling in terms of the effective sample size (ESS). The ESS estimates the number of statistically independent configurations contained in a simulated ensemble. The method is applicable to both traditional dynamics simulations as well as more modern (e.g., multi–canonical) approaches. Our procedure is tested in a variety of systems from toy models to atomistic protein simulations. We also introduce a simple automated procedure to obtain approximate physical states from dynamic trajectories: this allows sample–size estimation in systems for which physical states are not known in advance. PMID:21221418

  5. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    PubMed Central

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.

    2012-01-01

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924

  6. Liquid Water from First Principles: Validation of Different Sampling Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, C J; Kuo, W; Siepmann, J

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is foundmore » that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.« less

  7. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC).

    PubMed

    Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E

    2015-05-01

    The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  8. Characterizing rare-event property distributions via replicate molecular dynamics simulations of proteins.

    PubMed

    Krishnan, Ranjani; Walton, Emily B; Van Vliet, Krystyn J

    2009-11-01

    As computational resources increase, molecular dynamics simulations of biomolecules are becoming an increasingly informative complement to experimental studies. In particular, it has now become feasible to use multiple initial molecular configurations to generate an ensemble of replicate production-run simulations that allows for more complete characterization of rare events such as ligand-receptor unbinding. However, there are currently no explicit guidelines for selecting an ensemble of initial configurations for replicate simulations. Here, we use clustering analysis and steered molecular dynamics simulations to demonstrate that the configurational changes accessible in molecular dynamics simulations of biomolecules do not necessarily correlate with observed rare-event properties. This informs selection of a representative set of initial configurations. We also employ statistical analysis to identify the minimum number of replicate simulations required to sufficiently sample a given biomolecular property distribution. Together, these results suggest a general procedure for generating an ensemble of replicate simulations that will maximize accurate characterization of rare-event property distributions in biomolecules.

  9. Combining configurational energies and forces for molecular force field optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  10. Combining configurational energies and forces for molecular force field optimization

    DOE PAGES

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    2017-07-21

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  11. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  12. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  13. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  14. Girsanov reweighting for path ensembles and Markov state models

    NASA Astrophysics Data System (ADS)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  15. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations

    PubMed Central

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic. PMID:26177039

  16. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  17. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation.

    PubMed

    Miao, Yinglong; Feher, Victoria A; McCammon, J Andrew

    2015-08-11

    A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively.

  18. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation

    PubMed Central

    2016-01-01

    A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively. PMID:26300708

  19. Recipes for free energy calculations in biomolecular systems.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2013-01-01

    During the last decade, several methods for sampling phase space and calculating various free energies in biomolecular systems have been devised or refined for molecular dynamics (MD) simulations. Thus, state-of-the-art methodology and the ever increasing computer power allow calculations that were forbidden a decade ago. These calculations, however, are not trivial as they require knowledge of the methods, insight into the system under study, and, quite often, an artful combination of different methodologies in order to avoid the various traps inherent in an unknown free energy landscape. In this chapter, we illustrate some of these concepts with two relatively simple systems, a sugar ring and proline oligopeptides, whose free energy landscapes still offer considerable challenges. In order to explore the configurational space of these systems, and to surmount the various free energy barriers, we combine three complementary methods: a nonequilibrium umbrella sampling method (adaptively biased MD, or ABMD), replica-exchange molecular dynamics (REMD), and steered molecular dynamics (SMD). In particular, ABMD is used to compute the free energy surface of a set of collective variables; REMD is used to improve the performance of ABMD, to carry out sampling in space complementary to the collective variables, and to sample equilibrium configurations directly; and SMD is used to study different transition mechanisms.

  20. Manipulating the motion of large molecules: Information from the molecular frame

    NASA Astrophysics Data System (ADS)

    Küpper, Jochen

    2011-05-01

    Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereoisomers, even at the low temperatures (~1 K) in a molecular beam, with rich intra- and intermolecular dynamics. Over the last years, we have developed methods to manipulate the motion of large, complex molecules and to select their quantum states. We have exploited this state-selectivity, for example, to spatially separate individual structural isomers of complex molecules and to demonstrate unprecedented degrees of laser alignment and mixed-field orientation of these molecules. Such clean, well-defined samples strongly benefit, or simply allow, novel experiments on the dynamics of complex molecules, for instance, femtosecond pump-probe measurements, X-ray or electron diffraction of molecular ensembles (including diffraction-from-within experiments), or tomographic reconstructions of molecular orbitals. These samples could also be very advantageous for metrology applications, such as, for example, matter-wave interferometry or the search for electroweak interactions in chiral molecules. Moreover, they provide an extreme level of control for stereo-dynamically controlled reaction dynamics. We have recently exploited these state-selected and oriented samples to measure photoelectron angular distributions in the molecular frame (MFPADs) from non-resonant femtosecond-laser photoionization and using the X-ray Free-Electron-Laser LCLS. We have also investigated X-ray diffraction imaging and, using ion momentum imaging, the induced radiation damage of these samples using the LCLS. This work was carried out within a collaboration for which J. Küpper, H. Chapman, and D. Rolles are spokespersons. The collaboration consists of CFEL (DESY, MPG, University Hamburg), Fritz-Haber-Institute Berlin, MPI Nuclear Physics Heidelberg, MPG Semi-conductor Lab, Aarhus University, FOM AMOLF Amsterdam, Lund University, MPI Medical Research Heidelberg, TU Berlin, Max Born Institute Berlin, and SLAC Menlo Park, CA, USA. The experiments were carried out using CAMP (designed and built by the MPG-ASG at CFEL) at the LCLS (operated by Stanford University on behalf of the US DOE).

  1. Adaptive sampling strategies with high-throughput molecular dynamics

    NASA Astrophysics Data System (ADS)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  2. Molecular Modeling of Nucleic Acid Structure: Electrostatics and Solvation

    PubMed Central

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E.

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand the structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as means to sample conformational space for a better understanding of the relevance of a given model. From this discussion, the major limitations with modeling, in general, were highlighted. These are the difficult issues in sampling conformational space effectively—the multiple minima or conformational sampling problems—and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These are discussed in detail in this unit. PMID:18428877

  3. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  4. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  5. Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics.

    PubMed

    Galvelis, Raimondas; Sugita, Yuji

    2017-06-13

    The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.

  6. Surface Structure of Liquid Li and Na: An ab initio Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    González, D. J.; González, L. E.; Stott, M. J.

    2004-02-01

    Molecular dynamics simulations of the liquid-vapor interfaces of liquid metals have been performed using first principles methods. Results are presented for liquid lithium and sodium near their respective triple points, for samples of 2000 particles in a slab geometry. The atomic density profiles show a pronounced stratification extending several atomic diameters into the bulk, which is similar to that already experimentally observed in liquid K, Ga, In, and Hg.

  7. Unique Aspects of the Structure and Dynamics of Elementary Iβ Cellulose Microfibrils Revealed by Computational Simulations1[OPEN

    PubMed Central

    Oehme, Daniel P.; Downton, Matthew T.; Doblin, Monika S.; Wagner, John; Gidley, Michael J.; Bacic, Antony

    2015-01-01

    The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. PMID:25786828

  8. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    PubMed

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  9. Assessing the Reliability of the Dynamics Reconstructed from Metadynamics.

    PubMed

    Salvalaglio, Matteo; Tiwary, Pratyush; Parrinello, Michele

    2014-04-08

    Sampling a molecular process characterized by an activation free energy significantly larger than kBT is a well-known challenge in molecular dynamics simulations. In a recent work [Tiwary and Parrinello, Phys. Rev. Lett. 2013, 111, 230602], we have demonstrated that the transition times of activated molecular transformations can be computed from well-tempered metadynamics provided that no bias is deposited in the transition state region and that the set of collective variables chosen to enhance sampling does not display hysteresis. Ensuring though that these two criteria are met may not always be simple. Here we build on the fact that the times of escape from a long-lived metastable state obey Poisson statistics. This allows us to identify quantitative measures of trustworthiness of our calculation. We test our method on a few paradigmatic examples.

  10. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  11. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  12. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis.

    PubMed

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F; Cohen, Itay; Henin, Rachel D; Hockla, Alexandra; Soares, Alexei S; Papo, Niv; Caulfield, Thomas R; Radisky, Evette S

    2016-12-16

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne

    We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.

  14. On the enhanced sampling over energy barriers in molecular dynamics simulations.

    PubMed

    Gao, Yi Qin; Yang, Lijiang

    2006-09-21

    We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.

  15. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space.

    PubMed

    Schenk, Emily R; Nau, Frederic; Fernandez-Lima, Francisco

    2015-06-01

    The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.

  16. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset.

    PubMed

    Shirts, Michael R; Klein, Christoph; Swails, Jason M; Yin, Jian; Gilson, Michael K; Mobley, David L; Case, David A; Zhong, Ellen D

    2017-01-01

    We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.

  17. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset

    PubMed Central

    Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.

    2017-01-01

    We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to a better than 0.1% relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb’s constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison. PMID:27787702

  18. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset

    NASA Astrophysics Data System (ADS)

    Shirts, Michael R.; Klein, Christoph; Swails, Jason M.; Yin, Jian; Gilson, Michael K.; Mobley, David L.; Case, David A.; Zhong, Ellen D.

    2017-01-01

    We describe our efforts to prepare common starting structures and models for the SAMPL5 blind prediction challenge. We generated the starting input files and single configuration potential energies for the host-guest in the SAMPL5 blind prediction challenge for the GROMACS, AMBER, LAMMPS, DESMOND and CHARMM molecular simulation programs. All conversions were fully automated from the originally prepared AMBER input files using a combination of the ParmEd and InterMol conversion programs. We find that the energy calculations for all molecular dynamics engines for this molecular set agree to better than 0.1 % relative absolute energy for all energy components, and in most cases an order of magnitude better, when reasonable choices are made for different cutoff parameters. However, there are some surprising sources of statistically significant differences. Most importantly, different choices of Coulomb's constant between programs are one of the largest sources of discrepancies in energies. We discuss the measures required to get good agreement in the energies for equivalent starting configurations between the simulation programs, and the energy differences that occur when simulations are run with program-specific default simulation parameter values. Finally, we discuss what was required to automate this conversion and comparison.

  19. Multiscale molecular dynamics simulations of rotary motor proteins.

    PubMed

    Ekimoto, Toru; Ikeguchi, Mitsunori

    2018-04-01

    Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.

  20. Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases.

    PubMed

    Saladino, Giorgio; Gervasio, Francesco Luigi

    2016-04-01

    Most proteins assume different conformations to perform their cellular functions. This conformational dynamics is physiologically regulated by binding events and post-translational modifications, but can also be affected by pathogenic mutations. Atomistic molecular dynamics simulations complemented by enhanced sampling approaches are increasingly used to probe the effect of mutations on the conformational dynamics and on the underlying conformational free energy landscape of proteins. In this short review we discuss recent successful examples of simulations used to understand the molecular mechanism underlying the deregulation of physiological conformational dynamics due to non-synonymous single point mutations. Our examples are mostly drawn from the protein kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Visualizing global properties of a molecular dynamics trajectory.

    PubMed

    Zhou, Hao; Li, Shangyang; Makowski, Lee

    2016-01-01

    Molecular dynamics (MD) trajectories are very large data sets that contain substantial information about the dynamic behavior of a protein. Condensing these data into a form that can provide intuitively useful understanding of the molecular behavior during the trajectory is a substantial challenge that has received relatively little attention. Here, we introduce the sigma-r plot, a plot of the standard deviation of intermolecular distances as a function of that distance. This representation of global dynamics contains within a single, one-dimensional plot, the average range of motion between pairs of atoms within a macromolecule. Comparison of sigma-r plots calculated from 10 ns trajectories of proteins representing the four major SCOP fold classes indicates diversity of dynamic behaviors which are recognizably different among the four classes. Differences in domain structure and molecular weight also produce recognizable features in sigma-r plots, reflective of differences in global dynamics. Plots generated from trajectories with progressively increasing simulation time reflect the increased sampling of the structural ensemble as a function of time. Single amino acid replacements can give rise to changes in global dynamics detectable through comparison of sigma-r plots. Dynamic behavior of substructures can be monitored by careful choice of interatomic vectors included in the calculation. These examples provide demonstrations of the utility of the sigma-r plot to provide a simple measure of the global dynamics of a macromolecule. © 2015 Wiley Periodicals, Inc.

  2. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables

    NASA Astrophysics Data System (ADS)

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-01

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.

  3. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.

    PubMed

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-07

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.

  4. Stabilization of Model Membrane Systems by Disaccharides. Quasielastic Neutron Scattering Experiments and Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Doxastakis, Emmanouil; Garcia Sakai, Victoria; Ohtake, Satoshi; Maranas, Janna K.; de Pablo, Juan J.

    2006-03-01

    Trehalose, a disaccharide of glucose, is often used for the stabilization of cell membranes in the absence of water. This work studies the effects of trehalose on model membrane systems as they undergo a melting transition using a combination of experimental methods and atomistic molecular simulations. Quasielastic neutron scattering experiments on selectively deuterated samples provide the incoherent dynamic structure over a wide time range. Elastic scans probing the lipid tail dynamics display clear evidence of a main melting transition that is significantly lowered in the presence of trehalose. Lipid headgroup mobility is considerably restricted at high temperatures and directly associated with the dynamics of the sugar in the mixture. Molecular simulations provide a detailed overview of the dynamics and their spatial and time dependence. The combined simulation and experimental methodology offers a unique, molecular view of the physics of systems commonly employed in cryopreservation and lyophilization processes.

  5. Adaptively biased molecular dynamics for free energy calculations

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2008-04-01

    We present an adaptively biased molecular dynamics (ABMD) method for the computation of the free energy surface of a reaction coordinate using nonequilibrium dynamics. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential and is inspired by the metadynamics method. The ABMD method has several useful features, including a small number of control parameters and an O(t ) numerical cost with molecular dynamics time t. The ABMD method naturally allows for extensions based on multiple walkers and replica exchange, where different replicas can have different temperatures and/or collective variables. This is beneficial not only in terms of the speed and accuracy of a calculation, but also in terms of the amount of useful information that may be obtained from a given simulation. The workings of the ABMD method are illustrated via a study of the folding of the Ace-GGPGGG-Nme peptide in a gaseous and solvated environment.

  6. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  7. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...

    2015-04-21

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less

  9. Driven Langevin systems: fluctuation theorems and faithful dynamics

    NASA Astrophysics Data System (ADS)

    Sivak, David; Chodera, John; Crooks, Gavin

    2014-03-01

    Stochastic differential equations of motion (e.g., Langevin dynamics) provide a popular framework for simulating molecular systems. Any computational algorithm must discretize these equations, yet the resulting finite time step integration schemes suffer from several practical shortcomings. We show how any finite time step Langevin integrator can be thought of as a driven, nonequilibrium physical process. Amended by an appropriate work-like quantity (the shadow work), nonequilibrium fluctuation theorems can characterize or correct for the errors introduced by the use of finite time steps. We also quantify, for the first time, the magnitude of deviations between the sampled stationary distribution and the desired equilibrium distribution for equilibrium Langevin simulations of solvated systems of varying size. We further show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  10. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.

    PubMed

    Oehme, Daniel P; Downton, Matthew T; Doblin, Monika S; Wagner, John; Gidley, Michael J; Bacic, Antony

    2015-05-01

    The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Taboo search by successive confinement: Surveying a potential energy surface

    NASA Astrophysics Data System (ADS)

    Chekmarev, Sergei F.

    2001-09-01

    A taboo search for minima on a potential energy surface (PES) is performed by means of confinement molecular dynamics: the molecular dynamics trajectory of the system is successively confined to various basins on the PES that have not been sampled yet. The approach is illustrated for a 13-atom Lennard-Jones cluster. It is shown that the taboo search radically accelerates the process of surveying the PES, with the probability of finding a new minimum defined by a propagating Fermi-like distribution.

  12. Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard; Panda, Jayanta

    1999-01-01

    A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.

  13. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    PubMed

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations.

    PubMed

    Harpole, Tyler J; Delemotte, Lucie

    2018-04-01

    The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Direct Determination of the Base-Pair Force Constant of DNA from the Acoustic Phonon Dispersion of the Double Helix

    NASA Astrophysics Data System (ADS)

    van Eijck, L.; Merzel, F.; Rols, S.; Ollivier, J.; Forsyth, V. T.; Johnson, M. R.

    2011-08-01

    Quantifying the molecular elasticity of DNA is fundamental to our understanding of its biological functions. Recently different groups, through experiments on tailored DNA samples and numerical models, have reported a range of stretching force constants (0.3 to 3N/m). However, the most direct, microscopic measurement of DNA stiffness is obtained from the dispersion of its vibrations. A new neutron scattering spectrometer and aligned, wet spun samples have enabled such measurements, which provide the first data of collective excitations of DNA and yield a force constant of 83N/m. Structural and dynamic order persists unchanged to within 15 K of the melting point of the sample, precluding the formation of bubbles. These findings are supported by large scale phonon and molecular dynamics calculations, which reconcile hard and soft force constants.

  16. Coarse-Grained Models Reveal Functional Dynamics – II. Molecular Dynamics Simulation at the Coarse-Grained Level – Theories and Biological Applications

    PubMed Central

    Chng, Choon-Peng; Yang, Lee-Wei

    2008-01-01

    Molecular dynamics (MD) simulation has remained the most indispensable tool in studying equilibrium/non-equilibrium conformational dynamics since its advent 30 years ago. With advances in spectroscopy accompanying solved biocomplexes in growing sizes, sampling their dynamics that occur at biologically interesting spatial/temporal scales becomes computationally intractable; this motivated the use of coarse-grained (CG) approaches. CG-MD models are used to study folding and conformational transitions in reduced resolution and can employ enlarged time steps due to the absence of some of the fastest motions in the system. The Boltzmann-Inversion technique, heavily used in parameterizing these models, provides a smoothed-out effective potential on which molecular conformation evolves at a faster pace thus stretching simulations into tens of microseconds. As a result, a complete catalytic cycle of HIV-1 protease or the assembly of lipid-protein mixtures could be investigated by CG-MD to gain biological insights. In this review, we survey the theories developed in recent years, which are categorized into Folding-based and Molecular-Mechanics-based. In addition, physical bases in the selection of CG beads/time-step, the choice of effective potentials, representation of solvent, and restoration of molecular representations back to their atomic details are systematically discussed. PMID:19812774

  17. An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Hammes-Schiffer, Sharon

    1997-07-01

    This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.

  18. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.

    PubMed

    Rydzewski, J; Nowak, W

    2017-12-01

    Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    PubMed

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  20. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    PubMed Central

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  1. Molecular dynamics study of the conformational properties of cyclohexadecane

    NASA Astrophysics Data System (ADS)

    Zhang, Renshi; Mattice, Wayne L.

    1993-06-01

    Molecular dynamics has been used for the first time for the study of the conformational properties of cyclohexadecane, c-C16H32. By analyzing a long molecular dynamics trajectory (14.5 ns) at 450 K, equilibrium statistics such as the relative populations of different isomeric conformers and the probability ratios, p(gt)/p(tt), p(gg)/p(tt), and p(gg)/p(gtg), of different conformational segments, have been studied. The dynamic properties including the transition modes of gauche migration and gauche-pair creation, which have been reported before in n-alkanes, and the auto- and cross-correlations of the bond dihedral angles, have also been obtained. It was possible to make direct comparisons on some of the statistics with theory and experiment. Most of the results extracted from the molecular dynamics trajectory lie in between previously reported experimental and theoretical values. Many previously predicted conformers have been confirmed by our simulations. The results of the population probability of the most populated conformer seems to suggest that an earlier discrepancy between the theoretical works and an experimental work originates from insufficient samplings in earlier theoretical works, rather than from their inaccurate force field.

  2. Multicanonical molecular dynamics simulations combined with Metadynamics for the free energy landscape of a biomolecular system with high energy barriers

    NASA Astrophysics Data System (ADS)

    Yonezawa, Yasushige; Shimoyama, Hiromitsu; Nakamura, Haruki

    2011-01-01

    Multicanonical molecular-dynamics (McMD) simulation and Metadynamics (MetaD) are useful for obtaining the free-energies, and can be mutually complementary. We combined McMD with MetaD, and applied it to the conformational free energy calculations of a proline dipeptide. First, MetaD was performed along the dihedral angle at the prolyl bond and we obtained a coarse biasing potential. After adding the biasing potential to the dihedral angle potential energy, we conducted McMD with the modified potential energy. Enhanced sampling was achieved for all degrees-of-freedom, and the sampling of the dihedral angle space was facilitated. After reweighting, we obtained an accurate free energy landscape.

  3. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.

  4. Creep rupture of fiber bundles: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-08-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40 000 particles arranged on Nc=400 chains reproduce characteristic stages seen in the experimental investigations of creep in polymeric materials. A logarithmic plot of the bundle lifetime τ versus load F displays a marked curvature, ruling out a simple power-law dependence of τ on F . A power law τ ˜F-4 , however, is recovered at high load. We discuss the role of reversible bond breaking and formation on the eventual fate of the sample and simulate a different type of creep testing, imposing a constant stress rate on the sample up to its breaking point. Our simulations, relying on a coarse-grained representation of the polymer structure, introduce new features into the standard fiber bundle model, such as real-time dynamics, inertia, and entropy, and open the way to more detailed models, aiming at material science aspects of polymeric fibers, investigated within a sound statistical mechanics framework.

  5. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis*

    PubMed Central

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; Cohen, Itay; Henin, Rachel D.; Hockla, Alexandra; Soares, Alexei S.; Papo, Niv; Caulfield, Thomas R.; Radisky, Evette S.

    2016-01-01

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. PMID:27810896

  6. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis

    DOE PAGES

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; ...

    2016-11-03

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less

  7. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.

    PubMed

    Guillot, Bertrand; Guissani, Yves

    2004-03-01

    With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization. Copyright 2004 American Institute of Physics

  8. Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: isomerization of H2O2 in aqueous solution.

    PubMed

    Fedorov, Dmitri G; Sugita, Yuji; Choi, Cheol Ho

    2013-07-03

    An efficient parallel implementation of QM/MM-based replica-exchange molecular dynamics (REMD) as well as umbrella samplings techniques was proposed by adopting the generalized distributed data interface (GDDI). Parallelization speed-up of 40.5 on 48 cores was achieved, making our QM/MM-MD engine a robust tool for studying complex chemical dynamics in solution. They were comparatively used to study the torsional isomerization of hydrogen peroxide in aqueous solution. All results by QM/MM-REMD and QM/MM umbrella sampling techniques yielded nearly identical potentials of mean force (PMFs) regardless of the particular QM theories for solute, showing that the overall dynamics are mainly determined by solvation. Although the entropic penalty of solvent rearrangements exists in cisoid conformers, it was found that both strong intermolecular hydrogen bonding and dipole-dipole interactions preferentially stabilize them in solution, reducing the torsional free-energy barrier at 0° by about 3 kcal/mol as compared to that in gas phase.

  9. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.

    PubMed

    Haldar, Susanta; Kührová, Petra; Banáš, Pavel; Spiwok, Vojtěch; Šponer, Jiří; Hobza, Pavel; Otyepka, Michal

    2015-08-11

    RNA hairpins capped by 5'-GNRA-3' or 5'-UNCG-3' tetraloops (TLs) are prominent RNA structural motifs. Despite their small size, a wealth of experimental data, and recent progress in theoretical simulations of their structural dynamics and folding, our understanding of the folding and unfolding processes of these small RNA elements is still limited. Theoretical description of the folding and unfolding processes requires robust sampling, which can be achieved by either an exhaustive time scale in standard molecular dynamics simulations or sophisticated enhanced sampling methods, using temperature acceleration or biasing potentials. Here, we study structural dynamics of 5'-GNRA-3' and 5'-UNCG-3' TLs by 15-μs-long standard simulations and a series of well-tempered metadynamics, attempting to accelerate sampling by bias in a few chosen collective variables (CVs). Both methods provide useful insights. The unfolding and refolding mechanisms of the GNRA TL observed by well-tempered metadynamics agree with the (reverse) folding mechanism suggested by recent replica exchange molecular dynamics simulations. The orientation of the glycosidic bond of the GL4 nucleobase is critical for the UUCG TL folding pathway, and our data strongly support the hypothesis that GL4-anti forms a kinetic trap along the folding pathway. Along with giving useful insight, our study also demonstrates that using only a few CVs apparently does not capture the full folding landscape of the RNA TLs. Despite using several sophisticated selections of the CVs, formation of the loop appears to remain a hidden variable, preventing a full convergence of the metadynamics. Finally, our data suggest that the unfolded state might be overstabilized by the force fields used.

  10. ELF: An Extended-Lagrangian Free Energy Calculation Module for Multiple Molecular Dynamics Engines.

    PubMed

    Chen, Haochuan; Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2018-06-18

    Extended adaptive biasing force (eABF), a collective variable (CV)-based importance-sampling algorithm, has proven to be very robust and efficient compared with the original ABF algorithm. Its implementation in Colvars, a software addition to molecular dynamics (MD) engines, is, however, currently limited to NAMD and LAMMPS. To broaden the scope of eABF and its variants, like its generalized form (egABF), and make them available to other MD engines, e.g., GROMACS, AMBER, CP2K, and openMM, we present a PLUMED-based implementation, called extended-Lagrangian free energy calculation (ELF). This implementation can be used as a stand-alone gradient estimator for other CV-based sampling algorithms, such as temperature-accelerated MD (TAMD) and extended-Lagrangian metadynamics (MtD). ELF provides the end user with a convenient framework to help select the best-suited importance-sampling algorithm for a given application without any commitment to a particular MD engine.

  11. Evaluating data mining algorithms using molecular dynamics trajectories.

    PubMed

    Tatsis, Vasileios A; Tjortjis, Christos; Tzirakis, Panagiotis

    2013-01-01

    Molecular dynamics simulations provide a sample of a molecule's conformational space. Experiments on the mus time scale, resulting in large amounts of data, are nowadays routine. Data mining techniques such as classification provide a way to analyse such data. In this work, we evaluate and compare several classification algorithms using three data sets which resulted from computer simulations, of a potential enzyme mimetic biomolecule. We evaluated 65 classifiers available in the well-known data mining toolkit Weka, using 'classification' errors to assess algorithmic performance. Results suggest that: (i) 'meta' classifiers perform better than the other groups, when applied to molecular dynamics data sets; (ii) Random Forest and Rotation Forest are the best classifiers for all three data sets; and (iii) classification via clustering yields the highest classification error. Our findings are consistent with bibliographic evidence, suggesting a 'roadmap' for dealing with such data.

  12. Allosteric Fine-Tuning of the Binding Pocket Dynamics in the ITK SH2 Domain by a Distal Molecular Switch: An Atomistic Perspective.

    PubMed

    Momin, Mohamed; Xin, Yao; Hamelberg, Donald

    2017-06-29

    Although the regulation of function of proteins by allosteric interactions has been identified in many subcellular processes, molecular switches are also known to induce long-range conformational changes in proteins. A less well understood molecular switch involving cis-trans isomerization of a peptidyl-prolyl bond could induce a conformational change directly to the backbone that is propagated to other parts of the protein. However, these switches are elusive and hard to identify because they are intrinsic to biomolecules that are inherently dynamic. Here, we explore the conformational dynamics and free energy landscape of the SH2 domain of interleukin-2-inducible T-cell or tyrosine kinase (ITK) to fully understand the conformational coupling between the distal cis-trans molecular switch and its binding pocket of the phosphotyrosine motif. We use multiple microsecond-long all-atom molecular dynamics simulations in explicit water for over a total of 60 μs. We show that cis-trans isomerization of the Asn286-Pro287 peptidyl-prolyl bond is directly coupled to the dynamics of the binding pocket of the phosphotyrosine motif, in agreement with previous NMR experiments. Unlike the cis state that is localized and less dynamic in a single free energy basin, the trans state samples two distinct conformations of the binding pocket-one that recognizes the phosphotyrosine motif and the other that is somewhat similar to that of the cis state. The results provide an atomic-level description of a less well understood allosteric regulation by a peptidyl-prolyl cis-trans molecular switch that could aid in the understanding of normal and aberrant subcellular processes and the identification of these elusive molecular switches in other proteins.

  13. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide

    2017-07-01

    Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.

  14. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  15. Exploring protein kinase conformation using swarm-enhanced sampling molecular dynamics.

    PubMed

    Atzori, Alessio; Bruce, Neil J; Burusco, Kepa K; Wroblowski, Berthold; Bonnet, Pascal; Bryce, Richard A

    2014-10-27

    Protein plasticity, while often linked to biological function, also provides opportunities for rational design of selective and potent inhibitors of their function. The application of computational methods to the prediction of concealed protein concavities is challenging, as the motions involved can be significant and occur over long time scales. Here we introduce the swarm-enhanced sampling molecular dynamics (sesMD) method as a tool to improve sampling of conformational landscapes. In this approach, a swarm of replica simulations interact cooperatively via a set of pairwise potentials incorporating attractive and repulsive components. We apply the sesMD approach to explore the conformations of the DFG motif in the protein p38α mitogen-activated protein kinase. In contrast to multiple MD simulations, sesMD trajectories sample a range of DFG conformations, some of which map onto existing crystal structures. Simulated structures intermediate between the DFG-in and DFG-out conformations are predicted to have druggable pockets of interest for structure-based ligand design.

  16. A molecular simulation protocol to avoid sampling redundancy and discover new states.

    PubMed

    Bacci, Marco; Vitalis, Andreas; Caflisch, Amedeo

    2015-05-01

    For biomacromolecules or their assemblies, experimental knowledge is often restricted to specific states. Ambiguity pervades simulations of these complex systems because there is no prior knowledge of relevant phase space domains, and sampling recurrence is difficult to achieve. In molecular dynamics methods, ruggedness of the free energy surface exacerbates this problem by slowing down the unbiased exploration of phase space. Sampling is inefficient if dwell times in metastable states are large. We suggest a heuristic algorithm to terminate and reseed trajectories run in multiple copies in parallel. It uses a recent method to order snapshots, which provides notions of "interesting" and "unique" for individual simulations. We define criteria to guide the reseeding of runs from more "interesting" points if they sample overlapping regions of phase space. Using a pedagogical example and an α-helical peptide, the approach is demonstrated to amplify the rate of exploration of phase space and to discover metastable states not found by conventional sampling schemes. Evidence is provided that accurate kinetics and pathways can be extracted from the simulations. The method, termed PIGS for Progress Index Guided Sampling, proceeds in unsupervised fashion, is scalable, and benefits synergistically from larger numbers of replicas. Results confirm that the underlying ideas are appropriate and sufficient to enhance sampling. In molecular simulations, errors caused by not exploring relevant domains in phase space are always unquantifiable and can be arbitrarily large. Our protocol adds to the toolkit available to researchers in reducing these types of errors. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  18. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  19. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  20. Subtle Monte Carlo Updates in Dense Molecular Systems.

    PubMed

    Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper

    2012-02-14

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.

  1. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.

    PubMed

    Karp, Jerome M; Eryilmaz, Ertan; Erylimaz, Ertan; Cowburn, David

    2015-01-01

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  2. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.

    PubMed

    Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav

    2014-01-01

    Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.

  3. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO 2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string methodmore » in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO 2 and the hcp to fcc phase transition in Ti.« less

  4. Geometric analysis characterizes molecular rigidity in generic and non-generic protein configurations

    PubMed Central

    Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry

    2015-01-01

    Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health. PMID:26213417

  5. Geometric analysis characterizes molecular rigidity in generic and non-generic protein configurations

    NASA Astrophysics Data System (ADS)

    Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry

    2015-10-01

    Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Tq Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health.

  6. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  7. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  8. Free-energy landscape of a hyperstable RNA tetraloop.

    PubMed

    Miner, Jacob C; Chen, Alan A; García, Angel E

    2016-06-14

    We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif.

  9. Convergence of sampling in protein simulations

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2002-03-01

    With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.

  10. Free energy computations by minimization of Kullback-Leibler divergence: An efficient adaptive biasing potential method for sparse representations

    NASA Astrophysics Data System (ADS)

    Bilionis, I.; Koutsourelakis, P. S.

    2012-05-01

    The present paper proposes an adaptive biasing potential technique for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective of minimizing the Kullback-Leibler divergence between appropriately selected densities. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the learning and sampling scheme enables the efficient calculation of free energy functions parametrized by the temperature. The characteristics and capabilities of the proposed method are demonstrated in three numerical examples.

  11. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    DOE PAGES

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...

    2015-12-17

    Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less

  12. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  13. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  14. Rapid Exploration of Configuration Space with Diffusion Map-directed-Molecular Dynamics

    PubMed Central

    Zheng, Wenwei; Rohrdanz, Mary A.; Clementi, Cecilia

    2013-01-01

    The gap between the timescale of interesting behavior in macromolecular systems and that which our computational resources can afford oftentimes limits Molecular Dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named Diffusion Map-directed-MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD. PMID:23865517

  15. Reactive Monte Carlo sampling with an ab initio potential

    NASA Astrophysics Data System (ADS)

    Leiding, Jeff; Coe, Joshua D.

    2016-05-01

    We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the "rare-event" character of chemical reactions.

  16. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review

    PubMed Central

    Paquet, Eric; Viktor, Herna L.

    2015-01-01

    Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather, they are characterised by their flexibility, which is the result of the interaction and collective motion of their constituent atoms. This conformational diversity has a significant impact on their physicochemical and biological properties. Among these are their structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational space must be efficiently sampled and the dynamic of the constituent atoms must be simulated. This paper presents algorithms and techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo simulations, Langevin dynamics, and free energy calculation is presented. The exposition is made from first principles to promote a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods. PMID:25785262

  17. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator

    NASA Astrophysics Data System (ADS)

    Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît

    2018-01-01

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.

  18. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator.

    PubMed

    Suh, Donghyuk; Radak, Brian K; Chipot, Christophe; Roux, Benoît

    2018-01-07

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.

  19. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations.

    PubMed

    Ostermeir, Katja; Zacharias, Martin

    2014-12-01

    Coarse-grained elastic network models (ENM) of proteins offer a low-resolution representation of protein dynamics and directions of global mobility. A Hamiltonian-replica exchange molecular dynamics (H-REMD) approach has been developed that combines information extracted from an ENM analysis with atomistic explicit solvent MD simulations. Based on a set of centers representing rigid segments (centroids) of a protein, a distance-dependent biasing potential is constructed by means of an ENM analysis to promote and guide centroid/domain rearrangements. The biasing potentials are added with different magnitude to the force field description of the MD simulation along the replicas with one reference replica under the control of the original force field. The magnitude and the form of the biasing potentials are adapted during the simulation based on the average sampled conformation to reach a near constant biasing in each replica after equilibration. This allows for canonical sampling of conformational states in each replica. The application of the methodology to a two-domain segment of the glycoprotein 130 and to the protein cyanovirin-N indicates significantly enhanced global domain motions and improved conformational sampling compared with conventional MD simulations. © 2014 Wiley Periodicals, Inc.

  20. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  1. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  2. PACSAB: Coarse-Grained Force Field for the Study of Protein-Protein Interactions and Conformational Sampling in Multiprotein Systems.

    PubMed

    Emperador, Agustí; Sfriso, Pedro; Villarreal, Marcos Ariel; Gelpí, Josep Lluis; Orozco, Modesto

    2015-12-08

    Molecular dynamics simulations of proteins are usually performed on a single molecule, and coarse-grained protein models are calibrated using single-molecule simulations, therefore ignoring intermolecular interactions. We present here a new coarse-grained force field for the study of many protein systems. The force field, which is implemented in the context of the discrete molecular dynamics algorithm, is able to reproduce the properties of folded and unfolded proteins, in both isolation, complexed forming well-defined quaternary structures, or aggregated, thanks to its proper evaluation of protein-protein interactions. The accuracy and computational efficiency of the method makes it a universal tool for the study of the structure, dynamics, and association/dissociation of proteins.

  3. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  4. Foundations and latest advances in replica exchange transition interface sampling.

    PubMed

    Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M; Bolhuis, Peter G; van Erp, Titus S

    2017-10-21

    Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.

  5. Foundations and latest advances in replica exchange transition interface sampling

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M.; Bolhuis, Peter G.; van Erp, Titus S.

    2017-10-01

    Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.

  6. Adaptively biased molecular dynamics: An umbrella sampling method with a time-dependent potential

    NASA Astrophysics Data System (ADS)

    Babin, Volodymyr; Karpusenka, Vadzim; Moradi, Mahmoud; Roland, Christopher; Sagui, Celeste

    We discuss an adaptively biased molecular dynamics (ABMD) method for the computation of a free energy surface for a set of reaction coordinates. The ABMD method belongs to the general category of umbrella sampling methods with an evolving biasing potential. It is characterized by a small number of control parameters and an O(t) numerical cost with simulation time t. The method naturally allows for extensions based on multiple walkers and replica exchange mechanism. The workings of the method are illustrated with a number of examples, including sugar puckering, and free energy landscapes for polymethionine and polyproline peptides, and for a short β-turn peptide. ABMD has been implemented into the latest version (Case et al., AMBER 10; University of California: San Francisco, 2008) of the AMBER software package and is freely available to the simulation community.

  7. Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials

    NASA Astrophysics Data System (ADS)

    VandeVondele, Joost; Rothlisberger, Ursula

    2000-09-01

    We present a method for calculating multidimensional free energy surfaces within the limited time scale of a first-principles molecular dynamics scheme. The sampling efficiency is enhanced using selected terms of a classical force field as a bias potential. This simple procedure yields a very substantial increase in sampling accuracy while retaining the high quality of the underlying ab initio potential surface and can thus be used for a parameter free calculation of free energy surfaces. The success of the method is demonstrated by the applications to two gas phase molecules, ethane and peroxynitrous acid, as test case systems. A statistical analysis of the results shows that the entire free energy landscape is well converged within a 40 ps simulation at 500 K, even for a system with barriers as high as 15 kcal/mol.

  8. Raman imaging of molecular dynamics during cellular events

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa

    2017-07-01

    To overcome the speed limitation in Raman imaging, we have developed a microscope system that detects Raman spectra from hundreds of points in a sample simultaneously. The sample was illuminated by a line-shaped focus, and Raman scattering from the illuminated positions was measured simultaneously by an imaging spectrophotometer. We applied the line-illumination technique to observe the dynamics of intracellular molecules during cellular events. We found that intracellular cytochrome c can be clearly imaged by resonant Raman scattering. We demonstrated label-free imaging of redistribution of cytochrome c during apoptosis and osteoblastic mineralization. We also proposed alkyne-tagged Raman imaging to observe small molecules in living cells. Due to its small size and the unique Raman band, alkyne can tag molecules without strong perturbation to molecular functions and with the capability to be detected separately from endogenous molecules.

  9. Network visualization of conformational sampling during molecular dynamics simulation.

    PubMed

    Ahlstrom, Logan S; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T; Patel, Sunita; Vorontsov, Ivan I; Tama, Florence; Miyashita, Osamu

    2013-11-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. myPresto/omegagene: a GPU-accelerated molecular dynamics simulator tailored for enhanced conformational sampling methods with a non-Ewald electrostatic scheme.

    PubMed

    Kasahara, Kota; Ma, Benson; Goto, Kota; Dasgupta, Bhaskar; Higo, Junichi; Fukuda, Ikuo; Mashimo, Tadaaki; Akiyama, Yutaka; Nakamura, Haruki

    2016-01-01

    Molecular dynamics (MD) is a promising computational approach to investigate dynamical behavior of molecular systems at the atomic level. Here, we present a new MD simulation engine named "myPresto/omegagene" that is tailored for enhanced conformational sampling methods with a non-Ewald electrostatic potential scheme. Our enhanced conformational sampling methods, e.g. , the virtual-system-coupled multi-canonical MD (V-McMD) method, replace a multi-process parallelized run with multiple independent runs to avoid inter-node communication overhead. In addition, adopting the non-Ewald-based zero-multipole summation method (ZMM) makes it possible to eliminate the Fourier space calculations altogether. The combination of these state-of-the-art techniques realizes efficient and accurate calculations of the conformational ensemble at an equilibrium state. By taking these advantages, myPresto/omegagene is specialized for the single process execution with Graphics Processing Unit (GPU). We performed benchmark simulations for the 20-mer peptide, Trp-cage, with explicit solvent. One of the most thermodynamically stable conformations generated by the V-McMD simulation is very similar to an experimentally solved native conformation. Furthermore, the computation speed is four-times faster than that of our previous simulation engine, myPresto/psygene-G. The new simulator, myPresto/omegagene, is freely available at the following URLs: http://www.protein.osaka-u.ac.jp/rcsfp/pi/omegagene/ and http://presto.protein.osaka-u.ac.jp/myPresto4/.

  11. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    PubMed

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  12. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    NASA Astrophysics Data System (ADS)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  13. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Kitao, Akio

    2013-07-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  15. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  16. Potential-based dynamical reweighting for Markov state models of protein dynamics.

    PubMed

    Weber, Jeffrey K; Pande, Vijay S

    2015-06-09

    As simulators attempt to replicate the dynamics of large cellular components in silico, problems related to sampling slow, glassy degrees of freedom in molecular systems will be amplified manyfold. It is tempting to augment simulation techniques with external biases to overcome such barriers with ease; biased simulations, however, offer little utility unless equilibrium properties of interest (both kinetic and thermodynamic) can be recovered from the data generated. In this Article, we present a general scheme that harnesses the power of Markov state models (MSMs) to extract equilibrium kinetic properties from molecular dynamics trajectories collected on biased potential energy surfaces. We first validate our reweighting protocol on a simple two-well potential, and we proceed to test our method on potential-biased simulations of the Trp-cage miniprotein. In both cases, we find that equilibrium populations, time scales, and dynamical processes are reliably reproduced as compared to gold standard, unbiased data sets. We go on to discuss the limitations of our dynamical reweighting approach, and we suggest auspicious target systems for further application.

  17. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  18. Toward an Enhanced Sampling Molecular Dynamics Method for Studying Ligand-Induced Conformational Changes in Proteins.

    PubMed

    Andersen, Ole Juul; Grouleff, Julie; Needham, Perri; Walker, Ross C; Jensen, Frank

    2015-11-19

    Current enhanced sampling molecular dynamics methods for studying large conformational changes in proteins suffer from certain limitations. These include, among others, the need for user defined collective variables, the prerequisite of both start and end point structures of the conformational change, and the need for a priori knowledge of the amount by which to boost specific parts of the potential. In this paper, a framework is proposed for a molecular dynamics method for studying ligand-induced conformational changes, in which the nonbonded interactions between the ligand and the protein are used to calculate a biasing force. The method requires only a single input structure, and does not entail the use of collective variables. We provide a proof-of-concept for accelerating conformational changes in three simple test molecules, as well as promising results for two proteins known to undergo domain closure upon ligand binding. For the ribose-binding protein, backbone root-mean-square deviations as low as 0.75 Å compared to the crystal structure of the closed conformation are obtained within 50 ns simulations, whereas no domain closures are observed in unbiased simulations. A skewed closed structure is obtained for the glutamine-binding protein at high bias values, indicating that specific protein-ligand interactions might suppress important protein-protein interactions.

  19. Exploring RNA structure and dynamics through enhanced sampling simulations.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-04-01

    RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  1. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco

    2016-09-13

    The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.

  2. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  3. In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1

    PubMed Central

    Frentrup, Hendrik; Hart, Kyle E.; Colina, Coray M.; Müller, Erich A.

    2015-01-01

    We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers. PMID:25764366

  4. Interfacial Molecular Packing Determines Exciton Dynamics in Molecular Heterostructures: The Case of Pentacene-Perfluoropentacene.

    PubMed

    Rinn, Andre; Breuer, Tobias; Wiegand, Julia; Beck, Michael; Hübner, Jens; Döring, Robin C; Oestreich, Michael; Heimbrodt, Wolfram; Witte, Gregor; Chatterjee, Sangam

    2017-12-06

    The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation. The formation efficiency and decay dynamics of such states will strongly depend on the molecular makeup of the interface, especially the relative alignment of donor and acceptor molecules. Structurally well-defined pentacene-perfluoropentacene heterostructures of different molecular orientations are virtually ideal model systems to study the interrelation between molecular packing motifs at the interface and their electronic properties. Comparing the emission dynamics of the heterosystems and the corresponding unitary films enables accurate assignment of every observable emission signal in the heterosystems. These heterosystems feature two characteristic interface-specific luminescence channels at around 1.4 and 1.5 eV that are not observed in the unitary samples. Their emission strength strongly depends on the molecular alignment of the respective donor and acceptor molecules, emphasizing the importance of structural control for device construction.

  5. Enhanced Sampling in Free Energy Calculations: Combining SGLD with the Bennett's Acceptance Ratio and Enveloping Distribution Sampling Methods.

    PubMed

    König, Gerhard; Miller, Benjamin T; Boresch, Stefan; Wu, Xiongwu; Brooks, Bernard R

    2012-10-09

    One of the key requirements for the accurate calculation of free energy differences is proper sampling of conformational space. Especially in biological applications, molecular dynamics simulations are often confronted with rugged energy surfaces and high energy barriers, leading to insufficient sampling and, in turn, poor convergence of the free energy results. In this work, we address this problem by employing enhanced sampling methods. We explore the possibility of using self-guided Langevin dynamics (SGLD) to speed up the exploration process in free energy simulations. To obtain improved free energy differences from such simulations, it is necessary to account for the effects of the bias due to the guiding forces. We demonstrate how this can be accomplished for the Bennett's acceptance ratio (BAR) and the enveloping distribution sampling (EDS) methods. While BAR is considered among the most efficient methods available for free energy calculations, the EDS method developed by Christ and van Gunsteren is a promising development that reduces the computational costs of free energy calculations by simulating a single reference state. To evaluate the accuracy of both approaches in connection with enhanced sampling, EDS was implemented in CHARMM. For testing, we employ benchmark systems with analytical reference results and the mutation of alanine to serine. We find that SGLD with reweighting can provide accurate results for BAR and EDS where conventional molecular dynamics simulations fail. In addition, we compare the performance of EDS with other free energy methods. We briefly discuss the implications of our results and provide practical guidelines for conducting free energy simulations with SGLD.

  6. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  7. Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C2H6)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Billard, F.; Yu, X.; Faucher, O.; Lavorel, B.

    2018-03-01

    The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure. It is observed that the permanent alignment always decays slower compared to the transient alignment within the measured pressure range. This demonstrates that the propensity of molecules to conserve the orientation of angular momentum during collisions, previously observed for linear species, is also applicable to symmetric-top molecules. The results of this work provide valuable information for further theoretical understanding of collisional relaxation within nonlinear polyatomic molecules, which are expected to present interesting and nontrivial features due to an extra rotational degree of freedom.

  8. Theoretical and Experimental Study of Inclusion Complexes of β-Cyclodextrins with Chalcone and 2',4'-Dihydroxychalcone.

    PubMed

    Sancho, Matias I; Andujar, Sebastian; Porasso, Rodolfo D; Enriz, Ricardo D

    2016-03-31

    The inclusion complexes formed by chalcone and 2',4'-dihydroxychalcone with β-cyclodextrin have been studied combining experimental (phase solubility diagrams, Fourier transform infrared spectroscopy) and molecular modeling (molecular dynamics, quantum mechanics/molecular mechanics calculations) techniques. The formation constants of the complexes were determined at different temperatures, and the thermodynamic parameters of the process were obtained. The inclusion of chalcone in β-cyclodextrin is an exothermic process, while the inclusion of 2',4'-dihydroxychalcone is endothermic. Free energy profiles, derived from umbrella sampling using molecular dynamics simulations, were constructed to analyze the binding affinity and the complexation reaction at a molecular level. Hybrid QM/MM calculations were also employed to obtain a better description of the energetic and structural aspects of the complexes. The intermolecular interactions that stabilize both inclusion complexes were characterized by means of quantum atoms in molecules theory and reduce density gradient method. The calculated interactions were experimentally observed using FTIR.

  9. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  10. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice.

    PubMed

    Nemtsova, Marina V; Strelnikov, Vladimir V; Tanas, Alexander S; Bykov, Igor I; Zaletaev, Dmitry V; Rudenko, Viktoria V; Glukhov, Alexander I; Kchorobrich, Tatiana V; Li, Yi; Tarasov, Vadim V; Barreto, George E; Aliev, Gjumrakch

    2017-10-01

    We have investigated aberrant methylation of genes CDH1, RASSF1A, MLH1, N33, DAPK, expression of genes hTERT, MMP7, MMP9, BIRC5 (survivin), PTGS2, and activity of telomerase of 106 gastric tumor samples obtained intra-operatively and 53 gastric tumor samples from the same group of patients obtained endoscopically before surgery. Biopsy specimens obtained from 50 patients with chronic calculous cholecystitis were used as a control group. Together with tissue samples obtained from different sites remote to tumors, a total of 727 samples have been studied. The selected parameters comprise a system of molecular markers that can be used in both diagnostics of gastric cancer and in dynamic monitoring of patients after surgery. Special attention was paid to the use of molecular markers for the diagnostics of malignant process in the material obtained endoscopically since the efficacy of morphological diagnostics in biopsies is compromised by intratumoral heterogeneity, which may prevent reliable identification of tumor cells in the sampling. Our data indicated that certain molecular genetic events provided more sensitive yet specific markers of the tumor. We demonstrated that molecular profiles detected in preoperative biopsies were confirmed by the material obtained intra-operatively. The use of endoscopic material facilitates gastric tumors pre-operative diagnostics, improving early detection of gastric cancer and potential effective treatment strategies.

  11. Enhanced Sampling of Molecular Dynamics Simulations of a Polyalanine Octapeptide: Effects of the Periodic Boundary Conditions on Peptide Conformation.

    PubMed

    Kasahara, Kota; Sakuraba, Shun; Fukuda, Ikuo

    2018-03-08

    We investigate the problem of artifacts caused by the periodic boundary conditions (PBC) used in molecular simulation studies. Despite the long history of simulations with PBCs, the existence of measurable artifacts originating from PBCs applied to inherently nonperiodic physical systems remains controversial. Specifically, these artifacts appear as differences between simulations of the same system but with different simulation-cell sizes. Earlier studies have implied that, even in the simple case of a small model peptide in water, sampling inefficiency is a major obstacle to understanding these artifacts. In this study, we have resolved the sampling issue using the replica exchange molecular dynamics (REMD) enhanced-sampling method to explore PBC artifacts. Explicitly solvated zwitterionic polyalanine octapeptides with three different cubic-cells, having dimensions of L = 30, 40, and 50 Å, were investigated to elucidate the differences with 64 replica × 500 ns REMD simulations using the AMBER parm99SB force field. The differences among them were not large overall, and the results for the L = 30 and 40 Å simulations in the conformational free energy landscape were found to be very similar at room temperature. However, a small but statistically significant difference was seen for L = 50 Å. We observed that extended conformations were slightly overstabilized in the smaller systems. The origin of these artifacts is discussed by comparison to an electrostatic calculation method without PBCs.

  12. Using NMR and molecular dynamics to link structure and dynamics effects of the universal base 8-aza, 7-deaza, N8 linked adenosine analog

    PubMed Central

    Spring-Connell, Alexander M.; Evich, Marina G.; Debelak, Harald; Seela, Frank; Germann, Markus W.

    2016-01-01

    A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2′deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications. PMID:27566150

  13. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics—Monte Carlo Simulations Guided by a Coarse-Grained Model

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442

  14. Demonstrating an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems.

    PubMed

    Pan, Albert C; Weinreich, Thomas M; Piana, Stefano; Shaw, David E

    2016-03-08

    Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 μs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.

  15. Brownian Dynamics and Molecular Dynamics Study of the Association between Hydrogenase and Ferredoxin from Chlamydomonas reinhardtii

    PubMed Central

    Long, Hai; Chang, Christopher H.; King, Paul W.; Ghirardi, Maria L.; Kim, Kwiseon

    2008-01-01

    The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer. PMID:18621810

  16. The role of protein dynamics in the evolution of new enzyme function.

    PubMed

    Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J

    2016-11-01

    Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.

  17. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach.

    PubMed

    Curuksu, Jeremy; Zacharias, Martin

    2009-03-14

    Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.

  18. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics

    PubMed Central

    2017-01-01

    The protein mediated hydrolysis of nucleoside triphosphates such as ATP or GTP is one of the most important and challenging biochemical reactions in nature. The chemical environment (water structure, catalytic metal, and amino acid residues) adjacent to the hydrolysis site contains hundreds of atoms, usually greatly limiting the amount of the free energy sampling that one can achieve from computationally demanding electronic structure calculations such as QM/MM simulations. Therefore, the combination of QM/MM molecular dynamics with the recently developed transition-tempered metadynamics (TTMetaD), an enhanced sampling method that can provide a high-quality free energy estimate at an early stage in a simulation, is an ideal approach to address the biomolecular nucleoside triphosphate hydrolysis problem. In this work the ATP hydrolysis process in monomeric and filamentous actin is studied as an example application of the combined methodology. The performance of TTMetaD in these demanding QM/MM simulations is compared with that of the more conventional well-tempered metadynamics (WTMetaD). Our results show that TTMetaD exhibits much better exploration of the hydrolysis reaction free energy surface in two key collective variables (CVs) during the early stages of the QM/MM simulation than does WTMetaD. The TTMetaD simulations also reveal that a key third degree of freedom, the O–H bond-breaking and proton transfer from the lytic water, must be biased for TTMetaD to converge fully. To perturb the NTP hydrolysis dynamics to the least extent and to properly focus the MetaD free energy sampling, we also adopt here the recently developed metabasin metadynamics (MBMetaD) to construct a self-limiting bias potential that only applies to the lytic water after its nucleophilic attack of the phosphate of ATP. With these new, state-of-the-art enhanced sampling metadynamics techniques, we present an effective and accurate computational strategy for combining QM/MM molecular dynamics simulation with free energy sampling methodology, including a means to analyze the convergence of the calculations through robust numerical criteria. PMID:28345907

  19. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.

    PubMed

    Sun, Rui; Sode, Olaseni; Dama, James F; Voth, Gregory A

    2017-05-09

    The protein mediated hydrolysis of nucleoside triphosphates such as ATP or GTP is one of the most important and challenging biochemical reactions in nature. The chemical environment (water structure, catalytic metal, and amino acid residues) adjacent to the hydrolysis site contains hundreds of atoms, usually greatly limiting the amount of the free energy sampling that one can achieve from computationally demanding electronic structure calculations such as QM/MM simulations. Therefore, the combination of QM/MM molecular dynamics with the recently developed transition-tempered metadynamics (TTMetaD), an enhanced sampling method that can provide a high-quality free energy estimate at an early stage in a simulation, is an ideal approach to address the biomolecular nucleoside triphosphate hydrolysis problem. In this work the ATP hydrolysis process in monomeric and filamentous actin is studied as an example application of the combined methodology. The performance of TTMetaD in these demanding QM/MM simulations is compared with that of the more conventional well-tempered metadynamics (WTMetaD). Our results show that TTMetaD exhibits much better exploration of the hydrolysis reaction free energy surface in two key collective variables (CVs) during the early stages of the QM/MM simulation than does WTMetaD. The TTMetaD simulations also reveal that a key third degree of freedom, the O-H bond-breaking and proton transfer from the lytic water, must be biased for TTMetaD to converge fully. To perturb the NTP hydrolysis dynamics to the least extent and to properly focus the MetaD free energy sampling, we also adopt here the recently developed metabasin metadynamics (MBMetaD) to construct a self-limiting bias potential that only applies to the lytic water after its nucleophilic attack of the phosphate of ATP. With these new, state-of-the-art enhanced sampling metadynamics techniques, we present an effective and accurate computational strategy for combining QM/MM molecular dynamics simulation with free energy sampling methodology, including a means to analyze the convergence of the calculations through robust numerical criteria.

  20. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.

    PubMed

    Molloy, Kevin; Shehu, Amarda

    2013-01-01

    Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers.

  1. Free energy landscapes of small peptides in an implicit solvent model determined by force-biased multicanonical molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukihisa S.; Kim, Jae Gil; Fukunishi, Yoshifumi; Nakamura, Haruki

    2004-12-01

    In order to investigate whether the implicit solvent (GB/SA) model could reproduce the free energy landscapes of peptides, the potential of mean forces (PMFs) of eight tripeptides was examined and compared with the PMFs of the explicit water model. The force-biased multicanonical molecular dynamics method was used for the enhanced conformational sampling. Consequently, the GB/SA model reproduced almost all the global and local minima in the PMFs observed with the explicit water model. However, the GB/SA model overestimated frequencies of the structures that are stabilized by intra-peptide hydrogen bonds.

  2. Flexible docking of a ligand peptide to a receptor protein by multicanonical molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Nakajima, Nobuyuki; Higo, Junichi; Kidera, Akinori; Nakamura, Haruki

    1997-10-01

    A new method for flexible docking by multicanonical molecular dynamics simulation is presented. The method was applied to the binding of a short proline-rich peptide to a Src homology 3 (SH3) domain. The peptide and the side-chains at the ligand binding cleft of SH3 were completely flexible and the large number of possible conformations and dispositions of the peptide were sampled. The reweighted canonical resemble at 300 K resulted in only a few predominant binding modes, one of which was similar to the complex crystal structure. The inverted peptide orientation was also observed in the other binding modes.

  3. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  4. Free-energy landscape of a hyperstable RNA tetraloop

    PubMed Central

    Miner, Jacob C.; Chen, Alan A.; García, Angel E.

    2016-01-01

    We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif. PMID:27233937

  5. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations.

    PubMed

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-07

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  6. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  7. Overcoming time scale and finite size limitations to compute nucleation rates from small scale well tempered metadynamics simulations

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Matteo; Tiwary, Pratyush; Maggioni, Giovanni Maria; Mazzotti, Marco; Parrinello, Michele

    2016-12-01

    Condensation of a liquid droplet from a supersaturated vapour phase is initiated by a prototypical nucleation event. As such it is challenging to compute its rate from atomistic molecular dynamics simulations. In fact at realistic supersaturation conditions condensation occurs on time scales that far exceed what can be reached with conventional molecular dynamics methods. Another known problem in this context is the distortion of the free energy profile associated to nucleation due to the small, finite size of typical simulation boxes. In this work the problem of time scale is addressed with a recently developed enhanced sampling method while contextually correcting for finite size effects. We demonstrate our approach by studying the condensation of argon, and showing that characteristic nucleation times of the order of magnitude of hours can be reliably calculated. Nucleation rates spanning a range of 10 orders of magnitude are computed at moderate supersaturation levels, thus bridging the gap between what standard molecular dynamics simulations can do and real physical systems.

  8. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    PubMed

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  9. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Nüske, Feliks; Paul, Fabian; Klus, Stefan; Koltai, Péter; Noé, Frank

    2017-04-01

    Markov state models (MSMs) and master equation models are popular approaches to approximate molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special case the time-lagged independent component analysis (TICA), which allow us to approximate slow collective variables and molecular kinetics by linear combinations of smooth basis functions or order parameters. While it is known how to estimate MSMs from trajectories whose starting points are not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC. Previous estimates from short trajectories have been strongly biased and thus not variationally optimal. Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical (Koopman) operator in conjunction with the basis set used. This Koopman model can be used to compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted sample, equilibrium expectation values and variationally optimal reversible Koopman models can be constructed even with short simulations. The Koopman model can be used to propagate densities, and its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the linear VAC and allow molecular kinetics to be described without a cluster discretization.

  10. Dependence of triboelectric charging behavior on material microstructure

    NASA Astrophysics Data System (ADS)

    Wang, Andrew E.; Gil, Phwey S.; Holonga, Moses; Yavuz, Zelal; Baytekin, H. Tarik; Sankaran, R. Mohan; Lacks, Daniel J.

    2017-08-01

    We demonstrate that differences in the microstructure of chemically identical materials can lead to distinct triboelectric charging behavior. Contact charging experiments are carried out between strained and unstrained polytetrafluoroethylene samples. Whereas charge transfer is random between samples of identical strain, when one of the samples is strained, systematic charge transfer occurs. No significant changes in the molecular-level structure of the polymer are observed by XRD and micro-Raman spectroscopy after deformation. However, the strained surfaces are found to exhibit void and craze formation spanning the nano- to micrometer length scales by molecular dynamics simulations, SEM, UV-vis spectroscopy, and naked-eye observations. This suggests that material microstructure (voids and crazes) can govern the triboelectric charging behavior of materials.

  11. A framework for stochastic simulations and visualization of biological electron-transfer dynamics

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Byun, Hye Suk; Ma, Heng; Wei, Tao; El-Naggar, Mohamed Y.

    2015-08-01

    Electron transfer (ET) dictates a wide variety of energy-conversion processes in biological systems. Visualizing ET dynamics could provide key insight into understanding and possibly controlling these processes. We present a computational framework named VizBET to visualize biological ET dynamics, using an outer-membrane Mtr-Omc cytochrome complex in Shewanella oneidensis MR-1 as an example. Starting from X-ray crystal structures of the constituent cytochromes, molecular dynamics simulations are combined with homology modeling, protein docking, and binding free energy computations to sample the configuration of the complex as well as the change of the free energy associated with ET. This information, along with quantum-mechanical calculations of the electronic coupling, provides inputs to kinetic Monte Carlo (KMC) simulations of ET dynamics in a network of heme groups within the complex. Visualization of the KMC simulation results has been implemented as a plugin to the Visual Molecular Dynamics (VMD) software. VizBET has been used to reveal the nature of ET dynamics associated with novel nonequilibrium phase transitions in a candidate configuration of the Mtr-Omc complex due to electron-electron interactions.

  12. Molecular-dynamic study of the influence of temperature on the process of metallic nanocrystals fracture

    NASA Astrophysics Data System (ADS)

    Demianenko, A. M.; Golovnev, I. F.; Golovneva, E. I.

    2017-10-01

    The behavior of the fracture processes of a metal nanostructure under deformation in the temperature range 0-550 K was investigated by the molecular dynamics method. An ideal copper crystal was used as a sample in the form of a rectangular parallelepiped with the number of crystalline cells nx = 50, ny = nz = 5 along the corresponding axes. The deformation was carried out by uniaxial stretching of the sample between two clamps (movable and fixed) with a constant speed. The stretching rate varied from 50 to 500 m/s. To describe the interatomic interaction, the Voter many-body EAM potential was used. The effect of temperature on macro characteristics of fracture (the fracture place, the number of fragments formed, the stress on the clamps), and also on the kinetic characteristics (fracture rate, time of formation of maximum stress values on the clamps, mass transfer phenomena and formation of the fracture neck) were revealed.

  13. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  14. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface.

    PubMed

    Sushko, Gennady B; Verkhovtsev, Alexey V; Yakubovich, Alexander V; Schramm, Stefan; Solov'yov, Andrey V

    2014-08-21

    The process of self-diffusion of titanium atoms in a bulk material, on grain junctions and on surface is explored numerically in a broad temperature range by means of classical molecular dynamics simulation. The analysis is carried out for a nanoscale cylindrical sample consisting of three adjacent sectors and various junctions between nanocrystals. The calculated diffusion coefficient varies by several orders of magnitude for different regions of the sample. The calculated values of the bulk diffusion coefficient correspond reasonably well to the experimental data obtained for solid and molten states of titanium. Investigation of diffusion in the nanocrystalline titanium is of a significant importance because of its numerous technological applications. This paper aims to reduce the lack of data on diffusion in titanium and describe the processes occurring in bulk, at different interfaces and on surface of the crystalline titanium.

  15. Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations.

    PubMed

    Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan

    2017-10-18

    We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore should be applicable to other biomolecular solutions.

  16. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  17. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  18. Mimicking the action of folding chaperones by Hamiltonian replica-exchange molecular dynamics simulations: application in the refinement of de novo models.

    PubMed

    Fan, Hao; Periole, Xavier; Mark, Alan E

    2012-07-01

    The efficiency of using a variant of Hamiltonian replica-exchange molecular dynamics (Chaperone H-replica-exchange molecular dynamics [CH-REMD]) for the refinement of protein structural models generated de novo is investigated. In CH-REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH-REMD approach sampled structures in which the root-mean-square deviation (RMSD) of secondary structure elements (SSE-RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near-native conformations was also examined. Little correlation between the SSE-RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE-RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced-sampling techniques such as CH-REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near-native structures are still needed. Copyright © 2012 Wiley Periodicals, Inc.

  19. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics

    PubMed Central

    Zheng, Liangzhen; Mu, Yuguang

    2016-01-01

    Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application. PMID:27824891

  20. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0059: Molecular Dynamics Modeling Support

    DTIC Science & Technology

    2008-03-01

    Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms

  1. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations

    PubMed Central

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.

    2013-01-01

    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  2. Reactive Monte Carlo sampling with an ab initio potential

    DOE PAGES

    Leiding, Jeff; Coe, Joshua D.

    2016-05-04

    Here, we present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We also discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH 3 to those of ab initio molecular dynamics (AIMD). Furthermore, we find that there are regions of state spacemore » for which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.« less

  3. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  4. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    NASA Astrophysics Data System (ADS)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  5. Non-linear optical techniques and optical properties of condensed molecular systems

    NASA Astrophysics Data System (ADS)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  6. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    PubMed

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cellular characterization of compression induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  8. Spectral gap optimization of order parameters for sampling complex molecular systems

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365

  9. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    PubMed

    Pachov, Dimitar V; van den Bedem, Henry

    2015-07-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.

  10. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs. PMID:26218073

  11. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    PubMed

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  12. Homogenous Nucleation and Crystal Growth in a Model Liquid from Direct Energy Landscape Sampling Simulation

    NASA Astrophysics Data System (ADS)

    Walter, Nathan; Zhang, Yang

    Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex

  13. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule destabilization. No conformational change was observed but a nucleotide dependent 'softening' of the interaction was found instead, suggesting that an entropic force in a microtubule configuration could be the mechanism of microtubule collapse. Finally, to overcome much of the computational costs associated with explicit soIvent calculations, a new combination of molecular dynamics with the 3D-reference interaction site model (3D-RISM) of solvation was integrated into the Amber molecular dynamics package. Our implementation of 3D-RISM shows excellent agreement with explicit solvent free energy calculations. Several optimisation techniques, including a new multiple time step method, provide a nearly 100 fold performance increase, giving similar computational performance to explicit solvent.

  14. Crystal nucleation of colloidal hard dumbbells

    NASA Astrophysics Data System (ADS)

    Ni, Ran; Dijkstra, Marjolein

    2011-01-01

    Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.

  15. Linking Well-Tempered Metadynamics Simulations with Experiments

    PubMed Central

    Barducci, Alessandro; Bonomi, Massimiliano; Parrinello, Michele

    2010-01-01

    Abstract Linking experiments with the atomistic resolution provided by molecular dynamics simulations can shed light on the structure and dynamics of protein-disordered states. The sampling limitations of classical molecular dynamics can be overcome using metadynamics, which is based on the introduction of a history-dependent bias on a small number of suitably chosen collective variables. Even if such bias distorts the probability distribution of the other degrees of freedom, the equilibrium Boltzmann distribution can be reconstructed using a recently developed reweighting algorithm. Quantitative comparison with experimental data is thus possible. Here we show the potential of this combined approach by characterizing the conformational ensemble explored by a 13-residue helix-forming peptide by means of a well-tempered metadynamics/parallel tempering approach and comparing the reconstructed nuclear magnetic resonance scalar couplings with experimental data. PMID:20441734

  16. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Orellana, Laura; Yoluk, Ozge; Carrillo, Oliver; Orozco, Modesto; Lindahl, Erik

    2016-08-01

    Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general.

  18. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    PubMed

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of reaction rates and an improved understanding of activated states.

  19. Free Energy Reconstruction from Metadynamics or Adiabatic Free Energy Dynamics Simulations.

    PubMed

    Cuendet, Michel A; Tuckerman, Mark E

    2014-08-12

    In molecular dynamics simulations, most enhanced sampling methods are traditionally associated with one particular estimator to calculate the free energy surface (FES), such as the histogram, the mean force, or the bias potential. Here, we start from the realization that four enhanced sampling methods, metadynamics and well-tempered metadynamics (in their extended Lagrangian form), as well as driven adiabatic free energy dynamics (dAFED) and unified free energy dynamics (UFED), can be used in combination with any of the three above-mentioned FES estimators. We compare the convergence properties of these estimators on the alanine dipeptide and a sodium ion solvation shell. We find that the mean force estimator is superior in all cases. We also show that it can be marginally beneficial to combine information from the histogram and the force, provided that both are of comparable accuracy.

  20. Enhanced sampling of glutamate receptor ligand-binding domains.

    PubMed

    Lau, Albert Y

    2018-04-14

    The majority of excitatory synaptic transmission in the central nervous system is mediated by ionotropic glutamate receptors (iGluRs). These membrane-bound protein assemblies consist of modular domains that can be genetically isolated and expressed, which has resulted in a plethora of crystal structures of individual domains in different conformations bound to different ligands. These structures have presented opportunities for molecular dynamics (MD) simulation studies. To examine the free energies that govern molecular behavior, simulation strategies and algorithms have been developed, collectively called enhanced sampling methods This review focuses on the use of enhanced sampling MD simulations of isolated iGluR ligand-binding domains to characterize thermodynamic properties important to receptor function. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  2. Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nejad, Marjan A.; Mücksch, Christian; Urbassek, Herbert M.

    2017-02-01

    Adsorption of insulin on polar and nonpolar surfaces of crystalline SiO2 (cristobalite and α -quartz) is studied using molecular dynamics simulation. Acceleration techniques are used in order to sample adsorption phase space efficiently and to identify realistic adsorption conformations. We find major differences between the polar and nonpolar surfaces. Electrostatic interactions govern the adsorption on polar surfaces and can be described by the alignment of the protein dipole with the surface dipole; hence spreading of the protein on the surface is irrelevant. On nonpolar surfaces, on the other hand, van-der-Waals interaction dominates, inducing surface spreading of the protein.

  3. Machine learning of accurate energy-conserving molecular force fields.

    PubMed

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  4. Machine learning of accurate energy-conserving molecular force fields

    PubMed Central

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  5. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2010-09-01

    Folded polyproline peptides can exist as either left-(PPII) or right-handed (PPI) helices, depending on their environment. In this work, we have characterized the conformations and the free energy landscapes of Ace-(Pro)n-Nme, n =2,3,…,9, and 13 peptides both in vacuo and in an implicit solvent environment. In order to enhance the sampling provided by regular molecular dynamics simulations, we have used the recently developed adaptively biased molecular dynamics method—which provides an accurate description of the free energy landscapes in terms of a set of relevant collective variables—combined with Hamiltonian and temperature replica exchange molecular dynamics methods. The collective variables, which are chosen so as to reflect the stable structures and the "slow modes" of the polyproline system, were based primarily on properties of length and of the cis/trans isomerization associated with the prolyl bonds. Results indicate that the space of peptide structures is characterized not just by pure PPII and PPI structures, but rather by a broad distribution of stable minima with similar free energies. These results are in agreement with recent experimental work. In addition, we have used steered molecular dynamics methods in order to quantitatively estimate the free energy difference of PPI and PPII for peptides of the length n =2,…,5 in vacuo and implicit water and qualitatively investigate transition pathways and mechanisms for the PPII to PPI transitions. A zipper-like mechanism, starting from either the center of the peptide or the amidated end, appear to be the most likely mechanisms for the PPII→PPI transition for the longer peptides.

  6. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  7. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  8. Multiscale implementation of infinite-swap replica exchange molecular dynamics.

    PubMed

    Yu, Tang-Qing; Lu, Jianfeng; Abrams, Cameron F; Vanden-Eijnden, Eric

    2016-10-18

    Replica exchange molecular dynamics (REMD) is a popular method to accelerate conformational sampling of complex molecular systems. The idea is to run several replicas of the system in parallel at different temperatures that are swapped periodically. These swaps are typically attempted every few MD steps and accepted or rejected according to a Metropolis-Hastings criterion. This guarantees that the joint distribution of the composite system of replicas is the normalized sum of the symmetrized product of the canonical distributions of these replicas at the different temperatures. Here we propose a different implementation of REMD in which (i) the swaps obey a continuous-time Markov jump process implemented via Gillespie's stochastic simulation algorithm (SSA), which also samples exactly the aforementioned joint distribution and has the advantage of being rejection free, and (ii) this REMD-SSA is combined with the heterogeneous multiscale method to accelerate the rate of the swaps and reach the so-called infinite-swap limit that is known to optimize sampling efficiency. The method is easy to implement and can be trivially parallelized. Here we illustrate its accuracy and efficiency on the examples of alanine dipeptide in vacuum and C-terminal β-hairpin of protein G in explicit solvent. In this latter example, our results indicate that the landscape of the protein is a triple funnel with two folded structures and one misfolded structure that are stabilized by H-bonds.

  9. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa.

  10. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.

    PubMed

    Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin

    2009-02-01

    A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.

  11. Investigations of Takeout proteins' ligand binding and release mechanism using molecular dynamics simulation.

    PubMed

    Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri

    2017-05-01

    Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.

  12. Conformational Transition Pathways of Epidermal Growth Factor Receptor Kinase Domain from Multiple Molecular Dynamics Simulations and Bayesian Clustering.

    PubMed

    Li, Yan; Li, Xiang; Ma, Weiya; Dong, Zigang

    2014-08-12

    The epidermal growth factor receptor (EGFR) is aberrantly activated in various cancer cells and an important target for cancer treatment. Deep understanding of EGFR conformational changes between the active and inactive states is of pharmaceutical interest. Here we present a strategy combining multiply targeted molecular dynamics simulations, unbiased molecular dynamics simulations, and Bayesian clustering to investigate transition pathways during the activation/inactivation process of EGFR kinase domain. Two distinct pathways between the active and inactive forms are designed, explored, and compared. Based on Bayesian clustering and rough two-dimensional free energy surfaces, the energy-favorable pathway is recognized, though DFG-flip happens in both pathways. In addition, another pathway with different intermediate states appears in our simulations. Comparison of distinct pathways also indicates that disruption of the Lys745-Glu762 interaction is critically important in DFG-flip while movement of the A-loop significantly facilitates the conformational change. Our simulations yield new insights into EGFR conformational transitions. Moreover, our results verify that this approach is valid and efficient in sampling of protein conformational changes and comparison of distinct pathways.

  13. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  14. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  15. Conformational free energy modeling of druglike molecules by metadynamics in the WHIM space.

    PubMed

    Spiwok, Vojtěch; Hlat-Glembová, Katarína; Tvaroška, Igor; Králová, Blanka

    2012-03-26

    Protein-ligand affinities can be significantly influenced not only by the interaction itself but also by conformational equilibrium of both binding partners, free ligand and free protein. Identification of important conformational families of a ligand and prediction of their thermodynamics is important for efficient ligand design. Here we report conformational free energy modeling of nine small-molecule drugs in explicitly modeled water by metadynamics with a bias potential applied in the space of weighted holistic invariant molecular (WHIM) descriptors. Application of metadynamics enhances conformational sampling compared to unbiased molecular dynamics simulation and allows to predict relative free energies of key conformations. Selected free energy minima and one example of transition state were tested by a series of unbiased molecular dynamics simulation. Comparison of free energy surfaces of free and target-bound Imatinib provides an estimate of free energy penalty of conformational change induced by its binding to the target. © 2012 American Chemical Society

  16. Stereodirectional Origin of anti-Arrhenius Kinetics for a Tetraatomic Hydrogen Exchange Reaction: Born-Oppenheimer Molecular Dynamics for OH + HBr.

    PubMed

    Coutinho, Nayara D; Aquilanti, Vincenzo; Silva, Valter H C; Camargo, Ademir J; Mundim, Kleber C; de Oliveira, Heibbe C B

    2016-07-14

    Among four-atom processes, the reaction OH + HBr → H2O + Br is one of the most studied experimentally: its kinetics has manifested an unusual anti-Arrhenius behavior, namely, a marked decrease of the rate constant as the temperature increases, which has intrigued theoreticians for a long time. Recently, salient features of the potential energy surface have been characterized and most kinetic aspects can be considered as satisfactorily reproduced by classical trajectory simulations. Motivation of the work reported in this paper is the investigation of the stereodirectional dynamics of this reaction as the prominent reason for the peculiar kinetics: we started in a previous Letter ( J. Phys. Chem. Lett. 2015 , 6 , 1553 - 1558 ) a first-principles Born-Oppenheimer "canonical" molecular dynamics approach. Trajectories are step-by-step generated on a potential energy surface quantum mechanically calculated on-the-fly and are thermostatically equilibrated to correspond to a specific temperature. Here, refinements of the method permitted a major increase of the number of trajectories and the consideration of four temperatures -50, +200, +350, and +500 K, for which the sampling of initial conditions allowed us to characterize the stereodynamical effect. The role is documented of the adjustment of the reactants' mutual orientation to encounter the entrance into the "cone of acceptance" for reactivity. The aperture angle of this cone is dictated by a range of directions of approach compatible with the formation of the specific HOH angle of the product water molecule; and consistently the adjustment is progressively less effective the higher the kinetic energy. Qualitatively, this emerging picture corroborates experiments on this reaction, involving collisions of aligned and oriented molecular beams, and covering a range of energies higher than the thermal ones. The extraction of thermal rate constants from this molecular dynamics approach is discussed and the systematic sampling of the canonical ensemble is indicated as needed for quantitative comparison with the kinetic experiments.

  17. Dynamic information for cardiotoxin protein desorption from a methyl-terminated self-assembled monolayer using steered molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, Shih-Wei; Hsiao, Pai-Yi; Chieng, Ching-Chang

    2011-05-01

    Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.

  18. The relationship between the Tg depression and the speeding up of physical aging in polystyrene/gold nanocomposites

    NASA Astrophysics Data System (ADS)

    Boucher, Virginie M.; Cangialosi, Daniele; Alegria, Angel; Colmenero, Juan

    2011-03-01

    The effect of gold nanoparticles on the segmental dynamics, glass transition (Tg) and physical aging of polystyrene (PS) was studied in PS/Gold nanocomposites samples containing 5 and 15 wt.% of 60 nm spherical gold nanoparticles, surface-treated with thiolated-PS. While the segmental dynamics of PS, as assessed by broadband dielectric spectroscopy (BDS), was found to be unchanged in presence of gold nanoparticles, the calorimetric Tg of PS was shown to decrease with increasing the amount of nanoparticles in the samples. Furthermore, the physical aging of PS, monitored by measuring the enthalpy relaxation below Tg by means of DSC, was shown to speed up with increasing the nanoparticles weight fraction, i.e. the amount of PS/Gold interface in the hybrid material. Thus, the main conclusion of our work is that PS molecular mobility and out-of-equilibrium dynamics are decoupled in these nanocomposites. The significant effect of the amount of PS/Gold interface on both the physical aging rate of PS and the calorimetric Tg depression are quantitatively accounted for by a model based on the diffusion of free volume holes towards polymer interfaces, with a diffusion coefficient depending only on the molecular mobility.

  19. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin.

    PubMed

    Orlowski, Slawomir; Nowak, Wieslaw

    2007-07-01

    Cytoglobin (Cyg)--a new member of the vertebrate heme globin family--is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.

  20. General Trends of Dihedral Conformational Transitions in a Globular Protein

    PubMed Central

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; McCammon, J. Andrew

    2017-01-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and Adaptive Biasing Force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions ~2 times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the Bend, Coil and Turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein sidechains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Sidechains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. PMID:26799251

  1. Free-energy landscape of intrinsically disordered proteins investigated by all-atom multicanonical molecular dynamics.

    PubMed

    Higo, Junichi; Umezawa, Koji

    2014-01-01

    We introduce computational studies on intrinsically disordered proteins (IDPs). Especially, we present our multicanonical molecular dynamics (McMD) simulations of two IDP-partner systems: NRSF-mSin3 and pKID-KIX. McMD is one of enhanced conformational sampling methods useful for conformational sampling of biomolecular systems. IDP adopts a specific tertiary structure upon binding to its partner molecule, although it is unstructured in the unbound state (i.e. the free state). This IDP-specific property is called "coupled folding and binding". The McMD simulation treats the biomolecules with an all-atom model immersed in an explicit solvent. In the initial configuration of simulation, IDP and its partner molecules are set to be distant from each other, and the IDP conformation is disordered. The computationally obtained free-energy landscape for coupled folding and binding has shown that native- and non-native-complex clusters distribute complicatedly in the conformational space. The all-atom simulation suggests that both of induced-folding and population-selection are coupled complicatedly in the coupled folding and binding. Further analyses have exemplified that the conformational fluctuations (dynamical flexibility) in the bound and unbound states are essentially important to characterize IDP functioning.

  2. Efficient and Unbiased Sampling of Biomolecular Systems in the Canonical Ensemble: A Review of Self-Guided Langevin Dynamics

    PubMed Central

    Wu, Xiongwu; Damjanovic, Ana; Brooks, Bernard R.

    2013-01-01

    This review provides a comprehensive description of the self-guided Langevin dynamics (SGLD) and the self-guided molecular dynamics (SGMD) methods and their applications. Example systems are included to provide guidance on optimal application of these methods in simulation studies. SGMD/SGLD has enhanced ability to overcome energy barriers and accelerate rare events to affordable time scales. It has been demonstrated that with moderate parameters, SGLD can routinely cross energy barriers of 20 kT at a rate that molecular dynamics (MD) or Langevin dynamics (LD) crosses 10 kT barriers. The core of these methods is the use of local averages of forces and momenta in a direct manner that can preserve the canonical ensemble. The use of such local averages results in methods where low frequency motion “borrows” energy from high frequency degrees of freedom when a barrier is approached and then returns that excess energy after a barrier is crossed. This self-guiding effect also results in an accelerated diffusion to enhance conformational sampling efficiency. The resulting ensemble with SGLD deviates in a small way from the canonical ensemble, and that deviation can be corrected with either an on-the-fly or a post processing reweighting procedure that provides an excellent canonical ensemble for systems with a limited number of accelerated degrees of freedom. Since reweighting procedures are generally not size extensive, a newer method, SGLDfp, uses local averages of both momenta and forces to preserve the ensemble without reweighting. The SGLDfp approach is size extensive and can be used to accelerate low frequency motion in large systems, or in systems with explicit solvent where solvent diffusion is also to be enhanced. Since these methods are direct and straightforward, they can be used in conjunction with many other sampling methods or free energy methods by simply replacing the integration of degrees of freedom that are normally sampled by MD or LD. PMID:23913991

  3. Modelling dynamics in protein crystal structures by ensemble refinement

    PubMed Central

    Burnley, B Tom; Afonine, Pavel V; Adams, Paul D; Gros, Piet

    2012-01-01

    Single-structure models derived from X-ray data do not adequately account for the inherent, functionally important dynamics of protein molecules. We generated ensembles of structures by time-averaged refinement, where local molecular vibrations were sampled by molecular-dynamics (MD) simulation whilst global disorder was partitioned into an underlying overall translation–libration–screw (TLS) model. Modeling of 20 protein datasets at 1.1–3.1 Å resolution reduced cross-validated Rfree values by 0.3–4.9%, indicating that ensemble models fit the X-ray data better than single structures. The ensembles revealed that, while most proteins display a well-ordered core, some proteins exhibit a ‘molten core’ likely supporting functionally important dynamics in ligand binding, enzyme activity and protomer assembly. Order–disorder changes in HIV protease indicate a mechanism of entropy compensation for ordering the catalytic residues upon ligand binding by disordering specific core residues. Thus, ensemble refinement extracts dynamical details from the X-ray data that allow a more comprehensive understanding of structure–dynamics–function relationships. DOI: http://dx.doi.org/10.7554/eLife.00311.001 PMID:23251785

  4. LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis.

    PubMed

    Thomas, James R; Gedeon, Patrick C; Grant, Barry J; Madura, Jeffry D

    2012-07-03

    Monoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Phosphorylation of an intrinsically disordered segment in Ets1 shifts conformational sampling toward binding-competent substates.

    PubMed

    Bui, Jennifer M; Gsponer, Jörg

    2014-08-05

    Functions of many proteins are affected by posttranslational modifications of intrinsically disordered (ID) regions, yet little is known about the underlying molecular mechanisms. By combining molecular dynamics simulations and protein docking, we demonstrate that the addition of phosphates to an ID segment adjacent to the PNT domain of Ets1 directs conformational sampling toward substates that are most compatible with high-affinity binding of the TAZ1 domain of its coactivator CBP. The phosphate charges disrupt salt bridges and thereby open a hydrophobic cleft and expose hydrophobic residues at the ID N terminus. The structure of the PNT-TAZ1 complex that we determined shows that PNT binds to TAZ1 via these hydrophobic regions in a similar manner to how it interacts with other partners. Our calculations reveal a dual effect of phosphorylation in that it changes the dynamics of PNT so that it becomes more compatible for TAZ1 binding and increases complementarity with this binding partner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization

    PubMed Central

    2018-01-01

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design. PMID:29652495

  7. Structure refinement of membrane proteins via molecular dynamics simulations.

    PubMed

    Dutagaci, Bercem; Heo, Lim; Feig, Michael

    2018-07-01

    A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.

  8. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.

    PubMed

    Kamenik, Anna S; Lessel, Uta; Fuchs, Julian E; Fox, Thomas; Liedl, Klaus R

    2018-05-29

    Macrocycles are of considerable interest as highly specific drug candidates, yet they challenge standard conformer generators with their large number of rotatable bonds and conformational restrictions. Here, we present a molecular dynamics-based routine that bypasses current limitations in conformational sampling and extensively profiles the free energy landscape of peptidic macrocycles in solution. We perform accelerated molecular dynamics simulations to capture a diverse conformational ensemble. By applying an energetic cutoff, followed by geometric clustering, we demonstrate the striking robustness and efficiency of the approach in identifying highly populated conformational states of cyclic peptides. The resulting structural and thermodynamic information is benchmarked against interproton distances from NMR experiments and conformational states identified by X-ray crystallography. Using three different model systems of varying size and flexibility, we show that the method reliably reproduces experimentally determined structural ensembles and is capable of identifying key conformational states that include the bioactive conformation. Thus, the described approach is a robust method to generate conformations of peptidic macrocycles and holds promise for structure-based drug design.

  9. Ab initio folding of proteins using all-atom discrete molecular dynamics

    PubMed Central

    Ding, Feng; Tsao, Douglas; Nie, Huifen; Dokholyan, Nikolay V.

    2008-01-01

    Summary Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. Using the replica exchange method, we perform folding simulations of six small proteins (20–60 residues) with distinct native structures. In all cases, native or near-native states are reached in simulations. For three small proteins, multiple folding transitions are observed and the computationally-characterized thermodynamics are in quantitative agreement with experiments. The predictive power of all-atom DMD highlights the importance of environment-dependent hydrogen bond interactions in modeling protein folding. The developed approach can be used for accurate and rapid sampling of conformational spaces of proteins and protein-protein complexes, and applied to protein engineering and design of protein-protein interactions. PMID:18611374

  10. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    PubMed

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  11. Simulating botulinum neurotoxin with constant pH molecular dynamics in Generalized Born implicit solvent

    NASA Astrophysics Data System (ADS)

    Chen, Yongzhi; Chen, Xin; Deng, Yuefan

    2007-07-01

    A new method was proposed by Mongan et al. for constant pH molecular dynamics simulation and was implemented in AMBER 8 package. Protonation states are modeled with different charge sets, and titrating residues are sampled from a Boltzmann distribution of protonation states. The simulation periodically adopts Monte Carlo sampling based on Generalized Born (GB) derived energies. However, when this approach was applied to a bio-toxin, Botulinum Neurotoxin Type A (BoNT/A) at pH 4.4, 4.7, 5.0, 6.8 and 7.2, the pK predictions yielded by the method were inconsistent with the experimental values. The systems being simulated were divergent. Furthermore, the system behaviors in a very weak acidic solution (pH 6.8) and in a very weak basic solution (pH 7.2) were significantly different from the neutral case (pH 7.0). Hence, we speculate this method may require further study for modeling large biomolecule.

  12. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  13. Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method

    PubMed Central

    2013-01-01

    Background Many proteins tune their biological function by transitioning between different functional states, effectively acting as dynamic molecular machines. Detailed structural characterization of transition trajectories is central to understanding the relationship between protein dynamics and function. Computational approaches that build on the Molecular Dynamics framework are in principle able to model transition trajectories at great detail but also at considerable computational cost. Methods that delay consideration of dynamics and focus instead on elucidating energetically-credible conformational paths connecting two functionally-relevant structures provide a complementary approach. Effective sampling-based path planning methods originating in robotics have been recently proposed to produce conformational paths. These methods largely model short peptides or address large proteins by simplifying conformational space. Methods We propose a robotics-inspired method that connects two given structures of a protein by sampling conformational paths. The method focuses on small- to medium-size proteins, efficiently modeling structural deformations through the use of the molecular fragment replacement technique. In particular, the method grows a tree in conformational space rooted at the start structure, steering the tree to a goal region defined around the goal structure. We investigate various bias schemes over a progress coordinate for balance between coverage of conformational space and progress towards the goal. A geometric projection layer promotes path diversity. A reactive temperature scheme allows sampling of rare paths that cross energy barriers. Results and conclusions Experiments are conducted on small- to medium-size proteins of length up to 214 amino acids and with multiple known functionally-relevant states, some of which are more than 13Å apart of each-other. Analysis reveals that the method effectively obtains conformational paths connecting structural states that are significantly different. A detailed analysis on the depth and breadth of the tree suggests that a soft global bias over the progress coordinate enhances sampling and results in higher path diversity. The explicit geometric projection layer that biases the exploration away from over-sampled regions further increases coverage, often improving proximity to the goal by forcing the exploration to find new paths. The reactive temperature scheme is shown effective in increasing path diversity, particularly in difficult structural transitions with known high-energy barriers. PMID:24565158

  14. Miscibility at the immiscible liquid/liquid interface: A molecular dynamics study of thermodynamics and mechanism

    NASA Astrophysics Data System (ADS)

    Karnes, John J.; Benjamin, Ilan

    2018-01-01

    Molecular dynamics simulations are used to study the dissolution of water into an adjacent, immiscible organic liquid phase. Equilibrium thermodynamic and structural properties are calculated during the transfer of water molecule(s) across the interface using umbrella sampling. The net free energy of transfer agrees reasonably well with experimental solubility values. We find that water molecules "prefer" to transfer into the adjacent phase one-at-a-time, without co-transfer of the hydration shell, as in the case of evaporation. To study the dynamics and mechanism of transfer of water to liquid nitrobenzene, we collected over 400 independent dissolution events. Analysis of these trajectories suggests that the transfer of water is facilitated by interfacial protrusions of the water phase into the organic phase, where one water molecule at the tip of the protrusion enters the organic phase by the breakup of a single hydrogen bond.

  15. Linking well-tempered metadynamics simulations with experiments.

    PubMed

    Barducci, Alessandro; Bonomi, Massimiliano; Parrinello, Michele

    2010-05-19

    Linking experiments with the atomistic resolution provided by molecular dynamics simulations can shed light on the structure and dynamics of protein-disordered states. The sampling limitations of classical molecular dynamics can be overcome using metadynamics, which is based on the introduction of a history-dependent bias on a small number of suitably chosen collective variables. Even if such bias distorts the probability distribution of the other degrees of freedom, the equilibrium Boltzmann distribution can be reconstructed using a recently developed reweighting algorithm. Quantitative comparison with experimental data is thus possible. Here we show the potential of this combined approach by characterizing the conformational ensemble explored by a 13-residue helix-forming peptide by means of a well-tempered metadynamics/parallel tempering approach and comparing the reconstructed nuclear magnetic resonance scalar couplings with experimental data. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex.

    PubMed

    Bello, Martiniano; Correa-Basurto, José

    2016-04-01

    Although crystallographic data have provided important molecular insight into the interactions in the pMHC-TCR complex, the inherent features of this structural approach cause it to only provide a static picture of the interactions. While unbiased molecular dynamics simulations (UMDSs) have provided important information about the dynamic structural behavior of the pMHC-TCR complex, most of them have modeled the pMHC-TCR complex as soluble, when in physiological conditions, this complex is membrane bound; therefore, following this latter UMDS protocol might hamper important dynamic results. In this contribution, we performed three independent 300 ns-long UMDSs of the pMHCII-TCR complex anchored in two opposing membranes to explore the structural and energetic properties of the recognition of pMHCII by the TCR. The conformational ensemble generated through UMDSs was subjected to clustering and Cartesian principal component analyses (cPCA) to explore the dynamical behavior of the pMHCII-TCR association. Furthermore, based on the conformational population sampled through UMDSs, the effective binding free energy, per-residue free energy decomposition, and alanine scanning mutations were explored for the native pMHCII-TCR complex, as well as for 12 mutations (p1-p12MHCII-TCR) introduced in the native peptide. Clustering analyses and cPCA provide insight into the rocking motion of the TCR onto pMHCII, together with the presence of new electrostatic interactions not observed through crystallographic methods. Energetic results provide evidence of the main contributors to the pMHC-TCR complex formation as well as the key residues involved in this molecular recognition process.

  17. Mimicking coarse-grained simulations without coarse-graining: enhanced sampling by damping short-range interactions.

    PubMed

    Wei, Dongshan; Wang, Feng

    2010-08-28

    The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.

  18. Mimicking coarse-grained simulations without coarse-graining: Enhanced sampling by damping short-range interactions

    NASA Astrophysics Data System (ADS)

    Wei, Dongshan; Wang, Feng

    2010-08-01

    The damped-short-range-interaction (DSRI) method is proposed to mimic coarse-grained simulations by propagating an atomistic scale system on a smoothed potential energy surface. The DSRI method has the benefit of enhanced sampling provided by a typical coarse-grained simulation without the need to perform coarse-graining. Our method was used to simulate liquid water, alanine dipeptide folding, and the self-assembly of dimyristoylphosphatidylcholine lipid. In each case, our method appreciably accelerated the dynamics without significantly changing the free energy surface. Additional insights from DSRI simulations and the promise of coupling our DSRI method with Hamiltonian replica-exchange molecular dynamics are discussed.

  19. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-01

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  20. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.

  1. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  2. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations

    PubMed Central

    Miao, Yinglong; Walker, Ross C.; Jinek, Martin; McCammon, J. Andrew

    2017-01-01

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature, 527, 110–113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9. PMID:28652374

  3. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

    PubMed

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2017-07-11

    CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) Nature , 527 , 110-113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9.

  4. Pickett angles and Cremer-Pople coordinates as collective variables for the enhanced sampling of six-membered ring conformations

    NASA Astrophysics Data System (ADS)

    Sega, M.; Autieri, E.; Pederiva, F.

    2011-01-01

    Although completely equivalent for the description of puckered ring conformers, the two popular coordinates sets of Strauss-Pickett dihedral angles and Cremer-Pople spherical coordinates are shown to have contrasting features when employed as collective variables in free-energy calculations with accelerated sampling techniques. Results from a 100 ns molecular dynamics simulation at conformational equilibrium and from combined metadynamics/umbrella sampling calculations of glucose are exploited to elucidate these differences.

  5. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  6. A new beaded carbon molecular sieve sorbent for {sup 222}Rn monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpitta, S.C.

    1996-05-01

    A new commercially available beaded carbon molecular sieve sorbent, Carboxen-564 (20/45 mesh), was tested and compared to Calgon-PCB (40/80) activated carbon for its adsorptive and desorptive characteristics under controlled conditions of temperature (25{degrees})C and relative humidity (RH). The amount of water vapor adsorbed by the beaded carbon molecular sieve material was typically a factor of 4 lower than the activated carbon, with a concomitant fourfold increase in the {sup 222}Rn adsorption coefficient, K{sub Rn}. The maximum K{sub Rn} value for a thin layer of Carboxen-564, following a 2-d exposure at 40% RH, was 7.2 Bq kg{sup {minus}1} per Bq m{supmore » {minus}3}. The K{sub Rn} for a 1-cm bed, following a 2-d exposure was 5.5 Bq m{sup {minus}3}, a 25% reduction. under dynamic sampling conditions, where 0.4 g of the beaded carbon molecular sieve was contained in a 6 cm x 0.4 cm diameter tube, the maximum K{sub Rn} value was 6.5 Bq m{sup {minus}3} after 2.5 h of sampling at 29% RH when the input flow rate was 4.2 x 10{sup {minus}3} m{sup 3} h{sup {minus}1}. Kinetic studies were also conducted under passive sampling conditions. The data show that the {sup 222}Rn buildup time-constant for a thin layer of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material into air and into a commercially available toluene based liquid scintillation cocktail, were 2 h and 3 h, respectively. Carboxen`s high {sup 222}Rn adsorbing capacity, rapid kinetics, hydrophobicity and physical properties makes it an attractive alternative to other commercially available activated carbon used in passive and dynamic sampling devices. 18 refs., 7 figs.« less

  7. QUALITY ASSURANCE CONSIDERATIONS FOR USE OF THE FLUORIMAGER SI AND FRAGMENT ANALYSIS SOFTWARE

    EPA Science Inventory

    The Fluorimager SI (FSI) from Molecular Dynamics is one of several scanning instruments available for the detection of fluorescent emissions associated with DNA samples in a variety of matrices (agarose and polyacrylamide gels, membranes and microplates). In our laboratory, we m...

  8. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics.

    PubMed

    Han, Si-ping; van Duin, Adri C T; Goddard, William A; Strachan, Alejandro

    2011-05-26

    We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.

  9. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  10. Molecular Mobility of an Amorphous Chiral Pharmaceutical Compound: Impact of Chirality and Chemical Purity.

    PubMed

    Viel, Quentin; Delbreilh, Laurent; Coquerel, Gérard; Petit, Samuel; Dargent, Eric

    2017-08-17

    A dielectric relaxation spectroscopy (DRS) study was performed to investigate the molecular mobility of amorphous chiral diprophylline (DPL). For this purpose, both racemic DPL and a single enantiomer of DPL were considered. After fast cooling from the melt at very low temperature (-140 °C), progressive heating below and above the glass transition (T g ≈ 37 °C) induces two secondary relaxations (γ- and δ-) and primary relaxations (α-) for both enantiomeric compositions. After chemical purification of our samples by means of cooling recrystallization, no γ-process could be detected by DRS. Hence, it was highlighted that the molecular mobility in the glassy state is influenced by the presence of theophylline (TPH), the main impurity in DPL samples. We also proved that the dynamic behavior of a single enantiomer and the racemic mixture of the same purified compound are quasi-identical. This study demonstrates that the relative stability and the molecular mobility of chiral amorphous drugs are strongly sensitive to chemical purity.

  11. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources. PMID:21569575

  12. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  13. Update on the Culicoides sonorensis transcriptome project: a peek into the molecular biology of the midge

    USDA-ARS?s Scientific Manuscript database

    Next Generation Sequencing is transforming the way scientists collect and measure an organism’s genetic background and gene dynamics, while bioinformatics and super-computing are merging to facilitate parallel sample computation and interpretation at unprecedented speeds. Analyzing the complete gene...

  14. A self-learning algorithm for biased molecular dynamics

    PubMed Central

    Tribello, Gareth A.; Ceriotti, Michele; Parrinello, Michele

    2010-01-01

    A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences. PMID:20876135

  15. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    NASA Astrophysics Data System (ADS)

    Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian

    2010-09-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  16. Variational Identification of Markovian Transition States

    NASA Astrophysics Data System (ADS)

    Martini, Linda; Kells, Adam; Covino, Roberto; Hummer, Gerhard; Buchete, Nicolae-Viorel; Rosta, Edina

    2017-07-01

    We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala5 , and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.

  17. Machine learning molecular dynamics for the simulation of infrared spectra.

    PubMed

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  18. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal.

    PubMed

    Neale, Chris; Madill, Chris; Rauscher, Sarah; Pomès, Régis

    2013-08-13

    All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the amount of sampling that is required to resolve these sampling errors. Finally, we extend our simulations and verify that the conformational autocorrelation times estimated by the transmission factor accurately predict correlation times that exceed the simulation time scale-something that, to our knowledge, has never before been achieved.

  19. Sampling Long- versus Short-Range Interactions Defines the Ability of Force Fields To Reproduce the Dynamics of Intrinsically Disordered Proteins.

    PubMed

    Mercadante, Davide; Wagner, Johannes A; Aramburu, Iker V; Lemke, Edward A; Gräter, Frauke

    2017-09-12

    Molecular dynamics (MD) simulations have valuably complemented experiments describing the dynamics of intrinsically disordered proteins (IDPs), particularly since the proposal of models to solve the artificial collapse of IDPs in silico. Such models suggest redefining nonbonded interactions, by either increasing water dispersion forces or adopting the Kirkwood-Buff force field. These approaches yield extended conformers that better comply with experiments, but it is unclear if they all sample the same intrachain dynamics of IDPs. We have tested this by employing MD simulations and single-molecule Förster resonance energy transfer spectroscopy to sample the dimensions of systems with different sequence compositions, namely strong and weak polyelectrolytes. For strong polyelectrolytes in which charge effects dominate, all the proposed solutions equally reproduce the expected ensemble's dimensions. For weak polyelectrolytes, at lower cutoffs, force fields abnormally alter intrachain dynamics, overestimating excluded volume over chain flexibility or reporting no difference between the dynamics of different chains. The TIP4PD water model alone can reproduce experimentally observed changes in extensions (dimensions), but not quantitatively and with only weak statistical significance. Force field limitations are reversed with increased interaction cutoffs, showing that chain dynamics are critically defined by the presence of long-range interactions. Force field analysis aside, our study provides the first insights into how long-range interactions critically define IDP dimensions and raises the question of which length range is crucial to correctly sample the overall dimensions and internal dynamics of the large group of weakly charged yet highly polar IDPs.

  20. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-05-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  1. Quantitative Assessment of Molecular Dynamics Sampling for Flexible Systems.

    PubMed

    Nemec, Mike; Hoffmann, Daniel

    2017-02-14

    Molecular dynamics (MD) simulation is a natural method for the study of flexible molecules but at the same time is limited by the large size of the conformational space of these molecules. We ask by how much the MD sampling quality for flexible molecules can be improved by two means: the use of diverse sets of trajectories starting from different initial conformations to detect deviations between samples and sampling with enhanced methods such as accelerated MD (aMD) or scaled MD (sMD) that distort the energy landscape in controlled ways. To this end, we test the effects of these approaches on MD simulations of two flexible biomolecules in aqueous solution, Met-Enkephalin (5 amino acids) and HIV-1 gp120 V3 (a cycle of 35 amino acids). We assess the convergence of the sampling quantitatively with known, extensive measures of cluster number N c and cluster distribution entropy S c and with two new quantities, conformational overlap O conf and density overlap O dens , both conveniently ranging from 0 to 1. These new overlap measures quantify self-consistency of sampling in multitrajectory MD experiments, a necessary condition for converged sampling. A comprehensive assessment of sampling quality of MD experiments identifies the combination of diverse trajectory sets and aMD as the most efficient approach among those tested. However, analysis of O dens between conventional and aMD trajectories also reveals that we have not completely corrected aMD sampling for the distorted energy landscape. Moreover, for V3, the courses of N c and O dens indicate that much higher resources than those generally invested today will probably be needed to achieve convergence. The comparative analysis also shows that conventional MD simulations with insufficient sampling can be easily misinterpreted as being converged.

  2. Molecular Analysis of Flood Deposits in the Tennessee River Valley: Implications for Understanding Carbon Cycling in Fluvial Environments and Anthropogenic Impacts

    NASA Astrophysics Data System (ADS)

    Blackaby, E.; Craven, O. D.; Hockaday, W. C.; Forman, S. L.; Stinchcomb, G. E.

    2017-12-01

    The middle Tennessee River Valley contains both historic and prehistoric (>AD 1600) flood deposits. Stratigraphic sequences of stacked flood deposits that often bury soils provide new insights on organic matter transported and preserved prior to and after European colonization. This study focused on understanding carbon cycling within a dynamic fluvial system and quantifying the anthropogenic effect on flood processes through the analysis of molecular components of the organic matter. The data may be helpful in discerning the organic geochemical fingerprint for historic and prehistoric flood deposits. Ten samples were collected from three sites at varying depths and dated using optically stimulated luminescence (OSL). All samples underwent solid-state cross polar 13C NMR analysis at twelve kilohertz, and a molecular mixing model (MMM) was used to determine the molecular components of the organic matter present in each sample. The MMM categorized carbon molecules present in each sample in terms of carbohydrate, protein, lipid, lignin, char, or pure carbonyl. Char was the most prominent molecular component of all ten samples ranging from 28.7 to 55.9% and comprised larger percentages in prehistoric deposits. The historic deposits, while still char dominated, showed more molecular diversity with higher percentages in non-char carbon groups. The carbonyl, lipid, and carbohydrate groups are present throughout all the samples with the carbonyl ranging from 9.3 to 31.4%, the lipid from 5.5 to 16.7%, and the carbohydrate from 4.4 to 16.9%. The high amount of carbonyl throughout the samples indicates that the deposits existed in a highly oxidizing environment. Differences in the presence and amount of carbon groups between historic and prehistoric flood deposits potentially reflect diagenic alternation of organic matter through time, changes in human land use, or some combination processes. These preliminary results possibly indicate changes in carbon pools accessed with European cultivation and continued degradation of organic moieties during a ca. 400 years burial, and mostly in oxidizing conditions.

  3. Influence of Multidimensionality on Convergence of Sampling in Protein Simulation

    NASA Astrophysics Data System (ADS)

    Metsugi, Shoichi

    2005-06-01

    We study the problem of convergence of sampling in protein simulation originating in the multidimensionality of protein’s conformational space. Since several important physical quantities are given by second moments of dynamical variables, we attempt to obtain the time of simulation necessary for their sufficient convergence. We perform a molecular dynamics simulation of a protein and the subsequent principal component (PC) analysis as a function of simulation time T. As T increases, PC vectors with smaller amplitude of variations are identified and their amplitudes are equilibrated before identifying and equilibrating vectors with larger amplitude of variations. This sequential identification and equilibration mechanism makes protein simulation a useful method although it has an intrinsic multidimensional nature.

  4. Comparison Between Self-Guided Langevin Dynamics and Molecular Dynamics Simulations for Structure Refinement of Protein Loop Conformations

    DTIC Science & Technology

    2011-01-01

    SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18 . NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON a. REPORT...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39- 18 sampling is based on...atom distance-scaled ideal-gas reference state (DFIRE-AA) statistical potential func- tion.[ 18 ] The third approach is the Rosetta all-atom energy func

  5. Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei; Sim, Adelene Y. L.; Lee, Hwee Kuan

    2015-08-01

    We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.

  6. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent

    PubMed Central

    Juraszek, J.; Bolhuis, P. G.

    2006-01-01

    We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding. PMID:17035504

  7. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the dynamics of nano-confined and interfacial water in more disordered phases (LDH, clays, cement, etc.), for which much less initial structural information is available.

  8. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with alpha and alpha+beta Proteins.

    PubMed

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A

    2009-03-10

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster.

  9. Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with α and α+β Proteins

    PubMed Central

    Czaplewski, Cezary; Kalinowski, Sebastian; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The replica exchange (RE) method is increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. Recently, we implemented the united-residue UNRES force field for mesoscopic MD. Initial results from UNRES MD simulations show that we are able to simulate folding events that take place in a microsecond or even a millisecond time scale. To speed up the search further, we applied the multiplexing replica exchange molecular dynamics (MREMD) method. The multiplexed variant (MREMD) of the RE method, developed by Rhee and Pande, differs from the original RE method in that several trajectories are run at a given temperature. Each set of trajectories run at a different temperature constitutes a layer. Exchanges are attempted not only within a single layer but also between layers. The code has been parallelized and scales up to 4000 processors. We present a comparison of canonical MD, REMD, and MREMD simulations of protein folding with the UNRES force-field. We demonstrate that the multiplexed procedure increases the power of replica exchange MD considerably and convergence of the thermodynamic quantities is achieved much faster. PMID:20161452

  10. Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.

    PubMed

    Haustein, Elke; Schwille, Petra

    2003-02-01

    Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.

  11. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.

    PubMed

    Okimoto, Noriaki; Suenaga, Atsushi; Taiji, Makoto

    2017-11-01

    In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein-ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski's equality was employed compared with the second-order cumulant expansion equation of Jarzynski's equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.

  12. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    PubMed

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  13. Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Skjaerven, Lars; Grant, Barry; Muga, Arturo; Teigen, Knut; McCammon, J. Andrew; Reuter, Nathalie; Martinez, Aurora

    2011-01-01

    GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. PMID:21423709

  14. The universality of β-hairpin misfolding indicated by molecular dynamics simulations.

    PubMed

    Shao, Qiang; Wang, Jinan; Shi, Jiye; Zhu, Weiliang

    2013-10-28

    Previous molecular dynamics simulations showed that besides the experimentally measured folded structures, several β-structured polypeptides could also have misfolded "out-of-register" structures. Through the enhanced sampling molecular dynamics simulations on a series of polypeptides using either implicit or explicit solvent model, the present study systematically investigated the universality of β-hairpin misfolding and its determinants. It was observed that the misfolding could take place for almost all polypeptides under study, especially in the presence of weak side chain hydrophobicity. Moreover, the observed misfolded structures for various polypeptides share the following common features: (1) the turn length in misfolded structure is one-residue shorter than that in folded structure; (2) the hydrophobic side chains on the two strands are pointed to the opposite directions instead of packing in the same direction to form hydrophobic core cluster in the folded structure; and (3) the misfolded structure is one-residue-shifted asymmetric β-hairpin structure. The detailed analysis suggested that the misfolding of β-hairpin is the result of the competition between the formation of the alterable turn configurations and the inter-strand hydrophobic interactions. These predictions are desired to be tested by experiments.

  15. The universality of β-hairpin misfolding indicated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shao, Qiang; Wang, Jinan; Shi, Jiye; Zhu, Weiliang

    2013-10-01

    Previous molecular dynamics simulations showed that besides the experimentally measured folded structures, several β-structured polypeptides could also have misfolded "out-of-register" structures. Through the enhanced sampling molecular dynamics simulations on a series of polypeptides using either implicit or explicit solvent model, the present study systematically investigated the universality of β-hairpin misfolding and its determinants. It was observed that the misfolding could take place for almost all polypeptides under study, especially in the presence of weak side chain hydrophobicity. Moreover, the observed misfolded structures for various polypeptides share the following common features: (1) the turn length in misfolded structure is one-residue shorter than that in folded structure; (2) the hydrophobic side chains on the two strands are pointed to the opposite directions instead of packing in the same direction to form hydrophobic core cluster in the folded structure; and (3) the misfolded structure is one-residue-shifted asymmetric β-hairpin structure. The detailed analysis suggested that the misfolding of β-hairpin is the result of the competition between the formation of the alterable turn configurations and the inter-strand hydrophobic interactions. These predictions are desired to be tested by experiments.

  16. Molecular dynamics and Monte Carlo simulations for protein-ligand binding and inhibitor design.

    PubMed

    Cole, Daniel J; Tirado-Rives, Julian; Jorgensen, William L

    2015-05-01

    Non-nucleoside inhibitors of HIV reverse transcriptase are an important component of treatment against HIV infection. Novel inhibitors are sought that increase potency against variants that contain the Tyr181Cys mutation. Molecular dynamics based free energy perturbation simulations have been run to study factors that contribute to protein-ligand binding, and the results are compared with those from previous Monte Carlo based simulations and activity data. Predictions of protein-ligand binding modes are very consistent for the two simulation methods; the accord is attributed to the use of an enhanced sampling protocol. The Tyr181Cys binding pocket supports large, hydrophobic substituents, which is in good agreement with experiment. Although some discrepancies exist between the results of the two simulation methods and experiment, free energy perturbation simulations can be used to rapidly test small molecules for gains in binding affinity. Free energy perturbation methods show promise in providing fast, reliable and accurate data that can be used to complement experiment in lead optimization projects. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Copper nanocluster growth at experimental conditions using temperature accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Dias, C. S.; Cadilhe, A. C.; Voter, A. F.

    2009-03-01

    We study the dynamics of vapor phase cluster growth near experimental conditions of pressure at temperatures below 200K. To this end, we carried out temperature accelerated dynamics (TAD) simulations at different vapor pressures to characterize the morphology of the resulting nanoparticles, which leads to a range of values of the flux of impinging atoms at fixed vapor temperature. At typical experimental pressures of 10-3-10-4 bar TAD provides substantial boost over regular Molecular Dynamics (MD). TAD is also advantageous over MD, regarding the sampling of the network of visited states, which provides a deeper understanding of the evolution of the system. We characterize the growth of such clusters at different vapor pressures.

  18. Combined Monte Carlo/torsion-angle molecular dynamics for ensemble modeling of proteins, nucleic acids and carbohydrates.

    PubMed

    Zhang, Weihong; Howell, Steven C; Wright, David W; Heindel, Andrew; Qiu, Xiangyun; Chen, Jianhan; Curtis, Joseph E

    2017-05-01

    We describe a general method to use Monte Carlo simulation followed by torsion-angle molecular dynamics simulations to create ensembles of structures to model a wide variety of soft-matter biological systems. Our particular emphasis is focused on modeling low-resolution small-angle scattering and reflectivity structural data. We provide examples of this method applied to HIV-1 Gag protein and derived fragment proteins, TraI protein, linear B-DNA, a nucleosome core particle, and a glycosylated monoclonal antibody. This procedure will enable a large community of researchers to model low-resolution experimental data with greater accuracy by using robust physics based simulation and sampling methods which are a significant improvement over traditional methods used to interpret such data. Published by Elsevier Inc.

  19. Method for construction of a biased potential for hyperdynamic simulation of atomic systems

    NASA Astrophysics Data System (ADS)

    Duda, E. V.; Kornich, G. V.

    2017-10-01

    An approach to constructing a biased potential for hyperdynamic simulation of atomic systems is considered. Using this approach, the diffusion of an atom adsorbed on the surface of a two-dimensional crystal and a vacancy in the bulk of the crystal are simulated. The influence of the variation in the potential barriers due to thermal vibrations of atoms on the results of calculations is discussed. It is shown that the bias of the potential in the hyperdynamic simulation makes it possible to obtain statistical samples of transitions of atomic systems between states, similar to those given by classical molecular dynamics. However, hyperdynamics significantly accelerates computations in comparison with molecular dynamics in the case of temperature-activated transitions and the associated processes in atomic systems.

  20. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  1. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    PubMed

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. 2009 Wiley Periodicals, Inc.

  2. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  3. AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.

    PubMed

    Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2014-10-27

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.

  4. Bayesian ensemble refinement by replica simulations and reweighting.

    PubMed

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-28

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  5. Bayesian ensemble refinement by replica simulations and reweighting

    NASA Astrophysics Data System (ADS)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  6. General trends of dihedral conformational transitions in a globular protein.

    PubMed

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C; McCammon, J Andrew

    2016-04-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ∼ 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. © 2016 Wiley Periodicals, Inc.

  7. AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble

    PubMed Central

    2015-01-01

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854

  8. General trends of dihedral conformational transitions in a globular protein

    DOE PAGES

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; ...

    2016-02-15

    In this paper, dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed bymore » the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. In conclusion, these general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins.« less

  9. Improved Statistical Sampling and Accuracy with Accelerated Molecular Dynamics on Rotatable Torsions.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2012-11-13

    In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.

  10. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics.

    PubMed

    Kumar, Avishek; Campitelli, Paul; Thorpe, M F; Ozkan, S Banu

    2015-12-01

    The most successful protein structure prediction methods to date have been template-based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug-design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr-REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native-like structures from a template and to provide a set of persistent contacts to be employed during re-folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. © 2015 Wiley Periodicals, Inc.

  11. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    PubMed

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  12. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2011-12-01

    In this work, we have evaluated how well the general assisted model building with energy refinement (AMBER) force field performs in studying the dynamic properties of liquids. Diffusion coefficients (D) have been predicted for 17 solvents, five organic compounds in aqueous solutions, four proteins in aqueous solutions, and nine organic compounds in nonaqueous solutions. An efficient sampling strategy has been proposed and tested in the calculation of the diffusion coefficients of solutes in solutions. There are two major findings of this study. First of all, the diffusion coefficients of organic solutes in aqueous solution can be well predicted: the average unsigned errors and the root mean square errors are 0.137 and 0.171 × 10(-5) cm(-2) s(-1), respectively. Second, although the absolute values of D cannot be predicted, good correlations have been achieved for eight organic solvents with experimental data (R(2) = 0.784), four proteins in aqueous solutions (R(2) = 0.996), and nine organic compounds in nonaqueous solutions (R(2) = 0.834). The temperature dependent behaviors of three solvents, namely, TIP3P water, dimethyl sulfoxide, and cyclohexane have been studied. The major molecular dynamics (MD) settings, such as the sizes of simulation boxes and with/without wrapping the coordinates of MD snapshots into the primary simulation boxes have been explored. We have concluded that our sampling strategy that averaging the mean square displacement collected in multiple short-MD simulations is efficient in predicting diffusion coefficients of solutes at infinite dilution. Copyright © 2011 Wiley Periodicals, Inc.

  13. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  14. Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

    NASA Astrophysics Data System (ADS)

    Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.

    2011-08-01

    Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

  15. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  16. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling

    NASA Astrophysics Data System (ADS)

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  17. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.

    PubMed

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  18. GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins

    PubMed Central

    Louet, Maxime; Martinez, Jean; Floquet, Nicolas

    2012-01-01

    After extra-cellular stimulation of G-Protein Coupled Receptors (GPCRs), GDP/GTP exchange appears as the key, rate limiting step of the intracellular activation cycle of heterotrimeric G-proteins. Despite the availability of a large number of X-ray structures, the mechanism of GDP release out of heterotrimeric G-proteins still remains unknown at the molecular level. Starting from the available X-ray structure, extensive unconstrained/constrained molecular dynamics simulations were performed on the complete membrane-anchored Gi heterotrimer complexed to GDP, for a total simulation time overcoming 500 ns. By combining Targeted Molecular Dynamics (TMD) and free energy profiles reconstruction by umbrella sampling, our data suggest that the release of GDP was much more favored on its phosphate side. Interestingly, upon the forced extraction of GDP on this side, the whole protein encountered large, collective motions in perfect agreement with those we described previously including a domain to domain motion between the two ras-like and helical sub-domains of Gα. PMID:22829757

  19. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)

  20. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription.

    PubMed

    Wu, Shaogui

    2017-06-01

    Two magnesium ions play important roles in nucleotide addition cycle (NAC) of gene transcription. However, at the end of each NAC, why does one ion stay in the active site while the other ion leaves with product pyrophosphate (PP i )? This problem still remains obscure. In this work, we studied the problem using all-atom molecular dynamics simulation combined with steered molecular dynamics and umbrella sampling simulation methods. Our simulations reveal that although both ions are located in the active site after chemistry, their detailed positions are not symmetrical, leading to their different forces from surrounding groups. One ion makes weaker contacts with PP i than the whole protein. Hence, PP i release is less likely to take it away. The other one forms tighter contacts with PP i relative to the protein. The formed (Mg 2+ -PP i ) 2- complex is found to break the contacts with surrounding protein residues one by one so as to dissociate from the active site. This effectively avoids the coexistence of two ions in the active site after PP i release and guarantees a reasonable Mg 2+ ion number in the active site for the next NAC. The observations from this work can provide valuable information for comprehensively understanding the molecular mechanism of transcription. Proteins 2017; 85:1002-1007. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC)

    PubMed Central

    Galindo-Murillo, Rodrigo; Roe, Daniel R.; Cheatham, Thomas E.

    2014-01-01

    Background The structure and dynamics of DNA are critically related to its function. Molecular dynamics (MD) simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Methods MD simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale MD performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. Results These MD simulations —including one of the longest simulations of DNA published to date at ~44 μs—surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1–5 μs timescale. Conclusions We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. General Significance With access to large-scale GPU resources or the specialized MD engine “Anton” it is possibly for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. PMID:25219455

  2. Time-dependent compressibility of poly (methyl methacrylate) (PMMA) : an experimental and molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Sane, Sandeep Bhalchandra

    This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.

  3. Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation.

    PubMed

    Dashti, Narjes; Ali, Nedaa; Salamah, Samar; Khanafer, Majida; Al-Shamy, Ghada; Al-Awadhi, Husain; Radwan, Samir S

    2018-04-15

    To analyze microbial communities in environmental samples, this study combined Denaturing Gradient Gel Electrophoresis of amplified 16S rRNA-genes in total genomic DNA extracts from those samples with gene sequencing. The environmental samples studied were oily seawater and soil samples, that had been bioaugmented with natural materials rich in hydrocarbonoclastic bacteria. This molecular approach revealed much more diverse bacterial taxa than the culture-dependent method we had used in an earlier study for the analysis of the same samples. The study described the dynamics of bacterial communities during bioremediation. The main limitation associated with this molecular approach, namely of not distinguishing hydrocarbonoclastic taxa from others, was overcome by consulting the literature for the hydrocarbonoclastic potential of taxa related to those identified in this study. By doing so, it was concluded that the hydrocarbonoclastic bacterial taxa were much more diverse than those captured by the culture-dependent approach. The molecular analysis also revealed the frequent occurrence of nifH-genes in the total genomic DNA extracts of all the studied environmental samples, which reflects a nitrogen-fixation potential. Nitrogen fertilization is long known to enhance microbial oil-bioremediation. The study revealed that bioaugmentation using plant rhizospheres or soil with long history of oil-pollution was more effective in oil-removal in the desert soil than in seawater microcosms. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Collective Behavior of Water on Platinum

    NASA Astrophysics Data System (ADS)

    Limmer, David; Willard, Adam; Chandler, David

    2012-02-01

    We present the results of molecular dynamics simulations of a interface between water and a platinum electrode. Using importance sampling techniques we probe a variety of collective phenomenon that emerge at the interface. We consider platinum electrodes with two different geometries and discuss how different behaviors result from a competition between geometrical frustration and favorable local interactions.

  5. Gregg T. Beckham | NREL

    Science.gov Websites

    Molecular Dynamics, and a suite of free energy methods such as MD Umbrella Sampling, Equilibrium Path chain on the crystal surface, and the degree of crystallinity in the substrate. We have used free energy shows the free energy results for edge, middle, and corner chains for all four types of cellulose. All

  6. Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation

    DOE PAGES

    Tang, L.; Wen, T. Q.; Wang, N.; ...

    2018-03-06

    The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less

  7. Structural and chemical orders in N i 64.5 Z r 35.5 metallic glass by molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, L.; Wen, T. Q.; Wang, N.

    The atomic structure of Ni 64.5Zr 35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni 64.5Zr 35.5, i.e., Mixed- Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICOCube and Twined-Cube clusters exhibit the characteristics ofmore » the crystalline B2 phase. In conclusion, our simulation results suggest that the weak glass-forming ability (GFA) of Ni 64.5Zr 35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs.« less

  8. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE PAGES

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...

    2017-11-07

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  9. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?

    PubMed

    Šponer, Jiří; Krepl, Miroslav; Banáš, Pavel; Kührová, Petra; Zgarbová, Marie; Jurečka, Petr; Havrila, Marek; Otyepka, Michal

    2017-05-01

    We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  10. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  11. The Equation of State of Triamino-Trinitrobenzene from Density Functional Theory Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan R.

    2017-06-01

    The US-uP shock Hugoniot has long been the fundamental relationship used to experimentally define the unreacted equations of state of explosives. These experiments are typically performed on porous or composite samples, providing data that is specific to the density of the samples being tested. However, If the crystalline Hugoniot is known, analytical or numerical methods can be used to transform the US-uP relationship to describe the shock response of the porous material. To obtain an accurate crystalline equation of state for TATB, density functional theory based molecular dynamics were used to map out points on the Hugoniot. Since this method provides the pressure, temperature, density, and internal energy at each point on the Hugoniot, a complete equation of state can be constructed. Isotropic, uniaxial, hydrostatic, and isothermal compression of the simulation cell were used to examine TATB under different thermodynamic conditions. A cusp is observed in the Hugoniot that correlates to loss of aromaticity of the molecule. Results of the calculations will be presented and compared to the available experimental data. Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque NM.

  12. Structural and chemical orders in N i64.5Z r35.5 metallic glass by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Tang, L.; Wen, T. Q.; Wang, N.; Sun, Y.; Zhang, F.; Yang, Z. J.; Ho, K. M.; Wang, C. Z.

    2018-03-01

    The atomic structure of N i64.5Z r35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the x-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types of dominant short-range order (SRO) motifs around Ni atoms in the glass sample of N i64.5Z r35.5 , i.e., mixed-icosahedron(ICO)-cube, intertwined-cube, and icosahedronlike clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the mixed-ICO-cube and intertwined-cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of N i64.5Z r35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline mixed-ICO-cube and intertwined-cube motifs.

  13. Backbone conformations and side chain flexibility of two somatostatin mimics investigated by molecular dynamics simulations.

    PubMed

    Interlandi, Gianluca

    2009-05-15

    Molecular dynamics simulations with two designed somatostatin mimics, SOM230 and SMS 201-995, were performed in explicit water for a total aggregated time of 208 ns. Analysis of the runs with SOM230 revealed the presence of two clusters of conformations. Strikingly, the two sampled conformers correspond to the two main X-ray structures in the asymmetric unit of SMS 201-995. Structural comparison between the residues of SOM230 and SMS 201-995 provides an explanation for the high binding affinity of SOM230 to four of five somatostatin receptors. Similarly, cluster analysis of the simulations with SMS 201-995 shows that the backbone of the peptide interconverts between its two main crystallographic conformers. The conformations of SMS 201-995 sampled in the two clusters violated two different sets of NOE distance constraints in agreement with a previous NMR study. Differences in side chain fluctuations between SOM230 and SMS 201-995 observed in the simulations may contribute to the relatively higher binding affinity of SOM230 to most somatostatin receptors.

  14. Time step rescaling recovers continuous-time dynamical properties for discrete-time Langevin integration of nonequilibrium systems.

    PubMed

    Sivak, David A; Chodera, John D; Crooks, Gavin E

    2014-06-19

    When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.

  15. Identification of Rare Lewis Oligosaccharide Conformers in Aqueous Solution Using Enhanced Sampling Molecular Dynamics.

    PubMed

    Alibay, Irfan; Burusco, Kepa K; Bruce, Neil J; Bryce, Richard A

    2018-03-08

    Determining the conformations accessible to carbohydrate ligands in aqueous solution is important for understanding their biological action. In this work, we evaluate the conformational free-energy surfaces of Lewis oligosaccharides in explicit aqueous solvent using a multidimensional variant of the swarm-enhanced sampling molecular dynamics (msesMD) method; we compare with multi-microsecond unbiased MD simulations, umbrella sampling, and accelerated MD approaches. For the sialyl Lewis A tetrasaccharide, msesMD simulations in aqueous solution predict conformer landscapes in general agreement with the other biased methods and with triplicate unbiased 10 μs trajectories; these simulations find a predominance of closed conformer and a range of low-occupancy open forms. The msesMD simulations also suggest closed-to-open transitions in the tetrasaccharide are facilitated by changes in ring puckering of its GlcNAc residue away from the 4 C 1 form, in line with previous work. For sialyl Lewis X tetrasaccharide, msesMD simulations predict a minor population of an open form in solution corresponding to a rare lectin-bound pose observed crystallographically. Overall, from comparison with biased MD calculations, we find that triplicate 10 μs unbiased MD simulations may not be enough to fully sample glycan conformations in aqueous solution. However, the computational efficiency and intuitive approach of the msesMD method suggest potential for its application in glycomics as a tool for analysis of oligosaccharide conformation.

  16. Toll-Like Receptor-9-Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer

  17. Fixman compensating potential for general branched molecules

    NASA Astrophysics Data System (ADS)

    Jain, Abhinandan; Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan

    2013-12-01

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.

  18. Dynamics at a Peptide-TiO2 Anatase (101) Interface.

    PubMed

    Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C; Arcangeli, Caterina

    2017-09-28

    The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. Here, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk water phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. The peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.

  19. Dynamics at a Peptide–TiO 2 Anatase (101) Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C.

    The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. In this paper, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk watermore » phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. Finally, the peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.« less

  20. Quantum Dynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  1. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.

    PubMed

    Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L

    2018-06-25

    Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.

  2. Dynamics at a Peptide–TiO 2 Anatase (101) Interface

    DOE PAGES

    Polimeni, Marco; Petridis, Loukas; Smith, Jeremy C.; ...

    2017-08-29

    The interface between biological matter and inorganic materials is a widely investigated research topic due to possible applications in biomedicine and nanotechnology. In this context, the molecular level adsorption mechanism that drives specific recognition between small peptide sequences and inorganic surfaces represents an important topic likely to provide much information useful for designing bioderived materials. In this paper, we investigate the dynamics at the interface between a Ti-binding peptide sequence (AMRKLPDAPGMHC) and a TiO 2 anatase surface by using molecular dynamics (MD) simulations. In the simulations the adsorption mechanism is characterized by diffusion of the peptide from the bulk watermore » phase toward the TiO 2 surface, followed by the anchoring of the peptide to the surface. The anchoring is mediated by the interfacial water layers by means of the charged groups of the side chains of the peptide. Finally, the peptide samples anchored and dissociated states from the surface and its conformation is not affected by the surface when anchored.« less

  3. Molecular Surveillance as Monitoring Tool for Drug-Resistant Plasmodium falciparum in Suriname

    PubMed Central

    Adhin, Malti R.; Labadie-Bracho, Mergiory; Bretas, Gustavo

    2013-01-01

    The aim of this translational study was to show the use of molecular surveillance for polymorphisms and copy number as a monitoring tool to track the emergence and dynamics of Plasmodium falciparum drug resistance. A molecular baseline for Suriname was established in 2005, with P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance (pfmdr1) markers and copy number in 40 samples. The baseline results revealed the existence of a uniformly distributed mutated genotype corresponding with the fully mefloquine-sensitive 7G8-like genotype (Y184F, S1034C, N1042D, and D1246Y) and a fixed pfmdr1 N86 haplotype. All samples harbored the pivotal pfcrtK76T mutation, showing that chloroquine reintroduction should not yet be contemplated in Suriname. After 5 years, 40 samples were assessed to trace temporal changes in the status of pfmdr1 polymorphisms and copy number and showed minor genetic alterations in the pfmdr1 gene and no significant changes in copy number, thus providing scientific support for prolongation of the current drug policy in Suriname. PMID:23836573

  4. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  5. Tackling sampling challenges in biomolecular simulations.

    PubMed

    Barducci, Alessandro; Pfaendtner, Jim; Bonomi, Massimiliano

    2015-01-01

    Molecular dynamics (MD) simulations are a powerful tool to give an atomistic insight into the structure and dynamics of proteins. However, the time scales accessible in standard simulations, which often do not match those in which interesting biological processes occur, limit their predictive capabilities. Many advanced sampling techniques have been proposed over the years to overcome this limitation. This chapter focuses on metadynamics, a method based on the introduction of a time-dependent bias potential to accelerate sampling and recover equilibrium properties of a few descriptors that are able to capture the complexity of a process at a coarse-grained level. The theory of metadynamics and its combination with other popular sampling techniques such as the replica exchange method is briefly presented. Practical applications of these techniques to the study of the Trp-Cage miniprotein folding are also illustrated. The examples contain a guide for performing these calculations with PLUMED, a plugin to perform enhanced sampling simulations in combination with many popular MD codes.

  6. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  7. Design and development of radioactive xenon gas purification and analysis system based on molecular sieves.

    PubMed

    Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M

    2018-10-01

    The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.

  8. Scaling analysis of [Fe(pyrazole)4]2[Nb(CN)8] molecular magnet

    NASA Astrophysics Data System (ADS)

    Konieczny, P.; Pełka, R.; Zieliński, P. M.; Pratt, F. L.; Pinkowicz, D.; Sieklucka, B.; Wasiutyński, T.

    2013-10-01

    The critical behaviour of the three dimensional (3D) molecular magnet {[FeII(pirazol)4]2[NbIV(CN)8]·4H2O}n has been studied with the use of experimental techniques such as ac magnetometry and zero field μSR spectroscopy. The sample orders magnetically below Tc=7.8 K. The measurements allowed to determine static exponents β, γ, and the dynamic exponent w. The resulting exponent values indicate that the studied system belongs to the universality class of the 3D Heisenberg model.

  9. Ionic Liquids Can Selectively Change the Conformational Free-Energy Landscape of Sugar Rings.

    PubMed

    Jarin, Zack; Pfaendtner, Jim

    2014-02-11

    We investigated the conformational free energy landscape of glucose solvated in water and in the ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) and 1-butyl-3-methylimidazoulim boron tetrafluoride ([Bmim][BF4]). To quantify equilibrium thermodynamic solvent effects, molecular dynamics simulations in conjunction with enhanced sampling based on the metadynamics framework were used. The results show that the solvent choice induces significant differences in the equilibrium ring structures, which may help further resolve the molecular mechanism governing IL-mediated cellulose dissolution.

  10. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Raff, L. M.; Malshe, M.; Hagan, M.; Doughan, D. I.; Rockley, M. G.; Komanduri, R.

    2005-02-01

    A neural network/trajectory approach is presented for the development of accurate potential-energy hypersurfaces that can be utilized to conduct ab initio molecular dynamics (AIMD) and Monte Carlo studies of gas-phase chemical reactions, nanometric cutting, and nanotribology, and of a variety of mechanical properties of importance in potential microelectromechanical systems applications. The method is sufficiently robust that it can be applied to a wide range of polyatomic systems. The overall method integrates ab initio electronic structure calculations with importance sampling techniques that permit the critical regions of configuration space to be determined. The computed ab initio energies and gradients are then accurately interpolated using neural networks (NN) rather than arbitrary parametrized analytical functional forms, moving interpolation or least-squares methods. The sampling method involves a tight integration of molecular dynamics calculations with neural networks that employ early stopping and regularization procedures to improve network performance and test for convergence. The procedure can be initiated using an empirical potential surface or direct dynamics. The accuracy and interpolation power of the method has been tested for two cases, the global potential surface for vinyl bromide undergoing unimolecular decomposition via four different reaction channels and nanometric cutting of silicon. The results show that the sampling methods permit the important regions of configuration space to be easily and rapidly identified, that convergence of the NN fit to the ab initio electronic structure database can be easily monitored, and that the interpolation accuracy of the NN fits is excellent, even for systems involving five atoms or more. The method permits a substantial computational speed and accuracy advantage over existing methods, is robust, and relatively easy to implement.

  11. Charge carrier dynamics of GaAs/AlGaAs asymmetric double quantum wells at room temperature studied by optical pump terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke

    2017-11-01

    Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.

  12. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  13. Free energy reconstruction from steered dynamics without post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less

  14. Enhanced sampling simulations to construct free-energy landscape of protein-partner substrate interaction.

    PubMed

    Ikebe, Jinzen; Umezawa, Koji; Higo, Junichi

    2016-03-01

    Molecular dynamics (MD) simulations using all-atom and explicit solvent models provide valuable information on the detailed behavior of protein-partner substrate binding at the atomic level. As the power of computational resources increase, MD simulations are being used more widely and easily. However, it is still difficult to investigate the thermodynamic properties of protein-partner substrate binding and protein folding with conventional MD simulations. Enhanced sampling methods have been developed to sample conformations that reflect equilibrium conditions in a more efficient manner than conventional MD simulations, thereby allowing the construction of accurate free-energy landscapes. In this review, we discuss these enhanced sampling methods using a series of case-by-case examples. In particular, we review enhanced sampling methods conforming to trivial trajectory parallelization, virtual-system coupled multicanonical MD, and adaptive lambda square dynamics. These methods have been recently developed based on the existing method of multicanonical MD simulation. Their applications are reviewed with an emphasis on describing their practical implementation. In our concluding remarks we explore extensions of the enhanced sampling methods that may allow for even more efficient sampling.

  15. Joshua Vermaas | NREL

    Science.gov Websites

    molecular dynamics simulations to explore biological interfaces, such as those found at the cell membrane or in lignocellulosic biomass. In particular, molecular dynamics can see in molecular detail the research toward fruitful results. Areas of Expertise Molecular dynamics Compound parameterization

  16. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent

    DTIC Science & Technology

    2012-01-01

    molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water

  17. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.

    PubMed

    Carvalho, Henrique F; Barbosa, Arménio J M; Roque, Ana C A; Iranzo, Olga; Branco, Ricardo J F

    2017-01-01

    Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be introduced to some useful open-source computational tools, including the GROMACS molecular dynamics simulation software package and ProDy for protein structural dynamics analysis.

  18. Melting of superheated molecular crystals

    NASA Astrophysics Data System (ADS)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  19. Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations

    PubMed Central

    2017-01-01

    In order to reliably predict and understand the breathing behavior of highly flexible metal–organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials. PMID:29131647

  20. Efficient Construction of Free Energy Profiles of Breathing Metal-Organic Frameworks Using Advanced Molecular Dynamics Simulations.

    PubMed

    Demuynck, Ruben; Rogge, Sven M J; Vanduyfhuys, Louis; Wieme, Jelle; Waroquier, Michel; Van Speybroeck, Veronique

    2017-12-12

    In order to reliably predict and understand the breathing behavior of highly flexible metal-organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a function of the unit cell volume of MIL-53(Al). The methods comprise free energy perturbation, thermodynamic integration, umbrella sampling, metadynamics, and variationally enhanced sampling. A series of molecular dynamics simulations have been performed in the frame of each of the five methods to describe structural transformations in flexible materials with the volume as the collective variable, which offers a unique opportunity to assess their computational efficiency. Subsequently, the most efficient method, umbrella sampling, is used to construct an accurate free energy profile at different temperatures for MIL-53(Al) from first principles at the PBE+D3(BJ) level of theory. This study yields insight into the importance of the different aspects such as entropy contributions and anharmonic contributions on the resulting free energy profile. As such, this thorough study provides unparalleled insight in the thermodynamics of the large structural deformations of flexible materials.

  1. Accelerating the Conformational Sampling of Intrinsically Disordered Proteins.

    PubMed

    Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko

    2014-11-11

    Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.

  2. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Roy, Pierre-Nicholas

    2018-03-01

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  3. Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures.

    PubMed

    Bishop, Kevin P; Roy, Pierre-Nicholas

    2018-03-14

    Free energy calculations are a crucial part of understanding chemical systems but are often computationally expensive for all but the simplest of systems. Various enhanced sampling techniques have been developed to improve the efficiency of these calculations in numerical simulations. However, the majority of these approaches have been applied using classical molecular dynamics. There are many situations where nuclear quantum effects impact the system of interest and a classical description fails to capture these details. In this work, path integral molecular dynamics has been used in conjunction with umbrella sampling, and it has been observed that correct results are only obtained when the umbrella sampling potential is applied to a single path integral bead post quantization. This method has been validated against a Lennard-Jones benchmark system before being applied to the more complicated water dimer system over a broad range of temperatures. Free energy profiles are obtained, and these are utilized in the calculation of the second virial coefficient as well as the change in free energy from the separated water monomers to the dimer. Comparisons to experimental and ground state calculation values from the literature are made for the second virial coefficient at higher temperature and the dissociation energy of the dimer in the ground state.

  4. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  5. Molecular dynamics force-field refinement against quasi-elastic neutron scattering data

    DOE PAGES

    Borreguero Calvo, Jose M.; Lynch, Vickie E.

    2015-11-23

    Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulationmore » due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.« less

  6. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  7. Structure and dynamics of single hydrophobic/ionic heteropolymers at the vapor-liquid interface of water.

    PubMed

    Vembanur, Srivathsan; Venkateshwaran, Vasudevan; Garde, Shekhar

    2014-04-29

    We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity.

  8. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    NASA Astrophysics Data System (ADS)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  9. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers.

    PubMed

    Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell

    2013-01-01

    Significant numbers of pre-school children are infected with Schistosoma mansoni in sub-Saharan Africa and are likely to play a role in parasite transmission. However, they are currently excluded from control programmes. Molecular phylogenetic studies have provided insights into the evolutionary origins and transmission dynamics of S. mansoni, but there has been no research into schistosome molecular epidemiology in pre-school children. Here, we investigated the genetic diversity and population structure of S. mansoni in pre-school children and mothers living in lakeshore communities in Uganda and monitored for changes over time after praziquantel treatment. Parasites were sampled from children (<6 years) and mothers enrolled in the longitudinal Schistosomiasis Mothers and Infants Study at baseline and at 6-, 12- and 18-month follow-up surveys. 1347 parasites from 35 mothers and 45 children were genotyped by direct sequencing of the cytochrome c oxidase (cox1) gene. The cox1 region was highly diverse with over 230 unique sequences identified. Parasite populations were genetically differentiated between lakes and non-synonymous mutations were more diverse at Lake Victoria than Lake Albert. Surprisingly, parasite populations sampled from children showed a similar genetic diversity to those sampled from mothers, pointing towards a non-linear relationship between duration of exposure and accumulation of parasite diversity. The genetic diversity six months after praziquantel treatment was similar to pre-treatment diversity. Our results confirm the substantial genetic diversity of S. mansoni in East Africa and provide significant insights into transmission dynamics within young children and mothers, important information for schistosomiasis control programmes.

  10. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.

    PubMed

    Voelz, Vincent A; Dill, Ken A; Chorny, Ilya

    2011-01-01

    To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.

  11. Collective translational and rotational Monte Carlo cluster move for general pairwise interaction

    NASA Astrophysics Data System (ADS)

    Růžička, Štěpán; Allen, Michael P.

    2014-09-01

    Virtual move Monte Carlo is a cluster algorithm which was originally developed for strongly attractive colloidal, molecular, or atomistic systems in order to both approximate the collective dynamics and avoid sampling of unphysical kinetic traps. In this paper, we present the algorithm in the form, which selects the moving cluster through a wider class of virtual states and which is applicable to general pairwise interactions, including hard-core repulsion. The newly proposed way of selecting the cluster increases the acceptance probability by up to several orders of magnitude, especially for rotational moves. The results have their applications in simulations of systems interacting via anisotropic potentials both to enhance the sampling of the phase space and to approximate the dynamics.

  12. Charting molecular free-energy landscapes with an atlas of collective variables

    NASA Astrophysics Data System (ADS)

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2016-11-01

    Collective variables (CVs) are a fundamental tool to understand molecular flexibility, to compute free energy landscapes, and to enhance sampling in molecular dynamics simulations. However, identifying suitable CVs is challenging, and is increasingly addressed with systematic data-driven manifold learning techniques. Here, we provide a flexible framework to model molecular systems in terms of a collection of locally valid and partially overlapping CVs: an atlas of CVs. The specific motivation for such a framework is to enhance the applicability and robustness of CVs based on manifold learning methods, which fail in the presence of periodicities in the underlying conformational manifold. More generally, using an atlas of CVs rather than a single chart may help us better describe different regions of conformational space. We develop the statistical mechanics foundation for our multi-chart description and propose an algorithmic implementation. The resulting atlas of data-based CVs are then used to enhance sampling and compute free energy surfaces in two model systems, alanine dipeptide and β-D-glucopyranose, whose conformational manifolds have toroidal and spherical topologies.

  13. Efficiently sampling conformations and pathways using the concurrent adaptive sampling (CAS) algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.

    2017-08-01

    Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.

  14. Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples.

    PubMed

    Jafari, M T; Rezaei, B; Zaker, B

    2009-05-01

    Application of ion mobility spectrometry (IMS) as the detection technique for a separation method based on molecular imprinted polymer (MIP) was investigated and evaluated for the first time. On the basis of the results obtained in this work, the MIP-IMS system can be used as a powerful technique for separation, preconcentration, and detection of the metronidazole drug in pharmaceutical and human serum samples. The method is exhaustively validated in terms of sensitivity, selectivity, recovery, reproducibility, and column capacity. The linear dynamic range of 0.05-70.00 microg/mL was obtained for the determination of metronidazole with IMS. The recovery of analyzed drug was calculated to be above 89%, and the relative standard deviation (RSD) was lower than 6% for all experiments. Various real samples were analyzed with the coupled techniques, and the results obtained revealed the efficient cleanup of the samples using MIP separation before the analysis by IMS as a detection technique.

  15. Raman acoustic levitation spectroscopy of red blood cells and Plasmodium falciparum trophozoites.

    PubMed

    Puskar, Ljiljana; Tuckermann, Rudolf; Frosch, Torsten; Popp, Jürgen; Ly, Vanalysa; McNaughton, Don; Wood, Bayden R

    2007-09-01

    Methods to probe the molecular structure of living cells are of paramount importance in understanding drug interactions and environmental influences in these complex dynamical systems. The coupling of an acoustic levitation device with a micro-Raman spectrometer provides a direct molecular probe of cellular chemistry in a containerless environment minimizing signal attenuation and eliminating the affects of adhesion to walls and interfaces. We show that the Raman acoustic levitation spectroscopic (RALS) approach can be used to monitor the heme dynamics of a levitated 5 microL suspension of red blood cells and to detect hemozoin in malaria infected cells. The spectra obtained have an excellent signal-to-noise ratio and demonstrate for the first time the utility of the technique as a diagnostic and monitoring tool for minute sample volumes of living animal cells.

  16. Molecular Dynamics Simulations Reveal an Interplay between SHAPE Reagent Binding and RNA Flexibility.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-01-18

    The function of RNA molecules usually depends on their overall fold and on the presence of specific structural motifs. Chemical probing methods are routinely used in combination with nearest-neighbor models to determine RNA secondary structure. Among the available methods, SHAPE is relevant due to its capability to probe all RNA nucleotides and the possibility to be used in vivo. However, the structural determinants for SHAPE reactivity and its mechanism of reaction are still unclear. Here molecular dynamics simulations and enhanced sampling techniques are used to predict the accessibility of nucleotide analogs and larger RNA structural motifs to SHAPE reagents. We show that local RNA reconformations are crucial in allowing reagents to reach the 2'-OH group of a particular nucleotide and that sugar pucker is a major structural factor influencing SHAPE reactivity.

  17. Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Juslin, N.; Erhart, P.; Nordlund, K.

    2007-05-01

    The interaction between energetic hydrogen and tungsten carbide (WC) is of interest both due to the use of hydrogen-containing plasmas in thin-film manufacturing and due to the presence of WC in the divertor of fusion reactors. In order to study this interaction, we have carried out molecular dynamics simulations of the low-energy bombardment of deuterium impinging onto crystalline as well as amorphous WC surfaces. We find that prolonged bombardment leads to the formation of an amorphous WC surface layer, regardless of the initial structure of the WC sample. Loosely bound hydrocarbons, which can erode by swift chemical sputtering, are formed at the surface. Carbon-terminated surfaces show larger sputtering yields than tungsten-terminated surfaces. In both cumulative and noncumulative simulations, C is seen to sputter preferentially. Implications for mixed material erosion in ITER are discussed.

  18. Role of Quantum Vibrations on the Structural, Electronic, and Optical Properties of 9-Methylguanine.

    PubMed

    Law, Yu Kay; Hassanali, Ali A

    2015-11-05

    In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base. The calculated absorption spectra using the different sampling protocols shows that the inclusion of nuclear quantum effects causes a significant broadening and red shift of the spectra bringing it into closer agreement with experiments.

  19. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE PAGES

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...

    2016-12-27

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  20. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  1. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  2. Single Biomolecules at Cryogenic Temperatures: From Structure to Dynamics

    NASA Astrophysics Data System (ADS)

    Hofmann, Clemens; Kulzer, Florian; Zondervan, Rob; Köhler, Jürgen; Orrit, Michel

    Elucidating the dynamics of proteins remains a central and daunting challenge of molecular biology. In our contribution we discuss the relevance of lowtemperature observations not only to structure, but also to dynamics, and thereby to the function of proteins. We first review investigations on light-harvesting complexes to illustrate how increased photostability at low temperatures and spectral selection provide a deeper insight into the excitonic interactions of the chromophores and the dynamics of the protein scaffold. Furthermore, we introduce a novel technique that achieves controlled, reproducible temperature cycles of a microscopic sample on microsecond timescales. We discuss the potential of this technique as a tool to achieve repeatable single-molecule freeze-trapping and to overcome some of the limitations of single-molecule experiments at room temperature.

  3. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  4. Sublattice parallel replica dynamics.

    PubMed

    Martínez, Enrique; Uberuaga, Blas P; Voter, Arthur F

    2014-06-01

    Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998)] by combining it with the synchronous sublattice approach of Shim and Amar [ and , Phys. Rev. B 71, 125432 (2005)], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.

  5. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride.

    PubMed

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-14

    To understand the initial hydration processes of CaCl 2 , we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl 2 (H 2 O) n - (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl-Ca ion pair is investigated in CaCl 2 (H 2 O) n - anions, where the first Ca-Cl ionic bond required 4 water molecules, and both Ca-Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl 2 (H 2 O) n clusters, breaking of the first Ca-Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl 2 (H 2 O) n requires fewer water molecules than those for MgCl 2 (H 2 O) n . Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  6. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride

    NASA Astrophysics Data System (ADS)

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-01

    To understand the initial hydration processes of CaCl2, we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl2(H2O)n- (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl—Ca ion pair is investigated in CaCl2(H2O)n- anions, where the first Ca—Cl ionic bond required 4 water molecules, and both Ca—Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl2(H2O)n clusters, breaking of the first Ca—Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl2(H2O)n requires fewer water molecules than those for MgCl2(H2O)n. Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  7. Better Than Counting: Density Profiles from Force Sampling

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-05-01

    Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.

  8. The "Collisions Cube" Molecular Dynamics Simulator.

    ERIC Educational Resources Information Center

    Nash, John J.; Smith, Paul E.

    1995-01-01

    Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)

  9. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  10. Validating clustering of molecular dynamics simulations using polymer models.

    PubMed

    Phillips, Joshua L; Colvin, Michael E; Newsam, Shawn

    2011-11-14

    Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers.

  11. Validating clustering of molecular dynamics simulations using polymer models

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of clustering algorithms for studying biopolymers. PMID:22082218

  12. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  13. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Membrane insertion profiles of peptides probed by molecular dynamics simulations In-Chul Yeh,* Mark A. Olson,# Michael S. Lee,*#§ and Anders...a methodology based on molecular dynamics simulation techniques to probe the insertion profiles of small peptides across the membrane interface. The...profiles of peptides probed by molecular dynamics simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  14. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  15. Atomic force microscopy contact, tapping, and jumping modes for imaging biological samples in liquids

    NASA Astrophysics Data System (ADS)

    Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2004-03-01

    The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.

  16. Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism

    PubMed Central

    Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.

    2015-01-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620

  17. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.

    PubMed

    Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana

    2016-11-08

    Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pK a 's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pK a shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.

  18. Block Copolymer Adhesion Measured by Contact Mechanics Methods

    NASA Astrophysics Data System (ADS)

    Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.

    1997-03-01

    Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.

  19. van der Waals interactions are critical in Car-Parrinello molecular dynamics simulations of porphyrin-fullerene dyads.

    PubMed

    Karilainen, Topi; Cramariuc, Oana; Kuisma, Mikael; Tappura, Kirsi; Hukka, Terttu I

    2015-04-05

    The interplay between electrostatic and van der Waals (vdW) interactions in porphyrin-C60 dyads is still under debate despite its importance in influencing the structural characteristics of such complexes considered for various applications in molecular photovoltaics. In this article, we sample the conformational space of a porphyrin-C60 dyad using Car-Parrinello molecular dynamics simulations with and without empirical vdW corrections. Long-range vdW interactions, which are poorly described by the commonly used density functional theory functionals, prove to be essential for a proper dynamics of the dyad moieties. Inclusion of vdW corrections brings porphyrin and C60 close together in an orientation that is in agreement with experimental observations. The structural differences arising from the vdW corrections are shown to be significant for several properties and potentially less important for others. Additionally, our Mulliken population analysis reveals that contrary to the common belief, porphyrin is not the primary electron donating moiety for C60 . In the considered dyad, fullerene's affinity for electrons is primarily satisfied by charge transfer from the amide group of the linker. However, we show that in the absence of another suitable bound donor, C60 can withdraw electrons from porphyrin if it is sufficiently close. © 2015 Wiley Periodicals, Inc.

  20. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations

    PubMed Central

    2016-01-01

    The nucleation of crystals in liquids is one of nature’s most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments. PMID:27228560

  1. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Chen, Ji; Cox, Stephen J; Fitzner, Martin; Pedevilla, Philipp; Zen, Andrea; Michaelides, Angelos

    2016-06-22

    The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.

  2. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations

    PubMed Central

    Henriksen, Niel M.; Roe, Daniel R.; Cheatham, Thomas E.

    2013-01-01

    Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 microseconds of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations. PMID:23477537

  3. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations.

    PubMed

    Henriksen, Niel M; Roe, Daniel R; Cheatham, Thomas E

    2013-04-18

    Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.

  4. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; ...

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  5. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  6. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    PubMed

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology.

  7. Metadynamics Enhanced Markov Modeling of Protein Dynamics.

    PubMed

    Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard

    2018-05-31

    Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.

  8. A Probabilistic Framework for Constructing Temporal Relations in Replica Exchange Molecular Trajectories.

    PubMed

    Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva

    2018-05-23

    Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).

  9. Elucidating energy and electron transfer dynamics within molecular assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Morseth, Zachary Aaron

    The use of sunlight to make chemical fuels (i.e. solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on timescales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span nine orders of magnitude to follow the excited-state evolution within single-site and polymer-based molecular assemblies. We complement experimental observations with electronic structure calculations, molecular dynamics simulations, and kinetic modeling to develop a microscopic view of these dynamics. This thesis provides an overview of work on single-site molecular assemblies and polymers decorated with pendant chromophores, both in solution and on surfaces. This work was made possible through extensive collaboration with Dr. Kirk Schanze's and Dr. John Reynolds' research groups who synthesized the samples for study.

  10. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  11. Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by 1H PFG-NMR.

    PubMed

    Le Feunteun, Steven; Mariette, François

    2007-12-26

    The translational dynamics of poly(ethylene glycol) (PEG) polymers with molecular weights (Mw) varying from 6x10(2) to 5x10(5) were investigated by pulsed field gradient NMR in casein suspensions and in gels induced by acidification, enzyme action, and a combination of both. For molecules with Mwor=8000, there was strong dependence of diffusion on PEG size and on the casein network structure as revealed by scanning electron microscopy images. The diffusion coefficients of the two largest PEGs were increased after coagulation by amounts that depended on the internal structure of the gel. In addition, the 527,000 g/mol PEG was found to deviate from Gaussian diffusion behavior to greater or lesser extents according to the casein concentration and the sample microstructure. The results are discussed in terms of network rearrangements.

  12. Parallel Fast Multipole Method For Molecular Dynamics

    DTIC Science & Technology

    2007-06-01

    Parallel Fast Multipole Method For Molecular Dynamics THESIS Reid G. Ormseth, Captain, USAF AFIT/GAP/ENP/07-J02 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/07-J02 Parallel Fast Multipole Method For Molecular Dynamics THESIS Presented to the Faculty Department of...has also been provided by ‘The Art of Molecular Dynamics Simulation ’ by Dennis Rapaport. This work is the clearest treatment of the Fast Multipole

  13. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  14. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  15. The allosteric communication pathways in KIX domain of CBP.

    PubMed

    Palazzesi, Ferruccio; Barducci, Alessandro; Tollinger, Martin; Parrinello, Michele

    2013-08-27

    Allosteric regulation plays an important role in a myriad of biomacromolecular processes. Specifically, in a protein, the process of allostery refers to the transmission of a local perturbation, such as ligand binding, to a distant site. Decades after the discovery of this phenomenon, models built on static images of proteins are being reconsidered with the knowledge that protein dynamics plays an important role in its function. Molecular dynamics simulations are a valuable tool for studying complex biomolecular systems, providing an atomistic description of their structure and dynamics. Unfortunately, their predictive power has been limited by the complexity of the biomolecule free-energy surface and by the length of the allosteric timescale (in the order of milliseconds). In this work, we are able to probe the origins of the allosteric changes that transcription factor mixed lineage leukemia (MLL) causes to the interactions of KIX domain of CREB-binding protein (CBP) with phosphorylated kinase inducible domain (pKID), by combing all-atom molecular dynamics with enhanced sampling methods recently developed in our group. We discuss our results in relation to previous NMR studies. We also develop a general simulations protocol to study allosteric phenomena and many other biological processes that occur in the micro/milliseconds timescale.

  16. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  17. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  18. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  19. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.

    2017-08-01

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  20. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal

    2018-04-25

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.

  1. Mutational Landscape of cfDNA Identifies Distinct Molecular Features Associated With Therapeutic Response to First-Line Platinum-Based Doublet Chemotherapy in Patients with Advanced NSCLC

    PubMed Central

    Jiang, Tao; Li, Xuefei; Wang, Jianfei; Su, Chunxia; Han, Wenbo; Zhao, Chao; Wu, Fengying; Gao, Guanghui; Li, Wei; Chen, Xiaoxia; Li, Jiayu; Zhou, Fei; Zhao, Jing; Cai, Weijing; Zhang, Henghui; Du, Bo; Zhang, Jun; Ren, Shengxiang; Zhou, Caicun; Yu, Hui; Hirsch, Fred R.

    2017-01-01

    Rationale To investigate whether the mutational landscape of circulating cell-free DNA (cfDNA) could predict and dynamically monitor the response to first-line platinum-based chemotherapy in patients with advanced non-small-cell lung cancer (NSCLC). Methods Eligible patients were included and blood samples were collected from a phase III trial. Both cfDNA fragments and fragmented genomic DNA were extracted for enrichment in a 1.15M size panel covering exon regions of 1,086 genes. Molecular mutational burden (MMB) was calculated to investigate the relationship between molecular features of cfDNA and response to chemotherapy. Results In total, 52 eligible cases were enrolled and their blood samples were prospectively collected at baseline, every cycle of chemotherapy and time of disease progression. At baseline, alterations of 17 genes were found. Patients with partial response (PR) had significantly lower baseline MMB of these genes than those patients with either stable disease (SD) (P = 0.0006) or progression disease (PD) (P = 0.0074). Further analysis revealed that the mutational landscape of cfDNA from pretreatment blood samples were distinctly different among patients with PR vs. SD/PD. For patients with baseline TP53 mutation, those with PR experienced a significant reduction in MMB whereas patients with SD or PD experienced an increase after two, three or four cycles of chemotherapy. Furthermore, patients with low MMB had superior response rate and significantly longer progression-free survival than those with high MMB. Conclusion This study indicated that the mutational landscape of cfDNA has potential clinical value to predict the therapeutic response to first-line platinum-based doublet chemotherapy in NSCLC patients. At the single gene level, dynamic change of molecular mutational burden of TP53 is valuable to monitor efficacy (and, therefore, might aid in early recognition of resistance and relapse) in patients harboring this mutation at baseline. PMID:29187901

  2. Ensemble-Biased Metadynamics: A Molecular Simulation Method to Sample Experimental Distributions

    PubMed Central

    Marinelli, Fabrizio; Faraldo-Gómez, José D.

    2015-01-01

    We introduce an enhanced-sampling method for molecular dynamics (MD) simulations referred to as ensemble-biased metadynamics (EBMetaD). The method biases a conventional MD simulation to sample a molecular ensemble that is consistent with one or more probability distributions known a priori, e.g., experimental intramolecular distance distributions obtained by double electron-electron resonance or other spectroscopic techniques. To this end, EBMetaD adds an adaptive biasing potential throughout the simulation that discourages sampling of configurations inconsistent with the target probability distributions. The bias introduced is the minimum necessary to fulfill the target distributions, i.e., EBMetaD satisfies the maximum-entropy principle. Unlike other methods, EBMetaD does not require multiple simulation replicas or the introduction of Lagrange multipliers, and is therefore computationally efficient and straightforward in practice. We demonstrate the performance and accuracy of the method for a model system as well as for spin-labeled T4 lysozyme in explicit water, and show how EBMetaD reproduces three double electron-electron resonance distance distributions concurrently within a few tens of nanoseconds of simulation time. EBMetaD is integrated in the open-source PLUMED plug-in (www.plumed-code.org), and can be therefore readily used with multiple MD engines. PMID:26083917

  3. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  4. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.

    PubMed

    Oleinikovas, Vladimiras; Saladino, Giorgio; Cossins, Benjamin P; Gervasio, Francesco L

    2016-11-02

    Cryptic pockets, that is, sites on protein targets that only become apparent when drugs bind, provide a promising alternative to classical binding sites for drug development. Here, we investigate the nature and dynamical properties of cryptic sites in four pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. We find that the studied cryptic sites do not correspond to local minima in the computed conformational free energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method "SWISH" (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. We also addressed the issue of "false-positives" and propose a simple approach to distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational method.

  5. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  6. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.

    PubMed

    Fonner, John M; Schmidt, Christine E; Ren, Pengyu

    2010-10-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials.

  7. Exhaustively sampling peptide adsorption with metadynamics.

    PubMed

    Deighan, Michael; Pfaendtner, Jim

    2013-06-25

    Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields.

  8. Uncertainty Quantification in Alchemical Free Energy Methods.

    PubMed

    Bhati, Agastya P; Wan, Shunzhou; Hu, Yuan; Sherborne, Brad; Coveney, Peter V

    2018-06-12

    Alchemical free energy methods have gained much importance recently from several reports of improved ligand-protein binding affinity predictions based on their implementation using molecular dynamics simulations. A large number of variants of such methods implementing different accelerated sampling techniques and free energy estimators are available, each claimed to be better than the others in its own way. However, the key features of reproducibility and quantification of associated uncertainties in such methods have barely been discussed. Here, we apply a systematic protocol for uncertainty quantification to a number of popular alchemical free energy methods, covering both absolute and relative free energy predictions. We show that a reliable measure of error estimation is provided by ensemble simulation-an ensemble of independent MD simulations-which applies irrespective of the free energy method. The need to use ensemble methods is fundamental and holds regardless of the duration of time of the molecular dynamics simulations performed.

  9. The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis.

    PubMed

    Yang, Y; Pan, L; Lightstone, F C; Merz, K M

    2016-01-01

    The potential of mean force simulations, widely applied in Monte Carlo or molecular dynamics simulations, are useful tools to examine the free energy variation as a function of one or more specific reaction coordinate(s) for a given system. Implementation of the potential of mean force in the simulations of biological processes, such as enzyme catalysis, can help overcome the difficulties of sampling specific regions on the energy landscape and provide useful insights to understand the catalytic mechanism. The potential of mean force simulations usually require many, possibly parallelizable, short simulations instead of a few extremely long simulations and, therefore, are fairly manageable for most research facilities. In this chapter, we provide detailed protocols for applying the potential of mean force simulations to investigate enzymatic mechanisms for several different enzyme systems. © 2016 Elsevier Inc. All rights reserved.

  10. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  11. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  12. Mechanism by which Untwisting of Retinal Leads to Productive Bacteriorhodopsin Photocycle States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolter, Tino; Elstner, Marcus; Fischer, Stefan

    2014-01-01

    Relaxation of the twisted-retinal photoproduct state triggers proton-coupled reaction cycle in retinal proteins. A key open question is whether the retinal relaxation path is governed by the intrinsic torsional properties of the retinal or rather by the interactions of the retinal with protein and water groups, given the crowded protein environments in which the retinal resides. We address this question by performing systematic quantum mechanical/molecular mechanical molecular dynamics computations of retinal dynamics in bacteriorhodopsin at different temperatures, reaction path computations, and assessment of the vibrational fingerprints of the retinal molecule. Our results demonstrate a complex dependence of the retinal dynamicsmore » and preferred geometry on temperature. As the temperature increases, the retinal dihedral angle samples values largely determined by its internal conformational energy. The protein environment shapes the energetics of retinal relaxation and provides hydrogen-bonding partners that stabilize the retinal geometry.« less

  13. Theoretical gas to liquid shift of (15)N isotropic nuclear magnetic shielding in nitromethane using ab initio molecular dynamics and GIAO/GIPAW calculations.

    PubMed

    Gerber, Iann C; Jolibois, Franck

    2015-05-14

    Chemical shift requires the knowledge of both the sample and a reference magnetic shielding. In few cases as nitrogen (15N), the standard experimental reference corresponds to its liquid phase. Theoretical estimate of NMR magnetic shielding parameters of compounds in their liquid phase is then mandatory but usually replaced by an easily-get gas phase value, forbidding direct comparisons with experiments. We propose here to combine ab initio molecular dynamic simulations with the calculations of magnetic shielding using GIAO approach on extracted cluster's structures from MD. Using several computational strategies, we manage to accurately calculate 15N magnetic shielding of nitromethane in its liquid phase. Theoretical comparison between liquid and gas phase allows us to extrapolate an experimental value for the 15N magnetic shielding of nitromethane in gas phase between -121.8 and -120.8 ppm.

  14. Role of Molecular Dynamics and Related Methods in Drug Discovery.

    PubMed

    De Vivo, Marco; Masetti, Matteo; Bottegoni, Giovanni; Cavalli, Andrea

    2016-05-12

    Molecular dynamics (MD) and related methods are close to becoming routine computational tools for drug discovery. Their main advantage is in explicitly treating structural flexibility and entropic effects. This allows a more accurate estimate of the thermodynamics and kinetics associated with drug-target recognition and binding, as better algorithms and hardware architectures increase their use. Here, we review the theoretical background of MD and enhanced sampling methods, focusing on free-energy perturbation, metadynamics, steered MD, and other methods most consistently used to study drug-target binding. We discuss unbiased MD simulations that nowadays allow the observation of unsupervised ligand-target binding, assessing how these approaches help optimizing target affinity and drug residence time toward improved drug efficacy. Further issues discussed include allosteric modulation and the role of water molecules in ligand binding and optimization. We conclude by calling for more prospective studies to attest to these methods' utility in discovering novel drug candidates.

  15. Grain size distribution in sheared polycrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, Tanmoy; Biswas, Santidan; Chaudhuri, Pinaki; Sain, Anirban

    2017-12-01

    Plastic deformation in solids induced by external stresses is of both fundamental and practical interest. Using both phase field crystal modeling and molecular dynamics simulations, we study the shear response of monocomponent polycrystalline solids. We subject mesocale polycrystalline samples to constant strain rates in a planar Couette flow geometry for studying its plastic flow, in particular its grain deformation dynamics. As opposed to equilibrium solids where grain dynamics is mainly driven by thermal diffusion, external stress/strain induce a much higher level of grain deformation activity in the form of grain rotation, coalescence, and breakage, mediated by dislocations. Despite this, the grain size distribution of this driven system shows only a weak power-law correction to its equilibrium log-normal behavior. We interpret the grain reorganization dynamics using a stochastic model.

  16. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    PubMed

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  17. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    NASA Technical Reports Server (NTRS)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  18. Infrared Spectroscopy and Born-Oppenheimer Molecular Dynamics Simulation Study on Deuterium Substitution in the Crystalline Benzoic Acid.

    PubMed

    Gług, Maciej; Brela, Mateusz Z; Boczar, Marek; Turek, Andrzej M; Boda, Łukasz; Wójcik, Marek J; Nakajima, Takahito; Ozaki, Yukihiro

    2017-01-26

    In this study we present complementary computational and experimental studies of hydrogen bond interaction in crystalline benzoic acid and its deuterated and partially deuterated derivatives. The experimental part of the presented work includes preparation of partially deuterated samples and measurement of attenuated total reflection (ATR)-FTIR spectra. Analysis of the geometrical parameters and time course of dipole moment of crystalline benzoic acid and its deuterated and partially deuterated derivatives by Born-Oppenheimer molecular dynamics (BOMD) enabled us to deeply analyze the IR spectra. Presented simulations based on BOMD gave us opportunity to investigate individual motion and its contribution to the IR spectra. The band contours calculated using Fourier transform of autocorrelation function are in quantitative agreement with the experimental spectra. Characterization of single bands was carried out by "normal coordinate analysis". The salient point of our study is a comparison of the spectra of the deuterated and partially deuterated crystalline benzoic acid with that of the nondeuterated one. Furthermore, we have applied the principal component analysis for analysis of the number of components in partially deuterated systems. In this study, we reveal that the arrangements of hydrogen and deuterium atoms in partially deuterated samples are random.

  19. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  20. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.

    PubMed

    Ilie, Ioana M; Nayar, Divya; den Otter, Wouter K; van der Vegt, Nico F A; Briels, Wim J

    2018-06-12

    Amyloid formation by the intrinsically disordered α-synuclein protein is the hallmark of Parkinson's disease. We present atomistic Molecular Dynamics simulations of the core of α-synuclein using enhanced sampling techniques to describe the conformational and binding free energy landscapes of fragments implicated in fibril stabilization. The theoretical framework is derived to combine the free energy profiles of the fragments into the reaction free energy of a protein binding to a fibril. Our study shows that individual fragments in solution have a propensity toward attaining non-β conformations, indicating that in a fibril β-strands are stabilized by interactions with other strands. We show that most dimers of hydrogen-bonded fragments are unstable in solution, while hydrogen bonding stabilizes the collective binding of five fragments to the end of a fibril. Hydrophobic effects make further contributions to the stability of fibrils. This study is the first of its kind where structural and binding preferences of the five major fragments of the hydrophobic core of α-synuclein have been investigated. This approach improves sampling of intrinsically disordered proteins, provides information on the binding mechanism between the core sequences of α-synuclein, and enables the parametrization of coarse grained models.

  1. Accelerating atomistic simulations through self-learning bond-boost hyperdynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Voter, Arthur F

    2008-01-01

    By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn canmore » be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.« less

  2. Molecular dynamics simulations and novel drug discovery.

    PubMed

    Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun

    2018-01-01

    Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.

  3. Ab initio RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms

    PubMed Central

    Ding, Feng; Sharma, Shantanu; Chalasani, Poornima; Demidov, Vadim V.; Broude, Natalia E.; Dokholyan, Nikolay V.

    2008-01-01

    RNA molecules with novel functions have revived interest in the accurate prediction of RNA three-dimensional (3D) structure and folding dynamics. However, existing methods are inefficient in automated 3D structure prediction. Here, we report a robust computational approach for rapid folding of RNA molecules. We develop a simplified RNA model for discrete molecular dynamics (DMD) simulations, incorporating base-pairing and base-stacking interactions. We demonstrate correct folding of 150 structurally diverse RNA sequences. The majority of DMD-predicted 3D structures have <4 Å deviations from experimental structures. The secondary structures corresponding to the predicted 3D structures consist of 94% native base-pair interactions. Folding thermodynamics and kinetics of tRNAPhe, pseudoknots, and mRNA fragments in DMD simulations are in agreement with previous experimental findings. Folding of RNA molecules features transient, non-native conformations, suggesting non-hierarchical RNA folding. Our method allows rapid conformational sampling of RNA folding, with computational time increasing linearly with RNA length. We envision this approach as a promising tool for RNA structural and functional analyses. PMID:18456842

  4. Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand

    2017-10-01

    In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.

  5. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  6. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation

    NASA Astrophysics Data System (ADS)

    Lira-Navarrete, Erandi; de Las Rivas, Matilde; Compañón, Ismael; Pallarés, María Carmen; Kong, Yun; Iglesias-Fernández, Javier; Bernardes, Gonçalo J. L.; Peregrina, Jesús M.; Rovira, Carme; Bernadó, Pau; Bruscolini, Pierpaolo; Clausen, Henrik; Lostao, Anabel; Corzana, Francisco; Hurtado-Guerrero, Ramon

    2015-05-01

    Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.

  7. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  8. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  9. Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto

    2013-07-01

    The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.

  10. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Hua Y., E-mail: huay.geng@gmail.com; Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate ismore » about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.« less

  11. THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, B. S.; Blok, W. J. G. de; Walter, F.

    2016-04-15

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in themore » inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.« less

  12. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  13. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  14. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  15. Efficiency reduction and pseudo-convergence in replica exchange sampling of peptide folding unfolding equilibria

    NASA Astrophysics Data System (ADS)

    Denschlag, Robert; Lingenheil, Martin; Tavan, Paul

    2008-06-01

    Replica exchange (RE) molecular dynamics (MD) simulations are frequently applied to sample the folding-unfolding equilibria of β-hairpin peptides in solution, because efficiency gains are expected from this technique. Using a three-state Markov model featuring key aspects of β-hairpin folding we show that RE simulations can be less efficient than conventional techniques. Furthermore we demonstrate that one is easily seduced to erroneously assign convergence to the RE sampling, because RE ensembles can rapidly reach long-lived stationary states. We conclude that typical REMD simulations covering a few tens of nanoseconds are by far too short for sufficient sampling of β-hairpin folding-unfolding equilibria.

  16. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  17. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay.

    PubMed

    Libert, X; Chasseur, C; Packeu, A; Bureau, F; Roosens, N H; De Keersmaecker, S J C

    2016-02-01

    Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR®green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR®green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.

  18. An Integrated Study on a Novel High Temperature High Entropy Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shizhong

    2016-12-31

    This report summarizes our recent works of theoretical modeling, simulation, and experimental validation of the simulation results on the new refractory high entropy alloy (HEA) design and oxide doped refractory HEA research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related HEA with oxide doped samples were synthesized and characterized. The HEA ab initio density functional theory and molecular dynamics physical property simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement research directions are briefly introduced.

  19. Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes.

    PubMed

    Ristic, Dejan; Sanchez, Humberto; Wyman, Claire

    2011-01-01

    Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate, and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nanometer resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA-bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA, and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.

  20. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    PubMed

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

Top