Sample records for sampling volatile organic

  1. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  2. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part I, Deployment, recovery, data interpretation, and quality control and assurance

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  3. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  4. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  5. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  6. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  7. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  8. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    PubMed

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  9. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  10. Analysis of volatile organic compounds from illicit cocaine samples

    NASA Astrophysics Data System (ADS)

    Robins, W. H.; Wright, Bob W.

    1994-10-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds which may be residues of processing solvents were observed in some samples. The equilibrium emissivity of cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  11. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    EPA Science Inventory

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  12. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  13. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  14. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  15. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    USGS Publications Warehouse

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  16. Generation of sub-part-per-billion gaseous volatile organic compounds at ambient temperature by headspace diffusion of aqueous standards through decoupling between ideal and nonideal Henry's law behavior.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-21

    In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.

  17. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  18. Sample Integrity Evaluation and EPA Method 325b Interlaboratory Comparison for Select Volatile Organic Compounds Collected Diffusively on Carbopack X Sorbent Tubes

    EPA Science Inventory

    Sample integrity evaluations and inter-laboratory comparisons were conducted in application of U.S. Environmental Protection Agency (EPA) Methods 325A/B for monitoring benzene and additional selected volatile organic compounds (VOCs) usingpassive-diffusive Carbopack X tube sample...

  19. MEASUREMENTS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS IN THE LOWER TROPOSPHERE FROM TETHERED BALLOON AND KITE SAMPLING PLATFORMS BY INTERNAL STANDARD CALIBRATION USING AMBIENT CFC REFERENCE COMPOUNDS

    EPA Science Inventory

    A new analytical approach for the sampling and analysis of volatile organic compounds (VOCs) from sampling platforms used in the vertical profiling of the lower troposphere, such as kites, balloons, and remotely piloted vehicles will be developed. These sampling platforms a...

  20. Water-quality assessment of south-central Texas: Occurrence and distribution of volatile organic compounds in surface water and ground water, 1983-94, and implications for future monitoring

    USGS Publications Warehouse

    Ging, P.B.; Judd, L.J.; Wynn, K.H.

    1997-01-01

    The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.

  1. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  2. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  3. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air using Multisorbent Samplers

    EPA Pesticide Factsheets

    The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  4. COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON (SVOC) ASSOCIATED WITH PM 2.5

    EPA Science Inventory

    This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...

  5. COMPARISON OF SAMPLING METHODS FOR SEMI-VOLATILE ORGANIC CARBON ASSOCIATED WITH PM 2.5

    EPA Science Inventory

    This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...

  6. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air Using Evacuated Canisters

    EPA Pesticide Factsheets

    The objective of this procedure is to collect a representative sample of air containing volatile organic compound (VOC) contaminants present in an indoor environment using an evacuated canister, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  7. Volatile organic compound emissions from engineered wood products

    Treesearch

    Steve Zylkowski; Charles Frihart

    2017-01-01

    Thirteen bonded engineered wood products representing those commonly used in building construction were evaluated for volatile organic chemicals using methods developed for interior bonded wood products. Although formaldehyde and acetaldehyde were emitted from all samples, they were not the dominant volatiles, which greatly depended on wood species and bonding...

  8. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : data on manmade nonagricultural volatile and semivolatile organic chemicals in water, May 1988 through March 1990

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Colman, J.A.

    1993-01-01

    This report contains data from the survey of manmade nonagricultural volatile and semivolatile organic chemicals in surface water in the upper Illinois River basin from May 1988 through March l990. In addition to the data, sampling methods and quality-assurance procedures are described. The survey was part of the upper Illinois River basin pilot project of the National Water-Quality Assessment program conducted by the U.S. Geological Survey. The organic chemicals analyzed from the water samples were those expected to be associated primarily with effluent from point sources in urban areas. A low-flow synoptic investigation of 52 volatile and 54 semivolatile organic chemicals was conducted at 31 sites in July 1988. Additional samples were collected monthly at two sites to continue to test for the presence of 43 volatile organic chemicals from December 1988 through March l990, and of all semivolatile organic chemicals at two sites from August through September 1988.

  9. Measurements of particulate semi-volatile material

    NASA Astrophysics Data System (ADS)

    Pang, Yanbo

    2000-10-01

    A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The importance of organic aerosols might also be underestimated because current data on organic aerosols in the troposphere and stratosphere were mostly obtained by traditional methods, like the FRM method. Using PC-BOSS to study organic aerosols in the troposphere and stratosphere will provide not only more but also more accurate information about organic aerosols, and significantly improve the understanding of the role of aerosols in global warming, ozone depletion, and atmospheric heterogenous chemistry.

  10. Real-Time and Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile Organic Compound Contamination, Durham Meadows Superfund Site, Durham, Connecticut, August 29, 2006

    USGS Publications Warehouse

    Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.

    2008-01-01

    This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of trichloroethene) may be attributable to the relatively large depth to water (17.6 feet), the relatively low soil-vapor trichloroethene concentration, and the large amount of rainfall during and preceding the tree-coring event. The data indicate that real-time and delayed analyses of tree cores are viable approaches to examining subsurface volatile organic compound soil-gas or vadose-zone contamination at the Durham Meadows Superfund Site and other similar sites. Thus, the methods may have application for determining the potential for vapor intrusion into buildings.

  11. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    PubMed

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  13. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  15. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry.

    PubMed

    Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li

    2008-02-01

    A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.

  16. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  17. Membrane inlet mass spectrometry of volatile organohalogen compounds in drinking water.

    PubMed

    Bocchini, P; Pozzi, R; Andalò, C; Galletti, G C

    1999-01-01

    The analysis of organic pollutants in drinking water is a topic of wide interest, reflecting on public health and life quality. Many different methodologies have been developed and are currently employed in this context, but they often require a time-consuming sample pre-treatment. This step affects the recovery of the highly volatile compounds. Trace analysis of volatile organic pollutants in water can be performed 'on-line' by membrane inlet mass spectrometry (MIMS). In MIMS, the sample is separated from the vacuum of the mass spectrometer by a thin polymeric hollow-fibre membrane. Gases and organic volatile compounds diffuse and concentrate from the sample into the hollow-fibre membrane, and from there into the mass spectrometer. The main advantages of the technique are that no pre-treatment of samples before analysis is needed and that it has fast response times and on-line monitoring capabilities. This paper reports the set-up of the analytical conditions for the analysis of volatile organohalogen compounds (chloroform, bromoform, bromodichloromethane, chlorodibromomethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). Linearity of response, repeatability, detection limits, and spectra quality are evaluated. Copyright 1999 John Wiley & Sons, Ltd.

  18. Occurrence and distribution of pesticides and volatile organic compounds in ground water and surface water in Central Arizona Basins, 1996-98, and their relation to land use

    USGS Publications Warehouse

    Gellenbeck, Dorinda J.; Anning, David W.

    2002-01-01

    Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.

  19. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  20. Fort Dix Remedial Investigation/Feasibility Study for MAG-1 Area

    DTIC Science & Technology

    1994-01-01

    by PID headspace results or odor ), samples should be diluted to bring the target compound concentrations within the instrument calibration range...Conductivity Testing ................... 2-38 2.9 ANALYTICAL PROCEDURES FOR FIELD SCREENING SAMPLES .. 2-38 2.9.1 Volatile Organic Compounds ...ANALYSIS OF VOLATILE ORGANIC COMPOUNDS BY FIELD GAS CHROMATOGRAPHY - STANDARD OPERATING PROCEDURE APPENDIX B RDX EXPLOSIVES FIELD TEST KIT PROCEDURES

  1. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    PubMed

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Remedial Investigation/Feasibility Study/Interim Response Actions

    DTIC Science & Technology

    1988-03-25

    organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7

  3. Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine

    NASA Astrophysics Data System (ADS)

    Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.

    2011-07-01

    Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.

  4. Generation of Volatile Organic Compounds from Dissolved Organic Matter in far North Atlantic Surface Ocean Waters.

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2005-12-01

    The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.

  5. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.

    PubMed

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz

    2017-10-01

    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  6. Analysis of selected volatile organic compounds at background level in South Africa.

    NASA Astrophysics Data System (ADS)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  7. Baltimore PM2.5 Supersite: highly time-resolved organic compounds--sampling duration and phase distribution--implications for health effects studies.

    PubMed

    Rogge, Wolfgang F; Ondov, John M; Bernardo-Bricker, Anna; Sevimoglu, Orhan

    2011-12-01

    As part of the Baltimore PM2.5 Supersite study, intensive three-hourly continuous PM2.5 sampling was conducted for nearly 4 weeks in summer of 2002 and as well in winter of 2002/2003. Close to 120 individual organic compounds have been quantified separately in filter and polyurethane foam (PUF) plug pairs for 17 days for each sampling period. Here, the focus is on (1) describing briefly the new sampling system, (2) discussing filter/PUF plugs breakthrough experiments for semi-volatile compounds, (3) providing insight into phase distribution of semi-volatile organic species, and (4) discussing the impact of air pollution sampling time on human exposure with information on maximum 3- and 24-h averaged ambient concentrations of potentially adverse health effects causing organic pollutants. The newly developed sampling system consisted of five electronically controlled parallel sampling channels that are operated in a sequential mode. Semi-volatile breakthrough experiments were conducted in three separate experiments over 3, 4, and 5 h each using one filter and three PUF plugs. Valuable insight was obtained about the transfer of semi-volatile organic compounds through the sequence of PUF plugs and a cut-off could be defined for complete sampling of semi-volatile compounds on only one filter/PUF plug pair, i.e., the setup finally used during the seasonal PM2.5 sampling campaign. Accordingly, n-nonadecane (C19) with a vapor pressure (vp) of 3.25 × 10(-4) Torr is collected with > 95% on the filter/PUF pair. Applied to phenanthrene, the most abundant the PAH sampled, phenanthrene (vp, 6.2 × 10(-5) Torr) was collected completely in wintertime and correlates very well with three-hourly PM2.5 ambient concentrations. Valuable data on the fractional partitioning for semi-volatile organics as a function of season is provided here and can be used to differentiate the human uptake of an organic pollutant of interest via gas- and particle-phase exposure. Health effects studies often relay on PM2.5 exposure measurements taken over 24 h or longer. We found that maximum 3-h concentrations are frequently two to five times higher than that found for maximum 24-h concentrations, an important aspect when considering that short-term exposure to higher air pollution levels are more likely to overpower defense mechanisms in the human lung with subsequent adverse effects even at lower pollutant levels.

  8. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June 2011

    USGS Publications Warehouse

    Huffman, Raegan L.; Frans, L.M.

    2012-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with ongoing natural attenuation processes was the preferred remedy selected by the U.S. Navy, as specified in the Record of Decision for the site. The U.S. Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated volatile organic compounds in shallow groundwater. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. This report presents groundwater geochemical and selected volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June 20-22, 2011, in support of long-term monitoring for natural attenuation. In 2011, groundwater samples were collected from 13 wells and 9 piezometers. Samples from all wells and piezometers were analyzed for redox sensitive constituents and dissolved gases, and samples from 5 of 13 wells and all piezometers also were analyzed for chlorinated volatile organic compounds. Concentrations of redox sensitive constituents measured in 2011 were consistent with previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. The reductive declorination byproducts - methane, ethane, and ethene - were either not detected in samples collected from the upgradient wells in the landfill and the upper aquifer beneath the northern phytoremediation plantation or were detected at concentrations less than those measured in 2010. Chlorinated volatile organic compound concentrations in 2011 at most piezometers were similar to or slightly less than chlorinated volatile organic compound concentrations measured in previous years. For the upper aquifer beneath the southern phytoremediation plantation, chlorinated volatile organic compound concentrations in 2011 in groundwater from the piezometers were extremely high and continued to vary considerably over space and between years. At piezometer P1-9, the total chlorinated volatile organic compound concentrations increased from 9,500 micrograms per liter in 2010 to more than 44,000 micrograms per liter in 2011. Total chlorinated volatile organic compound concentrations decreased at piezometers P1-6, P1-7, and P1-10 compared to the concentrations measured in 2010. One or both of the reductive dechlorination byproducts ethane and ethene were detected at all piezometers and three of the four wells in the southern plantation. For the intermediate aquifer, concentrations of redox sensitive constituents and chlorinated volatile organic compounds in 2011 were consistent with concentrations measured in previous years, with the exception of notable decreases in sulfate and chloride concentrations at well MW1-28. Concentrations of the reductive dechlorination byproducts ethane and ethene decreased at wells MW1-25 and MW1-28 compared to previously measured concentrations.

  9. REGIONAL METHODS INITIATIVE RESEARCH PROJECTS AT HEASD

    EPA Science Inventory

    EPA Regional Laboratories are currently using high volume samplers with a combination of filter and sorbent vapor trap to collect large volume samples (250 liter/min for 24 hours) of semi-volatile organic compounds (SVOCs) and non-volatile organic compounds (NVOCs). These are su...

  10. Needle Trap Device as a New Sampling and Preconcentration Approach for Volatile Organic Compounds of Herbal Medicines and its Application to the Analysis of Volatile Components in Viola tianschanica.

    PubMed

    Qin, Yan; Pang, Yingming; Cheng, Zhihong

    2016-11-01

    The needle trap device (NTD) technique is a new microextraction method for sampling and preconcentration of volatile organic compounds (VOCs). Previous NTD studies predominantly focused on analysis of environmental volatile compounds in the gaseous and liquid phases. Little work has been done on its potential application in biological samples and no work has been reported on analysis of bioactive compounds in essential oils from herbal medicines. The main purpose of the present study is to develop a NTD sampling method for profiling VOCs in biological samples using herbal medicines as a case study. A combined method of NTD sample preparation and gas chromatography-mass spectrometry was developed for qualitative analysis of VOCs in Viola tianschanica. A 22-gauge stainless steel, triple-bed needle packed with Tenax, Carbopack X and Carboxen 1000 sorbents was used for analysis of VOCs in the herb. Furthermore, different parameters affecting the extraction efficiency and capacity were studied. The peak capacity obtained by NTDs was 104, more efficient than those of the static headspace (46) and hydrodistillation (93). This NTD method shows potential to trap a wide range of VOCs including the lower and higher volatile components, while the static headspace and hydrodistillation only detects lower volatile components, and semi-volatile and higher volatile components, respectively. The developed NTD sample preparation method is a more rapid, simpler, convenient, and sensitive extraction/desorption technique for analysis of VOCs in herbal medicines than the conventional methods such as static headspace and hydrodistillation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Search for organic and volatile inorganic compounds in two surface samples from the chryse planitia region of Mars.

    PubMed

    Biemann, K; Oro, J; Toulmin, P; Orgel, L E; Nier, A O; Anderson, D M; Simmonds, P G; Flory, D; Diaz, A V; Rushneck, D R; Biller, J A

    1976-10-01

    Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 degrees C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 10(9) by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.

  12. Search for organic and volatile inorganic compounds in two surface samples from the Chryse Planitia region of Mars

    NASA Technical Reports Server (NTRS)

    Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Simmonds, P. G.

    1976-01-01

    Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts per billion by weight in the samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.

  13. Search for organic and volatile inorganic compounds in two surface samples from the chryse planitia region of Mars

    USGS Publications Warehouse

    Biemann, K.; Oro, John; Toulmin, P.; Orgel, Leslie E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; Biller, J.A.

    1976-01-01

    Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500??C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 109 by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.

  14. Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers

    EPA Science Inventory

    Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...

  15. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  16. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    feasibility studies. ................... 30  Table 5. Compounds screened in the laboratory for IS2 sampling...tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental Protection Agency UST...underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material contained in this report has

  17. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Eichler, P.; Müller, M.

    2015-12-01

    Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.

  18. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  19. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  20. Oak (Quercus frainetto Ten.) honeydew honey--approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay).

    PubMed

    Jerković, Igor; Marijanović, Zvonimir

    2010-05-25

    Two samples of oak honeydew honey were investigated. Headspace solid-phase microextraction (HS-SPME) combined with GC and GC/MS enabled identification of the most volatile organic headspace compounds being dominated by terpenes(mainly cis- and trans-linalool oxides). The volatile and less-volatile organic composition of the samples was obtained by ultrasonic assisted extraction (USE) with two solvents (1:2 (v/v) pentane -diethyl ether mixture and dichloromethane) followed by GC and GC/MS analysis. Shikimic pathway derivatives are of particular interest with respect to the botanical origin of honey and the most abundant was phenylacetic acid (up to 16.4%). Antiradical activity (DPPH assay) of the honeydew samples was 4.5 and 5.1 mmol TEAC/kg. Ultrasonic solvent extracts showed several dozen times higher antiradical capacity in comparison to the honeydew. Antioxidant capacity (FRAP assay) of honeydew samples was 4.8 and 16.1 mmol Fe(2+)/kg, while the solvent mixture extracts showed antioxidant activity of 374.5 and 955.9 Fe(2+)/kg, respectively, and the dichloromethane extracts 127.3 and 101.5 mmol Fe(2+)/kg.

  1. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    PubMed

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  2. DEVELOPMENT OF A SAMPLER FOR PARTICULATE-ASSOCIATED AND LOW VOLATILITY ORGANIC POLLUTANTS IN RESIDENTIAL AIR

    EPA Science Inventory

    The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...

  3. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: I. EVALUATION OF RECEPTOR MODELS USING SIMULATED EXPOSURE DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources mo...

  4. Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15, SOP No. HW-31 Revision 6

    EPA Pesticide Factsheets

    This document is designed to offer the data reviewer guidance in determining the validity of analytical data from the analysis of Volatile Organic Compounds in air samples taken in canisters and analyzed by method TO-15.

  5. Internal Standards: A Source of Analytical Bias For Volatile Organic Analyte Determinations

    EPA Science Inventory

    The use of internal standards in the determination of volatile organic compounds as described in SW-846 Method 8260C introduces a potential for bias in results once the internal standards (ISTDs) are added to a sample for analysis. The bias is relative to the dissimilarity betw...

  6. MEASUREMENT OF VOLATILE ORGANIC COMPOUNDS BY THE US ENVIRONMENTAL PROTECTION AGENCY COMPENDIUM METHOD TO-17 - EVALUATION OF PERFORMANCE CRITERIA

    EPA Science Inventory

    An evaluation of performance criteria for US Environmental Protection Agency Compendium Method TO-17 for monitoring volatile organic compounds (VOCs) in air has been accomplished. The method is a solid adsorbent-based sampling and analytical procedure including performance crit...

  7. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS (BVOCS) I. IDENTIFICATIONS FROM THREE CONTINENTAL SITES IN THE U.S.

    EPA Science Inventory

    Vegetation composition and biomass were surveyed for three specific sites in Atlanta, GA; near Rhinelander, WI; and near Hayden, CO. At each research site, emissions of biogenic volatile organic compounds (BVOCs) from the dominant vegetation species were sampled by enclosing bran...

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR USE OF AN ACTIVE SAMPLING DEVICE FOR THE COLLECTION OF AIRBORNE VOCS AT FIXED INDOOR AND OUTDOOR SITES (UA-F-11.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to collect indoor and outdoor air samples for the determination of selected volatile organic compounds (VOC's) using a pump to draw air through a Carbotrap Sampler. Volatile organic compounds (VOCs) present in the air are p...

  9. Aerial Sampling of Emissions from Biomass Pile Burns in ...

    EPA Pesticide Factsheets

    Abstract (already cleared). Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determines the first known in-field emission factors for burning of timber slash piles. The results also document the effect on emissions of covering the piles with polyethylene covers to reduce the moisture content of the biomass.

  10. MEASUREMENT OF FINE PARTICULATE MATTER (NONVOLATILE AND SEMIVOLATILE FRACTIONS) IN FRESNO, CA

    EPA Science Inventory

    Semi-volatile material, including ammonium nitrate and semi-volatile organic material, is often not measured by traditionally used sampling methods including the FRM and the R&P TEOM Monitor. An intensive sampling campaign was performed at the EPA Fresno, CA Supersite during D...

  11. Identification of Campylobacter infection in chickens from volatile faecal emissions.

    PubMed

    Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S

    2008-06-01

    Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.

  12. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  13. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware

    USGS Publications Warehouse

    Ferrari, Matthew J.

    2001-01-01

    Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.

  14. Differential Profiling of Volatile Organic Compound Biomarker Signatures Utilizing a Logical Statistical Filter-Set and Novel Hybrid Evolutionary Classifiers

    DTIC Science & Technology

    2012-04-01

    for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and

  15. Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Goulden, Olivia; Crooks, Matthew; Connolly, Paul

    2018-01-01

    We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.

  16. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosol in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.

    2014-12-01

    The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.

  17. COMPARISON OF TWO FIELD SAMPLING PROCEDURES (EN CORE AND FIELD METHANOL EXTRACTION) FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    In-situ Lasagna technology was recently evaluated at a contaminated site at Offutt Air Force Base. The site was contaminated with low levels (< 30 mg/kg) of volatile organic compounds (VOCs). Originally, researchers planned to use field methanol extraction for both pre- and pos...

  18. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    EPA Science Inventory

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  19. Perchlorate and volatiles of the brine of Lake Vida (Antarctica): Implication for the in situ analysis of Mars sediments

    NASA Astrophysics Data System (ADS)

    Kenig, Fabien; Chou, Luoth; McKay, Christopher P.; Jackson, W. Andrew; Doran, Peter T.; Murray, Alison E.; Fritsen, Christian H.

    2016-07-01

    The cold (-13.4°C), cryoencapsulated, anoxic, interstitial brine of the >27 m thick ice of Lake Vida (Victoria Valley, Antarctica) contains 49 µg · L-1 of perchlorate and 11 µg · L-1 of chlorate. Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the exception of volatile organic sulfur compounds, most other volatiles observed were artifacts produced in the GC injector when the thermal decomposition products of oxychlorines reacted with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water with perchlorate (40 µg · L-1) showed low level of organic artifacts, reflecting carbon limitation. In order to observe sample-derived organic compounds, both in analog samples and on Mars, the molar abundance of reduced carbon in a sample must exceed those of O2 and Cl2 produced during decomposition of oxychlorines. This suggests that the abundance of compounds observed by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose that the derivatization agents stored on SAM may be used as an external source of reduced carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing the expression of more abundant and perhaps more diverse Martian organic matter.

  20. Perchlorate and Volatiles of the Brine of Lake Vida (Antarctica): Implication for the in Situ Analysis of Mars Sediments

    NASA Technical Reports Server (NTRS)

    Kenig, Fabien; Chou, Luoth; McKay, Christopher P.; Jackson, W. Andrew; Doran, Peter T.; Murray, Alison E.; Fritsen, Christian H.

    2016-01-01

    The cold (-13.4 C), cryoencapsulated, anoxic, interstitial brine of the 27 m-thick ice of Lake Vida (Victoria Valley, Antarctica) contains 49 microgram L-1 of perchlorate and 11 microgram L-1 of chlorate. Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the exception of volatile organic sulfur compounds, most other volatiles observed were artifacts produced in the GC injector when the thermal decomposition products of oxychlorines reacted with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water with perchlorate (40 microgram L-1) showed low level of organic artifacts, reflecting carbon limitation. In order to observe sample-derived organic compounds, both in analog samples and on Mars, the molar abundance of reduced carbon in a sample must exceed those of O2 and Cl2 produced during decomposition of oxychlorines. This suggests that the abundance of compounds observed by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose that the derivatization agents stored on SAM may be used as an external source of reduced carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing the expression of more abundant and perhaps more diverse Martian organic matter.

  1. A Comparison Study of Sampling and Analyzing Volatile Organic Compounds in Air in Kuwait by Using Tedlar Bags/Canisters and GC-MS with a Cryogenic Trap

    PubMed Central

    Tang, Hongmao; Beg, Khaliq R.; Al-Otaiba, Yousef

    2006-01-01

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results. PMID:16699723

  2. A comparison study of sampling and analyzing volatile organic compounds in air in Kuwait by using Tedlar bags/canisters and GC-MS with a cryogenic trap.

    PubMed

    Tang, Hongmao; Beg, Khaliq R; Al-Otaiba, Yousef

    2006-05-12

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results.

  3. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine ifmore » other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.« less

  4. Methods development for total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  5. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    USGS Publications Warehouse

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho test was used to check for statistically significant covariance among urban ground-water quality and land-use type. The number of pesticides and volatile organic compounds detected and concentrations of nickel increased as the percentage of residential land use increased. Greater nickel concentrations also were associated with a greater number of volatile organic compounds detected. As the percentage of commercial land use increased, the numbers of pesticides and volatile organic compounds detected decreased. The number of pesticides detected in the urban ground-water samples increased as concentrations of nitrite plus nitrate increased; the number of pesticides detected and the concentrations of nitrite plus nitrate decreased as the age of the ground water increased. These correlations may indicate that, with time, pesticides and nitrate are removed from the ground-water system by physical, chemical, or biological processes.The effects of surficial geology on the occurrence of pesticides and volatile organic compounds was investigated by calculating frequencies of detection. The detection frequency for pesticides was greater for urban samples collected from wells where the surficial geology is sand than for urban samples collected from wells where the surficial geology is clay. The frequency of detection of volatile organic compounds did not show this relation.

  6. A volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  7. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural processes and human activities are affecting ground-water quality in the upper part of the southeastern Sacramento Valley aquifer. The factors identified as having an influence on ground-water quality were redox condition in the aquifer, depth within the aquifer, and land use overlying the aquifer. Nitrate concentra-tions showed a statistical correlation with each of these factors. Detections of pesticides and volatile organic compounds were too few to compare concentrations with the various factors, but the types of synthetic compounds detected were consistent with the sur-rounding land use. Sixty-one percent of the wells sampled in this study showed the effect of human activities on ground-water quality in the form of a nitrate concentration over 3 milligrams per liter or a detection of a pesticide or volatile organic compound. In general, the water quality in the southeastern Sacramento Valley aquifer was found suitable for most uses.

  8. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  9. The development and testing of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.

    1992-01-01

    The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.

  10. High-efficiency headspace sampling of volatile organic compounds in explosives using capillary microextraction of volatiles (CMV) coupled to gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fan, Wen; Almirall, José

    2014-03-01

    A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ∼5 × 10(-2) m(2) or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ∼1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ∼1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.

  11. Headspace GC-MS Analysis of Halogenated Volatile Organic Compounds in Aqueous Samples: An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Keller, John W.; Fabbri, Cindy E.

    2012-01-01

    Analysis of halogenated volatile organic compounds (HVOCs) by GC-MS demonstrates the use of instrumentation in the environmental analysis of pollutant molecules and enhances student understanding of stable isotopes in nature. In this experiment, students separated and identified several HVOCs that have been implicated as industrial groundwater…

  12. Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)

    NASA Astrophysics Data System (ADS)

    Steininger, H.; Goetz, W.; Goesmann, F.

    2012-12-01

    The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in the amount and composition of organic compounds have been found in the GC traces. In the flight like configuration an increase of the light volatile compounds was observed especially for benzene and toluene. We want to acknowledge the support by DLR (FKZ 50QX1001).

  13. Aerial sampling of emissions from biomass pile burns in ...

    EPA Pesticide Factsheets

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  14. Applicability of canisters for sample storage in the determination of hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas J.; Holdren, Michael W.

    This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.

  15. Quantity and quality of stormwater collected from selected stormwater outfalls at industrial sites, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Nagle, Doug D.; Guimaraes, Wladmir B.

    2012-01-01

    An assessment of the quantity and quality of stormwater runoff associated with industrial activities at Fort Gordon was conducted from January through December 2011. The assessment was provided to satisfy the requirements from a general permit that authorizes the discharge of stormwater under the National Pollutant Discharge Elimination System from a site associated with industrial activities. The stormwater quantity refers to the runoff discharge at the point and time of the runoff sampling. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. The initial scope of this study was to sample stormwater runoff from five stations at four industrial sites (two landfills and two heating and cooling sites). As a consequence of inadequate hydrologic conditions during 2011, no samples were collected at the two landfills; however, three samples were collected from the heating and cooling sites. The assessment included the collection of physical properties, such as water temperature, specific conductance, dissolved oxygen, and pH; the detection of suspended materials (total suspended solids, total fixed solids, total volatile solids), nutrients and organic compounds, and major and trace inorganic compounds (metals); and the detection of volatile and semivolatile organic compounds. Nutrients and organic compounds, major and trace inorganic compounds, and volatile and semivolatile organic compounds were detected above the laboratory reporting levels in all samples collected from the three stations. The detection of volatile and semivolatile organic compounds included anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene, cis,1, 2-dichloroethene, dimethyl phthalate, fluoranthene, naphthalene, pyrene, acenaphthylene (station SWR11-3), and di-n-butyl phthalate (station SWR11-4).

  16. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  17. Paleogene stratigraphy of the Solomons Island, Maryland corehole

    USGS Publications Warehouse

    Gibson, Thomas G.; Bybell, Laurel M.

    1994-01-01

    Purge and trap capillary gas chromatography/mass spectrometry is a rapid, precise, accurate method for determining volatile organic compounds in samples of surface water and ground water. The method can be used to determine 59 selected compounds, including chlorofluorohydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. The volatile organic compounds are removed from the sample matrix by actively purging the sample with helium. The volatile organic compounds are collected onto a sorbant trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, ionized by electron impact, and determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum. Unknown compounds detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology. Method detection limits for the selected compounds range from 0.05 to 0.2 microgram per liter. Recoveries for the majority of the selected compounds ranged from 80 to 120 percent, with relative standard deviations of less than 10 percent.

  18. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    NASA Astrophysics Data System (ADS)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  19. Direct screening and confirmation of priority volatile organic pollutants in drinking water.

    PubMed

    Caro, J; Serrano, A; Gallego, M

    2007-01-05

    A screening tool was proposed for the rapid detection of eight priority volatile organic pollutants according to European standards in drinking water. The method is based on the direct coupling of a headspace sampler with a mass spectrometer, using a chromatographic column heated to 175 degrees C as an interface. The water sample was subjected to the headspace extraction process and the volatile fraction was introduced directly into the mass spectrometer, without prior chromatographic separation, achieving low detection limits (0.6-1.2 ng/ml) for all compounds. The mass spectrum resulting from the simultaneous ionization and fragmentation of the mixture of molecules constitutes the volatile profile of each sample. An appropriate chemometric treatment of these signals permitted them to be classified, on the basis of their volatile composition, as contaminated or uncontaminated with respect to the legally established concentration levels for these compounds in drinking water, and providing no false negatives. A conventional confirmation method was carried out to analyze positive water samples by using the same instrumental setup as in the screening method, but using an appropriate temperature program in the chromatographic column to separate, identify and quantify each analyte.

  20. Gas chromatography of volatile organic compounds

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1973-01-01

    System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.

  1. SEMI-VOLATILE SPECIES IN PM 2.5: DEVELOPMENT AND VALIDATION OF INTEGRATED AND CONTINUOUS SAMPLERS FOR PM 2.5 RESEARCH OR EXPOSURE MONITORING.

    EPA Science Inventory

    Fine particulate matter (PM) in urban atmospheres contains substantial amounts of semi-volatile material (e.g. ammonium nitrate and semi-volatile organic compounds), some of which is lost when PM is sampled with a filter. This study addresses the hypothesis that the concentratio...

  2. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  3. A High Frequency Response Relaxed Eddy Accumulation Flux Measurement System for Sampling Short-Lived Biogenic Volatile Organic Compounds

    EPA Science Inventory

    A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m−2 hr−1. The system features a continuous, integrated gas-phase ozo...

  4. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    PubMed

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Diffusion sampler testing at Naval Air Station North Island, San Diego County, California, November 1999 to January 2000

    USGS Publications Warehouse

    Vroblesky, Don A.; Peters, Brian C.

    2000-01-01

    Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.

  6. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    PubMed

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±<25% RSD (R 2 >0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    PubMed

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  8. Chemical Signature of Biomass Burning Emitted PM2.5 as Revealed by a C/N/S Multi- Elemental Scanning Thermal Analysis (MESTA) Technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Bugna, G.

    2006-12-01

    Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.

  9. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    NASA Astrophysics Data System (ADS)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  10. Changes in ground-water quality in the Canal Creek Aquifer between 1995 and 2000-2001, West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Phelan, Daniel J.; Fleck, William B.; Lorah, Michelle M.; Olsen, Lisa D.

    2002-01-01

    Since 1917, Aberdeen Proving Ground, Maryland has been the primary chemical-warfare research and development center for the U.S. Army. Ground-water contamination has been documented in the Canal Creek aquifer because of past disposal of chemical and ordnance manufacturing waste. Comprehensive sampling for volatile organic compounds in ground water by the U.S. Geological Survey in the West Branch Canal Creek area was done in June?October 1995 and June?August 2000. The purpose of this report is (1) to compare volatile organic compound concentrations and determine changes in the ground-water contaminant plumes along two cross sections between 1995 and 2000, and (2) to incorporate data from new piezometers sampled in spring 2001 into the plume descriptions. Along the southern cross section, total concentrations of volatile organic compounds in 1995 were determined to be highest in the landfill area east of the wetland (5,200 micrograms per liter), and concentrations were next highest deep in the aquifer near the center of the wetland (3,300 micrograms per liter at 35 feet below land surface). When new piezometers were sampled in 2001, higher carbon tetrachloride and chloroform concentrations (2,000 and 2,900 micrograms per liter) were detected deep in the aquifer 38 feet below land surface, west of the 1995 sampling. A deep area in the aquifer close to the eastern edge of the wetland and a shallow area just east of the creek channel showed declines in total volatile organic compound concentrations of more than 25 percent, whereas between those two areas, con-centrations generally showed an increase of greater than 25 percent between 1995 and 2000. Along the northern cross section, total concentrations of volatile organic compounds in ground water in both 1995 and 2000 were determined to be highest (greater than 2,000 micrograms per liter) in piezometers located on the east side of the section, farthest from the creek channel, and concentrations were progressively lower at piezometer locations closer to the creek channel. Total volatile organic compound concentrations increased more than 25 percent in some areas in the middle depths of the aquifer; however, it could not be determined if a defined plume was moving farther downgradient along ground-water flow paths toward the creek channel, or vertically downward because of density differences within the aquifer.

  11. Volatile organic compound concentrations in the South Coast Air Basin (CA) during the summers of 1995 and 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinska, B.; Harshfield, G.; Fujita, E.

    1997-12-31

    Volatile organic compounds (VOC) were measured in California`s South Coast Air Basin (SoCAB) during the summers of 1995 and 1996 in order to determine the air quality impacts of the introduction in 1996 of California`s Phase 2 reformulated gasoline (RFG). Over 250 canister and 2,4-dinitrophenylhydrazine (DNPH)-impregnated cartridge samples were collected during each sampling campaign at four sampling sites--two source-dominated sites, a downwind receptor site, and a background site. Canister samples were analyzed for methane, speciated volatile hydrocarbons (C{sub 2}-C{sub 12}), carbon monoxide (CO), carbon dioxide (CO{sub 2}), and methyl tert-butyl ether (MTBE). DNPH were analyzed for C{sub 1}-C{sub 7} carbonylmore » compounds. This paper examines the changes in concentrations of C{sub 2}-C{sub 12} hydrocarbons in the SoCAB resulting from the introduction of Phase 2 RFG with particular emphasis on hydrocarbon species that are most affected by the reformulation.« less

  12. Application of solid-phase microextraction with gas chromatography and mass spectrometry for the early detection of active moulds on historical woollen objects.

    PubMed

    Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M

    2017-02-01

    The goal of this work was to determine the microbial volatile organic compounds emitted by moulds growing on wool in search of particular volatiles mentioned in the literature as indicators of active mould growth. The keratinolytically active fungi were inoculated on two types of media: (1) samples of wool placed on broths, and (2) on broths containing amino acids that are elements of the structure of keratin. All samples were prepared inside 20 mL vials (closed system). In the first case (1) the broths did not contain any sources of organic carbon, nitrogen, or sulfur, i.e. wool was the only nutrient for the moulds. A third type of sample was historical wool prepared in a Petri dish without a broth and inoculated with a keratinolytically active mould (open system). The microbial volatiles emitted by moulds were sampled with the headspace solid-phase microextraction method. Volatiles extracted on solid-phase microextraction fibers were analyzed in a gas chromatography with mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on woollen objects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    PubMed

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  14. Next Generation Offline Approaches to Trace Gas-Phase Organic Compound Speciation: Sample Collection and Analysis

    NASA Astrophysics Data System (ADS)

    Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.

    2017-12-01

    Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.

  15. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  16. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples.

    PubMed

    Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica

    2013-10-01

    The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Use of the Analysis of the Volatile Faecal Metabolome in Screening for Colorectal Cancer

    PubMed Central

    2015-01-01

    Diagnosis of colorectal cancer is an invasive and expensive colonoscopy, which is usually carried out after a positive screening test. Unfortunately, existing screening tests lack specificity and sensitivity, hence many unnecessary colonoscopies are performed. Here we report on a potential new screening test for colorectal cancer based on the analysis of volatile organic compounds (VOCs) in the headspace of faecal samples. Faecal samples were obtained from subjects who had a positive faecal occult blood sample (FOBT). Subjects subsequently had colonoscopies performed to classify them into low risk (non-cancer) and high risk (colorectal cancer) groups. Volatile organic compounds were analysed by selected ion flow tube mass spectrometry (SIFT-MS) and then data were analysed using both univariate and multivariate statistical methods. Ions most likely from hydrogen sulphide, dimethyl sulphide and dimethyl disulphide are statistically significantly higher in samples from high risk rather than low risk subjects. Results using multivariate methods show that the test gives a correct classification of 75% with 78% specificity and 72% sensitivity on FOBT positive samples, offering a potentially effective alternative to FOBT. PMID:26086914

  18. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR USE OF THE ACTIVE VOC SAMPLER FOR THE COLLECTION OF AIRBORNE VOCS AT FIXED INDOOR AND OUTDOOR SITES (UA-F-11.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to collect indoor and outdoor air samples for the determination of selected volatile organic compounds (VOC's) using a pump to draw air through a Carbotrap Sampler. Volatile organic compounds (VOCs) present in the air are p...

  19. Analysis of Volatile Organic Compounds in a Controlled Environment: Ethylene Gas Measurement Studies on Radish

    NASA Technical Reports Server (NTRS)

    Kong, Suk Bin

    2001-01-01

    Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.

  20. A Pilot Study Exploring the Use of Breath Analysis to Differentiate Healthy Cattle from Cattle Experimentally Infected with Mycobacterium bovis

    PubMed Central

    Ellis, Christine K.; Stahl, Randal S.; Nol, Pauline; Waters, W. Ray; Palmer, Mitchell V.; Rhyan, Jack C.; VerCauteren, Kurt C.; McCollum, Matthew; Salman, M. D.

    2014-01-01

    Bovine tuberculosis, caused by Mycobacterium bovis, is a zoonotic disease of international public health importance. Ante-mortem surveillance is essential for control; however, current surveillance tests are hampered by limitations affecting ease of use or quality of results. There is an emerging interest in human and veterinary medicine in diagnosing disease via identification of volatile organic compounds produced by pathogens and host-pathogen interactions. The objective of this pilot study was to explore application of existing human breath collection and analysis methodologies to cattle as a means to identify M. bovis infection through detection of unique volatile organic compounds or changes in the volatile organic compound profiles present in breath. Breath samples from 23 male Holstein calves (7 non-infected and 16 M. bovis-infected) were collected onto commercially available sorbent cartridges using a mask system at 90 days post-inoculation with M. bovis. Samples were analyzed using gas chromatography-mass spectrometry, and chromatographic data were analyzed using standard analytical chemical and metabolomic analyses, principle components analysis, and a linear discriminant algorithm. The findings provide proof of concept that breath-derived volatile organic compound analysis can be used to differentiate between healthy and M. bovis-infected cattle. PMID:24586655

  1. SEMI-VOLATILE SECONDARY AEROSOLS IN URBAN ATMOSPHERES: MEETING A MEASURED CHALLENGE

    EPA Science Inventory

    This presentation compares the results from various particle measurement methods as they relate to semi-volatile secondary aerosols in urban atmospheres. The methods include the PM2.5 Federal Reference Method; Particle Concentrator - BYU Organic Sampling System (PC-BOSS); the Re...

  2. The Composition of Comet C 2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    NASA Technical Reports Server (NTRS)

    Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas

    2017-01-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  3. Organic solutes in ground water at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Leenheer, Jerry A.; Bagby, Jefferson C.

    1982-01-01

    In August 1980, the U.S. Geological Survey started a reconnaissance survey of organic solutes in drinking water sources, ground-water monitoring wells, perched water table monitoring wells, and in select waste streams at the Idaho National Engineering Laboratory (INEL). The survey was to be a two-phase program. In the first phase, 77 wells and 4 potential point sources were sampled for dissolved organic carbon (DOC). Four wells and several potential point sources of insecticides and herbicides were sampled for insecticides and herbicides. Fourteen wells and four potential organic sources were sampled for volatile and semivolatile organic compounds. The results of the DOC analyses indicate no high level (>20 mg/L DOC) organic contamination of ground water. The only detectable insecticide or herbicide was a DDT concentration of 10 parts per trillion (0.01 microgram per liter) in one observation well. The volatile and semivolatile analyses do not indicate the presence of hazardous organic contaminants in significant amounts (>10 micrograms per liter) in the samples taken. Due to the lack of any significant organic ground-water contamination in this reconnaissance survey, the second phase of the study, which was to follow up the first phase by additional sampling of any contaminated wells, was canceled.

  4. Volatile organic compound measurements in the California/Mexico border region during SCOS97

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinska, B.; Sagebiel, J.; Uberna, E.

    1999-07-01

    Measurements of volatile organic compounds (VOC) were carried out in the California/Mexico border region during the Southern California Ozone study in the Summer of 1997 (SCOS97). Integrated 3-hr samples were collected in Rosarito (south of Tijuana, Mexico) and in Mexicali during Intensive Operational Periods (IOP), twice per IOP day. VOC were collected using stainless-steel 6 L canisters; carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated C{sub 18} SepPak cartridges. The canister samples were analyzed for speciated volatile hydrocarbons (C{sub 2}-C{sub 12}), CO, CO{sub 2}, CH{sub 4}, MTBE, and halogenated hydrocarbons. DNPH-impregnated cartridges were analyzed for fourteen C{sub 1}-C{sub 7} carbonylmore » compounds. The results of these measurements will be discussed.« less

  5. The electronic nose as a rapid sensor for volatile compounds in treated domestic wastewater.

    PubMed

    Dewettinck, T; Van Hege, K; Verstraete, W

    2001-07-01

    An electronic nose consisting of 12 metal oxide sensors was used to monitor volatile compounds in effluent of a domestic wastewater treatment plant. Effluent and reference (deionized water) samples were heated to 60 and 90 degrees C to promote the volatilization and to increase the sensitivity. An effluent measuring campaign of 12 weeks was conducted and the repeatability and reproducibility of the procedure and the apparatus were determined. Processing the obtained fingerprints with principal component analysis (PCA) allowed interpretation and differentiation of the samples in terms of origin and quality, relative to the reference. To minimize the variance due to sensitivity fluctuations of the apparatus and to detect effluents with deviating qualities, two new concepts were defined, i.e. the relative sensorial odour perception (in short: rSOP) and the relative fingerprint. Correlations between the relative overall electronic nose output, expressed as rSOP, and selected routine parameters were weak except for the parameter "volatile suspended solids" (VSS), indicating adsorption of volatile organic compounds (VOCs) onto the organic particles. The results clearly demonstrate the possibility to use the electronic nose as a rapid alarm generator towards volatile compounds, e.g. in specific advanced treatment processes to produce reclaimed water from effluent of the domestic wastewater treatment plant under scrutiny.

  6. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions.

    PubMed

    Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica

    2018-01-01

    Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Volatile substance abuse--post-mortem diagnosis.

    PubMed

    Wille, Sarah M R; Lambert, Willy E E

    2004-06-10

    A substantial number of children and adolescents world-wide abuse volatile substances with the intention to experience an euphoric state of consciousness. Although the ratio of deaths to nonfatal inhalation escapades is low, it is an important and preventable cause of death in young people. In the analytical investigation of volatile substances proper sample collection, storage and handling are important in view of the volatile nature of the compounds. Volatile organic compounds in post-mortem matrices such as blood, urine and tissues are generally determined by gas chromatography after extracting the compounds with methods such as static and dynamic headspace or even with pulse-heating and solvent extraction. In post-mortem cases, metabolites in urine seem less relevant, however, trichloroethanol and trichloroacetic acid were determined in several cases. When interpreting qualitative and quantitative results, researchers should be aware of false conclusions. The main reason why scepticism is necessary is the occurrence of losses of analytes during sampling, sample handling and storage, which results in false quantitation.

  8. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations exceeding drinking-water standards or guidelines. Water samples from one-half of the wells sampled had no detectable concentrations of pesticides or volatile organic carbons, at the parts-per-billion level. Concentrations of stable isotopes of hydrogen and oxygen in ground-water samples were similar to concentrations expected for modern precipitation and for water that has been affected by evaporation. Tritium activities and concentrations of chlorofluorocarbons indicated that the water samples collected from most wells were recharged less than 50 years ago.

  9. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  10. In vitro antimicrobial activity and chemical composition of the essential oil of Foeniculum vulgare Mill.

    PubMed

    Aprotosoaie, Ana Clara; Hăncianu, Monica; Poiată, Antonia; Tuchiluş, Cristina; Spac, A; Cioană, Oana; Gille, Elvira; Stănescu, Ursula

    2008-01-01

    In our study, four samples of volatile oil from Foeniculum vulgare, cultivated in different pedoclimatic conditions, were investigated for their antimicrobial activity and chemical composition. Organisms. Staphylococcus aureus ATCC 25923, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli ATCC 25922, Candida albicans were included in the report. Antimicrobial susceptibility tests. The comparative inhibitory activity of volatile oil samples with other antimicrobial agents was quantitative determined by minimum inhibitory concentration (MIC). Oil samples are the volatile oils extracted by steam distillation, from two ecological vegetative populations of Foeniculum vulgare. Gas chromatography coupled to mass spectrometry (GC-MS) was used to determine the chemical composition of the essential oils. All oil samples have a good activity against E. coli and S. aureus at low concentrations. Against B. cereus and P. aeruginosa these oil samples are less active. The oil samples were generally bactericidal at a concentration up to twofold or fourfold higher than the MIC value. Significantly synergic activity with amoxicillin or tetracycline showed all fennel samples against E. coli, Sarcina lutea and B. subtilis strains. Fennel oil samples have shown high activity against Candida albicans. No significant antimicrobial activity variations were observed for Foeniculum vulgare volatile oil samples obtained after two or three years cultivation period. The most important identified compounds in all samples of fennel volatile oils were trans-anethole, estragole, fenchone, limonene, alpha-pinene and gamma-terpinene.

  11. Ground-water contamination at an inactive coal and oil gasification plant site, Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1989-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)

  12. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  13. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  14. JEM Spotlight: Fungi, mycotoxins and microbial volatile organic compounds in mouldy interiors from water-damaged buildings.

    PubMed

    Polizzi, Viviana; Delmulle, Barbara; Adams, An; Moretti, Antonio; Susca, Antonia; Picco, Anna Maria; Rosseel, Yves; Kindt, Ruben't; Van Bocxlaer, Jan; De Kimpe, Norbert; Van Peteghem, Carlos; De Saeger, Sarah

    2009-10-01

    Concerns have been raised about exposure to mycotoxin producing fungi and the microbial volatile organic compounds (MVOCs) they produce in indoor environments. Therefore, the presence of fungi and mycotoxins was investigated in 99 samples (air, dust, wallpaper, mycelium or silicone) collected in the mouldy interiors of seven water-damaged buildings. In addition, volatile organic compounds (VOCs) were sampled. The mycotoxins were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (20 target mycotoxins) and quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Morphological and molecular identifications of fungi were performed. Of the 99 samples analysed, the presence of one or more mycotoxins was shown in 62 samples by means of LC-MS/MS analysis. The mycotoxins found were mainly roquefortine C, chaetoglobosin A and sterigmatocystin but also roridin E, ochratoxin A, aflatoxin B(1) and aflatoxin B(2) were detected. Q-TOF-MS analysis elucidated the possible occurrence of another 42 different fungal metabolites. In general, the fungi identified matched well with the mycotoxins detected. The most common fungal species found were Penicillium chrysogenum, Aspergillus versicolor (group), Chaetomium spp. and Cladosporium spp. In addition, one hundred and seventeen (M)VOCs were identified, especially linear alkanes (C(9)-C(17)), aldehydes, aromatic compounds and monoterpenes.

  15. Validated Test Method 5030C: Purge-and-Trap for Aqueous Samples

    EPA Pesticide Factsheets

    This method describes a purge-and-trap procedure for the analysis of volatile organic compoundsin aqueous samples & water miscible liquid samples. It also describes the analysis of high concentration soil and waste sample extracts prepared in Method 5035.

  16. Application of HS-SPME-GC-MS method for the detection of active moulds on historical parchment.

    PubMed

    Sawoszczuk, Tomasz; Syguła-Cholewińska, Justyna; Del Hoyo-Meléndez, Julio M

    2017-03-01

    The goal of this work was to analyse the profile of microbial volatile organic compounds (MVOCs) emitted by moulds growing on parchment samples, in search of particular volatiles mentioned in the literature as indicators of active mould growth. First, the growth of various moulds on samples of parchment was assessed. Those species that showed collagenolytic activity were then inoculated on two types of media: samples of parchment placed on media and on media containing amino acids that are elements of the structure of collagen. All samples were prepared inside 20-ml vials (closed system). In the first case, the media did not contain any sources of organic carbon, nitrogen, or sulphur, i.e. parchment was the only nutrient for the moulds. A third type of sample was historical parchment prepared in a Petri dish without a medium and inoculated with a collagenolytically active mould (open system). The MVOCs emitted by moulds were sampled with the headspace-SPME method. Volatiles extracted on DVB/CAR/PDMS fibres were analysed in a gas chromatography-mass spectrometry system. Qualitative and quantitative analyses of chromatograms were carried out in search of indicators of metabolic activity. The results showed that there are three groups of volatiles that can be used for the detection of active forms of moulds on parchment objects. To the best of our knowledge, this is the first work to measure MVOCs emitted by moulds growing on parchment.

  17. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    PubMed

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-06

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles.

  18. Use of fecal volatile organic compound analysis to discriminate between non-vaccinated and BCG—Vaccinated cattle prior to and after Mycobacterium bovis challenge

    PubMed Central

    Stahl, Randal; Waters, W. Ray; Palmer, Mitchell V.; Nol, Pauline; Rhyan, Jack C.; VerCauteren, Kurt C.; Koziel, Jacek A.

    2017-01-01

    Bovine tuberculosis is a zoonotic disease of global public health concern. Development of diagnostic tools to improve test accuracy and efficiency in domestic livestock and enable surveillance of wildlife reservoirs would improve disease management and eradication efforts. Use of volatile organic compound analysis in breath and fecal samples is being developed and optimized as a means to detect disease in humans and animals. In this study we demonstrate that VOCs present in fecal samples can be used to discriminate between non-vaccinated and BCG-vaccinated cattle prior to and after Mycobacterium bovis challenge. PMID:28686691

  19. Rapid Diagnosis of Tuberculosis from Analysis of Urine Volatile Organic Compounds

    PubMed Central

    Lim, Sung H.; Martino, Raymond; Anikst, Victoria; Xu, Zeyu; Mix, Samantha; Benjamin, Robert; Schub, Herbert; Eiden, Michael; Rhodes, Paul A.; Banaei, Niaz

    2017-01-01

    The World Health Organization has called for simple, sensitive, and non-sputum diagnostics for tuberculosis. We report development of a urine tuberculosis test using a colorimetric sensor array (CSA). The sensor comprised of 73 different indicators captures high-dimensional, spatiotemporal signatures of volatile chemicals emitted by human urine samples. The sensor responses to 63 urine samples collected from 22 tuberculosis cases and 41 symptomatic controls were measured under five different urine test conditions. Basified testing condition yielded the best accuracy with 85.5% sensitivity and 79.5% specificity. The CSA urine assay offers desired features needed for tuberculosis diagnosis in endemic settings. PMID:29057329

  20. Early detection of disease: The correlation of the volatile organic profiles from patients with upper respiratory infections with subjects of normal profiles

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1979-01-01

    A method is described whereby a transevaporator is used for sampling 60-100 microns of aqueous sample. Volatiles are stripped from the sample either by a stream of helium and collection on a porous polymer, Tenax, or by 0.8 ml of 2-chloropropane and collected on glass beads. The volatiles are thermally desorbed into a precolumn which is connected to a capillary gas chromatographic column for analysis. The technique is shown to be reproducible and suitable for determining chromatographic profiles for a wide variety of sample types. Using a transevaporator sampling technique, the volatile profiles from 70 microns of serum were obtained by capillary column gas chromatography. The complex chromatograms were interpreted by a combination of manual and computer techniques and a two peak ratio method devised for the classification of normal and virus infected sera. Using the K-Nearest Neighbor approach, 85.7 percent of the unknown samples were classified correctly. Some preliminary results indicate the possible use of the method for the assessment of virus susceptibility.

  1. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    PubMed

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  2. Recovery of phosphonate surface contaminants from glass using a simple vacuum extractor with a solid-phase microextraction fiber.

    PubMed

    Groenewold, Gary S; Scott, Jill R; Rae, Catherine

    2011-07-04

    Recovery of chemical contaminants from fixed surfaces for analysis can be challenging, particularly if it is not possible to acquire a solid sample to be taken to the laboratory. A simple device is described that collects semi-volatile organic compounds from fixed surfaces by creating an enclosed volume over the surface, then generating a modest vacuum. A solid-phase microextraction (SPME) fiber is then inserted into the evacuated volume where it functions to sorb volatilized organic contaminants. The device is based on a syringe modified with a seal that is used to create the vacuum, with a perforable plunger through which the SPME fiber is inserted. The reduced pressure speeds partitioning of the semi-volatile compounds into the gas phase and reduces the boundary layer around the SPME fiber, which enables a fraction of the volatilized organics to partition into the SPME fiber. After sample collection, the SPME fiber is analyzed using conventional gas chromatography/mass spectrometry. The methodology has been used to collect organophosphorus compounds from glass surfaces, to provide a simple test for the functionality of the devices. Thirty minute sampling times (ΔT(vac)) resulted in fractional recovery efficiencies that ranged from 10(-3) to >10(-2), and in absolute terms, collection of low nanograms was demonstrated. Fractional recovery values were positively correlated to the vapor pressure of the compounds being sampled. Fractional recovery also increased with increasing ΔT(vac) and displayed a roughly logarithmic profile, indicating that an operational equilibrium is being approached. Fractional recovery decreased with increasing time between exposure and sampling; however, recordable quantities of the phosphonates could be collected three weeks after exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  4. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    PubMed

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)

  6. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  7. Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey, 1984

    USGS Publications Warehouse

    Hochreiter, J.J.; Kozinski, Jane

    1985-01-01

    The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochlorine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride (455 and 1800 micrograms/L, respectively), a volatile organic solvent. Bed-material samples taken from Little Timber and Birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). Contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the U.S. Geological Survey in 1980. Only a trace of PCB 's was detected in any bed material sample taken from Racoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. (Author 's abstract)

  8. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  9. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach: SENSITIVITY ANALYSIS OF SOA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recentmore » work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase transformation of SOA volatility, which is neglected in most previous models.« less

  10. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  11. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    PubMed

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  12. Occurrence of active and inactive herbicide ingredients at selected sites in Iowa

    USGS Publications Warehouse

    Wang, W.; Liszewski, M.; Buchmiller, R.; Cherryholmes, K.

    1995-01-01

    Herbicides were detected in 50% of water samples, ranging from 78% of water samples from the Ames site to 25% from the Walnut Creek site. Among herbicides detected, listed in decreasing order of frequency, were atrazine > alachlor > cyanazine > metolachlor > metribuzin. Volatile organic compounds were detected in 11% of water samples. Among the compounds detected, listed in decreasing order of frequency, were xylene > toluene > acetone. One sample contained a detectable amount of aliphatic compound(s), with the empirical formula of C8H18. Results from the Deer Creek site showed that herbicides were detected primarily in the top layer (1.2 m), whereas xylene and other alkylbenzenes were detected at 2.1 m or deeper. Apparently, physico-chemical and other factors are separating herbicides and volatile organic compounds in the shallow unsaturated zone.

  13. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city.

    PubMed

    Huang, Mei-Chuan; Lin, Jim Juimin

    2007-10-01

    The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.

  14. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  15. A novel personal air sampling device for collecting volatile organic compounds: a comparison to charcoal tubes and diffusive badges.

    PubMed

    Rossner, Alan; Farant, Jean-Pierre

    2004-02-01

    Evacuated canisters have been used for many years to collect ambient air samples for gases and vapors. Recently, significant interest has arisen in using evacuated canisters for personal breathing zone sampling as an alternative to sorbent sampling. A novel flow control device was designed and built at McGill University. The flow control device was designed to provide a very low flow rate, <0.5 mL/min, to allow a sample to be collected over an extended period of time. Previous experiments run at McGill have shown agreement between the mathematical and empirical models to predict flow rate. The flow control device combined with an evacuated canister (capillary flow control-canister) was used in a series of experiments to evaluate its performance against charcoal tubes and diffusive badges. Air samples of six volatile organic compounds were simultaneously collected in a chamber using the capillary flow control-canister, charcoal tubes, and diffusive badges. Five different concentrations of the six volatile organic compounds were evaluated. The results from the three sampling devices were compared to each other and to concentration values obtained using an online gas chromatograph (GC). Eighty-four samples of each method were collected for each of the six chemicals. Results indicate that the capillary flow control-canister device compares quite favorably to the online GC and to the charcoal tubes, p > 0.05 for most of the tests. The capillary flow control-canister was found to be more accurate for the compounds evaluated, easier to use, and easier to analyze than charcoal tubes and passive dosimeter badges.

  16. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    PubMed

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion does not appear in the FID signal, allowing the analytes of interest to be readily detected. The complementary selectivity of UV-visible absorbance detection and this implementation of flame ionization detection allows for the analysis of volatile and nonvolatile components of complex samples using WRP-LC without the requirement that all the components of interest be fully resolved, thus simplifying the sample preparation and chromatographic requirements. This instrument should be applicable to routine automated water monitoring, in which repetitive injection of water samples onto a gas chromatograph is not recommended.

  17. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June and October 2012

    USGS Publications Warehouse

    Huffman, R.L.

    2013-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected chlorinated volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June and October 2012, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers also were analyzed for chlorinated volatile organic compounds, as were all samples from the passive-diffusion sampling sites. In 2012, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2012, chlorinated volatile organic compound (CVOC) concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly higher or the same as concentrations measured in 2011. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2012 continued to be extremely variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in two of the four wells and in all piezometers. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2012 continued to vary spatially and temporarily, and also were very high. Additionally, CVOC concentrations measured in samplers deployed in access tubes were about two to four times less than those measured in the two samplers buried nearby, beneath the marsh stream. Total CVOC concentration, at what has been historically the most contaminated passive-diffusion sampler site (S-4), continued an increasing trend. For the intermediate aquifer in 2012, concentrations of reductive dechlorination byproducts ethane and ethene were consistent with those measured in previous years.

  18. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Treesearch

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    2011-01-01

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  19. [Headspace analysis of volatile organic compounds (VOC) in drinking water by the method of gas chromatography].

    PubMed

    Sotnikov, E E; Zagaynov, V F; Mikhaylova, R I; Milochkin, D A; Ryzhova, I N; Kornilov, I O

    2014-01-01

    In the paper there is presented a methodology of analysis of headspace 52 volatile organic compounds in drinking water by the method of gas chromatography with the use of the chromatograph "Crystal 5000.2" with three detectors and automatic attachment Lab Hut 200N NT-200 for the preparation of the sample water and vapor phase input. The lower limit of detection for all compounds in the 2-10 times lower than that of the corresponding standard value.

  20. NHEXAS PHASE I REGION 5 STUDY--VOCS IN BLOOD ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 145 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood sample...

  1. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry.

    PubMed

    Perez-Hurtado, P; Palmer, E; Owen, T; Aldcroft, C; Allen, M H; Jones, J; Creaser, C S; Lindley, M R; Turner, M A; Reynolds, J C

    2017-11-30

    The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet-pump-based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter-day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. © 2017 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  2. Direct analysis of volatile organic compounds in foods by headspace extraction atmospheric pressure chemical ionisation mass spectrometry

    PubMed Central

    Perez‐Hurtado, P.; Palmer, E.; Owen, T.; Aldcroft, C.; Allen, M.H.; Jones, J.; Creaser, C.S.; Lindley, M.R.; Turner, M.A.

    2017-01-01

    Rationale The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT‐MS), proton transfer reaction mass spectrometry (PTR‐MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet‐pump‐based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis. Methods Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples. Results The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter‐day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively. Conclusions The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats. PMID:28857369

  3. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  4. Detection of semi-volatile organic compounds (SVOCs) in surface water, soil, and groundwater in a chemical industrial park in Eastern China.

    PubMed

    Liu, Benhua; Li, Yuehua; Ma, Jianfeng; Huang, Linxian; Chen, Liang

    2016-01-01

    China is suffering from serious water and soil pollution, especially in the North China Plain. This work investigated semi-volatile organic compounds (SVOCs) in surface water, groundwater and soil within a chemical industrial park in Eastern China, for which the volatile organic compound (VOC) results have been previously reported. A total of 20 samples were collected from the field, and analyzed in the laboratory. A 100% detection frequency of SVOCs in samples from this chemical industrial park was observed (same as VOCs). Moreover, the detection frequency of 113 SVOCs in each sample reached 15.93, 12.39 and 20.35% for surface water, groundwater and soil, respectively. The most detected SVOCs in the park included N-containing SVOCs, polycyclic aromatic hydrocarbons, phthalates, organic pesticides and polychlorodiphenyls. The elevated detecting frequencies and concentration levels of SVOCs identified in the groundwater were attributed to the intensive chemical production activities in the park. In addition, the agricultural activities in the area might also have contributed to the SVOCs to the groundwater. The results of VOCs and SVOCs from this and previous studies suggest that the groundwater in this industrial park has been severely contaminated, and the contamination likely spreads beyond the park. Imminent hydrogeological assessments and remedial actions are warranted to eliminate the source and mitigate the potential plume expansion beyond the park boundary.

  5. Flow-Meter and Passive Diffusion Bag Tests and Potential Influences on the Vertical Distribution of Contaminants in Wells at Galena Airport, Galena, Alaska, August to October 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Peterson, J.E.

    2004-01-01

    Past activities at Galena Airport, a U.S. Air Force Base in Galena, Alaska, have resulted in ground-water contamination by volatile organic compounds. The primary contaminants are petroleum hydrocarbons and chlorinated aliphatic hydrocarbons. The U.S. Geological Survey and Earth Tech, in cooperation with the Air Force Center for Environmental Excellence, conducted investigations at Galena Airport from August to October 2002 using polyethylene diffusion bag samplers and borehole flow-meter testing to examine the vertical distribution of ground-water contamination in selected wells. This investigation was limited to the vicinity of building 1845 and to the area between building 1845 and the Yukon River. In addition, the U.S. Geological Survey was asked to determine whether additional wells are needed to more clearly define the nature and extent of the ground-water contamination at the Air Force Base. Little or no vertical water movement occurred under ambient conditions in the wells tested at Galena Airport, Alaska, in August 2002. All of the ambient vertical flows detected in wells were at rates less than the quantitative limit of the borehole flow meter (0.03 gallons per minute). In wells 06-MW-07 and 10-MW-01, no vertical flow was detected. In wells where ambient flow was detected, the direction of flow was downward. In general, concentrations of volatile organic compounds detected in the low-flow samples from wells at Galena Airport were approximately the same concentrations detected in the closest polyethylene diffusion bag sample for a wide variety of volatile organic compounds. The data indicate that the polyethylene diffusion bag sample results are consistent with the low-flow sample results. Vertical profiling of selected wells using polyethylene diffusion bag samplers at Galena Airport showed that from September 30 to October 1, 2002, little vertical change occurred in volatile organic compound concentrations along the screen length despite the fact that little or no vertical flow was measured in most of the tested wells in August 2002. Two of the wells (10-MW-03 and 06-MW-01) had slightly greater vertical concentration variation for some constituents. In these wells, the contaminant depth probably is lithologically influenced. The close match between concentrations measured in polyethylene diffusion bag and low-flow samples indicates that the bag samples accurately represent the distribution of volatile organic compounds in the wells. It is unclear, however, whether the distribution of volatile organic compounds in the wells, as indicated by the bag samplers, represents contaminant distributions in the aquifer or transient movement within the wells. The probable change in well hydraulics between August and late September to October indicates that the relatively uniform vertical distribution of volatile organic compounds in some of the wells may represent in-well mixing. This uncertainty could be clarified by the installation and sampling of well clusters at various times of the year. Additional insight into the vertical distribution of contamination and flow possibly could be obtained by conducting flow-meter tests and collecting polyethylene diffusion bag samples from selected wells at different times of the year. The westernmost contaminant plume at Million Gallon Hill appears to be surrounded by sufficient monitoring wells to detect changes in the plume extent; however, the installation of additional wells at Galena Airport has the potential to provide additional information on the extent of ground-water contamination in the remaining plumes. The additional information to be gained includes better definition of the vertical and lateral extents of the plumes and better definition of the ground-water flow directions.

  6. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    USGS Publications Warehouse

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  7. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples.

    PubMed

    Zhang, Zhuomin; Ma, Yunjian; Wang, Qingtang; Chen, An; Pan, Zhuoyan; Li, Gongke

    2013-05-17

    A novel alumina nanowire (ANW) solid-phase microextraction (SPME) fiber coating was prepared by a simple and rapid anodization-chemical etching method for ultra-selective determination of volatile esters and alcohols from complicated food samples. Preparation conditions for ANW SPME fiber coating including corrosion solution concentration and corrosion time were optimized in detail for better surface morphology and higher surface area based on scanning electron microscope (SEM). Under the optimum conditions, homogeneous alumina nanowire structure of ANW SPME fiber coating was achieved with the average thickness of 20 μm around. Compared with most of commercial SPME fiber coatings, ANW SPME fiber coatings achieved the higher extraction capacity and special selectivity for volatile esters and alcohols. Finally, an efficient gas sampling technique based on ANW SPME fiber coating as the core was established and successfully applied for the ultra-selective determination of trace volatile esters and alcohols from complicated banana and fermented glutinous rice samples coupled with gas chromatography/mass spectrometry (GC/MS) detection. It was interesting that 25 esters and 2 alcohols among 30 banana volatile organic compounds (VOCs) identified and 4 esters and 7 alcohols among 13 identified VOCs of fermented glutinous rice were selectively sampled by ANW SPME fiber coatings. Furthermore, new analytical methods for the determination of some typical volatile esters and alcohols from banana and fermented glutinous rice samples at specific storage or brewing phases were developed and validated. Good recoveries for banana and fermented glutinous rice samples were achieved in range of 108-115% with relative standard deviations (RSDs) of 2.6-6.7% and 80.0-91.8% with RSDs of 0.3-1.3% (n=3), respectively. This work proposed a novel and efficient gas sampling technique of ANW SPME which was quite suitable for ultra-selectively sampling trace volatile esters and alcohols from complicated food samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  9. Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water

    USGS Publications Warehouse

    Harte, Philip T.; Brayton, Michael J.; Ives, Wayne

    2000-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  10. MACRO- MICRO-PURGE SOIL GAS SAMPLING METHODS FOR THE COLLECTION OF CONTAMINANT VAPORS

    EPA Science Inventory

    Purging influence on soil gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., dead-space purge volume), was evaluated at different field sites. A macro-purge sampling system consisted of a standard hollo...

  11. Analysis of organic volatile flavor compounds in fermented stinky tofu using SPME with different fiber coatings.

    PubMed

    Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo

    2012-03-26

    The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  12. Evaluation of Quality-Assurance/Quality-Control Data Collected by the U.S. Geological Survey from Wells and Springs between the Southern Boundary of the Idaho National Engineering and Environmental Laboratory and the Hagerman Area, Idaho, 1989 through 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.

    1998-10-01

    The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samplesmore » were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering apparatus did not affect water-quality samples.« less

  13. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.

  14. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    USGS Publications Warehouse

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  15. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  16. The study of volatile organic compounds in urban and indoor air

    NASA Astrophysics Data System (ADS)

    Clarkson, Paul Jonathan

    Chapter 1 is a review of the literature concerning the study of volatile organic compounds in the atmosphere. It examines the basic chemistry of the atmosphere and the roles that organic compounds play in it. Also investigated are the methods of sampling and analysing the volatile organic compounds in the air, paying particular attention to the role of solid phase sampling. Chapter 1 also examines the role of volatile organic compounds on air quality. Chapter 2 describes the experimental procedures that were employed during the course of this research project. Chapter 3 examines a multi-method approach to the study of volatile organic compounds in urban and indoor air. The methods employed were capillary electrophoresis, high performance liquid chromatography and gas chromatography. Although good results were obtained for the various methods that were investigated Chapter 3 concludes that a more unified analytical approach is needed to the study of the air. Chapter 4 investigates the possibilities of using a unified approach to the study of VOC's. This is achieved by the development of an air sampling method that uses solid phase extraction cartridges. By investigating many aspects of air sampling mechanisms the results show that a simple yet efficient method for the sampling of VOC in air has been developed. The SPE method is a reusable, yet reliable method that by using sequential solvent desorption has been shown to exhibit some degree of selectivity. The solid phase that gave the best results was styrene-divinyl benzene however other phases were also investigated. The use of a single gas chromatography method was also investigated for the purpose of confirmatory identification of the VOC's. Various detection systems were used including MS and AED. It was shown that by optimising the GC's it was possible to get complimentary results. Also investigated was the possibility of compound tagging in an attempt to confirm the identity of several of the compounds found in the air. Chapter 5 is a theoretical discussion of the ways presenting the data obtained experimentally in an easy to understand way. Instead of targeting 7 or 8 compounds as being representative of air quality it is argued that by using a technique such as Air Fingerprinting, it is possible to show data that is indicative of the whole air sample. Using actual data it is possible to show the origin of the air sample in a simple yet effective way using air fingerprints.Also discussed is the Individual Component Air Quality Index, this is a method of quantifying air quality. By taking into account compound toxicity, atmospheric lifetime and UV exposure, the ICAQI, it is argued, is a technique that presents a more accurate picture of air quality.Chapter 6 concludes the thesis by drawing together the themes and issues that were raised.

  17. SAMPLING OF AUTOMOBILE INTERIORS FOR VINYL CHLORIDE MONOMER

    EPA Science Inventory

    The report gives results of a study to qualitatively identify organic pollutants in the air inside new automobiles. In recent years, concern has developed over the concentration of organic vapors inside new automobiles. A literature search first identified numerous volatilization...

  18. ALVEOLAR BREATH SAMPLING AND ANALYSIS IN HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the EPA's National Exposure Research Laboratory have developed and refined an alveolar breath collection ...

  19. Optimization of methane production by combining organic waste and cow manure as feedstock in anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Theresia, Martha; Priadi, Cindy Rianti

    2017-03-01

    The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.

  20. Broadband external cavity quantum cascade laser based sensor for gasoline detection

    NASA Astrophysics Data System (ADS)

    Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong

    2018-02-01

    A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.

  1. Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain

    NASA Astrophysics Data System (ADS)

    Parra, M. A.; Elustondo, D.; Bermejo, R.; Santamaría, J. M.

    Indoor and outdoor concentrations of volatile organic compounds (VOCs) were measured in 30 pubs and cafés (13 smoking, 13 non-smoking and 4 mixed atmospheres) in Pamplona city, Spain. The samples were obtained using a sampling pocket pump connected to stainless steel tubes filled with Tenax TA, and subsequently analysed by means of GC-MS coupled to a thermal desorption unit. The levels registered were found to be generally higher indoors. Smoking, cleaning products and the entrance of outdoor pollutants were identified as the main sources of these compounds, the later being especially relevant in non-smoking areas. BTEX concentrations were higher during the winter months and higher in smoking areas also.

  2. Quantity and quality of stormwater collected from selected stormwater outfalls at industrial sites, Fort Gordon, Georgia, 2012

    USGS Publications Warehouse

    Nagle, Doug D.

    2013-01-01

    Samples from sites SWR11–3, SWR11–4, and SWR11–5 were analyzed for 83 volatile and semivolatile organic compounds. Eight polycyclic aromatic hydrocarbon compounds, benzo[a]pyrene, benzo[b]fluoranthene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene, were detected at all three sites. Of the 86 volatile and semivolatile organic compounds that were analyzed in stormwater samples from heating and cooling sites, 15 (18 percent) were detected at site SWR11–3, 12 (14 percent) were detected at site SWR11–4, and 17 (20 percent) were detected at site SWR11–5.

  3. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    NASA Technical Reports Server (NTRS)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  4. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges.

    PubMed

    Cuevas, Francisco Julián; Moreno-Rojas, José Manuel; Ruiz-Moreno, María José

    2017-04-15

    A targeted approach using HS-SPME-GC-MS was performed to compare flavour compounds of 'Navelina' and 'Salustiana' orange cultivars from organic and conventional management systems. Both varieties of conventional oranges showed higher content of ester compounds. On the other hand, higher content of some compounds related with the geranyl-diphosphate pathway (neryl and geranyl acetates) and some terpenoids were found in the organic samples. Furthermore, the partial least square discriminant analysis (PLS-DA) achieved an effective classification for oranges based on the farming system using their volatile profiles (90 and 100% correct classification). To our knowledge, it is the first time that a comparative study dealing with farming systems and orange aroma profile has been performed. These new insights, taking into account local databases, cultivars and advanced analytical tools, highlight the potential of volatile composition for organic orange discrimination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Rapid determination of volatile organic compounds in workplace air by protable gas chromatography-mass spectrometer].

    PubMed

    Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L

    2017-10-20

    Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography - mass spectrometer(GC - MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC - MS by a hand - held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2 - 16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8% - 15.8%. The average recovery was 79.3% - 119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.

  6. Elevated in-home sediment contaminant concentrations - the consequence of a particle settling-winnowing process from Hurricane Katrina floodwaters.

    PubMed

    Ashley, Nicholas A; Valsaraj, Kalliat T; Thibodeaux, Louis J

    2008-01-01

    Sediment samples were collected from two homes which were flooded in the wake of Hurricane Katrina in August 2005. The samples were analyzed for trace metals and semi-volatile organic compounds using techniques based on established EPA methods. The data showed higher concentrations of some metals and semi-volatile organic pollutants than reported in previous outdoor sampling events of soils and sediments. The Lake Pontchartrain sediments became resuspended during the hurricane, and this material subsequently was found in the residential areas of New Orleans following levee breaches. The clay and silt particles appear to be selectively deposited inside homes, and sediment contaminant concentrations are usually greatest within this fraction. Re-entry advisories based on outdoor sample concentration results may have under-predicted the exposure levels to homeowners and first responders. All contaminants found in the sediment sampled in this study have their origin in the sediments of Lake Pontchartrain and other localized sources.

  7. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  8. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin: Design and implementation of water-quality studies, 1995-98

    USGS Publications Warehouse

    Stark, James R.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.

    1999-01-01

    This report describes the design, site-selection, and implementation of the study. Methods used to collect, process, and analyze samples; characterize sites; and assess habitat are described. A comprehensive list of sample sites is provided. Sample analyses for water-quality studies included chlorophyll a, major inorganic constituents, nutrients, trace elements, tritium, radon, environmental isotopes, organic carbon, pesticides, volatile organic compounds, and other synthetic and naturallyoccurring organic compounds. Aquatic-biological samples included fish, benthic macroinvertebrates, and algal enumeration and identification, as well as synthetic-organic compounds and trace elements in fish tissue.

  9. Five Years of Analyses of Volatiles, Isotopes and Organics in Gale Crater Materials

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Mahaffy, P. R.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Atreya, S. K.; Buch, A.; Coll, P. J.; Conrad, P. G.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Hogancamp, J. V.; House, C. H.; Knudson, C. A.; Lewis, J. M.; Malespin, C.; Martin, P. M.; Millan, M.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Steele, A.; Stern, J. C.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Webster, C. R.; Wong, G. M.

    2017-12-01

    Over the last five years, the Curiosity rover has explored a variety of fluvial, lacustrine and aeolian sedimentary rocks, and soils. The Sample Analysis at Mars (SAM) instrument has analysed 3 soil and 12 rock samples, which exhibit significant chemical and mineralogical diversity in over 200 meters of vertical section. Here we will highlight several key insights enabled by recent measurements of the chemical and isotopic composition of inorganic volatiles and organic compounds detected in Gale Crater materials. Until recently samples have evolved O2 during SAM evolved gas analyses (EGA), attributed to the thermal decomposition of oxychlorine phases. A lack of O2 evolution from recent mudstone samples may indicate a difference in the composition of depositional or diagenetic fluids, and can also have implications for the detection of organic compounds since O2 can combust organics to CO2 in the SAM ovens. Recent mudstone samples have also shown little or no evolution of NO attributable to nitrate salts, possibly also as a result of changes in the chemical composition of fluids [1]. Measurements of the isotopic composition of sulfur, hydrogen, nitrogen, chlorine, and carbon in methane evolved during SAM pyrolysis are providing constraints on the conditions of possible paleoenvironments [e.g., 2, 3]. There is evidence of organic C from both EGA and GCMS measurements of Gale samples [e.g., 4, 5]. Organic sulfur volatiles have been detected in several samples, and the first opportunistic derivatization experiment produced a rich dataset indicating the presence of several organic compounds [6, 7]. A K-Ar age has been obtained from the Mojave mudstone, and the age of secondary materials formed by aqueous alteration is likely <3 Ga [8]. This relatively young formation age suggests fluid interactions after the end of most fluvial activity on the surface of Mars. As these highlights show, SAM measurements of solid samples have made diverse and important contributions to the exploration of Gale's rock records of martian environmental history and habitability. [1] Sutter et al. (2017) LPSC 3009. [2] Franz et al., this mtg. [3] Stern et al., this mtg. [4] Ming et al. (2014) Science 343. [5] Freissinet et al. (2015) JGR 120. [6] Eigenbrode et al. (2016) AGU P21D-08. [7] Freissinet et al. (2017) LPSC 2687. [8] Martin et al. (2017) LPSC 1531.

  10. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  11. Perchlorate and Volatiles in the Brine of Lake Vida (antarctica): Implication for the Analysis of Mars Sediments

    NASA Astrophysics Data System (ADS)

    Kenig, F. P. H.; Chou, L.; McKay, C.; Jackson, W. A.; Doran, P. T.; Murray, A. E.; Fritsen, C. H.

    2015-12-01

    A cold (-13.4 °C), saline (188 psu) evaporative brine is encapsulated in the thick (> 27 m) ice of Lake Vida (McMurdo Dry Valleys, Antarctica). The Lake Vida brine (LVBr), which contains abundant dissolved organic carbon (48.2 mmol/L), support an active but slow microbial community. LVBr contains oxychlorines with 50 μg/L of perchlorate and 11 μg/L of chlorate. The McMurdo Dry Valleys have often been considered as a good Mars analog. The oxychlorine-rich brine of Lake Vida constitutes a potential equivalent to perchlorate-rich preserved saline liquid water on Mars. We report here on the artifacts created by oxychlorines upon analysis of volatiles and volatile organic compounds (VOCs) of LVBr by direct immersion (DI) and head space (HS) solid phase micro extraction (SPME) gas chromatography-mass spectrometry (GCMS). We compare analytical blanks to a standard containing 40 μg/L of perchlorate and to actual LVBr sample runs. All blanks, perchlorate blanks and samples were analyzed using two types of SPME fibers, CarboxenTM/polydimethylsiloxane (PDMS) and divinylbenzene (DVB)/ PDMS. The similarities and differences between our results and those obtained by the Sample Analysis at Mars instruments of the rover Curiosity are discussed. The volatiles evolved from LVBr upon analysis with DI- and HS-SPME GCMS are dominated by CO2, dichloromethane, HCl, and volatile organic sulfur compounds (VOSCs, such as DMS, DMDS). The volatiles also include oxygenated compounds such as acids and ketones, aromatic compounds, hydrocarbons, chlorinated compounds (dominated by dichloromethane). Apart from the VOSCs, short chain hydrocarbons and some functionalized compounds derived from the brine itself, all compounds observed are artifacts formed upon oxychlorine breakdown in the injector of the GCMS. The distribution of aromatic compounds seems to be directly dependant on the type of SPME fiber used. The perchlorate blanks show a clear pattern of carbon limitation, likely affecting the type and abundance of compounds produced. This suggests that carbon limited perchlorates blanks are not satisfactory for comparison to the analysis of oxychlorine containing samples. Acknowledgment: NASA ASTEP NAG5-12889 (PTD), NSF awards ANT-0739681 (AEM, CHF) and ANT-0739698 (PTD, FK) supported this work.

  12. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  13. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  14. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases

    PubMed Central

    Nanda, Ranjan; Chakraborty, Trinad

    2013-01-01

    SUMMARY This review article introduces the significance of testing of volatile organic compounds (VOCs) in clinical samples and summarizes important features of some of the technologies. Compared to other human diseases such as cancer, studies on VOC analysis in cases of infectious diseases are limited. Here, we have described results of studies which have used some of the appropriate technologies to evaluate VOC biomarkers and biomarker profiles associated with infections. The publications reviewed include important infections of the respiratory tract, gastrointestinal tract, urinary tract, and nasal cavity. The results highlight the use of VOC biomarker profiles resulting from certain infectious diseases in discriminating between infected and healthy subjects. Infection-related VOC profiles measured in exhaled breath as well as from headspaces of feces or urine samples are a source of information with respect to disease detection. The volatiles emitted in clinical matrices may on the one hand represent metabolites of the infecting pathogen or on the other hand reflect pathogen-induced host responses or, indeed, a combination of both. Because exhaled-breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of infectious diseases. PMID:23824368

  15. Ground-water quality in the Central High Plains Aquifer, Colorado, Kansas, New Mexico, Oklahoma, and Texas, 1999

    USGS Publications Warehouse

    Becker, Mark F.; Bruce, Breton W.; Pope, Larry M.; Andrews, William J.

    2002-01-01

    A network of 74 randomly distributed domestic water-supply wells completed in the central High Plains aquifer was sampled and analyzed from April to August 1999 as part of the High Plains Regional Ground-Water Study conducted by the U. S. Geological Survey National Water-Quality Assessment Program to provide a broad-scale assessment of the ground-water-quality in this part of the High Plains aquifer. Water properties were relatively consistent across the aquifer, with water being alkaline and well oxidized. Water was mostly of the calcium and magnesium-bicarbonate type and very hard. Sulfate concentrations in water from three wells and chloride concentration in water from one well exceeded Secondary Maximum Contaminant Levels. Fluoride concentration was equal to the Maximum Contaminant Level in one sample. Nitrate concentrations was relatively small in most samples, with the median concentration of 2.3 milligrams per liter. Dissolved organic carbon concentration was relatively low, with a median concentration of 0.5 milligram per liter. The Maximum Contaminant Level set by the U.S. Environmental Protection Agency for nitrate as nitrogen of 10 milligrams per liter was exceeded by water samples from three wells. Most samples contained detectable concentrations of the trace elements aluminum, arsenic, barium, chromium, molybdenum, selenium, zinc, and uranium. Only a few samples had trace element concentrations exceeding Maximum Contaminant Levels. Fifty-five of the samples had radon concentrations exceeding the proposed Maximum Contaminant Level of 300 picocuries per liter. The greatest radon concentrations were detected where the Ogallala Formation overlies sandstones, shales and limestones of Triassic, Jurassic, or Cretaceous age. Volatile organic compounds were detected in 9 of 74 samples. Toluene was detected in eight of those nine samples. All volatile organic compound concentrations were substantially less than Maximum Contaminant Levels. Detections of toluene may have been artifacts of the sampling and analytical processes. Pesticides were detected in 18 of the 74 water samples. None of the pesticide concentrations exceeded Maximum Contaminant Levels. The most frequently detected pesticides were atrazine and its metabolite deethylatrazine, which were detected in water from 15 and 17 wells, respectively. Most of the samples with a detectable pesticide had at least two detectable pesticides. Six of the samples had more than two detectable pesticides. Tritium concentrations was greater than 0.5 tritium unit in 10 of 51 samples, indicating recent recharge to the aquifer. Twenty-one of the samples that had nitrate concentrations greater than 4.0 milligrams per liter were assumed to have components of recent recharge. Detection of volatile organic compounds was not associated with those indicators of recent recharge, with most of volatile organic compounds being detected in water from wells with small tritium and nitrate concentrations. Detection of pesticides was associated with greater tritium or nitrate concentrations, with 16 of the 18 wells producing water with pesticides also having tritium or nitrate concentrations indicating recent recharge.

  16. COMPOSITE SAMPLING FOR SOIL VOC ANALYSIS

    EPA Science Inventory

    Data published by numerous researchers over the last decade demonstrate that there is a high degree of spatial variability in the measurement of volatile organic compounds (VOCs) in soil at contaminated waste sites. This phenomenon is confounded by the use of a small sample aliqu...

  17. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  18. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  19. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  20. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  1. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME.

    PubMed

    Hough, Rachael; Archer, Debra; Probert, Christopher

    2018-01-01

    Disturbance to the hindgut microbiota can be detrimental to equine health. Metabolomics provides a robust approach to studying the functional aspect of hindgut microorganisms. Sample preparation is an important step towards achieving optimal results in the later stages of analysis. The preparation of samples is unique depending on the technique employed and the sample matrix to be analysed. Gas chromatography mass spectrometry (GCMS) is one of the most widely used platforms for the study of metabolomics and until now an optimised method has not been developed for equine faeces. To compare a sample preparation method for extracting volatile organic compounds (VOCs) from equine faeces. Volatile organic compounds were determined by headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GCMS). Factors investigated were the mass of equine faeces, type of SPME fibre coating, vial volume and storage conditions. The resultant method was unique to those developed for other species. Aliquots of 1000 or 2000 mg in 10 ml or 20 ml SPME headspace were optimal. From those tested, the extraction of VOCs should ideally be performed using a divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS) SPME fibre. Storage of faeces for up to 12 months at - 80 °C shared a greater percentage of VOCs with a fresh sample than the equivalent stored at - 20 °C. An optimised method for extracting VOCs from equine faeces using HS-SPME-GCMS has been developed and will act as a standard to enable comparisons between studies. This work has also highlighted storage conditions as an important factor to consider in experimental design for faecal metabolomics studies.

  2. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  3. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation. Copyright 2009 Elsevier B.V. All rights reserved.

  4. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  5. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-09

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. INTEGRITY OF VOA-VIAL SEALS

    EPA Science Inventory

    Preservation of soil samples for the analysis of volatile organic compounds (VOCs) requires both the inhibition of VOC degradation and the restriction of vapor movement in or out of the sample container. Clear, 40,mL glass VOA vials manufactured by the four major U.S. glass manu...

  7. Volatile Organic Silicon Compounds in Biogases: Development of Sampling and Analytical Methods for Total Silicon Quantification by ICP-OES

    PubMed Central

    Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES. PMID:25379538

  8. Volatile organic silicon compounds in biogases: development of sampling and analytical methods for total silicon quantification by ICP-OES.

    PubMed

    Chottier, Claire; Chatain, Vincent; Julien, Jennifer; Dumont, Nathalie; Lebouil, David; Germain, Patrick

    2014-01-01

    Current waste management policies favor biogases (digester gases (DGs) and landfill gases (LFGs)) valorization as it becomes a way for energy politics. However, volatile organic silicon compounds (VOSiCs) contained into DGs/LFGs severely damage combustion engines and endanger the conversion into electricity by power plants, resulting in a high purification level requirement. Assessing treatment efficiency is still difficult. No consensus has been reached to provide a standardized sampling and quantification of VOSiCs into gases because of their diversity, their physicochemical properties, and the omnipresence of silicon in analytical chains. Usually, samplings are done by adsorption or absorption and quantification made by gas chromatography-mass spectrometry (GC-MS) or inductively coupled plasma-optical emission spectrometry (ICP-OES). In this objective, this paper presents and discusses the optimization of a patented method consisting in VOSiCs sampling by absorption of 100% ethanol and quantification of total Si by ICP-OES.

  9. Use of volatile organic components in scat to identify canid species

    USGS Publications Warehouse

    Burnham, E.; Bender, L.C.; Eiceman, G.A.; Pierce, K.M.; Prasad, S.

    2008-01-01

    Identification of wildlife species from indirect evidence can be an important part of wildlife management, and conventional +methods can be expensive or have high error rates. We used chemical characterization of the volatile organic constituents (VOCs) in scat as a method to identify 5 species of North American canids from multiple individuals. We sampled vapors of scats in the headspace over a sample using solid-phase microextraction and determined VOC content using gas chromatography with a flame ionization detector. We used linear discriminant analysis to develop models for differentiating species with bootstrapping to estimate accuracy. Our method correcdy classified 82.4% (bootstrapped 95% CI = 68.8-93.8%) of scat samples. Red fox (Vulpes vulpes) scat was most frequendy misclassified (25.0% of scats misclassified); red fox was also the most common destination for misclassified samples. Our findings are the first reported identification of animal species using VOCs in vapor emissions from scat and suggest that identification of wildlife species may be plausible through chemical characterization of vapor emissions of scat.

  10. Phase II. Environmental baseline survey of McCormick Ranch, Kirtland Air Force Base, New Mexico. Part 4. Final report, October 1993-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagaraty, G.; Johnson, J.; Middlebrooks, P.

    The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less

  11. Phase II. Environmental baseline survey of McCormick Ranch, Kirtland Air Force Base, New Mexico. Part 3. Final report, October 1993-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagaraty, G.; Johnson, J.; Middlebrooks, P.

    The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less

  12. Phase II. Environmental baseline survey of McCormick Ranch, Kirtland Air Force Base, New Mexico. Part 1. Final report, October 1993-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagaraty, G.; Johnson, J.; Middlebrooks, P.

    The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the and 13 specific high explosive test sites. The samples were screened for semi-volatile organic PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives or degradation products weremore » identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less

  13. Phase II. Environmental baseline survey of McCormick Ranch, Kirtland Air Force Base, New Mexico. Part 2. Final report, October 1993-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagaraty, G.; Johnson, J.; Middlebrooks, P.

    The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosivesmore » or degradation products were identified. Semi-volatile organic compounds were found in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less

  14. Phase II. Environmental baseline survey of McCormick Ranch, Kirtland Air Force Base, New Mexico. Part 5. Final report, October 1993-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagaraty, G.; Johnson, J.; Middlebrooks, P.

    The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less

  15. Detection of rare species of volatile organic selenium metabolites in male golden hamster urine.

    PubMed

    Kwak, Jae; Ohrnberger, Sarah A; Valencak, Teresa G

    2016-07-01

    Selenium has been considered as an essential trace element in mammals and its intake comes mainly from food. Mammals can metabolize both inorganic and organic species, and urinary excretion is the primary elimination route of selenium. Selenosugars and trimethylselenonium ion have been identified as major urinary metabolites. Other metabolites have been reported, but they were detected in some studies and not in others. Still, a large portion of the ingested selenium eliminated from the body is unknown. Volatile selenium species may account for a certain portion of the unknown species since they can easily be lost during sample analyses. While we analyzed male golden hamster urine in search of potential volatile pheromone(s), four volatile selenium compounds were detected. They were dimethyl selenenylsulfide, dimethyl diselenide, dimethyl bis(thio)selenide, and dimethyl selenodisulfide. When the urine samples were aged and dried for 48 h, dimethyl selenodisulfide tended to increase, while others decreased. The increase might be due to the formation of dimethyl selenodisulfide via reaction of dimethyl diselenide and dimethyl trisulfide whose concentration increased as urine aged. To our knowledge, dimethyl bis(thio)selenide and dimethyl selenodisulfide have never been demonstrated in urine. It remains to be determined whether these species are common metabolites in other animals or hamster-specific.

  16. FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols

    DOE PAGES

    Madronich, Sasha; Kleinman, Larry; Conley, Andrew; ...

    2015-12-17

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less

  17. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  18. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  19. Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate

    EPA Science Inventory

    In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...

  20. Evaluation of Weapons’ Combustion Products in Armored Vehicles

    DTIC Science & Technology

    1989-01-01

    H.S, SO HC ) Particulates Filter Gravimetry This program also addressed other pollutants including volatile organic compounds, aldehydes and nitro...the number of samples collected due to failure of pumps as a result of vibrational stress, precipitation , restriction of sample flow tube in vests, or

  1. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  2. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang

    2003-05-09

    A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.

  3. Development of a NIST standard reference material containing thirty volatile organic compounds at 5 nmol/mol in nitrogen.

    PubMed

    Rhoderick, George C; Yen, James H

    2006-05-01

    Primary gravimetric gas cylinder standards containing 30 volatile organic compounds (VOCs) in nitrogen were prepared using a procedure previously developed to prepare gas mixture cylinder standards of VOCs at the 5 nmol/mol level. This set of primary standards was intercompared to existing gas cylinder standards, containing as many as 19 of the 30 volatile organics present in these new primaries, using gas chromatography with a hydrogen flame ionization detector coupled with cryogenic preconcentration. The linear regression analysis showed excellent agreement among the standards for each compound. Similar mixtures containing many of these compounds in treated aluminum gas cylinders have been evaluated over time and have shown stability for as much as 10 years. The development of these 30-component primary standards led to the preparation and certification of a reissue of Standard Reference Material (SRM) 1804 at the nominal amount-of-substance fraction of 5 nmol/mol for each analyte. A lot of 20 cylinders containing the mixture was prepared at NIST following previously demonstrated protocols for preparation of the cylinders. Each cylinder was analyzed against one cylinder from the lot, designated as the "lot standard," for each of the 30 compounds. As a result of the uncertainty analysis, the data showed that rather than declaring the lot homogeneous with a much higher uncertainty, each cylinder could be individually certified. The expanded uncertainty limits ranged from 1.5 to 10% for 28 of the 30 analytes, with two of the analytes having uncertainties as high as 19% in those SRM cylinders certified. Due to stability issues and some high uncertainties for a few analytes in 2 of the samples, 18 of the 20 candidate SRM samples were certified. These volatile organic gas mixtures represent the most complex gas SRMs developed at NIST.

  4. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  5. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China.

    PubMed

    Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen

    2015-12-18

    The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites.

  6. A Survey of 42 Semi-Volatile Organic Contaminants in Groundwater along the Grand Canal from Hangzhou to Beijing, East China

    PubMed Central

    Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen

    2015-01-01

    The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites. PMID:26694442

  7. Headspace solid-phase microextraction for the determination of volatile and semi-volatile pollutants in water and air.

    PubMed

    Llompart, M; Li, K; Fingas, M

    1998-10-16

    In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.

  8. Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994

    USGS Publications Warehouse

    Schaap, B.D.; Einhellig, R.F.

    1996-01-01

    During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.

  9. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  10. MSL SAM-like Analyses of Hawaiian Altered Basaltic Materials: Implications for Analyses by the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Eigenbrode, J. L.; Young, K. E.; Bleacher, J. E.; Knudson, C. A.; Rogers, D.; Glotch, T. D.; Sutter, B.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Downs, R. T.

    2015-12-01

    Samples of basaltic materials were collected during several traverses of the Kau Desert on the leeward side of the Kilauea Volcano, Hawaii, conducted by the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team, a node of the Solar System Exploration and Research Virtual Institute (SSERVI) program. Some of these samples had been exposed to circumneutral to slightly acidic alteration conditions from exposure to fog/rain, and acidic fog/rain, while others had been exposed to more acidic conditions due to proximity to fumaroles. The samples consisted of basalts with coatings, sands and soils, and ash, and were collected using organically clean protocols to enable investigation of organic chemistry and organic-mineral associations, in addition to mineralogy. The Mars Science Laboratory (MSL) rover has analyzed basaltic materials inferred to have been altered under conditions ranging from circumneutral to acidic, but several aspects of the Sample Analysis at Mars (SAM) instrument suite results are still being investigated and analyses of relevant terrestrial analogs can play an important role in interpretation of the data. For example, all materials analyzed to date have a significant amorphous component. Comparisons of the mineralogy obtained with the MSL CheMin instrument and volatiles evolved during SAM analyses indicate that, by mass balance, some portion of the volatiles, such as SO2 and H2O, are likely associated with this component. Many of the RIS4E samples also have a significant amorphous component, and field x-ray diffraction (XRD) and x-ray fluorescence (XRF) data indicate differences in the chemistry of this material in samples exposed to different alteration conditions. Preliminary SAM-like analyses indicate that the amorphous materials in some of these samples evolve volatiles such as H2O and SO2 during heating. Here we will discuss these results, and others, obtained through SAM-like analyses of selected samples.

  11. Human exposures to volatile halogenated organic chemicals in indoor and outdoor air.

    PubMed Central

    Andelman, J B

    1985-01-01

    Volatile halogenated organic chemicals are found in indoor and outdoor air, often at concentrations substantially above those in remote, unpopulated areas. The outdoor ambient concentrations vary considerably among sampling stations throughout the United States, as well as diurnally and daily. The vapor pressures and air-water equilibrium (Henry's Law) constants of these chemicals influence considerably the likely relative human exposures for the air and water routes. Volatilization of chemicals from indoor uses of water can be a substantial source of exposure, as shown for radon-222. Measurements of air concentrations of trichloroethylene (TCE) in showers using TCE contaminated groundwater show increases with time to as high as one-third of occupational threshold limit values. Using a scaled down experimental shower, such volatilization and subsequent decay in air was also demonstrated. Using a simplified indoor air model and assuming complete volatilization from a full range of typical water uses within the home, calculations indicate that the expected air inhalation exposures can be substantially higher than those from ingestion of these chemicals in drinking water. Although the regulation of toxic chemicals in potable water supplies has focused traditionally on direct ingestion, the volatilization and inhalation from other much greater volume indoor uses of water should be considered as well. PMID:4085436

  12. Diurnal variation of C2-C5 organosulfates and their precursor volatile organic compounds during PEGASOS field campaign in Po Valley, Italy

    NASA Astrophysics Data System (ADS)

    Iinuma, Yoshiteru; Poulain, Laurent; van Pinxteren, Dominik; Herrmann, Hartmut

    2014-05-01

    Isoprene and monoterpene originating organosulfates are ubiquitously present in the ambient organic aerosols. These organosulfates form from the reactions of oxidation products of biogenic volatile organic compounds (VOCs) and acidic sulfate particles from anthropogenic sources, and they are marker compounds for processed SOA. These reactions provide important mechanisms to form low volatile SOA compounds from oxygenated VOCs that are otherwise too volatile to form SOA. In the present study, a series of isoprene originating organosulfates were analysed in ambient fine particle samples (PM1) that were collected during a PEGASOS (Pan-European Gas-Aerosol-Climate Interaction Study) field campaign in June and July 2012 that was carried out at the San Pietro Capofiume in the North Eastern part of the Po Valley, Northern Italy. The sampling site was located approximately 40 km away from Bologna and impacted by both anthropogenic and natural emissions from surrounding cites and agricultural fields. The PM1 samples were collected twice a day (9 a.m. to 9 p.m. and 9 p.m. to 9 a.m.). The filter samples were analysed with UPLC-IMS-TOFMS (Ultra Performance Liquid Chromatography coupled to Ion Mobility Spectrometry and Time of Flight Mass Spectrometry). Additionally, VOC samples were collected with Tenax TA cartridges six times a day (1:00-5:00, 5:00-9:00, 9:00-13:00, 13:00-17:00, 17:00-21:00, 21:00-1:00) and subsequently analysed by TD-GC/MS (Thermal Desorption Gas Chromatography Mass Spectrometry). The mixing ratios of isoprene methyl vinyl ketone (MVK) were the highest in late afternoon and whereas methacrolein (MACR) showed the opposite trend. The diurnal variation of isoprene is consistent with its emission that requires both temperature and light. Isoprene originating organosulfates with m/z 153 (C3H5O5S-), 155 (C2H3O6S-), 169 (C3H5O6S-), 183 (C4H7O6S-), 199 (C4H7O7S-) and 215 (C5H11O7S-) were detected in the filter samples. These signals were more abundant in the daytime samples than in the nighttime samples, indicating that they are formed from photochemical oxidation.

  13. 77 FR 52606 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...

  14. 40 CFR 63.4561 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device... volatile organic matter recovered. (2) For each solvent recovery system, determine the mass of volatile...

  15. Thermochemolysis and the Search for Organic Material on Mars Onboard the MOMA Experiment

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Glavin, Daniel; Freissinet, Carolinette; Pinnick, Veronica; Goetz, Walter; Stambouli, Moncef; Belmahdi, Imene; Coll, Patrice; Stalport, Fabien; Grand, Noël; Brinckerhoff, William; Goesmann, Fred; Raulin, François; Mahaffy, Paul

    2016-04-01

    Following the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment onboard the future ExoMars 2018 mission will continue to investigate the organic composition of the martian subsurface. MOMA will have the advantage of extracting the sample from as deep as 2 meters below the martian surface where the deleterious effects of radiation and oxidation on organic matter are minimized. To analyse the wide range of organic compounds (volatile and non-volatile compounds) potentially present in the martian soil, MOMA includes two operational modes: UV laser desorption / ionization ion trap mass spectrometry (LDI-ITMS) and pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyse refractory organic compounds and chirality, samples which undergo GC-ITMS analysis may be derivatized beforhands, consisting in the reaction of the sample components with specific chemical reagents (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). To prove the feasibility of the derivatization within the MOMA conditions we have adapated our laboratory procedure for the space conditions (temperature, time, pressure and size). Goal is optimize our detection limits and increase the range of the organic compounds that MOMA will be able to detect. Results of this study, show that Thermochemolysis is one of the most promising technique onboard MOMA to detect organic material. References : [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet, C. et al. (2013) J Chrom. A, 1306, 731-740. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  16. TO PURGE OR NOT TO PURGE? VOC CONCENTRATION CHANGES DURING LINE VOLUME PURGING

    EPA Science Inventory

    Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this s...

  17. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags

    USDA-ARS?s Scientific Manuscript database

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human ...

  18. Aerostat-Based Sampling of Emissions from Open Burning and Open Detonation of Military Ordnance

    EPA Science Inventory

    Emissions from open detonation (OD), open burning (OB), and static firing (SF) of obsolete military munitions were collected using an aerostat-lofted sampling instrument maneuvered into the plumes with remotely controlled tether winches. PM2.5, PM10, metals, volatile organic comp...

  19. Distribution of volatile organic compounds in soil vapor in the vicinity of a defense fuel supply point, Hanahan, South Carolina

    USGS Publications Warehouse

    Robertson, J.F.; Aelion, C.M.; Vroblesky, D.A.

    1993-01-01

    Two passive soil-vapor sampling techniques were used in the vicinity of a defense fuel supply point in Hanahan, South Carolina, to identify areas of potential contamination of the shallow water table aquifer by volatile organic compounds (VOC's). Both techniques involved the burial of samplers in the vadose zone and the saturated bottom sediments of nearby streams. One method, the empty-tube technique, allowed vapors to pass through a permeable membrane and accumulate inside an inverted empty test tube. A sample was extracted and analyzed on site by using a portable gas chromatograph. As a comparison to this method, an activated-carbon technique, also was used in certain areas. This method uses a vapor collector consisting of a test tube containing activated carbon as a sorbent for VOC's.

  20. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  1. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  2. Detection of volatile organic compounds through a sensing film of TiO II doped with organic dyes deposited on an optical fiber

    NASA Astrophysics Data System (ADS)

    Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.

    2007-03-01

    The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.

  3. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  4. Comparison of dialysis membrane diffusion samplers and two purging methods in bedrock wells

    USGS Publications Warehouse

    Imbrigiotta, T.E.; Ehlke, T.A.; Lacombe, P.J.; Dale, J.M.; ,

    2002-01-01

    Collection of ground-water samples from bedrock wells using low-flow purging techniques is problematic because of the random spacing, variable hydraulic conductivity, and variable contamination of contributing fractures in each well's open interval. To test alternatives to this purging method, a field comparison of three ground-water-sampling techniques was conducted on wells in fractured bedrock at a site contaminated primarily with volatile organic compounds. Constituent concentrations in samples collected with a diffusion sampler constructed from dialysis membrane material were compared to those in samples collected from the same wells with a standard low-flow purging technique and a hybrid (high-flow/low-flow) purging technique. Concentrations of trichloroethene, cis-1,2-dichloroethene, vinyl chloride, calcium, chloride, and alkalinity agreed well among samples collected with all three techniques in 9 of the 10 wells tested. Iron concentrations varied more than those of the other parameters, but their pattern of variation was not consistent. Overall, the results of nonparametric analysis of variance testing on the nine wells sampled twice showed no statistically significant difference at the 95-percent confidence level among the concentrations of volatile organic compounds or inorganic constituents recovered by use of any of the three sampling techniques.

  5. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  6. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    PubMed

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  7. Results of the First Mars Organic Molecule Analyzer (MOMA) GC-MS Coupling

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Danell, Ryan; Grand, Noel; Van Amerom, Friso; Glavin, Daniel; Freissinet, Caroline; Humeau, Olivier; Coll, Patrice; Arevalo, Ricardo; Stalport, Fabien; Brinckerhoff, William; Steininger, Harald; Goesmann, Fred; Mahaffy, Paul; Raulin, Francois

    2014-11-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the char-acterization of the organic content. The core of the MOMA instrument is a gas chromatograph coupled with a mass spectrometer (GC-MS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples will be crushed and deposited into sample cups seated in a rotating carousel. Soil samples will be analyzed either by UV laser desorption / ionization (LDI) or pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS).The French GC brassboard was coupled to the US ion trap mass spectrometer brassboard in a flight-like con-figuration for several coupling campains. The MOMA GC setup is based on the SAM heritage design with a He reservoir and 4 separate analytical modules including traps, columns and Thermal Conductivity Detectors. Solid samples are sealed and heated in this setup using a manual tapping station, designed and built at MPS in Germany, for GC-MS analysis. The gaseous species eluting from the GC are then ionized by an electron impact ionization source in the MS chamber and analyzed by the linear ion trap mass spectrometer. Volatile and non-volatile compounds were injected in the MOMA instrumental suite. Both of these compounds classes were detected by the TCD and by the MS. MS signal (total ion current) and single mass spectra by comparison with the NIST library, gave us an unambiguous confirmation of these identifications. The mass spectra arise from an average of 10 mass spectra averaged around a given time point in the total ion chromatogram.Based on commercial instrument, the MOMA requirement for sensitivity in the GC-MS mode for organic molecules is 1 pmol. In this test, sensitivity was determined for the GC TCD and MS response to a dilution series containing isopropanol, hexane and benzene deposited onto silica beads in the MOMA oven. Generally, the MS was found to be 5 to10 times more sensitive than the GC TCD for hexane and benzene respectively.

  8. Volatile organic compounds associated with Plasmodium falciparum infection in vitro.

    PubMed

    Correa, Ricardo; Coronado, Lorena M; Garrido, Anette C; Durant-Archibold, Armando A; Spadafora, Carmenza

    2017-05-02

    In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias. A list of 18 volatile organic compounds (VOCs) was obtained from the EVs of both infected and uninfected RBCs with 1,2,3-Propanetriol, diacetate (diacetin) increased in the infected EVs, regardless of the parasitemia of the culture. The supernatant analysis, however, gave off 56 VOCs, with pentane 2,2,4-trimethyl being present in all the SNUs of uninfected erythrocytes but absent from the parasite-infected ones. Standing out in this study was hexanal, a reported insect attractant, which was the only VOC present in all samples from SNUs from infected erythrocytes and absent from uninfected ones, suggesting that it originates during parasite infection. The hexanal compound, reportedly a low-level component found in healthy human samples such as breath and plasma, had not been found in previous analyses of P. falciparum-infected patients or cultures. This compound has been reported as an Anopheles gambiae attractant in plants. While the compound could be produced during infection by the malaria parasite in human erythrocytes, the A. gambiae attraction could be used by the parasite as a strategy for transmission.

  9. Recent progress in the design and clinical development of electronic-nose technologies

    Treesearch

    Dan Wilson

    2016-01-01

    Electronic-nose (e-nose) devices are instruments designed to detect and discriminate between precise complex gaseous mixtures of volatile organic compounds derived from specific organic sources, such as clinical test samples from patients, based on electronic aroma signature patterns (distinct digital sensor responses) resulting from the combined outputs of a...

  10. Identification of volatiles released by diapausing brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae)

    PubMed Central

    Morrison, William R.; Rice, Kevin B.; Brockerhoff, Eckehard G.; Leskey, Tracy C.; Guzman, Filadelfo; Khrimian, Ashot; Goldson, Stephen; Rostás, Michael

    2018-01-01

    The brown marmorated stink bug, Halyomorpha halys, is an agricultural and urban pest that has become widely established as an invasive species of major concern in the USA and across Europe. This species forms large aggregations when entering diapause, and it is often these aggregations that are found by officials conducting inspections of internationally shipped freight. Identifying the presence of diapausing aggregations of H. halys using their emissions of volatile organic compounds (VOCs) may be a potential means for detecting and intercepting them during international freight inspections. Headspace samples were collected from aggregations of diapausing H. halys using volatile collection traps (VCTs) and solid phase microextraction. The only compound detected in all samples was tridecane, with small amounts of (E)-2-decenal found in most samples. We also monitored the release of defensive odors, following mechanical agitation of diapausing and diapause-disrupted adult H. halys. Diapausing groups were significantly more likely to release defensive odors than diapause-disrupted groups. The predominant compounds consistently found from both groups were tridecane, (E)-2-decenal, and 4-oxo-(E)-2-hexenal, with a small abundance of dodecane. Our findings show that diapausing H. halys do release defensive compounds, and suggest that volatile sampling may be feasible to detect H. halys in freight. PMID:29342183

  11. Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee

    USGS Publications Warehouse

    Lee, R.W.

    1991-01-01

    An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.

  12. SW-846 Test Method 3511: Organic Compounds in Water by Microextraction

    EPA Pesticide Factsheets

    a procedure for extracting selected volatile and semivolatileorganic compounds from water. The microscale approach minimizes sample size and solventusage, thereby reducing the supply costs, health and safety risks, and waste generated.

  13. Methylated silicates may explain the release of chlorinated methane from Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  14. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near the reporting limit. Surrogate recoveries for pesticides analyzed by gas chromatography/mass spectrometry (GC/MS), pesticides analyzed by high performance liquid chromatography (HPLC), and volatile organic compounds in ground- and surface-water samples were within the acceptable limits of 70 to 130 percent and median recovery values between 82 and 113 percent. The recovery percentages for surrogate compounds analyzed by HPLC had the highest standard deviation, 20 percent for ground-water samples and 16 percent for surface-water samples, and the lowest median values, 82 percent for ground-water samples and 91 percent for surface-water samples. Results were consistent with the recovery results described for the analytical methods. Field matrix spike recoveries for pesticide compounds analyzed using GC/MS in ground- and surface-water samples were comparable with published recovery data. Recoveries of carbofuran, a critical constituent in ground- and surface-water studies, and desethyl atrazine, a critical constituent in the ground-water study, could not be calculated because of problems with the analytical method. Recoveries of pesticides analyzed using HPLC in ground- and surface-water samples were generally low and comparable with published recovery data. Other methodological problems for HPLC analytes included nondetection of the spike compounds and estimated values of spike concentrations. Recovery of field matrix spikes for volatile organic compounds generally were within the acceptable range, 70 and 130 percent for both ground- and surface-water samples, and median recoveries from 62 to 127 percent. High or low recoveries could be related to errors in the field, such as double spiking or using spike solution past its expiration date, rather than problems during analysis. The methodological changes in the field spike protocol during the course of the Sacramento River Basin study, which included decreasing the amount of spike solu

  15. Effects of 4 Probiotic Strains in Coculture with Traditional Starters on the Flavor Profile of Yogurt.

    PubMed

    Tian, Huaixiang; Shen, Yongbo; Yu, Haiyan; He, Yujie; Chen, Chen

    2017-07-01

    To study the influence of probiotics on the flavor profile of yogurt, 4 probiotics, including Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus casei, were cofermented with traditional starters. The changes of bacterial growth, acid contents and volatile compounds of yogurt were investigated during fermentation and refrigerated storage. The strains that exhibited a low growth rate in milk did not significantly affect the bacterial population dynamics, acidity, or organic acid content during fermentation and storage. However, high viability and enhancement of postacidification were clearly observed in the samples that contained strains with a high growth rate in milk, particularly L. casei. A total of 45 volatile compounds, detected in most samples, were identified by headspace solid-phase micro-extraction followed by gas chromatography-mass spectrometry. Among these compounds, ketones and aldehydes were the most abundant. The presence of either L. rhamnosus or L. plantarum did not significantly affect the major volatile compounds, while contributions of L. casei and L. acidophilus were found in the formation of minor volatile metabolites. Electronic nose measurements exhibited a good discrimination of samples that contained different probiotics during refrigerated storage. © 2017 Institute of Food Technologists®.

  16. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    NASA Astrophysics Data System (ADS)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  17. Improved volatile fatty acid and biomethane production from lipid removed microalgal residue (LRμAR) through pretreatment.

    PubMed

    Suresh, Arumuganainar; Seo, Charles; Chang, Ho Nam; Kim, Yeu-Chun

    2013-12-01

    Renewable energy from lipid removed microalgal residues (LRμARs) serves as a promising tool for sustainable development of the microalgal biodiesel industry. Hence, in this study, LRμAR from Ettlia sp. was characterized for its physico-biochemical parameters, and applied to various pretreatment to increase the biodegradability and used in batch experiments for the production of volatile fatty acids (VFA) and biomethane. After various pretreatments, the soluble organic matters were increased at a maximum of 82% in total organic matters in alkali-autoclaved sample. In addition, VFA and methane production was enhanced by 30% and 40% in alkali-sonicated and alkali-autoclaved samples, respectively. Methane heating value was recovered at maximum of 6.6 MJ kg(-1)VS in alkali-autoclaved conditions with comparison to non-pretreated samples. The pretreatment remarkably improved LRμAR solubilization and enhanced VFA and biomethane production, which holds immense potential to eventually reduce the cost of algal biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. [Composition of the electrocautery smoke: integrative literature review].

    PubMed

    Tramontini, Cibele Cristina; Galvão, Cristina Maria; Claudio, Caroline Vieira; Ribeiro, Renata Perfeito; Martins, Júlia Trevisan

    2016-02-01

    To identify the composition of the smoke produced by electrocautery use during surgery. Integrative review with search for primary studies conducted in the databases of the US National Library of Medicine National Institutes of Health, Cumulative Index to Nursing and Allied Health Literature, and Latin American and Caribbean Health Sciences, covering the studies published between 2004 and 2014. The final sample consisted of 14 studies grouped into three categories, namely; polycyclic aromatic hydrocarbons, volatile compounds and volatile organic compounds. There is scientific evidence that electrocautery smoke has volatile toxic, carcinogenic and mutagenic compounds, and its inhalation constitutes a potential chemical risk to the health of workers involved in surgeries.

  19. Volatile and Isotopic Imprints of Ancient Mars

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  20. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    PubMed

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-08

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  2. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.

    PubMed

    Wagner, Claudia; Bonte, Anja; Brühl, Ludger; Niehaus, Karsten; Bednarz, Hanna; Matthäus, Bertrand

    2018-04-01

    Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. 75 FR 60013 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...

  4. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    PubMed

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  7. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR COLLECTION, STORAGE, AND SHIPMENT OF BLOOD SAMPLES FOR METAL, PESTICIDE, PAH, VOC, AND LIPID ANALYSIS (F11)

    EPA Science Inventory

    The purpose of this SOP is to describe collection, storage, and shipment requirements of blood samples for metal, pesticide, polynuclear aromatic hydrocarbons (PAHs), volatile organic compound (VOC), and lipid analysis. Seven samples were taken from a single puncture: two 3-mL t...

  8. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity.

    PubMed

    Zhang, Zhuo-Min; Wu, Wen-Wei; Li, Gong-Ke

    2008-09-01

    Mushrooms are very popular in the market for their nutritional and medicinal use. Mushroom volatiles are not only an important factor in the flavor, but also contain many antioxidant compounds. Antioxidant activity is a very important property for disease prevention. The volatile compositional characteristics of straw mushrooms (Volvariella volvacea [Bull. ex Fr.] Sing.) and oyster mushrooms (Pleurotus ostreatus [Jacq. ex Fr.] Kummer) during maturity and the mushroom antioxidant activity related to the non-volatiles and volatiles are studied by a chromatographic method in combination with a spectrophotometric method. The volatile compounds of straw and oyster mushrooms are sampled and identified by a combination sampling method, including headspace solid phase microextraction and steam distillation, followed by gas chromatography-mass spectrometry detection. Among all the volatile compounds identified, 1-octen-3-ol and 3-octanone are the two main compounds with the highest amounts in the volatile compositions of straw and oyster mushrooms. During maturity time of the straw mushrooms, the unsaturated 1-octen-3-ol peak area is reduced, whereas the saturated 3-octanone peak area is increased. However, during normal maturity time of oyster mushrooms, the peak areas of 1-octen-3-ol and 3-octanone remain at the same level. 1-Octen-3-ol has a different antioxidant activity from 3-octanone. Combining the results of antioxidant experiments of water extract and main volatile components by the use of a phosphomolybdenum spectrophotometric method, the conclusion is drawn that oyster mushrooms might possess stronger antioxidant activities than straw mushrooms.

  9. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  10. Chemical, microbial and physical evaluation of commercial bottled waters in greater Houston area of Texas.

    PubMed

    Saleh, Mahmoud A; Abdel-Rahman, Fawzia H; Woodard, Brooke B; Clark, Shavon; Wallace, Cecil; Aboaba, Adetoun; Zhang, Wenluo; Nance, James H

    2008-03-01

    Due to the increased demand and consumption of bottled water in the United States, there has been a growing concern about the quality of this product. Retail outlets sell local as well as imported bottled water to consumers. Three bottles for each of 35 different brands of bottled water were randomly collected from local grocery stores in the greater Houston area. Out of the 35 different brands, 16 were designated as spring water, 11 were purified and/or fortified tap water, 5 were carbonated water and 3 were distilled water. Chemical, microbial and physical properties of all samples were evaluated including pH, conductivity, bacteria counts, anion concentration, trace metal concentration, heavy metal and volatile organics concentration were determined in all samples. Inductively coupled plasma/mass spectrometry (ICPMS) was used for elemental analysis, gas chromatography with electron capture detector (GCECD) as well as gas chromatography mass spectrometry (GCMS) were used for analysis of volatile organics, ion chromatography (IC) and selective ion electrodes were used for the analysis of anions. Bacterial identification was performed using the Biolog software (Biolog, Inc., Hayward, Ca, USA). The results obtained were compared with guidelines of drinking water recommended by the International Bottled Water Association (IBWA), United States Food and Drug Administration (FDA), United States Environmental Protection Agency (EPA) and the World Health Organization (WHO) drinking water standard. The majority of the analyzed chemicals were below their respective drinking water standards for maximum admissible concentrations (MAC). Volatile organic chemicals were found to be below detection limits. Four of the 35 brands of the bottled water samples analyzed were found to be contaminated with bacteria.

  11. Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Vilaplana, Francisco; Martínez-Sanz, Marta; Ribes-Greus, Amparo; Karlsson, Sigbritt

    2010-01-15

    The emission of low molecular weight compounds from recycled high-impact polystyrene (HIPS) has been investigated using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). Four released target analytes (styrene, benzaldehyde, acetophenone, and 2-phenylpropanal) were selected for the optimisation of the HS-SPME sampling procedure, by analysing operating parameters such as type of SPME fibre (polarity and operating mechanism), particle size, extraction temperature and time. 26 different compounds were identified to be released at different temperatures from recycled HIPS, including residues of polymerisation, oxidated derivates of styrene, and additives. The type of SPME fibre employed in the sampling procedure affected the detection of emitted components. An adsorptive fibre such as carbowax/polydimethylsiloxane (CAR/PDMS fibre) offered good selectivity for both non-polar and polar volatile compounds at lower temperatures; higher temperatures result in interferences from less-volatile released compounds. An absorptive fibre as polydimethylsiloxane (PDMS) fibre is suitable for the detection of less-volatile non-polar molecules at higher temperatures. The nature and relative amount of the emitted compounds increased with higher exposure temperature and smaller polymeric particle size. HS-SPME proves to be a suitable technique for screening the emission of semi-volatile organic compounds (SVOCs) from polymeric materials; reliable quantification of the content of target analytes in recycled HIPS is however difficult due to the complex mass-transfer processes involved, matrix effects, and the difficulties in equilibrating the analytical system. 2009 Elsevier B.V. All rights reserved.

  12. Performances of the Mars Organic Molecule Analyzer (MOMA) GC-MS suite aboard ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Buch, A.; Grand, N.; Pinnick, V. T.; Szopa, C.; Humeau, O.; Danell, R.; van Amerom, F. H. W.; Freissinet, C.; Glavin, D. P.; Belmahdi, I.; Coll, P. J.; Lustrement, B.; Brinckerhoff, W. B.; Arevalo, R. D., Jr.; Stalport, F.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.

    2014-12-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover (Pasteur) will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the characterization of the organic content. Samples will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. The core of the MOMA instrument is a dual source UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC) ion trap mass spectrometer (ITMS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]) which increase the volatility of complex organic species. With the goal to optimize this instrumentation, and especially the GC-ITMS coupling, a series of tests is currently being carried out with prototypes of MOMA instrumentation and with the ETU models wich is similar to the flight model. The MOMA oven and tapping station are also part of these end-to-end experiments. Qualitative and quantitative tests has been done on gas, liquid and solid samples. The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. Both prototypes individually meet the performance requirements, but this work particularly demonstrates the capabilities of the critical GC-MS interface. References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459. Acknowledgements: Funding provided by the Mars Exploration Program (point of contact, George Tahu, NASA/HQ). MOMA is a collaboration between NASA and ESA (PI Goesmann, MPS). MOMA-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute.

  13. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  14. Comparative study on ambient ionization methods for direct analysis of navel orange tissues by mass spectrometry.

    PubMed

    Zhang, Hua; Bibi, Aisha; Lu, Haiyan; Han, Jing; Chen, Huanwen

    2017-08-01

    It is of sustainable interest to improve the sensitivity and selectivity of the ionization process, especially for direct analysis of complex samples without matrix separation. Herein, four ambient ionization methods including desorption atmospheric pressure chemical ionization (DAPCI), heat-assisted desorption atmospheric pressure chemical ionization (heat-assisted DAPCI), microwave plasma torch (MPT) and internal extractive electrospray ionization (iEESI) were employed for comparative analysis of the navel orange tissue samples by mass spectrometry. The volatile organic compounds (e.g. ethanol, vanillin, leaf alcohol and jasmine lactone) were successfully detected by non-heat-assisted DAPCI-MS, while semi-volatile organic compounds (e.g. 1-nonanol and ethyl nonanoate) together with low abundance of non-volatile organic compounds (e.g. sinensetin and nobiletin) were obtained by heat-assisted DAPCI-MS. Typical nonvolatile organic compounds [e.g. 5-(hydroxymethyl)furfural and glucosan] were sensitively detected with MPT-MS. Compounds of high polarity (e.g. amino acids, alkaloids and sugars) were easily profiled with iEESI-MS. Our data showed that more analytes could be detected when more energy was delivered for the desorption ionization purpose; however, heat-sensitive analytes would not be detected once the energy input exceeded the dissociation barriers of the analytes. For the later cases, soft ionization methods such as iEESI were recommended to sensitively profile the bioanalytes of high polarity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. 40 CFR 1065.1109 - Post-test sampler disassembly and sample extraction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Post-test sampler disassembly and... Semi-Volatile Organic Compounds § 1065.1109 Post-test sampler disassembly and sample extraction. This... environment as follows after the test: (1) Remove the PM filter, PUF plugs, and all the XAD-2 from the...

  16. RELATIVE CONGENER SCALING OF POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS TO ESTIMATE BUILDING FIRE CONTRIBUTIONS IN AIR, SURFACE WIPES, AND DUST SAMPLES

    EPA Science Inventory

    EPA collected ambient air samples in lower Manhattan for about nine months following the September 11, 2001 (9/11) World Trade Center (WTC) attacks. Measurements were made of a host of airborne contaminants including volatile organic compounds (VOCs), polycyclic aromatic hydroca...

  17. ATMOSPHERIC VOLATILE ORGANIC COMPOUND MEASUREMENTS DURING THE 1996 PASO DEL NORTE OZONE STUDY

    EPA Science Inventory

    Ambient air VOC samples were collected at surface air quality monitoring sites, near sources of interest, and aloft on the US (El Paso) and Mexican (Ciudad Juarez) side of the border during a six-week period of the 1996 Paso del Norte Ozone Study. Samples were collected at five...

  18. Development of a Qcl-Based Spectrometer for Spectroscopic Analysis of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Iranpour, Michael Cyrus; Tran, Minh Nhat; Stewart, Jacob

    2017-06-01

    Biogenic volatile organic compounds (BVOCs) are naturally occurring molecules that are emitted into the atmosphere by plants. BVOCs have an important role in atmospheric chemistry as they react readily with ozone, hydroxyl radicals, and nitric oxides to form aerosols and pollutants such as ozone in the troposphere. We are developing an IR spectrometer with the aim of measuring spectra of atmospheric samples of BVOCs to determine their concentrations. Using an external cavity quantum cascade laser (EC-QCL), we have acquired IR spectra of isoprene (C_{5}H_{8}) near 993 cm^{-1}. Isoprene represents an ideal target, as it is the simplest and most abundant BVOC. IR spectra of standard samples of isoprene were acquired in order to determine the detection limit of the spectrometer. We have also been working to improve the capabilities of the spectrometer by implementing wavelength modulation spectroscopy and increasing the path length through our samples by using a multipass cell. In this talk, we will present data from our initial measurements of the standard isoprene samples using a simple direct absorption setup as well as measurements using the improved spectrometer.

  19. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Early Discrimination Of Microorganisms Involved In Ventilator Associated Pneumonia Using Qualitative Volatile Fingerprints

    NASA Astrophysics Data System (ADS)

    Planas, Neus; Kendall, Catherine; Barr, Hugh; Magan, Naresh

    2009-05-01

    This study has examined the use of an electronic nose for the detection of volatile organic compounds produced by different microorganisms responsible for ventilator-associated pneumonia (VAP), an important disease among patients who require mechanical ventilation. Based on the analysis of the volatile organic compounds, electronic nose technology is being evaluated for the early detection and identification of many diseases. It has been shown that effective discrimination of two bacteria (Enterobacter cloacae and Klebsiella pneumoniae) and yeast (Candida albicans), could be obtained after 24 h and filamentous fungus (Aspergillus fumigatus) after 72 h. Discrimination between blank samples and those with as initial concentration of 102 CFU ml-1 was shown with 24 h incubation for bacteria and 48 h for fungi. Effective discrimination between all the species was achieved 72 h after incubation. Initial studies with mixtures of microorganisms involved in VAP suggest that complex interactions between species occur which influences the ability to differentiate dominant species using volatile production patterns. A nutrient agar base medium was found to be optimum for early discrimination between two microorganisms (Klebsiella pneumoniae and Candida albicans).

  1. Organic emissions from coal pyrolysis: mutagenic effects.

    PubMed Central

    Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F

    1987-01-01

    Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724

  2. Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.

    2013-07-01

    Release of trace gases from surface snow on earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analysed by means of X-ray-computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures, surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature-dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. For this, a snow sample with an artificially high amount of ice grains was produced and the grain boundary surface measured using thin sections. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.

  3. The potential of volatile organic compounds for the detection of active disease in patients with ulcerative colitis.

    PubMed

    Smolinska, A; Bodelier, A G L; Dallinga, J W; Masclee, A A M; Jonkers, D M; van Schooten, F-J; Pierik, M J

    2017-05-01

    To optimise treatment of ulcerative colitis (UC), patients need repeated assessment of mucosal inflammation. Current non-invasive biomarkers and clinical activity indices do not accurately reflect disease activity in all patients and cannot discriminate UC from non-UC colitis. Volatile organic compounds (VOCs) in exhaled air could be predictive of active disease or remission in Crohn's disease. To investigate whether VOCs are able to differentiate between active UC, UC in remission and non-UC colitis. UC patients participated in a 1-year study. Clinical activity index, blood, faecal and breath samples were collected at each out-patient visit. Patients with clear defined active faecal calprotectin >250 μg/g and inactive disease (Simple Clinical Colitis Activity Index <3, C-reactive protein <5 mg/L and faecal calprotectin <100 μg/g) were included for cross-sectional analysis. Non-UC colitis was confirmed by stool culture or radiological evaluation. Breath samples were analysed by gas chromatography time-of-flight mass spectrometry and kernel-based method to identify discriminating VOCs. In total, 72 UC (132 breath samples; 62 active; 70 remission) and 22 non-UC-colitis patients (22 samples) were included. Eleven VOCs predicted active vs. inactive UC in an independent internal validation set with 92% sensitivity and 77% specificity (AUC 0.94). Non-UC colitis patients could be clearly separated from active and inactive UC patients with principal component analysis. Volatile organic compounds can accurately distinguish active disease from remission in UC and profiles in UC are clearly different from profiles in non-UC colitis patients. VOCs have demonstrated potential as new non-invasive biomarker to monitor inflammation in UC. © 2017 John Wiley & Sons Ltd.

  4. Occurrence and concentrations of pharmaceutical compounds in deep groundwater used for public drinking-water supply in California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.

  5. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  6. Estimates of the organic aerosol volatility in a boreal forest using two independent methods

    NASA Astrophysics Data System (ADS)

    Hong, Juan; Äijälä, Mikko; Häme, Silja A. K.; Hao, Liqing; Duplissy, Jonathan; Heikkinen, Liine M.; Nie, Wei; Mikkilä, Jyri; Kulmala, Markku; Prisle, Nønne L.; Virtanen, Annele; Ehn, Mikael; Paasonen, Pauli; Worsnop, Douglas R.; Riipinen, Ilona; Petäjä, Tuukka; Kerminen, Veli-Matti

    2017-03-01

    The volatility distribution of secondary organic aerosols that formed and had undergone aging - i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol-1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol-1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.

  7. A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    1995-01-01

    Minimizing the loss of target organic chemicals from environmental water samples between the time of sample collection and isolation is important to the integrity of an investigation. During this sample holding time, there is a potential for analyte loss through volatilization from the water to the headspace, sorption to the walls and cap of the sample bottle; and transformation through biotic and/or abiotic reactions. This paper presents a chemodynamic-based, generalized approach to estimate the most probable loss processes for individual target organic chemicals. The basic premise is that the investigator must know which loss process(es) are important for a particular analyte, based on its chemodynamic properties, when choosing the appropriate method(s) to prevent loss.

  8. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  9. Investigation of polyethylene passive diffusion samplers for sampling volatile organic compounds in ground water at Davis Global Communications, Sacramento, California, August 1998 to February 1999

    USGS Publications Warehouse

    Vroblesky, Don A.; Borchers, J.W.; Campbell, T.R.; Kinsey, Willey

    2000-01-01

    Fourteen wells were instrumented with diffusion samplers as a test to determine whether the samplers could be used to obtain representative volatile organic compound concentrations at a study site in Sacramento, California. Single diffusion samplers were placed in 10-foot-long well screens, and multiple diffusion samplers were positioned in 20-foot-long well screens. Borehole geophysical logs and electromagnetic flowmeter tests were run in selected wells with 20-foot-long well screens prior to deploying the samplers. The diffusion samplers were recovered after 25 to 30 days, and the wells were then sampled by using the purge-and-sample method. In most wells, the concentrations obtained by using the downhole diffusion samplers closely matched those obtained by using the purge-and-sample method. In seven wells, the concentrations differed between the two methods by only 2 micrograms per liter (g/L) or less. In three wells, volatile organic compounds were not detected in water obtained by using either method. In the four remaining wells, differences between the methods were less than 2g/L in the 0.2- to 8.5-g/L concentration range and from 1.2 to 8.7g/L in the 10- to 26-g/L concentration range. Greater differences (23 percent or 14.5g/L, 31 percent or 66g/L, and 46 percent or 30g/L) between the two methods were observed for tetrachloroethene concentrations, which ranged between 30 and 211g/L in three wells. The most probable explanation for the differences is that in some wells, the purging induced drawdowns and introduced water that differed in volatile organic compound concentrations from the in situ water in contact with the screened interval of the well. Alternate explanations include the possibility of unrecorded changes in nearby contaminant-extraction-well operation during the equilibration period. The data suggest that the combined use of borehole flowmeter tests and diffusion samplers may be useful in optimizing the radius of capture of contaminated ground water by the contaminant-removal wells. Overall, the data suggest that the use of diffusion samplers provided an alternative sampling method to the purge-and-sample approach. 1U.S. Geological Survey, Stephenson Center, Suite 129, 720 Gracern Road, Columbia, South Carolina 29210-7651. 2U.S. Geological Survey, 6000 J Street, Sacramento, California 95819-6129.

  10. Quantification of volatile organic compounds in smoke from prescribed burning and comparison with occupational exposure limits

    NASA Astrophysics Data System (ADS)

    Romagnoli, E.; Barboni, T.; Santoni, P.-A.; Chiaramonti, N.

    2014-05-01

    Prescribed burning represents a serious threat to personnel fighting fires due to smoke inhalation. The aim of this study was to investigate exposure by foresters to smoke from prescribed burning, focusing on exposure to volatile organic compounds (VOCs). The methodology for smoke sampling was first evaluated. Potentially dangerous compounds were identified among the VOCs emitted by smoke fires at four prescribed burning plots located around Corsica. The measured mass concentrations for several toxic VOCs were generally higher than those measured in previous studies due to the experimental framework (short sampling distance between the foresters and the flame, low combustion, wet vegetation). In particular, benzene, phenol and furfural exceeded the legal short-term exposure limits published in Europe and/or the United States. Other VOCs such as toluene, ethybenzene or styrene remained below the exposure limits. In conclusion, clear and necessary recommendations were made for protection of personnel involved in fighting fires.

  11. Geophysical, stratigraphic, and flow-zone logs of selected test, monitor, and water-supply wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  12. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a pushpoint sampler as a highly effective tool for mapping the extent of contaminated subsurface plumes, determining their constituents and loadings, and performing technical studies that may be relevant to bioremediation and other activities.

  13. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions.

    PubMed

    Beskin, Kelly V; Holcomb, Chelsea D; Cammack, Jonathan A; Crippen, Tawni L; Knap, Anthony H; Sweet, Stephen T; Tomberlin, Jeffery K

    2018-04-01

    Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dispersive liquid-liquid microextraction and gas chromatography accurate mass spectrometry for extraction and non-targeted profiling of volatile and semi-volatile compounds in grape marc distillates.

    PubMed

    Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael

    2018-04-20

    The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells

    USGS Publications Warehouse

    Akob, Denise M.; Cozzarelli, Isabelle M.; Dunlap, Darren S.; Rowan, Elisabeth L.; Lorah, Michelle M.

    2015-01-01

    Hydraulically fractured shales are becoming an increasingly important source of natural gas production in the United States. This process has been known to create up to 420 gallons of produced water (PW) per day, but the volume varies depending on the formation, and the characteristics of individual hydraulic fracture. PW from hydraulic fracturing of shales are comprised of injected fracturing fluids and natural formation waters in proportions that change over time. Across the state of Pennsylvania, shale gas production is booming; therefore, it is important to assess the variability in PW chemistry and microbiology across this geographical span. We quantified the inorganic and organic chemical composition and microbial communities in PW samples from 13 shale gas wells in north central Pennsylvania. Microbial abundance was generally low (66–9400 cells/mL). Non-volatile dissolved organic carbon (NVDOC) was high (7–31 mg/L) relative to typical shallow groundwater, and the presence of organic acid anions (e.g., acetate, formate, and pyruvate) indicated microbial activity. Volatile organic compounds (VOCs) were detected in four samples (∼1 to 11.7 μg/L): benzene and toluene in the Burket sample, toluene in two Marcellus samples, and tetrachloroethylene (PCE) in one Marcellus sample. VOCs can be either naturally occurring or from industrial activity, making the source of VOCs unclear. Despite the addition of biocides during hydraulic fracturing, H2S-producing, fermenting, and methanogenic bacteria were cultured from PW samples. The presence of culturable bacteria was not associated with salinity or location; although organic compound concentrations and time in production were correlated with microbial activity. Interestingly, we found that unlike the inorganic chemistry, PW organic chemistry and microbial viability were highly variable across the 13 wells sampled, which can have important implications for the reuse and handling of these fluids

  16. Reconnaissance of volatile organic compounds in the subsurface at Rutgers University, Busch Campus, Piscataway Township, New Jersey

    USGS Publications Warehouse

    dePaul, V.T.

    1996-01-01

    During 1991-92, the U.S. Geological Survey conducted a hydrogeologic reconnaissance at a site near the Rutgers University, Busch Campus, Chemical Engineering building, C-Wing. Results of analyses of the soil-gas samples, which were collected at 43 locations, indicated the presence of volatile organic compounds, primarily carbon tetrachloride, near the C-Wing building and about 550 feet downgradient from and southwest of the C-Wing building. Concentrations of the compound in soil-gas samples were highest (2.1 ug/L (micrograms per liter)) along the southwestern wall of the C-Wing building. Ground-water samples were collected at depths as great as 55 feet from five wells and piezometers near the C-Wing building. Samples collected along the southwestern wall of the building also contained the highest concentrations of volatile organic compounds. Concentrations of carbon tetrachloride in the ground-water samples ranged from < 0.35 ug/L to 3,400 ug/L, and concentrations of tetrachloro- ethylene ranged from < 0.28 ug/L to 85 ug/L. Ground-water samples collected at depths of 55 feet or more from two wells located on the Rutgers University Golf Course about 2,400 feet down- gradient from the C-Wing building contained concentrations of tetrachloroethylene as great as 17.7 ug/L. Water levels measured in six wells and six piezometers indicated that the general flow direction in the shallow part of the aquifer is to the southwest of the C-Wing building. An electrical-resistivity survey was conducted by azimuthal resistivity techniques. The results of the survey were consistent with field measurements, and the dominant vertical fractures near the Busch Campus trend northeast. An electromagnetic survey was ineffective as a result of cultural interferences and could not be used to determine the hydrogeologic characteristics of the site.

  17. Effects of Sampling Conditions and Environmental Factors on Fecal Volatile Organic Compound Analysis by an Electronic Nose Device

    PubMed Central

    Berkhout, Daniel J. C.; Benninga, Marc A.; van Stein, Ruby M.; Brinkman, Paul; Niemarkt, Hendrik J.; de Boer, Nanne K. H.; de Meij, Tim G. J.

    2016-01-01

    Prior to implementation of volatile organic compound (VOC) analysis in clinical practice, substantial challenges, including methodological, biological and analytical difficulties are faced. The aim of this study was to evaluate the influence of several sampling conditions and environmental factors on fecal VOC profiles, analyzed by an electronic nose (eNose). Effects of fecal sample mass, water content, duration of storage at room temperature, fecal sample temperature, number of freeze–thaw cycles and effect of sampling method (rectal swabs vs. fecal samples) on VOC profiles were assessed by analysis of totally 725 fecal samples by means of an eNose (Cyranose320®). Furthermore, fecal VOC profiles of totally 1285 fecal samples from 71 infants born at three different hospitals were compared to assess the influence of center of origin on VOC outcome. We observed that all analyzed variables significantly influenced fecal VOC composition. It was feasible to capture a VOC profile using rectal swabs, although this differed significantly from fecal VOC profiles of similar subjects. In addition, 1285 fecal VOC-profiles could significantly be discriminated based on center of birth. In conclusion, standardization of methodology is necessary before fecal VOC analysis can live up to its potential as diagnostic tool in clinical practice. PMID:27886068

  18. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis.

    PubMed

    Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi

    2013-06-01

    Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.

  19. Analysis of Organohalogen Products From Chlorination of Natural Waters Under Simulated Biofouling Control Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R. M.; Mann, D. C.; Riley, R. G.

    1980-06-01

    The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less

  20. Performance of the future MOMA GC-ITMS instrument

    NASA Astrophysics Data System (ADS)

    Grand, Noel; Buch, Arnaud; Veronica, Pinnick; Szopa, Cyril; Danell, Ryan; Van Amerom, Friso H. W.; Glavin, Daniel P.; Freissinet, Caroline; Arevalo, Ricardo; Stalport, Fabien; Getty, Stephanie; Coll, Patrice; Steinninger, Harald; Brinckerhoff, William; Mahaffy, Paul; Goesmann, Fred; Raulin, F.; Goetz, Walter; MOMA Team

    2016-10-01

    The Mars Organic Molecule Analyzer (MOMA) experiment aboard the future ExoMars mission will be the continuation of the SAM expirement aboard the Curiosity rover, with the search for the organic composition of the Mars surface. With ExoMars the sample will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatiles compounds) of the Martian soil MOMA is composed with an UV laser desorption / ionization (LDI) and a pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyze refractory organic compounds and chirality samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]).To optimize and test the performance of the GC-ITMS instrument we have performed several coupling tests campaigns between the GC, providing by the French team (LISA, LATMOS, CentraleSupelec), and the MS, providing by the US team (NASA, GSFC). Last campaign has been done with the ETU models which is similar to the flight model and which include the oven and the taping station providing by the German team (MPS).The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation.

  1. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks.

    PubMed

    Watson, John G; Chow, Judith C; Chen, L W Antony; Frank, Neil H

    2009-08-01

    Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) adsorb to quartz fiber filters during fine and coarse particulate matter (PM2.5 and PM10, respectively) sampling for thermal/optical carbon analysis that measures organic carbon (OC) and elemental carbon (EC). Particulate SVOCs can evaporate after collection, with a small portion adsorbed within the filter. Adsorbed organic gases are measured as particulate OC, so passive field blanks, backup filters, prefilter organic denuders, and regression methods have been applied to compensate for positive OC artifacts in several long-term chemical speciation networks. Average backup filter OC levels from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network were approximately 19% higher than field blank values. This difference is within the standard deviation of the average and likely results from low SVOC concentrations in the rural to remote environments of most IMPROVE sites. Backup filters from an urban (Fort Meade, MD) site showed twice the OC levels of field blanks. Sectioning backup filters from top to bottom showed nonuniform OC densities within the filter, contrary to the assumption that VOCs and SVOCs on a backup filter equal those on the front filter. This nonuniformity may be partially explained by evaporation and readsorption of vapors in different parts of the front and backup quartz fiber filter owing to temperature, relative humidity, and ambient concentration changes throughout a 24-hr sample duration. OC-PM2.5 regression analysis and organic denuder approaches demonstrate negative sampling artifact from both Teflon membrane and quartz fiber filters.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less

  3. Analysis of a GC/MS thermal desorption system with simultaneous sniffing for determination of off-odor compounds and VOCs in fumes formed during extrusion coating of low-density polyethylene.

    PubMed

    Villberg, K; Veijanen, A

    2001-03-01

    A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.

  4. Volatile halogenated hydrocarbons in foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyahara, Makoto; Toyoda, Masatake; Saito, Yukio

    1995-02-01

    Volatile halogenated organic compounds were determined in foods. Statistical treatment of the data for 13 sampled from 20 families living in suburban Tokyo (Saitama prefecture) indicated that the foods were contaminated by water pollution and/or substances introduced by the process of food production. Butter and margarine were contaminated by chlorinated ethylene, ethane, and related compounds released by dry cleaning and other operations. Soybean sprouts and tofu (soybean curd) contained chloroform and related trihalomethanes absorbed during the production process. 27 refs., 6 figs., 5 tabs.

  5. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  6. Volatile organic compounds as biomarkers of bladder cancer: Sensitivity and specificity using trained sniffer dogs.

    PubMed

    Willis, Carolyn M; Britton, Lezlie E; Harris, Rob; Wallace, Joshua; Guest, Claire M

    In a previous canine study, we demonstrated that volatile organic compounds specific to bladder cancer are present in urine headspace, subsequently showing that up to 70% of tumours can be correctly classified using an electronic nose. This study aimed to evaluate the sensitivity and specificity which can be achieved by a group of four trained dogs. In a series of 30 double-blind test runs, each consisting of one bladder cancer urine sample placed alongside six controls, the highest sensitivity achieved by the best performing dog was 73% (95% CI 55-86%), with the group as a whole correctly identifying the cancer samples 64% (95% CI 55-73%) of the time. Specificity of the dogs individually ranged from 92% (95% CI 82-97%) for urine samples obtained from healthy, young volunteers down to 56% (95% CI 42-68%) for those taken from older patients with non-cancerous urological disease. Odds ratio comparisons confirmed a significant decrease in performance as the extent of urine dipstick abnormality and/or pathology amongst the control population increased. Importantly, however, statistical analysis indicated that covariates such as smoking, gender and age, as well as blood, protein and /or leucocytes in the urine did not significantly alter the odds of response to the cancer samples. Our results provide further evidence that volatile biomarkers for bladder cancer exist in urine headspace, and that these have the potential to be exploited for diagnosis.

  7. Pyrolysis gas chromatography-mass spectrometry to characterize organic matter and its relationship to uranium content of Appalachian Devonian black shales

    USGS Publications Warehouse

    Leventhal, J.S.

    1981-01-01

    Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.

  8. Evaluation of carbon and nitrogen pools in different soil types amended with different organic inputs by thermogravimetric/calorimetric analysis

    NASA Astrophysics Data System (ADS)

    Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; Faz, Ángel; Mermut, Ahmet R.

    2017-04-01

    The objective of this study was to assess the short-term changes in soil organic C (SOC) and N pools after incubation of three different soil types (Regosol, Luvisol and Kastanozem) treated with three amendments differing in organic matter stability (raw pig slurry (PS), manure, and biochar (BC), and to establish relationships between different chemical, spectral and thermal/calorimetric data to assess if thermal/calorimetric analysis could replace conventional analyses to monitor changes in SOC and N poos. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) analysis showed that amendments had little effect on volatile SOC and inorganic matter, compared to unamended samples in all soils. All amendments significantly increased the labile SOC in Regosol. Manure and BC increased recalcitrant SOC in Regosol and Luvisol. BC significantly increased recalcitrant SOC in all soils. Refractory SOC slightly increased with amendments in the Luvisol compared to the control. These results support the findings obtained with chemical analyses. Selected evolved ions (m/z 30 and 44) detected by quadrupole mass spectrometry (QMS) confirmed findings from TG-DSC. Emissions of C and N containing gases from the Regosol significantly increased with the amendments because this soil contains low SOC content, and the application of these amendments provided additional C. An increase in the CO2 containing gas species (m/z 44) from volatile SOC was observed with PS application only in the Regosol. Carbon dioxide increments (m/z 44) from recalcitrant (380-475°C) and refractory (475-550/600°C) SOC pools were observed with all amendments in all soils especially with BC application. The evolved ions at m/z 44 were higher in the initial soil samples from Kastanozem than after incubation, suggesting a loss of organic compounds, mainly volatile and labile upon incubation. NO peaks (m/z 30) showed similar trends to the C containing gas species in all soils. We carried out linear regressions to estimate soil properties measured by conventional chemical procedures by the use of TG-DSC-QMS. We obtained accurate models to estimate SOC, soil carbonates, recalcitrant C, soluble C and soluble N. These results encourage the use of thermal analyses to study SOM dynamics in soils, since it provides feasible and accurate information about different organic and inorganic C and N fractions. Thermal methods are quite inexpensive, require little sample preparation, are rapid and give reproducible results. However, no relationship between thermal analyses and C and N mineralization and N volatilization was found, suggesting that this technique may be valid to assess the current value of different organic fractions in a soil in a concrete time, but not indicated to predict mineralization or volatilization trends after application of amendments.

  9. Distribution of selected volatile organic compounds determined with water-to-vapor diffusion samplers at the interface between ground water and surface water, Centredale Manor site, North Providence, Rhode Island, September 1999

    USGS Publications Warehouse

    Church, Peter E.; Lyford, Forest P.; Clifford, Scott

    2000-01-01

    Volatile organic compounds are present in soils and ground water at the Centredale Manor Superfund Site in North Providence, Rhode Island. In September 1999, water-to-vapor diffusion samplers were placed in the bottom sediments of waterways adjacent to the site to identify possible contaminated ground-water discharge areas. The approximate12-acre site is a narrow stretch of land between the eastern bank of the Woonasquatucket River, downstream from the U.S. Route 44 bridge and a former mill raceway. The samplers were placed along a 2,250-foot reach of the Woonasquatucket River, in the former mill raceway several hundred feet to the east and parallel to the river, and in a cross channel between the river and former mill raceway. Volatile organic compounds were detected in 84 of the 104 water-to-vapor diffusion samplers retrieved. Trichloroethylene and tetrachloro-ethylene were the principal volatile organic compounds detected. The highest vapor concentrations measured for these two chemicals were from diffusion samplers located along an approximate 100-foot reach of the Woonasquatucket River about 500 feet downstream of the bridge; here trichloroethylene and tetrachloroethylene vapor concentrations ranged from about 2,000 to 180,000 and 1,600 to 1,400,000 parts per billion by volume, respectively. Upstream and downstream from this reach and along the former mill raceway, trichloroethylene and tetrachloroethylene vapor concentrations from the diffusion samples were generally less than 100 parts per billion by volume. Along the lower reaches of the river and mill raceway, however, and in the cross channel, vapor concentrations of trichloroethylene exceeded 100 parts per billion by volume and tetrachloroethylene exceeded 1,000 parts per billion by volume in several diffusion samples. Although diffusion sample vapor concentrations are higher than water concentrations in surface waters and in ground water, and they should only be interpreted qualitatively as relative values, these values provide important information as to potential discharge areas of contaminants.

  10. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    PubMed

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  11. Water and Streambed Sediment Quality, and Ecotoxicology of a Stream along the Blue Ridge Parkway, Adjacent to a Closed Landfill, near Roanoke, Virginia: 1999

    USGS Publications Warehouse

    Ebner, Donna Belval; Cherry, Donald S.; Currie, Rebecca J.

    2004-01-01

    A study was done of the effects of a closed landfill on the quality of water and streambed sediment and the benthic macroinvertebrate community of an unnamed stream and its tributary that flow through Blue Ridge Parkway lands in west-central Virginia. The primary water source for the tributary is a 4-inch polyvinyl chloride (PVC) pipe that protrudes from the slope at the base of the embankment bordering the landfill. An unusual expanse of precipitate was observed in the stream near the PVC pipe. Stream discharge was measured and water and streambed sediment samples were collected at a nearby reference site and at three sites downstream of the landfill in April and September 1999. Water samples were analyzed for major ions, nitrate, total and dissolved metals, total dissolved solids, total organic carbon, and volatile and semivolatile organic compounds, including organochlorine pesticides and polychlorinated biphenyls (PCBs). Streambed sediment samples were analyzed for total metals, total organic carbon, percent moisture, and volatile and semivolatile organic compounds, including organochlorine pesticides and PCBs. The benthic macroinvertebrate community within the stream channel also was sampled at the four chemical sampling sites and at one additional site in April and September. Each of the five sites was assessed for physical habitat quality. Water collected periodically at the PVC pipe discharge between November 1998 and November 1999 was used to conduct 48-hour acute and 7-day chronic toxicity tests using selected laboratory test organisms. Two 10-day chronic toxicity tests of streambed sediments collected near the discharge pipe also were conducted. Analyses showed that organic and inorganic constituents in water from beneath the landfill were discharged into the sampled tributary. In April, 79 percent of inorganic constituents detected in water had their highest concentrations at the site closest to the landfill; at the same site, 59 percent of inorganic constituents detected in streambed sediments were at their lowest concentration. The low dissolved-oxygen concentration and relatively low pH in ground water from beneath the landfill probably had a direct effect on the solubility of metals and other constituents, resulting in the high concentration of inorganic constituents in water, low concentration in sediment, and the development of the precipitate. Most constituents in water in April were progressively lower in concentration from the landfill site downstream. The highest concentrations for 59 percent of constituents detected in sediment were at the farthest downstream site, suggesting that the inorganic constituents came out of solution as the stream water was exposed to the atmosphere. In September, 52 percent of inorganic constituents detected in water were at their highest concentrations at the site nearest the landfill. Of inorganic constituents detected in streambed sediments in September, 60 percent were at their highest concentrations near the landfill. A storm that occurred a few days prior to the September sampling probably affected the preceding steady-state conditions and the distribution of constituents in sediment along the stream. Concentrations of many inorganic constituents in water remained elevated at the farthest downstream site in comparison to the reference site in April and September, indicating that concentrations did not return to background concentrations. In April and September, most of the 17 organic compounds detected in water, including volatile organic and semivolatile organic compounds, were collected in samples near the landfill, and most concentrations were below their respective reporting limits. Probably because of their volatility, few organic compounds were detected at sites downstream of that site. A total of 17 discrete organic compounds were detected in sediment samples in either April or September, including trichloroethene and tetrachloroethene along with their degrad

  12. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    PubMed Central

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  13. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  14. Release of volatile and semi-volatile toxicants during house fires.

    PubMed

    Hewitt, Fiona; Christou, Antonis; Dickens, Kathryn; Walker, Richard; Stec, Anna A

    2017-04-01

    Qualitative results are presented from analysis of volatile and semi-volatile organic compounds (VOCs/SVOCs) obtained through sampling of gaseous effluent and condensed particulates during a series of experimental house fires conducted in a real house. Particular emphasis is given to the 16 polycyclic aromatic hydrocarbons (PAHs) listed by the Environmental Protection Agency due to their potentially carcinogenic effects. The initial fuel packages were either cooking oil or a single sofa; these were burned both alone, and in furnished surroundings. Experiments were performed at different ventilation conditions. Qualitative Gas Chromatography-Mass Spectrometry (GC-MS) analysis found VOC/SVOC releases in the developing stages of the fires, and benzo(a)pyrene - the most carcinogenic PAH - was found in at least one sampling interval in the majority of fires. A number of phosphorus fire retardants were detected, in both the gaseous effluent and particulates, from fires where the initial fuel source was a sofa. Their release during the fire is significant as they pose toxicological concerns separate from those presented by the PAHs. Copyright © 2016. Published by Elsevier Ltd.

  15. Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters.

    PubMed

    Alonso, Monica; Cerdan, Laura; Godayol, Anna; Anticó, Enriqueta; Sanchez, Juan M

    2011-11-11

    Combining headspace (HS) sampling with a needle-trap device (NTD) to determine priority volatile organic compounds (VOCs) in water samples results in improved sensitivity and efficiency when compared to conventional static HS sampling. A 22 gauge stainless steel, 51-mm needle packed with Tenax TA and Carboxen 1000 particles is used as the NTD. Three different HS-NTD sampling methodologies are evaluated and all give limits of detection for the target VOCs in the ng L⁻¹ range. Active (purge-and-trap) HS-NTD sampling is found to give the best sensitivity but requires exhaustive control of the sampling conditions. The use of the NTD to collect the headspace gas sample results in a combined adsorption/desorption mechanism. The testing of different temperatures for the HS thermostating reveals a greater desorption effect when the sample is allowed to diffuse, whether passively or actively, through the sorbent particles. The limits of detection obtained in the simplest sampling methodology, static HS-NTD (5 mL aqueous sample in 20 mL HS vials, thermostating at 50 °C for 30 min with agitation), are sufficiently low as to permit its application to the analysis of 18 priority VOCs in natural and waste waters. In all cases compounds were detected below regulated levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Quality of ground water in Clark County, Washington, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, G.L.

    1990-01-01

    Water samples were collected from 76 wells throughout Clark County, in southwest Washington, during April and May 1988, and were analyzed from concentrations of major ions, silica, nitrate, phosphorus, aluminum, manganese, radon, and bacteria. Samples from 20 wells were analyzed for concentrations of trace elements and organic compounds, including most of those on the US Environmental Protection Agency (USEPA) priority pollutant list. Dissolved solids concentrations range from 12 to 245 mg/L, with a median concentration of 132 mg/L. The major dissolved constituents are calcium, bicarbonate, and silica, and, in some samples, sodium. Nitrate concentrations exceeded 1.0 mg/L throughout the Vancouvermore » urban area, and were as large as 6.7 mg/L. Comparison with limited historical data indicates that nitrate concentrations were somewhat correlated, possibly indicating similar sources. Volatile organic compound, including tetrachloroethane and 1,1,1-trichloroethane, were detected in samples from three wells in the Vancouver area. Trace amounts of volatile organic compounds were reported in samples from several other wells, but at concentrations too close to analytical detection limits to ascertain that they were in the groundwater. Trace elements and radiochemical constituents were present at small levels indicating natural sources for these constituents. Only pH, turbidity, iron, manganese, and total coliform bacteria had values that did not meet USEPA Drinking Water Standards.« less

  17. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    PubMed

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  18. Atmospheric Transformation of Volatile Organic Compounds

    DTIC Science & Technology

    2008-03-01

    Study Analysis Reactant mixtures and standards from product identification experiments were sampled by exposing a 100% polydimethylsiloxane solid...later using the DNPH derivatization method described above and confirmed against a commercial standard. HPLC analysis of the DNPH cartridges also...reaction mixture for a combined total photolysis time ofapproximately 50 seconds. 2.3. Kinetic Study Analysis Samples from kinetic studies were

  19. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride tedlar bags

    USDA-ARS?s Scientific Manuscript database

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...

  20. VOLATILE ORGANIC COMPOUNDS MEASUREMENTS IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    From September 22, 2001 through February 2002, ambient air was sampled in lower Manhattan, New York at three sites within a block of ground zero and at a fourth site 500-m northwest of the World Trade Center. Over 190 grab samples were collected in evacuated, electro-polished s...

  1. Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres

    EPA Science Inventory

    The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The ob...

  2. Distribution and mass loss of volatile organic compounds in the surficial aquifer at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware, November 2000-February 2001

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Neupane, Pradumna P.

    2002-01-01

    Ground-water and surface-water sampling was conducted in the natural attenuation study area in the East Management Unit of Dover Air Force Base, Delaware to determine the distributions of volatile organic compounds in the vicinity of four sites?Fire Training Area Three, the Rubble Area Landfill, the Receiver Station Landfill, and the Liquid Waste Disposal Landfill. This work was done by the U.S. Geological Survey, in cooperation with the U.S. Air Force, as part of an ongoing assessment of the effectiveness of natural attenuation at these sites. The specific objectives of the study were to (1) determine the areal and vertical extent of the contaminant plumes and source areas, (2) measure volatile organic compound concentrations in ground-water discharge areas and in surface water under base-flow conditions, (3) evaluate the potential for off-site migration of the mapped plumes, and (4) estimate the amount of mass loss downgradient of the Liquid Waste Disposal and Receiver Station Landfills. A direct-push drill rig and previously installed multi-level piezometers were used to determine the three-dimensional distributions of volatile organic compounds in the 30?60-foot-thick surficial aquifer underlying the natural attenuation study area. A hand -driven mini-piezometer was used to collect ground-water samples in ground-water discharge areas. A total of 319 ground-water and 4 surface-water samples were collected from November 2000 to February 2001 and analyzed for chlorinated solvents and fuel hydrocarbons. The contaminant plumes migrating from Fire Training Area Three and the Rubble Area Landfill are approximately 500 feet and 800 feet, respectively, in length. These plumes consist predominantly of cis-1,2-dichloroethene, a daughter product, indicating that extensive dechlorination of tetrachloroethene and trichloroethene has occurred at these sites. With an approximate length of 2,200 feet, the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills is the largest of the three plumes in the East Management Unit. In this plume, the parent compounds, tetrachloroethene and trichloroethene, as well as cis-1,2-dichloroethene, are present downgradient of the source. Vinyl chloride was not detected in the natural attenuation study area. Vertical water-quality profiles indicate that volatile organic compounds are present mainly in the upper part of the surficial aquifer. Plumes of fuel hydrocarbon constituents were not detected in the natural attenuation study area. Volatile organic compounds were present at concentrations above detection limits in 6 of 14 samples collected from the aquifer underlying the bed of Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three, indicating that the plumes migrating from Fire Training Area Three and the Receiver Station and Liquid Waste Disposal Landfills are reaching these ground-water discharge areas. In contrast, sampling results indicated that the plume from the Rubble Area Landfill does not reach these ground-water discharge areas. Trichloroethene was present above detection limits in one of four surface-water samples collected from Pipe Elm Branch and the drainage ditch adjacent to Fire Training Area Three. The trichloroethene concentration is below applicable Delaware Department of Natural Resources and Environmental Control surface-water-quality standards for human health. An assessment of chlorinated-solvent mass loss in the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicates that tetrachloroethene and trichloroethene mass loss downgradient of the source is negligible. Cis-1,2-dichloroethene, however, appears to biodegrade by an unidentified reaction in the plume. Plan-view maps of the plume migrating from the Receiver Station and Liquid Waste Disposal Landfills indicate that tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene may migrate off Dover Air Force Base property approximately 1,500 f

  3. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Parra, Amanda; Russell, Marion

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less

  4. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-04-01

    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce the samples to the PTR-MS. With thermal desorption lasting just 5 min (at 200˚ C) we successfully detected more than 200 organic ions in the water samples yielding up to 800 ng/mL in total (which corresponds to 1.5% of total DOC present in the sample). Samples were from tropical peatlands in Borneo and Malaysia. Principle component analysis showed a clear separation of the samples when comparing intact and degraded peat swamp forest, and between an oil palm plantation and natural forest. This suggests that the degradation and conversion of tropical peatlands result in distinct changes to DOC composition, with possible implications for associated CO2 emissions. As the method is sensitive and reproducible it has wide potential application in the characterisation of water and of soils. It could provide important information on how land management, microbial activity, vegetation and water treatment control the chemical composition of DOC.

  5. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.

    PubMed

    Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A

    2015-07-21

    Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  6. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less

  7. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  8. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  9. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  10. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...

  11. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  12. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  13. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  14. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  15. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  16. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC/MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  17. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction.

    PubMed

    Jochmann, Maik A; Yuan, Xue; Schmidt, Torsten C

    2007-03-01

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-microm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madronich, Sasha; Kleinman, Larry; Conley, Andrew

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less

  19. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-10-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.

  20. Technical and Legal Documents: St. Louis Park Site

    EPA Pesticide Factsheets

    Technical and legal documents related to the St. Louis Park Site. Samples of ground water taken in St. Louis Park in 2005 and 2006 by the Minnesota Pollution Control Agency were found to contain volatile organic compounds – known as VOCs.

  1. SAMPLING-BASED APPROACH TO INVESTIGATING VAPOR INTRUSION

    EPA Science Inventory

    Vapor intrusion is defined as the migration of volatile organic compounds (VOCs) into occupied buildings from contaminated soil or ground water. EPA recently developed guidance to facilitate assessment of vapor intrusion at sites regulated by RCRA and CERCLA. The EPA guidance e...

  2. SORPTION OF VOLATILE ORGANIC SOLVENTS FROM AQUEOUS SOLUTION ONTO SUBSURFACE SOLIDS

    EPA Science Inventory

    Sorption isotherms for tetrachloroethene on low-carbon subsurface core samples were linear to equilibrium solution concentrations of 2 mg L−1. Concentrations above this value produced pronounced curvature in the sorption isotherms. Sorption of tetrachloroethene, benzene, trichlor...

  3. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  4. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  5. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  6. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013). Chloromethane and dichloromethane were also identified after thermal volatilization of the surface soils by the GCMS instruments at the Viking landing sites, although no other chlorinated hydrocarbons were reported (Biemann et al. 1977). Here we focus on the origin of the chlorinated hydrocarbons detected in the Sheepbed mudstone by SAM and the implications for the preservation of organic matter in near-surface materials on Mars.

  7. Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai

    NASA Astrophysics Data System (ADS)

    Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kwon, Joog-Ho; Kim, Kyong-Su

    2007-11-01

    The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.

  8. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR USE OF A PASSIVE SAMPLING DEVICE FOR THE COLLECTION OF AIRBORNE VOCS AT FIXED INDOOR AND OUTDOOR SITES (UA-F-12.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methods used to sample residential indoor and outdoor atmospheres for the presence of certain volatile organic compounds (VOCs) by means of absorption onto activated charcoal contained within a sampling badge. Activated charcoal diffusi...

  9. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    USGS Publications Warehouse

    Storck, D.A.; Lacombe, Pierre

    1996-01-01

    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were detected in surface- water samples in concentrations greater than the U.S. Environmental Protection Agency primary drinking-water regulations. Only two constituents, iron and manganese, were detected in concen- trations greater than the U.S. Environmental Protection Agency secondary drinking-water regulations.

  10. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    PubMed

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-07-01

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  11. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J. F.; Webb, P. J.; Lewis, A. C.; Hopkins, J. R.; Smith, S.; Davy, P.

    2004-08-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-TOF/MS). Over 10000 individual organic components were isolated from around 10µg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  12. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS

    NASA Astrophysics Data System (ADS)

    Hamilton, J.; Webb, P.; Lewis, A.; Hopkins, J.; Smith, S.; Davy, P.

    2004-03-01

    Partially oxidised organic compounds associated with PM2.5 aerosol collected in London, England, have been analysed using direct thermal desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry (GCXGC-OF/MS). Over 10 000 individual organic components were isolated from around 10 μg of aerosol material in a single procedure and with no sample pre-treatment. Chemical functionalities observed using this analytical technique ranged from alkanes to poly-oxygenated species. The chemical band structures commonly used in GCXGC for group type identifications overlap for this sample type, and have required mass spectrometry as an additional level of instrument dimensionality. An investigation of oxygenated volatile organic compounds (o-VOC) contained within urban aerosol has been performed and in a typical sample around 130 o-VOCs were identified based on retention behaviour and spectral match. In excess of 100 other oxygenated species were also observed but lack of mass spectral library or pure components prevents positive identification. Many of the carbonyl species observed could be mechanistically linked to gas phase aromatic hydrocarbon oxidation and there is good agreement in terms of speciation between the urban samples analysed here and those degradation products observed in smog chamber experiments of aromatic oxidation. The presence of partially oxidised species such as linear chain aldehydes and ketones and cyclic products such as furanones suggests that species generated relatively early in the oxidative process may undergo gas to particle partitioning despite their relatively high volatility.

  13. TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...

  14. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 1. Technical results. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less

  15. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    PubMed

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  16. Volatile Organic Compound (VOC) Analysis For Disease Detection: Proof Of Principle For Field Studies Detecting Paratuberculosis And Brucellosis

    NASA Astrophysics Data System (ADS)

    Knobloch, Henri; Köhler, Heike; Nicola, Commander; Reinhold, Petra; Turner, Claire; Chambers, Mark

    2009-05-01

    A proof of concept investigation was performed to demonstrate that two independent infectious diseases of cattle result in different patterns of volatile organic compounds (VOC) in the headspace of serum samples detectable using an electronic nose (e-nose). A total of 117 sera from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis (paraTB, n = 43) or Brucella sp. (n = 26) and sera from corresponding control animals (n = 48) were randomly and analysed blind to infection status using a ST214 e-nose (Scensive Ltd, Leeds, UK). Samples were collected under non-standardised conditions on different farms from the UK (brucellosis) and Germany (paraTB). The e-nose could differentiate the sera from brucellosis infected, paraTB infected and healthy animals at the population level, but the technology used was not suitable for determination of the disease status of individual animals. Nevertheless, the data indicate that there are differences in the sensor responses depending on the disease status, and therefore, it shows the potential of VOC analysis from serum headspace samples for disease detection.

  17. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles collected by HVS compared to samples collected by LVS denuder/filter sampling system. The present study shows that volatile organics may absorb onto filter materials in the HVS (and similar sampling systems without denuder) and furthermore undergo subsequent on-filter oxidation and sulfation resulting in formation of both organic acids and organosulfates.

  18. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.

  19. TOTAL PAH EXPOSURES OF NINE PRESCHOOL CHILDREN

    EPA Science Inventory

    This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders ...

  20. Implementation of an evaporative oxidation process for treatment of aqueous mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounini, L.; Stelmach, J.

    1995-12-31

    The US Department of Energy and Rust Geotech conducted treatability tests for mixed wastes with a pilot-scale evaporative oxidation unit known as the mini-PO*WW*ER unit. In the evaporative oxidation process, water and volatile organic compounds are vaporized and passed through a catalytic oxidizer to destroy the organic compounds. Nonvolatiles are concentrated into a brine that may be solidified. Ten experiment runs were made. The oxidation of the unit was calculated using total organic carbon analyses of feed and composite product condensate samples. These data indicate that the technology is capable of achieving oxidation efficiencies as high as 99.999 percent onmore » mixed wastes when the bed temperature is near 600 C, residence times are about 0.2 seconds, and adequate oxygen flow is maintained. Concentrations of the tested volatile organic compounds in the product-condensate composite samples were well below standards for wastewaters. Combined gross alpha and beta radioactivity levels in the samples were below detection limites of 12.5 pico-Cu/l, so the liquid would not qualify as a radioactive waste. Thus, the product condensate process by the process is not restricted as either hazardous or mixed waste and is suitable for direct disposal. The brines produced were not considered mixed waste and could be handled and disposed of as radioactive waste.« less

  1. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.

    PubMed

    Si, Pengchao; Mortensen, John; Komolov, Alexei; Denborg, Jens; Møller, Preben Juul

    2007-08-06

    By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.

  2. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  3. Quantification of the volatile organic compounds in the smoke from prescribed burning and comparison with the occupational exposure limits

    NASA Astrophysics Data System (ADS)

    Barboni, T.; Santoni, P.-A.

    2013-11-01

    Prescribed burning represents a serious threat to the personnel fighting fires because of smoke inhalation. This study aims to increase the knowledge about foresters exposure to the prescribed burning smoke by focusing on exposure to volatile organic compounds (VOCs). We initially assessed the methodology for smoke sampling. Then, we identified potentially dangerous molecules among the VOCs identified at 4 prescribed burning sites located around Corsica. The values measured were very high, exceeding the exposure limits, particularly for benzene, phenol, and furfural, whose concentrations were above short-term exposure limit (STEL) values. In conclusion, obvious but necessary recommendations were made for the protection of the personnel involved in fighting fires on a professional basis.

  4. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  5. FIELD METHOD COMPARISON BETWEEN PASSIVE AIR SAMPLERS AND CONTINUOUS MONITORS FOR VOLATILE ORGANIC COMPOUNDS AND NO2 IN EL PASO, TEXAS, USA

    EPA Science Inventory

    Passive sampling of gas-phase air toxics and criteria pollutants has become an attractive monitoring method in human exposure studies due to the relatively low sampling cost and ease of use. This study evaluates the performance of Model 3300 Ogawa(TM) Passive NO2 Samplers and 3...

  6. Selected well and ground-water chemistry data for the Boise River Valley, southwestern Idaho, 1990-95

    USGS Publications Warehouse

    Parliman, D.J.; Boyle, Linda; Nicholls, Sabrina

    1996-01-01

    Water samples were collected from 903 wells in the Boise River Valley, Idaho, from January 1990 through December 1995. Selected well information and analyses of 1,357 water samples are presented. Analyses include physical properties ad concentrations of nutrients, bacteria, major ions, selected trace elements, radon-222, volatile organic compounds, and pesticides.

  7. Occupational health and safety assessment of exposure to jet fuel combustion products in air medical transport.

    PubMed

    MacDonald, Russell D; Thomas, Laura; Rusk, Frederick C; Marques, Shauna D; McGuire, Dan

    2010-01-01

    Transport medicine personnel are potentially exposed to jet fuel combustion products. Setting-specific data are required to determine whether this poses a risk. This study assessed exposure to jet fuel combustion products, compared various engine ignition scenarios, and determined methods to minimize exposure. The Beechcraft King Air B200 turboprop aircraft equipped with twin turbine engines, using a kerosene-based jet fuel (Jet A-1), was used to measure products of combustion during boarding, engine startup, and flight in three separate engine start scenarios ("shielded": internal engine start, door closed; "exposed": ground power unit start, door open; and "minimized": ground power unit right engine start, door open). Real-time continuous monitoring equipment was used for oxygen, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide, volatile organic compounds, and particulate matter. Integrated methods were used for aldehydes, polycyclic aromatic hydrocarbons, volatile organic compounds, and aliphatic hydrocarbons. Samples were taken in the paramedic breathing zone for approximately 60 minutes, starting just before the paramedics boarded the aircraft. Data were compared against regulated time-weighted exposure thresholds to determine the presence of potentially harmful products of combustion. Polycyclic aromatic hydrocarbons, aldehydes, volatile organic compounds, and aliphatic hydrocarbons were found at very low concentrations or beneath the limits of detection. There were significant differences in exposures to particulates, carbon monoxide, and total volatile organic compound between the "exposed" and "minimized" scenarios. Elevated concentrations of carbon monoxide and total volatile organic compounds were present during the ground power unit-assisted dual-engine start. There were no appreciable exposures during the "minimized" or "shielded" scenarios. Air medical personnel exposures to jet fuel combustion products were generally low and did not exceed established U.S. or Canadian health and safety exposure limits. Avoidance of ground power unit-assisted dual-engine starts and closing the hangar door prior to start minimize or eliminate the occupational exposure.

  8. [Method of fused sample preparation after nitrify-determination of primary and minor elements in manganese ore by X-ray fluorescence spectrometry].

    PubMed

    Song, Yi; Guo, Fen; Gu, Song-hai

    2007-02-01

    Eight components, i. e. Mn, SiO2, Fe, P, Al2O3, CaO, MgO and S, in manganese ore were determined by X-ray fluorescence spectrometer. Because manganese ore sample releases a lot of air bubbles during fusion which effect accuracy and reproducibility of determination, nitric acid was added to the sample to destroy organic matter before fusion by the mixture flux at 1000 degrees C. This method solved the problem that the flux splashed during fusion because organic matter volatilized brought out a lot of air bubbles, eliminated particle size effects and mineral effect, while solved the problem of volatilization of sulfur during fusion. The experiments for the selection of the sample preparation conditions, i. e. fusion flux, fusion time and volume of HNO3, were carried out. The matrix effects on absorption and enhancement were corrected by variable theoretical alpha coefficient to expand the range of determination. Moreover, the precision and accuracy experiments were performed. In comparison with chemical analysis method, the quantitative analytical results for each component are satisfactory. The method has proven rapid, precise and simple.

  9. Factors affecting groundwater quality in the Valley and Ridge aquifers, eastern United States, 1993-2002

    USGS Publications Warehouse

    Johnson, Gregory C.; Zimmerman, Tammy M.; Lindsey, Bruce D.; Gross, Eliza L.

    2011-01-01

    Chemical and microbiological analyses of water from 230 wells and 35 springs in the Valley and Ridge Physiographic Province, sampled between 1993 and 2002, indicated that bedrock type (carbonate or siliciclastic rock) and land use were dominant factors influencing groundwater quality across a region extending from northwestern Georgia to New Jersey. The analyses included naturally occurring compounds (major mineral ions and radon) and anthropogenic contaminants [pesticides and volatile organic compounds (VOCs)], and contaminants, such as nitrate and bacteria, which commonly increase as a result of human activities. Natural factors, such as topographic position and the mineral composition of underlying geology, act to produce basic physical and geochemical conditions in groundwater that are reflected in physical properties, such as pH, temperature, specific conductance, and alkalinity, and in chemical concentrations of dissolved oxygen, radon, and major mineral ions. Anthropogenic contaminants were most commonly found in water from wells and springs in carbonate-rock aquifers. Nitrate concentrations exceeded U.S. Environmental Protection Agency maximum contaminant levels in 12 percent of samples, most of which were from carbonate-rock aquifers. Escherichia coli (E. coli), pesticide, and VOC detection frequencies were significantly higher in samples from sites in carbonate-rock aquifers. Naturally occurring elements, such as radon, iron, and manganese, were found in higher concentrations in siliciclastic-rock aquifers. Radon levels exceeded the proposed maximum contaminant level of 300 picocuries per liter in 74 percent of the samples, which were evenly distributed between carbonate- and siliciclastic-rock aquifers. The land use in areas surrounding wells and springs was another significant explanatory variable for the occurrence of anthropogenic compounds. Nitrate and pesticide concentrations were highest in samples collected from sites in agricultural areas and lowest in samples collected from sites in undeveloped areas. Volatile organic compounds were detected most frequently and in highest concentrations in samples from sites in urban areas, and least frequently in agricultural and undeveloped areas. No volatile organic compound concentrations and concentrations from only one pesticide, dieldrin, exceeded human-health benchmarks.

  10. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    USGS Publications Warehouse

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds, relatively low concentrations of chlorinated daughter compounds, and insignificant concentrations of methane in shallow pore water samples. These seeps were primarily along the creek edge or formed a dendritic-like pattern between the wetland and creek channel. In contrast, seep locations characterized as diffuse seeps contained relatively high concentrations of chlorinated daughter compounds (or a mixture of daughter and parent compounds) and detectable methane concentrations in shallow pore water samples. These seeps were primarily along the wetland boundary. Qualitative thermal infrared surveys coupled with quantitative verification of temperature differences, and screening for volatile organic compound and methane concentrations proved to be effective tools in determining the overall extent of preferential seepage. Hydrologic and physical properties of wetland sediments were characterized at two focused and one diffuse seep location. In the seeps with focused discharge, measured seepage was consistent over the tidal cycle, whereas more variability with tidal fluctuation was measured in the diffuse seep location. At all locations, areas were identified within the general seep boundaries where discharge was minimal. In all cases, the geometric mean of non-zero vertical flux measurements was greater than those previously reported in the non-seep wetland sediments using flow-net analysis. Flux was greater in the focused discharge areas than in the diffuse discharge area, and all fluxes were within the range reported in the literature for wetland discharge. Vertical hydraulic conductivity estimated from seepage flux and a mean vertical gradient at seeps with focused discharge resulted in a minimum hydraulic conductivity two orders of magnitude greater than those estimated in the non-seep sediment. In contrast, vertical conductivity estimates at a diffuse seep were similar to estimates along a nearby line of section through a non-seep area. Horizontal hydraulic cond

  11. Diffusion of volatile organics through porous snow: impact of surface adsorption and grain boundaries

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, T.; Wren, S. N.; Schreiber, S.; Riche, F.; Schneebeli, M.; Ammann, M.

    2013-03-01

    Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the polar regions. The gas-phase diffusion of methanol and of acetone through the interstitial air of snow was investigated in a well-controlled laboratory study in the temperature range of 223 to 263 K. The aim of this study was to evaluate how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion on timescales up to 1 h. The diffusive loss of these two volatile organics into packed snow samples was measured using a chemical ionization mass spectrometer. The structure of the snow was analyzed by means of X-ray computed micro-tomography. The observed diffusion profiles could be well described based on gas-phase diffusion and the known structure of the snow sample at temperatures ≥ 253 K. At colder temperatures surface interactions start to dominate the diffusive transport. Parameterizing these interactions in terms of adsorption to the solid ice surface, i.e. using temperature dependent air-ice partitioning coefficients, better described the observed diffusion profiles than the use of air-liquid partitioning coefficients. No changes in the diffusive fluxes were observed by increasing the number of grain boundaries in the snow sample by a factor of 7, indicating that for these volatile organic trace gases, uptake into grain boundaries does not play a role on the timescale of diffusion through porous surface snow. In conclusion, we have shown that the diffusivity can be predicted when the structure of the snowpack and the partitioning of the trace gas to solid ice is known.

  12. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  13. Unbiased profiling of volatile organic compounds in the headspace of Allium plants using an in-tube extraction device.

    PubMed

    Kusano, Miyako; Kobayashi, Makoto; Iizuka, Yumiko; Fukushima, Atsushi; Saito, Kazuki

    2016-02-29

    Plants produce and emit important volatile organic compounds (VOCs), which have an essential role in biotic and abiotic stress responses and in plant-plant and plant-insect interactions. In order to study the bouquets from plants qualitatively and quantitatively, a comprehensive, analytical method yielding reproducible results is required. We applied in-tube extraction (ITEX) and solid-phase microextraction (SPME) for studying the emissions of Allium plants. The collected HS samples were analyzed by gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS), and the results were subjected to multivariate analysis. In case of ITEX-method Allium cultivars released more than 300 VOCs, out of which we provisionally identified 50 volatiles. We also used the VOC profiles of Allium samples to discriminate among groups of A. fistulosum, A. chinense (rakkyo), and A. tuberosum (Oriental garlic). As we found 12 metabolite peaks including dipropyl disulphide with significant changes in A. chinense and A. tuberosum when compared to the control cultivar, these metabolite peaks can be used for chemotaxonomic classification of A. chinense, tuberosum, and A. fistulosum. Compared to SPME-method our ITEX-based VOC profiling technique contributes to automatic and reproducible analyses. Hence, it can be applied to high-throughput analyses such as metabolite profiling.

  14. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2016-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  15. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  16. Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Event

    NASA Technical Reports Server (NTRS)

    Limero, Thomas

    2007-01-01

    The Volatile Organic Analyzer (VOA) was launched to the International Space Station (ISS) in August 2001 and was the first instrument to provide near real-time measurement of volatile organic compounds in a spacecraft atmosphere. The VOA performed an analysis of the ISS air approximately twice a month for most of its operation through May 2003. This intermittent operation, caused by a software interface issue with the ISS communication bus, slowed the validation of the VOA. However, operational validation was completed in 2003 when analysis of air samples collected in grab sample containers (GSCs) compared favorably with simultaneous VOA runs (1). The VOA has two channels that provide redundant function, albeit at slightly reduced performance, when only one channel is operating (2). Most target compounds can be detected on both channels. In January 2003, the VOA identified a malfunction in the channel 2 preconcentrator and it shut down that channel. The anomaly profile suggested that a fuse might have failed, but the root cause could not be determined. In May 2003, channel 1 was shut down when the detector s elevated temperature could not longer be maintained. Since both VOA channels were now deactivated, VOA operations ended until an in-flight repair could be planned and executed. This paper describes the process to repair the VOA and to revalidate it for operations, and then an account is given of the VOA s contribution following a contingency event on ISS.

  17. 40 CFR 52.2420 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enforceable, Implementation Plan, Potential to Emit, State Enforceable, Volatile Organic Compound 4/1/96 3/12..., Regulation of the Board, These regulations. Terms Revised—Good Engineering Practice, Person, Volatile organic... pressure, Vapor pressure, Volatile organic compounds. Terms Removed: Air Quality Maintenance Area. 5-10-20...

  18. 75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... automobile refinishing rule for approval into its State Implementation Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile refinishing...

  19. Simultaneous Analysis of 22 Volatile Organic Compounds in Cigarette Smoke Using Gas Sampling Bags for High-Throughput Solid-Phase Microextraction

    PubMed Central

    Sampson, Maureen M.; Chambers, David M.; Pazo, Daniel Y.; Moliere, Fallon; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Quantifying volatile organic compounds (VOCs) in cigarette smoke is necessary to establish smoke-related exposure estimates and evaluate emerging products and potential reduced-exposure products. In response to this need, we developed an automated, multi-VOC quantification method for machine-generated, mainstream cigarette smoke using solidphase microextraction gas chromatography–mass spectrometry (SPME-GC–MS). This method was developed to simultaneously quantify a broad range of smoke VOCs (i.e., carbonyls and volatiles, which historically have been measured by separate assays) for large exposure assessment studies. Our approach collects and maintains vapor-phase smoke in a gas sampling bag, where it is homogenized with isotopically labeled analogue internal standards and sampled using gas-phase SPME. High throughput is achieved by SPME automation using a CTC Analytics platform and custom bag tray. This method has successfully quantified 22 structurally diverse VOCs (e.g., benzene and associated monoaromatics, aldehydes and ketones, furans, acrylonitrile, 1,3-butadiene, vinyl chloride, and nitromethane) in the microgram range in mainstream smoke from 1R5F and 3R4F research cigarettes smoked under ISO (Cambridge Filter or FTC) and Intense (Health Canada or Canadian Intense) conditions. Our results are comparable to previous studies with few exceptions. Method accuracy was evaluated with third-party reference samples (≤15% error). Short-term diffusion losses from the gas sampling bag were minimal, with a 10% decrease in absolute response after 24 h. For most analytes, research cigarette inter- and intrarun precisions were ≤20% relative standard deviation (RSD). This method provides an accurate and robust means to quantify VOCs in cigarette smoke spanning a range of yields that is sufficient to characterize smoke exposure estimates. PMID:24933649

  20. SEMI-VOLATILE ORGANIC ACIDS AND OTHER POLAR COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...

  1. The volatile compound BinBase mass spectral database.

    PubMed

    Skogerson, Kirsten; Wohlgemuth, Gert; Barupal, Dinesh K; Fiehn, Oliver

    2011-08-04

    Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement.

  2. The volatile compound BinBase mass spectral database

    PubMed Central

    2011-01-01

    Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). Conclusions The BinBase database algorithms have been successfully modified to allow for tracking and identification of volatile compounds in complex mixtures. The database is capable of annotating large datasets (hundreds to thousands of samples) and is well-suited for between-study comparisons such as chemotaxonomy investigations. This novel volatile compound database tool is applicable to research fields spanning chemical ecology to human health. The BinBase source code is freely available at http://binbase.sourceforge.net/ under the LGPL 2.0 license agreement. PMID:21816034

  3. Temporal Structure of Volatility Fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Fengzhong; Yamasaki, Kazuko; Stanley, H. Eugene; Havlin, Shlomo

    Volatility fluctuations are of great importance for the study of financial markets, and the temporal structure is an essential feature of fluctuations. To explore the temporal structure, we employ a new approach based on the return interval, which is defined as the time interval between two successive volatility values that are above a given threshold. We find that the distribution of the return intervals follows a scaling law over a wide range of thresholds, and over a broad range of sampling intervals. Moreover, this scaling law is universal for stocks of different countries, for commodities, for interest rates, and for currencies. However, further and more detailed analysis of the return intervals shows some systematic deviations from the scaling law. We also demonstrate a significant memory effect in the return intervals time organization. We find that the distribution of return intervals is strongly related to the correlations in the volatility.

  4. Induction of conidiation by endogenous volatile compounds in Trichoderma spp.

    PubMed

    Nemcovic, Marek; Jakubíková, Lucia; Víden, Ivan; Farkas, Vladimír

    2008-07-01

    Light and starvation are two principal environmental stimuli inducing conidiation in the soil micromycete Trichoderma spp. We observed that volatiles produced by conidiating colonies of Trichoderma spp. elicited conidiation in colonies that had not been induced previously by exposure to light. The inducing effect of volatiles was both intra- and interspecific. Chemical profiles of the volatile organic compounds (VOCs) produced by the nonconidiated colonies grown in the dark and by the conidiating colonies were compared using solid-phase microextraction of headspace samples followed by tandem GC-MS. The conidiation was accompanied by increased production of eight-carbon compounds 1-octen-3-ol and its analogs 3-octanol and 3-octanone. When vapors of these compounds were applied individually to dark-grown colonies, they elicited their conidiation already at submicromolar concentrations. It is concluded that the eight-carbon VOCs act as signaling molecules regulating development and mediating intercolony communication in Trichoderma.

  5. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds.

    PubMed

    Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas

    2015-04-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants.

  6. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds

    PubMed Central

    Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas

    2016-01-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  7. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at the air-field. The high density of most of the detected organic compounds in free-product form would have aided their movement into the aquifers by vertical sinking. The outcrop area of the upper confining unit and an area cut by a paleochannel are most susceptible to contamination because a near-surface impermeable layer is not present. (USGS)

  8. Characterization of organic residues of size-resolved fog droplets and their atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Ervens, Barbara; Gupta, Tarun; Tripathi, Sachchida N.

    2016-04-01

    Size-resolved fog water samples were collected in two consecutive winters at Kanpur, a heavily polluted urban area of India. Samples were analyzed by an aerosol mass spectrometer after drying and directly in other instruments. Residues of fine fog droplets (diameter: 4-16 µm) are found to be more enriched with oxidized (oxygen to carbon ratio, O/C = 0.88) and low volatility organics than residues of coarse (diameter > 22 µm) and medium size (diameter: 16-22 µm) droplets with O/C of 0.68 and 0.74, respectively. These O/C ratios are much higher than those observed for background ambient organic aerosols, indicating efficient oxidation in fog water. Accompanying box model simulations reveal that longer residence times, together with high aqueous OH concentrations in fine droplets, can explain these trends. High aqueous OH concentrations in smaller droplets are caused by their highest surface-volume ratio and high Fe and Cu concentrations, allowing more uptake of gas phase OH and enhanced Fenton reaction rates, respectively. Although some volatile organic species may have escaped during droplet evaporation, these findings indicate that aqueous processing of dissolved organics varies with droplet size. Therefore, large (regional, global)-scale models need to consider the variable reaction rates, together with metal-catalyzed radical formation throughout droplet populations for accurately predicting aqueous secondary organic aerosol formation.

  9. 78 FR 49563 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... futures on all of the volatility indexes that underlie volatility index options trading on CBOE. Currently, volatility index (security) futures expirations correspond to each volatility index options expiration months...-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed Rule To Amend Rule...

  10. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS.

    PubMed

    Tarifa, Anamary; Almirall, José R

    2015-05-01

    A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (<2min sampling) and high sensitivity capable of detecting 3ng of diphenylamine (DPA) and 8ng of nitroglycerine (NG). Direct analysis of the headspace of over 50 swabs collected from the hands of suspected shooters (and non-shooters) provides information regarding VOCs present on their hands. In addition, a fast laser induced breakdown spectroscopy (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  11. EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS

    EPA Science Inventory

    Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...

  12. RESEARCH BRIEFING ON DEVELOPMENT OF A SUB-SLAB AIR SAMPLING PROTOCOL

    EPA Science Inventory

    Vapor intrusion is defined as the migration of volatile organic compounds (VOCs) into occupied buildings from contaminated soil or ground water. EPA recently developed guidance to facilitate assessment of vapor intrusion at sites regulated by RCRA and CERCLA. The EPA guidance e...

  13. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  14. STATISTICAL SAMPLING APPROACH FOR CLOSING A SOIL VENTING SITE

    EPA Science Inventory

    The USEPA allowed the Performing Parties (PPs) to perform a soil vapor extraction process to a site contaminated by volatile organic compounds (VOC), contingent upon the process reducing the VOC concentrations in the soil by 75% within one year. An innovative injection-extraction...

  15. SAMPLE EXTRACTION AND GC-MS ANALYSIS FOR POLAR VOLATILE ORGANIC COMPOUNDS (PVOCS) IN LIQUID BIOLOGICAL MEDIA

    EPA Science Inventory

    Current approaches for assessing the cumulative exposures and effects from broad classes of environmental stressors incorporate the measurement of specific groups of endogenous compounds in human biological fluids. Recent focus has been on interpreting patterns of differentially...

  16. Serpentinization and Synthesis: Can abiotic and biotic non-volatile organic molecules be identified in the subsurface of the Atlantis Massif?

    NASA Astrophysics Data System (ADS)

    Hickok, K.; Nguyen, T.; Orcutt, B.; Fruh-Green, G. L.; Wanamaker, E.; Lang, S. Q.

    2016-12-01

    The high concentrations of hydrogen created during serpentinization can promote the formation of abiotic organic carbon molecules such as methane, formate, short chain hydrocarbons and, in laboratory experiments, larger molecules containing up to 32 carbon atoms. Subsurface archaeal and bacterial communities can use these reduced compounds for metabolic energy. International Ocean Discovery Project Expedition 357 drilled into the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple rock lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of these samples are being analyzed to determine if non-volatile organic molecules are produced abiotically in serpentinizing environments and to identify `hot spots' of microbial life in the subsurface. Rock samples of contrasting representative lithologies are being analyzed for the presence of n-alkanes and fatty acids. Preliminary results have so far indicated the presence of alkanes in some samples. The isotopic (13C, 2H) characteristics of these compounds are being compared to a suite of oils, greases, and drilling fluids used during sample collection to distinguish in situ abiotic and biotic signatures from contaminant compounds. Other initial results have shown the efficacy of various sample-handling procedures designed to reduce surface contamination. This study will contribute to the overall understanding of the role serpentinization plays in the global carbon cycle and its implications for pre-biotic chemistry.

  17. Very volatile organic compounds: an understudied class of indoor air pollutants.

    PubMed

    Salthammer, T

    2016-02-01

    Very volatile organic compounds (VVOCs), as categorized by the WHO, are an important subgroup of indoor pollutants and cover a wide spectrum of chemical substances. Some VVOCs are components of products commonly used indoors, some result from chemical reactions and some are reactive precursors of secondary products. Nevertheless, there is still no clear and internationally accepted definition of VVOCs. Current approaches are based on the boiling point, and the saturation vapor pressure or refer to analytical procedures. A significant problem is that many airborne VVOCs cannot be routinely analyzed by the usually applied technique of sampling on Tenax TA® followed by thermal desorption GC/MS or by DNPH-sampling/HPLC/UV. Some VVOCs are therefore often neglected in indoor-related studies. However, VVOCs are of high significance for indoor air quality assessment and there is need for their broader consideration in measurement campaigns and material emission testing. © 2014 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  18. Occupational health risk assessment of volatile organic compounds emitted from the coke production unit of a steel plant.

    PubMed

    Dehghani, Fateme; Omidi, Fariborz; Heravizadeh, Omidreza; Barati Chamgordani, Saied; Gharibi, Vahid; Sotoudeh Manesh, Akbar

    2018-03-27

    In this study, cancer and non-cancer risks of exposure to volatile organic compounds in the coke production unit of a steel plant were evaluated. To determine individual exposure to benzene, toluene, xylene and ethylbenzene, personal samples were taken from the breathing zone of workers according to National Institute for Occupational Safety and Health (NIOSH) method 1501. Cancer and non-cancer risk assessment was performed, using US Environmental Protection Agency (US EPA) methods. Samples analysis showed that the concentration of benzene in the energy and biochemistry and the benzol refinement sections was higher than occupational exposure limits. The cancer risk for benzene in all sections was significantly higher than allowable limit; the non-cancer risk for benzene in all sections and toluene in the benzol refinement section was also higher than 1.0. In conclusion, the current control measures are not sufficient and should be improved for efficient control of occupational exposures.

  19. Back-extraction of trace elements from organometallic-halide extracts for determination by flameless atomic absorption spectrometry

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    The Methyl isobutyl ketone-Amine synerGistic Iodkte Complex (MAGIC) extraction system offers the advantage that a large number of trace elements can be rapidly determined with a single sample preparation procedure. However, many of the elements extracted by the MAGIC system form volatile organometallic halide salts when the organic extract is heated in the graphite furnace. High concentrations of some elements such as Cu and Zn extracted by the system from anomalous geological samples produce serious interferences when certain other elements are determined by flameless atomic absorption. Stripping systems have been developed using solutions of HNO3, H2SO4, and CH3COOH individually or combined with H2O2 in order to circumvent these problems. With these systems most of the elements in the organic extract can be sequentially stripped into an aqueous phase. Organometallic volatilization and the most serious interelement interferences, therefore, can be eliminated by stripping with various combinations of reagents in a series of steps.

  20. Volatile organic compounds in ground water from rural private wells, 1986 to 1999

    USGS Publications Warehouse

    Moran, M.J.; Lapham, W.W.; Rowe, B.L.; Zogorski, J.S.

    2004-01-01

    The U.S. Geological Survey (USGS) collected or compiled data on volatile organic compounds (VOCs) in samples of untreated ground water from 1,926 rural private wells during 1986 to 1999. At least one VOC was detected in 12 percent of samples from rural private wells. Individual VOCs were not commonly detected with the seven most frequently detected compounds found in only 1 to 5 percent of samples at or above a concentration of 0.2 microgram per liter (??g/l). An assessment level of 0.2 ??g/l was selected so that comparisons of detection frequencies between VOCs could be made. The seven most frequently detected VOCs were: trichloromethane, methyl tert-butyl ether, tetrachloroethene, dichlorodifluoromethane, methylbenzene, 1,1,1-trichloroethane, and 1,2-dibromo-3-chloropropane. Solvents and trihalomethanes were the most frequently detected VOC groups in private wells. The distributions of detections of gasoline oxygenates and fumigants seemed to be related to the use patterns of compounds in these groups. Mixtures were a common mode of occurrence of VOCs with one-quarter of all samples with detections including two or more VOCs. The concentrations of most detected VOCs were relatively small and only 1.4 percent of samples had one or more VOC concentrations that exceeded a federally established drinking water standard or health criterion.

  1. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Occurrence and abatement of volatile sulfur compounds during biogas production.

    PubMed

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  3. Halogenated hydrocarbon pesticides and other volatile organic contaminants provide analytical challenges in global trading.

    PubMed

    Budnik, Lygia T; Fahrenholtz, Svea; Kloth, Stefan; Baur, Xaver

    2010-04-01

    Protection against infestation of a container cargo by alien species is achieved by mandatory fumigation with pesticides. Most of the effective fumigants are methyl and ethyl halide gases that are highly toxic and are a risk to both human health and the environment. There is a worldwide need for a reliable and robust analytical screening procedure for these volatile chemicals in a multitude of health and environmental scenarios. We have established a highly sensitive broad spectrum mass spectrometry method combined with thermal desorption gas chromatography to detect, identify and quantify volatile pesticide residues. Using this method, 1201 random ambient air samples taken from freight containers arriving at the biggest European ports of Hamburg and Rotterdam were analyzed over a period of two and a half years. This analytical procedure is a valuable strategy to measure air pollution from these hazardous chemicals, to help in the identification of pesticides in the new mixtures/formulations that are being adopted globally and to analyze expired breath samples after suspected intoxication in biomonitoring.

  4. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  5. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantlymore » transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.« less

  6. VISTA: A μ-Thermogravimeter for Investigation of Volatile Compounds in Planetary Environments.

    PubMed

    Palomba, Ernesto; Longobardo, Andrea; Dirri, Fabrizio; Zampetti, Emiliano; Biondi, David; Saggin, Bortolino; Bearzotti, Andrea; Macagnano, Antonella

    2016-06-01

    This paper presents the VISTA (Volatile In Situ Thermogravimetry Analyser) instrument, conceived to perform planetary in-situ measurements. VISTA can detect and quantify the presence of volatile compounds of astrobiological interest, such as water and organics, in planetary samples. These measurements can be particularly relevant when performed on primitive asteroids or comets, or on targets of potential astrobiological interest such as Mars or Jupiter's satellite Europa. VISTA is based on a micro-thermogravimetry technique, widely used in different environments to study absorption and sublimation processes. The instrument core is a piezoelectric crystal microbalance, whose frequency variations are affected by variations of the mass of the deposited sample, due to chemical processes such as sublimation, condensation or absorption/desorption. The low mass (i.e. 40 g), the low volume (less than 10 cm(3)) and the low power (less than 1 W) required makes this kind of instrument very suitable for space missions. This paper discusses the planetary applications of VISTA, and shows the calibration operations performed on the breadboard, as well as the performance tests which demonstrate the capability of the breadboard to characterize volatile compounds of planetary interests.

  7. Relationship between the catalytic properties of the products of the oxidative thermolysis of certain complexes and the porous structures of samples in the oxidation reactions of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Semushina, Yu. P.; Pechenyuk, S. I.; Kuzmich, L. F.; Knyazeva, A. I.

    2017-01-01

    The rate of the gas-phase oxidation of ethanol, 2-propanol, acetone, ethyl acetate, dioxane, and benzene with atmospheric oxygen is studied on surfaces of bimetallic oxide catalysts Co-Fe, Cu-Fe, Cr-Co, and Ni-Fe, prepared via thermal decomposition of double complex compounds in air. It is found that the rate of oxidation of volatile compounds depends on the volume of the transient pores in the catalyst sample. The rate of oxidation on the same catalyst at 350°C depends on the nature of the substance in the order: acetone > ethyl acetate > ethanol > propanol > dioxane, benzene.

  8. 78 FR 11618 - Approval and Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...

  9. 77 FR 52630 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... rule that sets emissions limits on the amount of volatile organic compounds in architectural and... period. Any parties interested in commenting on this action should do so at this time. Please note that...

  10. 78 FR 22197 - Approval and Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic Compound Definition AGENCY... total of 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...: Sean Lakeman, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Nathan X.; Gibb, Erika L.; Bonev, Boncho P.

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampledmore » Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.« less

  12. Isotope measurements of a comet by the Ptolemy instrument on Rosetta

    NASA Astrophysics Data System (ADS)

    Franchi, Ian; Morse, Andrew; Andrews, Dan; Sheridan, Simon; Barber, Simeon; Leese, Mark; Morgan, Geraint; Wright, Ian; Pillinger, Colin

    Remote observations of comets (spacecraft fly-bys and telescopes) reveal a vast reservoir of volatile organic species, along with the water ice, other volatiles and silicate dust fractions that make up these very primitive bodies. Understanding the nature of cometary materials, in order to unravel their origin and history, is particularly challenging. Remote observation is only possible for the coma, the constituents of which are likely fractionated and modified compared to the primordial material within the comet. A number of opportunities exist for very detailed study of cometary material with ground-based laboratory instrumentation. How-ever, dissipation of energy during capture (e.g. NASA Stardust samples) or atmospheric entry (stratospheric interplanetary dust particles) has the potential to extensively modify, or even obliterate, detailed information about the nature and origin of the more volatile, biologically important organic species present. Collecting and returning pristine material from the surface of a comet remains very challenging and therefore direct study of the volatile portions can only readily be performed on the comet itself by remote instruments. The ESA Rosetta mission, that will make long-term measurements of a comet as it approaches the sun from 3.5 AU to 1.4 AU over a period of at least six months, includes the Philae lander as well as the orbiter spacecraft. Ptolemy, on board Philae, is a GC-MS instrument designed for the analysis of cometary volatiles, organic materials and silicates. The objectives of Ptolemy are to provide a complete description of the nature and distribution of light elements (H, C, N and O) present in the nucleus of the comet, as well as determining their stable isotopic compositions. Ptolemy also aims to provide ground-truth measurements of those volatiles that are subsequently detected further out from the nucleus in the coma. Samples from the surface and sub-surface, collected by the lander drilling system (SD2), are heated in an oven and can be injected into one of three gas chromatography columns (GC) for analysis by the mass spectrometer. Accurate isotopic analysis is achieved by chemical processing before and/or after the GC columns and by direct comparison with reference materials of known isotopic composition. Recent operations of the Ptolemy mass spectrometer during recent spacecraft checkouts have shown that the Ptolemy instrument is operational and should be capable of meeting its science aims.

  13. Water quality of selected rivers in the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island, 1998-2000

    USGS Publications Warehouse

    Campo, Kimberly W.; Flanagan, Sarah M.; Robinson, Keith W.

    2003-01-01

    Nine rivers were monitored routinely for a variety of field conditions, dissolved ions, and nutrients during 1998-2000 as part of the New England Coastal Basins (NECB) study of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. The nine rivers, located primarily in the Boston metropolitan area, represented a gradient of increasing urbanization from 1 to 68 percent urban land use. Additional water samples were collected and analyzed for pesticides and volatile organic compounds at two of the nine rivers. Specific conductance data from all rivers were correlated with urban land use; specific conductance values increased during winter at some sites indicating the effect of road de-icing applications. In the more intensely urbanized basins, concentrations of sodium and chloride were high during winter and likely are attributed to road de-icing applications. Concentrations of total nitrogen and the various inorganic and organic nitrogen species were correlated with the percentage of urban land in the drainage basin. Total phosphorus concentrations also were correlated with urbanization in the drainage basin, but only for rivers draining less than 50 square miles. Preliminary U.S. Environmental Protection Agency total nitrogen and total phosphorus criteria for the rivers in the area were frequently exceeded at many of the rivers sampled. At the two sites monitored for pesticides and volatile organic compounds, the Aberjona and Charles Rivers near Boston, greater detection frequencies of pesticides were in samples from the spring and summer when pesticide usage was greatest. At both sites, herbicides were detected more commonly than insecticides. The herbicides prometon and atrazine and the insecticide diazinon were detected in over 50 percent of all samples collected from both rivers. No water samples contained pesticide concentrations exceeding any U.S. Environmental Protection Agency drinking-water standard or criteria for protecting freshwater aquatic life. The volatile organic compounds trichloroethylene, tetrachloroethylene, and cis-1,2- dichloroethylene--all solvents and de-greasers--were detected in all water samples from both rivers. The gasoline oxygenate methyl tert-butyl ether (MTBE) and the disinfection by-product chloroform were detected in all but one water sample from the two rivers. Two water samples from the Charles River had trichloroethylene concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 5 micrograms per liter for drinking water. Selected water-quality data from two NCEB rivers in the Boston metropolitan area were compared to two similarly sized intensely urban rivers in another NAWQA study area in the New York City metropolitan area and to other urban rivers sampled as part of the NAWQA Program nationally. Nutrient total nitrogen and total phosphorus concentrations and yields were less in the NECB study area than in the other study areas. In addition, the pesticides atrazine, carbaryl, diazinon, and prometon were detected less frequently and at lower concentrations in the two NECB rivers than in the New York City area streams or in the other urban NAWQA streams. Concentrations of the insecticides diazinon and carbaryl were detected more frequently and at higher concentrations in the NECB study area than in the other urban rivers sampled by NAWQA nationally. Detection frequency and concentrations of volatile organic compounds generally were higher in the two NECB streams than in the New York City area streams or in other urban NAWQA streams.

  14. Gas-liquid chromatography in the diagnosis of anaerobic infections: a three year experience.

    PubMed Central

    Watt, B; Geddes, P A; Greenan, O A; Napier, S K; Mitchell, A

    1982-01-01

    Nearly two thousand clinical samples were examined by direct gas-liquid chromatography over a three year period. Absence of volatile fatty acids (VFAs) in the samples correlated well with negative culture results for anaerobic bacteria. In general the presence of acetic acid alone correlated well with the presence of aerobic organisms, whereas the presence of a mixture of VFAs correlated well with the presence of anaerobic organisms, either alone or in combination with aerobes. However a proportion of such VFA-positive samples gave no growth on culture. Swabs gave comparable results to samples of pus or exudates except that a higher proportion of the former were VFA-negative but culture positive. PMID:7096590

  15. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C

    2014-06-01

    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  16. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  17. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  18. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  19. Characterization of kerosene-heater emissions inside two mobile homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, R.M.; Seila, R.A.; Wilson, W.E.

    1990-03-01

    In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less

  20. Analysis of Volatile Organic and Sulfur Compounds in Air Near a Pulp Paper Mill in North-Central Idaho

    NASA Astrophysics Data System (ADS)

    Johnston, N. A. C.; Bundy, B. A.; Andrew, J. P.; Grimm, B. K.; Ketcherside, D.; Rivero-Zevallos, J. A.; Uhlorn, R. P.

    2017-12-01

    Lewiston, Idaho is a small city in the Snake River Valley bordering North-Central Idaho and Southeastern Washington, with a population of over 40,000 including the surrounding areas. One of the main industries and employers in the region is a kraft paper mill in North Lewiston, which results in odorous levels of sulfur air pollutants there. The Idaho Department of Environmental Quality has an air monitoring station in Lewiston but measures only air particulate matter (PM). Surprisingly, not much long-term data exists on this area for specific air constituents such as volatile organics, hazardous air pollutants, and sulfur compounds. One year-long study conducted in 2006-2007 by the Nez Perce Tribe found high formaldehyde levels in the area, and warranted further study in July of 2016-2017. Our ongoing study began in the fall of 2016 and investigates the seasonal air composition in the Lewiston area. Specifically, active air sampling via sorbent tubes and analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). was utilized to measure over 50 volatile organic compounds, hazardous air pollutants, and sulfurous compounds in ambient air (adapted from EPA Method TO-17). Seasonal, diurnal, and spatial variations in air composition were explored with weekly to monthly grab sampling. Dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were the primary sulfur compounds detected, and these varied considerably depending on time of day, season, location and meteorology. DMS was more prevalent in the summer months, while DMDS was more prevalent in the spring. Elevated concentrations of benzene and chloroform were found in the region during 2017, with average values of short term grab samples over three times the acceptable ambient concentrations in Idaho. These levels did not persist during longer term sampling of 12-hours, however further monitoring is needed to assess a potential health concern.

  1. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California.

    PubMed

    Fram, Miranda S; Belitz, Kenneth

    2011-08-15

    Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells=61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity>0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping. Published by Elsevier B.V.

  2. Environmental assessment of a wood-waste-fired industrial watertube boiler. Volume 2. Data supplement. Final report, March 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.

    1987-03-01

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic and organic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less

  3. Volatility of organic aerosol and its components in the megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.

  4. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    PubMed

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  5. GAS- AND SOLID-PHASE PARTITIONING OF PCDDS/FS ON MSWI FLY ASH AND THE EFFECTS OF SAMPLING

    EPA Science Inventory

    Semi-volatile organic compounds (SOCs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), are partitioned as gas-phase and particle-bound products of many industrial combustion processes. This gas/particle partitioning of SOCs has severe implications on both ...

  6. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  7. Fact Sheets and Letter to Residents: St. Louis Park Vapor Intrusion Site

    EPA Pesticide Factsheets

    Fact Sheets and letters to residents related to the St. Louis Park Vapor Intrusion site. Samples of ground water taken in St. Louis Park in 2005 and 2006 by the Minnesota Pollution Control Agency were found to contain volatile organic compounds, VOCs.

  8. Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples.

    PubMed

    Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Hayashida, Makiko; Jinno, Kiyokatsu

    2007-05-09

    Miniaturized needle extraction device has been developed as a versatile sample preparation device designed for the rapid and simple analysis of smoking-related compounds in smokers' hair samples and environmental tobacco smoke. Packed with polymeric particle, the resulting particle-packed needle was employed as a miniaturized sample preparation device for the analysis of typical volatile organic compounds in tobacco smoke. Introducing a bundle of polymer-coated filaments as the extraction medium, the needle was further applied as a novel sample preparation device containing simultaneous derivatization/extraction process of volatile aldehydes. Formaldehyde (FA) and acetaldehyde (AA) in smoker's breath during the smoking were successfully derivatized with two derivatization reagents in the polymer-coated fiber-packed needle device followed by the separation and determination in gas chromatography (GC). Smokers' hair samples were also packed into the needle, allowing the direct extraction of nicotine from the hair sample in a conventional GC injector. Optimizing the main experimental parameters for each technique, successful determination of several smoking-related compounds with these needle extraction methods has been demonstrated.

  9. RECEPTOR MODEL COMPARISONS AND WIND DIRECTION ANALYSES OF VOLATILE ORGANIC COMPOUNDS AND SUBMICROMETER PARTICLES IN AN ARID, BINATIONAL, URBAN AIRSHED

    EPA Science Inventory

    The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...

  10. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  11. Gas/Particle Partitioning of Organic Acids and Organic Aerosols in a Ponderosa Pine Forest in Colorado during BEACHON-RoMBAS 2011

    NASA Astrophysics Data System (ADS)

    Jimenez, J. L.; Yatavelli, L.; Stark, H.; Hayes, P. L.; Campuzano-Jost, P.; Thompson, S.; Kimmel, J. R.; Day, D. A.; Cubison, M. J.; Thornton, J. A.; Jayne, J.; Worsnop, D. R.

    2012-12-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) took place at Manitou Forest, CO, during July-Aug. 2011. Gas and particle-phase organic acids were analyzed in real time using a micro-orifice volatilization impactor chemical ionization high-resolution time-of-flight mass spectrometer (MOVI-HRToF-CIMS; Yatavelli et al., AS&T 2012; Yatavelli & Thornton, AS&T 2010) with acetate as the reagent ion. During the gas sampling phase (when the MOVI was at room temperature) aerosol was collected on the MOVI impactor, and was subsequently thermally desorbed over 10 min. under nitrogen, allowing the collection of temperature-programmed thermal desorption (TPTD) mass spectra of particle-phase species. The high resolution of the instrument allows the determination of the elemental composition of most detected ions. Positive Matrix Factorization (PMF) is shown to be very useful to quantify the CIMS backgrounds during the different phases of operation. Two methods were used to estimate the volatility of the detected species. First, the fraction of each species in the particle phase (Fp) vs carbon number was found to approximately follow partitioning theory, both for the alkanoic acids and also for the total acid signal, after accounting for the effect of the oxidation state on vapor pressure. Fp was found to respond on timescales of ~1 h to changes in ambient temperature, indicating that diffusion limitations to evaporation are not major for the aerosol at this site. Preliminary results suggest that Fp depends more strongly on vapor pressure and temperature than on RH, suggesting preferential partitioning for the organic phase rather than the water phase. Secondly, the volatility of individual or groups of acids can be quantified based on the TPTD signal based on calibration with multiple acids of known vapor pressure at concentrations similar to ambient, analogous to the methods of Chattopadhyay and Ziemann (Anal. Chem. 2001) and Faulhaber et al. (AMT, 2009) for other TPTD techniques. The log of the vapor pressure of each compound is shown to be strongly related to the inverse of the desorption temperature for standards spanning 6 orders of magnitude in vapor pressure. A shift in the calibration curve when compared to other techniques is attributed to differences in time available for evaporation and physical arrangement of the particles on the aerosol collection surface. A method to remove the broadening of the transfer function is used to produce more accurate volatility distributions ("basis sets", VBS). Results of both methods are compared, also focusing on key species such as pinic, pinonic, tricarballylic, and oxalic acids. The effects of gas-phase adsorption on the thermogram signal are estimated based on tests sampling through a teflon filter. In addition, an Aerodyne Aerosol Mass Spectrometer (AMS) sampled ambient air and also air that had been thermally denuded at different temperatures. The method of Faulhaber et al is used to derive an estimated volatility distribution for the total organic aerosol and the organic acid fraction (based on m/z 44, CO2+), which are compared to the CIMS results.

  12. Summary of Ground-Water-Quality Data in the Anacostia River Watershed, Washington, D.C., September - December 2005

    USGS Publications Warehouse

    Klohe, Cheryl A.; Debrewer, Linda M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the District Department of the Environment (formerly the District of Columbia, Department of Health, Environmental Health Administration), conducted a ground-water-quality investigation in the Anacostia River watershed within Washington, D.C. Samples were collected and analyzed from 17 ground-water monitoring wells located within the study area from September through December 2005. Samples were analyzed for a variety of constituents including major ions, nutrients, volatile organic compounds, semivolatile organic compounds, pesticides and degradates, oil and grease, phenols, total polychlorinated biphenyls, and other selected constituents. The concentrations of major ions in the study area indicate that the ground water is predominantly calcium-bicarbonate type water, with some wells containing a higher percentage of milliequivalents per liter of iron (cation), and chloride or sulfate (anions). Concentrations of nitrogen were generally less than 1 milligram per liter, and concentrations of phosphorus were generally less than 0.5 milligrams per liter. Twelve of 79 pesticides and degradates were detected at 6 out of 17 wells. Volatile organic compounds (predominantly gasoline oxygenates and solvents) were detected in 9 of the 17 wells. Two semivolatile organic compounds, (bis(2-ethylhexyl) phthalate and total phenols), out of the 51 analyzed, were detected in the study area.

  13. Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters.

    PubMed

    Kuster, Marina; Díaz-Cruz, Silvia; Rosell, Mònica; López de Alda, Miren; Barceló, Damià

    2010-05-01

    The artificial recharge of aquifers has become a valuable tool to increase water resources for drinking water production in many countries. In this work a total of 41 organic pollutants belonging to the classes of pesticides, estrogens, progestogens and volatile organic compounds (VOCs) have been monitored in the water from two artificial recharge plants located in Sweden and Denmark. The results from two sampling campaigns performed in each plant indicate good chemical status of the source water, as the contaminants detected were present at very low levels, far from those established in the legislation as maximum admissible concentrations (when existing) and far from those considered as a risk. Thus, of the 17 pesticides investigated, BAM (2,6-dichlorobenzamide), desethylatrazine, simazine, atrazine, terbuthylazine, diuron, metolachlor, and diazinon were the only compounds detected, and total pesticides levels were below 25ng L(-1), respectively. Estrone-3-sulfate was the only estrogen detected, at concentrations lower than 0.5ng L(-1). Progestogens were not found in any sample. Detected VOCs (benzene, toluene, ethylbenzene, and trichloroethylene) were below 0.04microg L(-1). The efficiency of elimination of these organic contaminants was poor as no significant decrease in their concentrations was observed through the recharge process.

  14. Analytical procedures for environmental quality control. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.K.; Wang, M.H.S.

    1989-01-15

    This report covers sixteen important documents. Some examples are: The determination of the maximum total trihalomethane potential; Nationwide approval of alternative test procedure for analysis of trihalomethanes; Volatile organic compounds in eater by purge and trap capillary column gas chromatography with photoionization and electrolytic conductivity detectors in series; Analysis of organohalide pesticides and arclors in drinking water by microextraction and gas chromatography; Testing for lead in school drinking water; Simplified methods for food and feed testing; Determination of nitroaromatic compounds and isophorone in industrial and municipal wastewaters; Sampling for giardia and/or cryptosporidium; determination of TCDD in industrial and municipal wastewaters;more » Determination of volatile organics in industrial and municipal wastewaters; Determination of polynuclear aromatic hydrocarbons in industrial and municipal wastewaters.« less

  15. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Romoli, Riccardo; Papaleo, Maria Cristiana; de Pascale, Donatella; Tutino, Maria Luisa; Michaud, Luigi; LoGiudice, Angelina; Fani, Renato; Bartolucci, Gianluca

    2011-10-01

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996–2008 and 2002–08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks.Blanks and groundwater samples were collected during 2008–09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples.Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds, using less rigorous identification criteria than is required for reporting data to the National Water Information System database. For the FCS, these data are considered adequate to indicate "evidence of presence," and were used only for diagnostic purposes. Evidence of VOCs and WICs at low concentrations near or less than the long-term method detection level can indicate a contamination problem that could affect future datasets if method detection levels were ever to be lowered.

  17. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.

    2012-04-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.

  18. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

    NASA Astrophysics Data System (ADS)

    Cain, Kerrigan P.; Pandis, Spyros N.

    2017-12-01

    Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

  19. The atmosphere can be a source of certain water soluble volatile organic compounds in urban streams

    USGS Publications Warehouse

    Kenner, Scott J.; Bender, David A.; Zogorski, John S.; ,; James F. Pankow,

    2014-01-01

    Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m- & p-xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long-term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one-half the LTMDL in water. Six compounds (chloroform, p-isopropyltoluene, methylene chloride, perchloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m- & p-xylene, methyl tert-butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.

  20. From cow to cheese: genetic parameters of the flavour fingerprint of cheese investigated by direct-injection mass spectrometry (PTR-ToF-MS).

    PubMed

    Bergamaschi, Matteo; Cecchinato, Alessio; Biasioli, Franco; Gasperi, Flavia; Martin, Bruno; Bittante, Giovanni

    2016-11-16

    Volatile organic compounds determine important quality traits in cheese. The aim of this work was to infer genetic parameters of the profile of volatile compounds in cheese as revealed by direct-injection mass spectrometry of the headspace gas from model cheeses that were produced from milk samples from individual cows. A total of 1075 model cheeses were produced using raw whole-milk samples that were collected from individual Brown Swiss cows. Single spectrometry peaks and a combination of these peaks obtained by principal component analysis (PCA) were analysed. Using a Bayesian approach, we estimated genetic parameters for 240 individual spectrometry peaks and for the first ten principal components (PC) extracted from them. Our results show that there is some genetic variability in the volatile compound fingerprint of these model cheeses. Most peaks were characterized by a substantial heritability and for about one quarter of the peaks, heritability (up to 21.6%) was higher than that of the best PC. Intra-herd heritability of the PC ranged from 3.6 to 10.2% and was similar to heritabilities estimated for milk fat, specific fatty acids, somatic cell count and some coagulation parameters in the same population. We also calculated phenotypic correlations between PC (around zero as expected), the corresponding genetic correlations (from -0.79 to 0.86) and correlations between herds and sampling-processing dates (from -0.88 to 0.66), which confirmed that there is a relationship between cheese flavour and the dairy system in which cows are reared. This work reveals the existence of a link between the cow's genetic background and the profile of volatile compounds in cheese. Analysis of the relationships between the volatile organic compound (VOC) content and the sensory characteristics of cheese as perceived by the consumer, and of the genetic basis of these relationships could generate new knowledge that would open up the possibility of controlling and improving the sensory properties of cheese through genetic selection of cows. More detailed investigations are necessary to connect VOC with the sensory properties of cheese and gain a better understanding of the significance of these new phenotypes.

  1. Final expanded site inspection, ammunition storage area, Anniston Army Depot, Anniston, Alabama. Final report, September 1992-November 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suomela, K.D.; Highsmith, R.L.; Rapuano, K.F.

    1994-11-15

    An Expanded Site Inspection (ESI) was conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation. The ASA contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components. Fifteen Solid Waste Management Units (SWMUs) were the focus of the ESI, of which 11 were recommend for further investigation. The work included amore » review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Contamination from volatile organic compounds and semi volatile organic compounds is not a major problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values levels in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.« less

  2. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry

    PubMed Central

    Silva, C L; Passos, M; Câmara, J S

    2011-01-01

    Background: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. Methods: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxen-polydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 50°C for 60 min using samples with high ionic strengths (17% sodium chloride, w v−1) and under agitation. Results: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (P<0.05). A significant increase in the peak area of 2-methyl-3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. Conclusions: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved. PMID:22085842

  3. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques.

    PubMed

    Oliveira, Gislene B; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M

    2015-08-25

    Consumers' interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester-FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry-ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry-PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power.

  4. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques

    PubMed Central

    Oliveira, Gislene B.; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M.

    2015-01-01

    Consumers’ interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester—FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry—ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry—PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power. PMID:28231211

  5. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  6. Thermal Reactivity Of Organic Molecules With Perchlorates And The Detection Of Organics In Mars Samples With SAM Onboard Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Millan, M.; Buch, A.; Freissinet, C.; Guzman, M.; Glavin, D. P.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2017-12-01

    The search for organic molecules at the Mars surface is a key objective to assess the potential for habitability of the planet and to find biomarkers. Both the past Viking landers and the Curiosity rover of today carry onboard instruments based on gas chromatography coupled to mass spectrometry with the aim to analyze the content of organics present in soil or rock samples. These instruments analyze the volatile compounds released from the samples submitted to thermal or chemical treatments. Even though these sample preparation processes are commonly used on Earth for their efficient extraction of organic materials from mineral matrixes, the presence of oxychlorines recently discovered in the Mars soil [1, 2] makes the process for space applications more complex and the results more difficult to interpret. Indeed, the release of volatile inorganic reactive molecules from oxychlorines during the sample heating process induces reactions of chlorination and oxidation of the organic molecules. For this reason, in an effort to contribute to the interpretation of the results obtained with the Viking/GCMS, and the MSL/SAM experiment our team currently operates on Mars, we started to study systematically the thermal reactivity of a series of organic molecules, of interest for Mars and life purposes, mixed with oxychlorines either detected or potentially present in the soil of Mars [3]. In this presentation, we will mainly focus on two sets of results that were obtained while studying the reactivity of calcium perchlorates with polyaromatic hydrocarbons, amino acids and carboxylic acids under pyrolytic conditions similar to those used in the SAM experiment. First of all, we will show the dependence of reactivity on the temperature of sublimation and decomposition of the individual components in the mixture and, secondly, we will discuss the detection of aromatic chlorinated species by SAM in samples collected at the Cumberland site from the results obtained in this study. [1] Kounaves et al. (2010), JGR 115; [2] Glavin et al. (2013), JGR 181; [3] Sutter et al., JGR (in press);

  7. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers wheremore » emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.« less

  8. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  9. BIOGENIC CONTRIBUTIONS TO ATMOSPHERIC VOLATILE ORGANIC COMPOUNDS IN AZUSA CA

    EPA Science Inventory

    An objective of the 1997 Southern California Ozone Study (SCOS97) was to provide an up-to-date assessment of the importance of biogenic emissions for tropospheric ozone production in the South Coast Air Basin. To this end ambient air samples were collected during September 199...

  10. Growth dynamics of specific spoilage organisms and associated spoilage biomarkers in chicken breast stored aerobically

    USDA-ARS?s Scientific Manuscript database

    This study was performed to identify and quantify selected volatile spoilage biomarkers in a headspace over chicken breast using solid phase microextraction (SPME) combined with gas chromatography-mass spectrometry-flame ionization detectors (GC-MS/FID). The chicken breast samples were aerobically s...

  11. EFFECT OF SAMPLING LOCATION ON CONCENTRATION IN LARGE CHAMBER INVESTIGATION OF EMISSIONS FROM MARKERS

    EPA Science Inventory

    Markers were selected for evaluation in this study because (1) they are widely used in schools, offices, and homes; (2) they are a known source of volatile organic compounds (VOCs) in nonoccupational indoor environments; and (3) according to the Source Ranking Database developed ...

  12. EFFECTS OF APPLIANCE TYPE AND OPERATING VARIABLES ON WOODSTOVE EMISSIONS: VOLUME II. APPENDICIES D-F.

    EPA Science Inventory

    The report gives results of a project, in support of the intergared Air Cancer Project (IACP), to provide data on the specific effects of appliance type and operating variables on woodstove emissions. samples of particulate material and volatile organic compounds (VOCs) were coll...

  13. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    EPA Science Inventory

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  14. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that th...

  15. POLYCYLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas an Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that t...

  16. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that ...

  17. 78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...

  18. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  19. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  20. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  1. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  2. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  3. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  4. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  5. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  6. How does the association of iron oxides and perchlorate salts influence organic matter evolution when using Sample Analysis at Mars pyrolysis onboard Curiosity?

    NASA Astrophysics Data System (ADS)

    François, Pascaline; Coll, Patrice; Szopa, Cyril; Buch, Arnaud; Cabane, Michel; McAdam, Amy; Freissinet, Caroline; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Navarro-Gonzalez, Rafael; Mahaffy, Paul R.

    2014-05-01

    The Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover is designed to characterize organic and inorganic volatiles thermally evolved from solid samples. It can analyze evolved volatiles directly with its quadrupole mass spectrometer (MS) to perform evolved gas analysis (EGA) or it can analyze volatiles after they have been sent through a gas chromatography column to perform pyrolysis-gas chromatograph-mass spectrometry (pyr-GC-MS) [1]. Three solid samples have been analyzed by SAM, a scoop of basaltic sand at Rocknest (RN) and two rocks drilled at Yellowknife Bay designated as John Klein (JK) and Cumberland (CB). All these samples contain an oxychlorine phase (e.g., a perchlorate salt) [2, 3] that evolves HCl, Cl2 and O2 on heating leading to the possible chlorination and/or combustion of organic molecules [4]. Chlorohydrocarbons detected at RN, JK and CB are derived from reactions between martian oxychlorine compounds and terrestrial carbon that is part of the SAM background (e.g., MTBSTFA [2]) as well as potentially reactions with martian carbon and/or thermal desorption directly from the samples for the production of chlorobenzene evolved during pyrolysis of CB. RN, JK and CB samples also contain iron oxides (e.g., hematite, magnetite) [5] which could oxidize organic compounds and catalyze their decomposition [6] leading to differences in the amount and/or nature of pyrolysis products. In order to help interpretation of in situ data obtained by SAM, we study the influence of an iron oxide, hematite, and an oxychlorine phase, Ca-perchlorate, individually, as well as mixed, on alanine, a common amino acid, under conditions simulating the SAM pyrolysis. This work aims to help to determine the influences of key sample minerals on the production of organic compounds detected with SAM in both GC-MS and EGA mode, and to identify potential parent molecules. References: [1] Mahaffy, P. et al. (2012), Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Ming, D. et al. (2013), Science, DOI: 10.1126/science.1245267 [4] Navarro-Gonzalez, R. et al. (2010), JGR. [5] Vaniman, D. T. et al (2013), Science, DOI: 10.1126/science.1243480. 71, 9-17. [6] Iniguez, E. et al. (2009), Geophysical Research Letters, 36. Acknowledgments: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex. J. Eigenbrode and D. Glavin were supported by the NASA MSL participating scientist program.

  7. Air quality assessment and the use of specific markers to apportion pollutants to source

    NASA Astrophysics Data System (ADS)

    Douce, David Stewart

    The contributions of specific polluting sources to both indoor and outdoor atmospheric pollution are difficult to determine, as solid and gaseous products from different combustion sources are often similar. Sometimes, however, a marker compound can be identified that is unique to a pollution source (or at least not present in most other local combustion sources) and which will allow assessment of the contribution of that source to total atmospheric pollution.The aim of this study was to identify suitable marker compounds and methods for the apportionment (assessment of percentage contribution) of specific sources to atmospheric pollution. The sources selected were diesel exhaust emissions in outdoor, and environmental tobacco smoke (ETS) in indoor environments. Studies with controlled (laboratory) atmospheres would be followed by field studies using these methods and markers to produce apportionments for these sources to air pollution in selected environments. Initial analysis of such polluting sources was therefore the qualitative analysis of volatile compounds and particulate associated material, both organic and inorganic. Volatile organic compounds were adsorbed onto various resins, while particulate material was sampled onto various filter paper types. Organics were determined by GC-AED and GC-MS, and elements by ICP-MS.1-Nitropyrene was identified as a suitable marker for diesel particulate emissions (<5um). A large volume air sample from Sheffield city centre using 1-nitropyrene as a marker suggested that 63% of atmospheric particulate material (<5um) might be of diesel origin. However the concentration of 1-nitropyrene is low in atmospheric samples, and in the volumes used in routine sampling the amount of 1-nitropyrene was below the limit of detection on the instrument used. In an alternative approach the aliphatic alkane tetracosane (C24) was used as a diesel marker for urban air, with a 1-nitropyrene:tetracosane ratio derived from the average results from laboratory experiments with a diesel engine running at various speeds and loads. This approach yielded apportionment values ranging from 5-85% for the diesel contribution to particulate material (<5mum) in the urban air of Sheffield. No volatile marker compound was found for diesel apportionment.The contribution of ETS to atmospheric pollution has previously been estimated from the measurement of respirable suspended particulates (RSP), which was superseded by total UV absorbance and total fluorescence of a methanol extract. More recent work has suggested the use of solanesol or scopoletin as marker compounds. This thesis shows that the non specific methods overestimated the particulate contribution of ETS in some atmospheres, and that solanesol is a better marker compound than scopoletin. Preliminary studies from a small number of smokers homes and offices, with solanesol as a marker compound for particulate ETS, indicated that ETS contributions to total particulate material (<5mum) ranged from 6 to 49% in homes and 11 to 28% in offices.Pyrrole was used as a marker for ETS contribution to volatile organic pollution, and studies with controlled atmospheres with a smoking machine allowed calculation of the ratios of pyrrole to other volatile organic compounds (VOC's) in ETS. Samples from the field study were used to produce apportionment percentage levels of benzene, toluene, o-xylene and p+m-xylene associated with ETS.In addition the use of tree bark as a atmospheric sink for airborne particulates was investigated. Six nitrated polycyclic aromatic hydrocarbons associated with diesel emissions were quantified in bark extracts and levels of these were found to be highest during winter months.

  8. Sample integrity evaluation and EPA method 325B interlaboratory comparison for select volatile organic compounds collected diffusively on Carbopack X sorbent tubes

    NASA Astrophysics Data System (ADS)

    Oliver, Karen D.; Cousett, Tamira A.; Whitaker, Donald A.; Smith, Luther A.; Mukerjee, Shaibal; Stallings, Casson; Thoma, Eben D.; Alston, Lillian; Colon, Maribel; Wu, Tai; Henkle, Stacy

    2017-08-01

    A sample integrity evaluation and an interlaboratory comparison were conducted in application of U.S. Environmental Protection Agency (EPA) Methods 325A and 325B for diffusively monitoring benzene and other selected volatile organic compounds (VOCs) using Carbopack X sorbent tubes. To evaluate sample integrity, VOC samples were refrigerated for up to 240 days and analyzed using thermal desorption/gas chromatography-mass spectrometry at the EPA Office of Research and Development laboratory in Research Triangle Park, NC, USA. For the interlaboratory comparison, three commercial analytical laboratories were asked to follow Method 325B when analyzing samples of VOCs that were collected in field and laboratory settings for EPA studies. Overall results indicate that the selected VOCs collected diffusively on sorbent tubes generally were stable for 6 months or longer when samples were refrigerated. This suggests the specified maximum 30-day storage time of VOCs collected diffusively on Carbopack X passive samplers and analyzed using Method 325B might be able to be relaxed. Interlaboratory comparison results were in agreement for the challenge samples collected diffusively in an exposure chamber in the laboratory, with most measurements within ±25% of the theoretical concentration. Statistically significant differences among laboratories for ambient challenge samples were small, less than 1 part per billion by volume (ppbv). Results from all laboratories exhibited good precision and generally agreed well with each other.

  9. Health assessment for Colbert Landfill NPL (National Priorities List) Site, Spokane, Washington, Region 10. CERCLIS No. WAD980514541. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-25

    The Colbert Landfill NPL site is located about fifteen miles north of Spokane, Washington. Area ground water is contaminated with several volatile organic chemicals. The medium of most concern regarding potential health effects is the ground water. Potential exposure pathways include ingestion and inhalation of volatiles from contaminated ground water and dermal exposure to contaminated ground water. The susceptible populations are remedial workers performing well water sampling on-site and populations off-site utilizing contaminated wells at levels that are of a potential health concern, for drinking, bathing, and irrigation purposes.

  10. Sol-gel-based SPME fiber as a reliable sampling technique for studying biogenic volatile organic compounds released from Clostridium tetani.

    PubMed

    Ghader, Masoud; Shokoufi, Nader; Es-Haghi, Ali; Kargosha, Kazem

    2017-11-01

    A novel and efficient headspace solid-phase microextraction (HS-SPME) method, followed by gas chromatography mass spectrometry (GC-MS), was developed to study volatile organic compounds (VOCs) emerging from microorganisms. Two homemade SPME fibers, a semi-polar poly (dimethylsiloxane) (PDMS) fiber, and a polar polyethylene glycol (PEG) fiber, along with two commercial fibers (PDMS and PDMS/DVB) were used to collect VOCs emerging from Clostridium tetani which was cultured in different media. The adsorbed VOCs were desorbed and identified, in vitro, using GC-MS. The adsorption efficiency was improved by optimizing the time duration of adsorption and desorption. About 50 components were identified by the proposed method. The main detected compounds appeared to be sulfur containing compounds such as butanethioic acid S-methyl ester, dimethyl trisulfide, and dimethyl tetrasulfide. These volatile sulfur containing compounds are derived from amino acids containing the sulfur element, which probably coexist in the mentioned bacterium or are added to the culture media. The developed HS-SPME-GC-MS method allowed the determination of the chemical fingerprint of Clostridium tetani volatile constituents, and thus provides a new, simple, and reliable tool for studying the growth of microorganisms. Graphical abstract Investigation of biogenic VOCs released from Clostridium tetani using SPME-GC-MS.

  11. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.

    PubMed

    Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

    2015-01-01

    This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.

  12. Quality changes in refrigerated stored minced pork wrapped with plastic cling film and the effect of glucose supplementation.

    PubMed

    Del Blanco, Alba; Caro, Irma; Quinto, Emiliano J; Mateo, Javier

    2017-04-01

    Meat spoilage greatly depends on meat composition and storage conditions. Microbial and biochemical changes in minced pork (100-g portions) wrapped with a polyvinyl chloride film during a 4-day refrigerated storage were studied. As glucose is the first substrate used by spoilage bacteria and when it is depleted bacteria could generate undesirable volatiles, the effect of the addition of glucose to minced meat was also studied. Three treatments were used: control (C), without added glucose, and low and high glucose concentration (L and H), 150mg and 750mg of glucose in 100g of meat, respectively. Spoilage bacteria, pH, redox potential, colour, basic volatile nitrogen, glucose, organic acids, and volatiles were analyzed in both recently prepared and stored pork samples. Storage resulted in increased levels of lactic acid bacteria and glucose-derived short chain alkyl volatiles, and a decrease in redox potential and volatile aldehyde levels. The addition of glucose to meat did not affect the biochemical characteristics of stored minced pork. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  14. Total non-methane volatile organic compounds (TNMVOC) in the atmosphere of Delhi

    NASA Astrophysics Data System (ADS)

    Kumar Padhy, Pratap; Varshney, C. K.

    Volatile organic compounds (VOC), more specifically, non-methane volatile organic compounds (NMVOC) play a critical role in the atmospheric chemistry. NMVOC, through complex photochemical reactions, contribute to the formation of toxic oxidants, such as tropospheric ozone and PAN, which are injurious to health and highly phytotoxic. Certain NMVOC have been shown to be highly toxic, mutagenic and carcinogenic. NMVOC are receiving increasing attention in the west on account of their implication for human health and air quality. On the other hand, information on NMVOC in India and other developing countries is not available. As a result, appreciation of potential threat from NMVOC in relation to air quality and public health is sadly lacking among planners and policy makers. The paper deals with the estimation of total NMVOC at 13 sites in the urban environment of Delhi during November 1994 to June 1995. An inexpensive, labour intensive manual sample collection device was used and the air samples were analysed using GC-FID. The results show that the amount of NMVOC in the ambient environment of Delhi varied between 1.3 and 32.5 ppmv exhibiting wide temporal and seasonal variation. NMVOC levels mostly peaked at 0900 h, which coincide with the peak traffic hour. The implications of NMVOC build-up in the urban atmosphere are obvious for air quality. The results of this preliminary study make out a strong case for developing a regular monitoring programme for NMVOC in the urban environment of Delhi as well as in other major cities in the region.

  15. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    NASA Astrophysics Data System (ADS)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  16. Screening of the key volatile organic compounds of Tuber melanosporum fermentation by aroma sensory evaluation combination with principle component analysis

    PubMed Central

    Liu, Rui-Sang; Jin, Guang-Huai; Xiao, Deng-Rong; Li, Hong-Mei; Bai, Feng-Wu; Tang, Ya-Jie

    2015-01-01

    Aroma results from the interplay of volatile organic compounds (VOCs) and the attributes of microbial-producing aromas are significantly affected by fermentation conditions. Among the VOCs, only a few of them contribute to aroma. Thus, screening and identification of the key VOCs is critical for microbial-producing aroma. The traditional method is based on gas chromatography-olfactometry (GC-O), which is time-consuming and laborious. Considering the Tuber melanosporum fermentation system as an example, a new method to screen and identify the key VOCs by combining the aroma evaluation method with principle component analysis (PCA) was developed in this work. First, an aroma sensory evaluation method was developed to screen 34 potential favorite aroma samples from 504 fermentation samples. Second, PCA was employed to screen nine common key VOCs from these 34 samples. Third, seven key VOCs were identified by the traditional method. Finally, all of the seven key VOCs identified by the traditional method were also identified, along with four others, by the new strategy. These results indicate the reliability of the new method and demonstrate it to be a viable alternative to the traditional method. PMID:26655663

  17. Demonstration of the Gore Module for Passive Ground Water Sampling

    DTIC Science & Technology

    2014-06-01

    ix ACRONYMS AND ABBREVIATIONS % RSD percent relative standard deviation 12DCA 1,2-dichloroethane 112TCA 1,1,2-trichloroethane 1122TetCA...Analysis of Variance ROD Record of Decision RSD relative standard deviation SBR Southern Bush River SVOC semi-volatile organic compound...replicate samples had a relative standard deviation ( RSD ) that was 20% or less. For the remaining analytes (PCE, cDCE, and chloroform), at least 70

  18. Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath

    PubMed Central

    Kwak, Jae; Fan, Maomian; Harshman, Sean W.; Garrison, Catherine E.; Dershem, Victoria L.; Phillips, Jeffrey B.; Grigsby, Claude C.; Ott, Darrin K.

    2014-01-01

    Monitoring volatile organic compounds (VOCs) from exhaled breath has been used to determine exposures of humans to chemicals. Prior to analysis of VOCs, breath samples are often collected with canisters or bags and concentrated. The Bio-VOC breath sampler, a commercial sampling device, has been recently introduced to the market with growing use. The main advantage for this sampler is to collect the last portion of exhaled breath, which is more likely to represent the air deep in the lungs. However, information about the Bio-VOC sampler is somewhat limited. Therefore, we have thoroughly evaluated the sampler here. We determined the volume of the breath air collected in the sampler was approximately 88 mL. When sampling was repeated multiple times, with the succeeding exhalations applied to a single sorbent tube, we observed linear relationships between the normalized peak intensity and the number of repeated collections with the sampler in many of the breath VOCs detected. No moisture effect was observed on the Tenax sorbent tubes used. However, due to the limitation in the collection volume, the use of the Bio-VOC sampler is recommended only for detection of VOCs present at high concentrations unless repeated collections of breath samples on the sampler are conducted. PMID:25532709

  19. Acid volatile sulfide and simultaneously extracted metals in superficial sediments from Baihua Lake, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jiping; Hu, Jiwei; Huang, Xianfei; Shen, Wei; Jin, Mei; Fu, Liya; Jin, Xiaofei

    2013-09-01

    The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 μmol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 μmol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.

  20. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.

    PubMed

    Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry

    2003-04-01

    Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.

  1. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and cyanide. Concentrations of volatile organic compounds detected in water samples collected from bedrock wells during 1981-95 at the Nutmeg Valley Road site area show a general downward trend through time. Water samples collected from wells completed in surficial materials were not collected systematically, and a trend in concentration cannot be identified.

  2. In-vial pyrolysis (PyroVial) with pre- and post-sample treatment combined with different chromatographic techniques.

    PubMed

    Tienpont, Bart; David, Frank; Pereira, Alberto; Sandra, Pat

    2011-11-18

    A new generic pyrolysis unit (PyroVial) is presented. Pyrolysis is carried out in a 2 mL autosampler vial placed in a XYZ robot for automated pyrolysis as well as for pre- and post-pyrolysis treatment of the sample. Analysis of the volatiles is performed by headspace analysis while the semi- and non-volatiles are extracted from the pyrolysate with an organic solvent. The features of the PyroVial are such that all chromatographic techniques can be applied. The pyrolysis unit is discussed in terms of its technical features and its performance is illustrated with applications including conventional pyrolysis, in situ and post-pyrolysis derivatization, reaction pyrolysis and catalytic cracking. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition.

    PubMed

    Reidel, Rose Vanessa Bandeira; Cioni, Pier Luigi; Majo, Luigi; Pistelli, Luisa

    2017-11-01

    Rhus coriaria, also known as Sumac, has been traditionally used in many countries as spice, condiment, dying agent, and medicinal herb. The chemical composition of essential oils (EOs) and the volatile emissions from different organs of this species collected in Sicily (Italy) were analyzed by gas chromatography-flame ionization detection and gas chromatography/mass spectrometry. Monoterpene and sesquiterpene hydrocarbons were the most abundant class in the volatile emissions with β-caryophyllene and α-pinene were the main constituents in the majority of the examined samples. The EO composition was characterized by high amount of monoterpene and sesquiterpene hydrocarbons together with diterpenes. The main compounds in the EO obtained from the leaves and both stages of fruit maturation were cembrene and β-caryophyllene, while α-pinene and tridecanoic acid were the key compounds in the flower EO. All the data were submitted to multivariate statistical analysis showing many differences among the different plant parts and their ontogenetic stages. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Volatile metabolites produced by three strains of Stachybotrys chartarum cultivated on rice and gypsum board.

    PubMed

    Gao, Pengfei; Martin, Jennifer

    2002-06-01

    Stachybotrys chartarum (atra) is a toxigenic fungus frequently found in water-damaged buildings. Although microbial volatile organic compounds (MVOCs) produced by Aspergillus, Penicillium, and other fungi have been investigated extensively, little information exists on what MVOCs can be produced by S. chartarum. In this study, three strains of S. chartarum isolated from water-damaged residential homes in Cleveland, Ohio, were cultivated on rice and gypsum board. Air samples were collected after one, two, three, four, and six weeks of cultivation using Tenax TA tubes. Unique MVOCs were determined and other alcohols, ketones, and terpenes were also investigated using gas chromatography/mass spectrometry after thermal desorption from the sampling tube. Four unique MVOCs, 1-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, and thujopsene, were detected on rice cultures, and only one of them (1-butanol) was detected on gypsum board cultures. For a given strain, volatiles were considerably different with different cultivation media. Concentration profiles of the volatile compounds varied among compounds; however, each compound exhibited corresponding concentration trends between the strains. In comparison with our previous studies of five Aspergillus species on gypsum board under the same experimental conditions, fewer unique MVOCs were produced by S. chartarum, and they were quite different. It thus may be possible to use marker-unique MVOCs as a fingerprint to distinguish fungi in indoor environments once enough information becomes available. Our findings also indicate that volatiles produced by S. chartarum may represent a relatively small fraction of the total volatiles present in problem buildings where Aspergillus spp., Penicillium spp., and other fungi usually coexist.

  5. Analyses of volatile organic compounds from human skin

    PubMed Central

    Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.

    2008-01-01

    Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798

  6. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    DTIC Science & Technology

    2009-07-01

    CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS

  7. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    USDA-ARS?s Scientific Manuscript database

    Large-scale assemblies of people in a con'ned space can exert signi'cant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying 'ngerprint volatile organic compounds (VOCs) such as acetone, toluene, ...

  8. Factors related to the attraction of flies at a biosolids composting facility (Bariloche, Argentina).

    PubMed

    Laos, F; Semenas, L; Labud, V

    2004-07-26

    The composting process is used to treat biosolids from the Wastewater Treatment Plant of Bariloche (NW Patagonia, Argentina). Since 1998, an odourless, innocuous and stable organic amendment has been produced at the Biosolids Composting Plant of Bariloche. However, volatile compounds produced during this process, attract different vectors, mainly insects belonging to the Order Diptera, particularly in summer. To evaluate factors associated with the attraction of Diptera to composting windrows, volatile compounds, wind velocity, ambient and windrow temperatures were measured and their relationships with the taxa of flies found were determined. Sampling was conducted several months on newly formed windrows during 3 weeks of the thermophilic composting period. Composite samples from each windrow were taken on the first day of each sampling week, from November 1999 to March 2000 to analyze volatile compounds using an 'electronic nose'. Windrow and ambient temperatures and wind velocity were recorded on three consecutive days of each week, from January to March 2000; also the capture of flies was performed in this period. A weekly mean value was calculated for each environmental variable. Canonical Correspondence Analysis was employed to determine relationships between taxa of flies and the studied factors. The electronic nose discriminated among odours emitted, differentiating windrows by the bulking agent employed and by week of the thermophilic composting period. Ambient temperatures increased slightly during the sampling weeks; the highest values of wind velocity were registered during the second sampling week while windrow temperatures were sustained approximately 60 degrees C. Canonical Correspondence Analysis showed that attraction of flies to composting windrows was related to minimum and maximum ambient temperatures and volatile compounds for Muscina stabulans, Fannia sp. and Acaliptratae and to wind velocity for Ophyra sp., Sarcophaga sp., Cochliomyia macellaria and Phaenicia sericata. Copyright 2004 Elsevier B.V.

  9. Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions.

    PubMed

    Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh

    2016-03-01

    We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stormwater-runoff data, Madison, Wisconsin, 1993-94

    USGS Publications Warehouse

    Waschbusch, R.J.

    1996-01-01

    As required by Section 402(P) of the Water Quality Control Act of 1987, stormwater-runoff samples collected during storms that met three criteria (rainfall depths 50 to 150 percent of average depth range, rainfall durations 50 to 150 percent of average duration, and antecedent dry-weather period of at least 72 hours) were analyzed for semivolatile organic chemicals, total metals, pesticides, polychlorinated biphenyls, inorganic constituents, bacteria, oil and grease, pH, and water temperature. Two of the seven sites also had samples analyzed for volatile organic chemicals. In addition to the required sampling, additional runoff samples that did not necessarily meet the three rainfall criteria, were analyzed for total metals and inorganic constituents. Storm loads of selected constituents were computed.

  11. Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000

    USGS Publications Warehouse

    Campbell, J.P.; Lyford, F.P.; Willey, Richard E.

    2002-01-01

    A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a strong indicator of the presence of VOCs, SVOCs, and metals in ground water sampled from well points at this site. Results from PVD samplers indicate that contaminant concentrations in water from well points installed 1 to 5 ft below fine sediments may not reflect concentrations in pore water less than 1 foot below the river bottom. There is insufficient information available to determine if VOC concentrations detected in PVD samplers are useful for identifying detectable aqueous concentrations of SVOCs and metals in sediment pore water at this site. Samples of pore water from a similar depth as PVD samplers are needed for confirmation of this objective.

  12. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  13. Three-way principal component analysis of the volatile fraction by HS-SPME/GC of aceto balsamico tradizionale of modena.

    PubMed

    Cocchi, Marina; Durante, Caterina; Grandi, Margherita; Manzini, Daniela; Marchetti, Andrea

    2008-01-15

    The present research is aimed at monitoring the evolution of the volatile organic compounds of different samples of aceto balsamico tradizionale of modena (ABTM) during ageing. The flavouring compounds, headspace fraction, of the vinegars of four batterie were sampled by solid phase microextraction technique (SPME), and successively analysed by gas chromatography. Obtaining a data set characterized by different sources of variability such as, different producers, samples of different age and chromatographic profile. The gas chromatographic signals were processed by a three-way data analysis method (Tucker3), which allows an easy visualisation of the data by furnishing a distinct set of graphs for each source of variability. The obtained results indicate that the samples can be separated according to their age highlighting the chemical constituents, which play a major role for their differentiation. The present study represents an example of how the application of Tucker3 models, on gas chromatographic signals may help to follow the transformation processes of food products.

  14. Ground-water quality in three urban areas in the Coastal Plain of the southeastern United States, 1995

    USGS Publications Warehouse

    Berndt, M.P.; Galeone, D.R.; Spruill, T.B.; Crandall, C.A.

    1998-01-01

    Ground-water quality is generally good in three urban areas studied in the Coastal Plain of the southeastern United States?Ocala and Tampa, Florida, and Virginia Beach, Virginia. The hydrology of these areas differs in that Ocala has many karst depressions but virtually no surface-water features, and Tampa and Virginia Beach have numerous surface-water features, including small lakes, streams, and swamps. Samples were collected in early 1995 from 15 wells in Ocala (8 in the surficial aquifer and 7 in the Upper Floridan aquifer), 17 wells in Tamps (8 in the surficial aquifer and 9 in the Upper Floridan aquifer), and in the summer of 1995 from 15 wells in Virginia Beach (all in the surficial aquifer). In the surficial aquifer in Ocala, the major ion water type was calcium bicarbonate in five samples and mixed (no dominant ions) in three samples, with dissolved-solids concentrations ranging from 78 to 463 milligrams per liter. In Tampa, the water type was calcium bicarbonate in one sample and mixed in seven samples, with dissolved-solids concentrations ranging from 38 to 397 milligrams per liter. In Virginia Beach, water types were primarily calcium and sodium bicarbonate water, with dissolved-solids concentrations ranging from 89 to 740 milligrams per liter. The water types and dissolved-solids concentrations reflect the presence of carbonates in the surficial aquifer materials in the Ocala and Virginia Beach areas. The major ion water type was calcium bicarbonate for all 16 samples from the upper Floridan aquifer in both Florida cities. Dissolved-solids concentrations ranged from 210 to 551 milligrams per liter in Ocala, with a median of 287 milligrams per liter, and from 187 to 362 milligrams per liter in Tampa, with a median of 244 milligrams per liter. Concentrations of nitrate nitrogen were highest in the surficial aquifer in Ocala, and one sample exceeded 10 milligrams per liter, the U.S. Environmental Protection Agency maximum contaminant level for drinking water. Median nitrate concentrations were 1.2 milligrams per liter in Ocala and only 0.06 and 0.05 milligram per liter in Tampa and Virginia Beach, respectively. In Florida, some background water-quality data were available for comparison. The median nitrate concentration in Ocala was much higher than the median nitrate concentration of 0.05 milligram per liter in the background data. Median nitrate concentrations were 0.33 and 0.05 milligram per liter in samples from the Upper Floridan aquifer in Ocala and Tampa, respectively, and 0.05 milligram per liter in background samples. Of the 47 pesticides and 60 volatile organic compounds analyzed, only five pesticides and five volatile organic compounds were detected. The most commonly detected pesticide was prometon, a broad-scale herbicide, detected in samples from eight wells in Ocala (at concentrations ranging from 0.009 to 1.8 micrograms per liter), three wells in Virginia Beach (at concentrations ranging from 0.19 to 10 micrograms per liter), and from one well in Tampa (0.01 microgram per liter). The most commonly detected volatile organic compound was chloroform, which was detected four times at concentrations ranging from 0.3 to 2.2 micrograms per liter in Ocala and Tampa. Seven volatile organic compounds were detected in one sample in Virginia Beach; most were compounds associated with petroleum and coal tar.

  15. Exposure of jeepney drivers in Manila, Philippines, to selected volatile organic compounds (VOCs).

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2009-01-01

    The objective of this study was to assess the occupational exposure of jeepney drivers to selected volatile organic compounds (VOCs) in Manila, Philippines. Personal sampling was conducted on 15 jeepney drivers. Area sampling was conducted to determine the background VOC concentration in Manila as compared to that in a rural area. Both personal and area samples were collected for 5 working days. Samples were obtained using diffusive samplers and were analyzed for 6 VOCs (benzene, toluene, ethylbenzene, m,p-xylene and o-xylene) using gas chromatography. Results showed that the average personal exposure concentration of jeepney drivers was 55.6 (+/-9.3), 196.6 (+/-75.0), 17.9 (+/-9.0), 72.5 (+/-21.1) and 88.5 (+/-26.5) microg/m(3) for benzene, toluene, ethylbenzene, m,p-xylene and o-xylene, respectively. The urban ambient concentration was 11.8 (+/-2.2), 83.7 (+/-40.5) and 38.0 (+/-12.1) microg/m(3) for benzene, toluene and o-xylene, respectively. The rural ambient concentration was 14.0 (+/-6.0) and 24.7 (+/-11.9) microg/m(3) for toluene and o-xylene, respectively. The personal samples had significantly higher (p<0.05) concentrations for all selected VOCs than the urban area samples. Among the area samples, the urban concentrations of benzene and toluene were significantly higher (p<0.05) than the rural concentrations. The personal exposures for all the target VOCs were not significantly different among the jeepney drivers.

  16. Organics, Isotopes, and Volatiles in Gale Crater Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.

    2016-12-01

    Solid samples analyzed by the Curiosity rover on the long traverse from the Gale crater floor to the flanks of Mt. Sharp spread a range of environments from fluvial to lacustrine to eolian, and span 100 m of stratigraphic thickness. The diverse chemical and isotopic composition of organic compounds and inorganic volatiles revealed in these samples analyzed over a period of more than 2 Mars years is described with an emphasis on the search for organics, the chemical environments and physical-chemical processes that respectively preserve or destroy organics, and unexpectedly large variations in H, S, and Cl isotopes. In addition to a set of aromatic and aliphatic chorine containing organic compounds thermally released from the Cumberland mudstone drilled early in the mission compounds [Freissinet et al., 2015], additional S-containing organics have been identified in the Mojave drill sample in the Pahrump Hills section that was characterized in detail over a 5 month period. This set of S and Cl containing compounds is definitively identified by gas chromatograph mass spectrometer (GCMS) analyses. In addition, fragments of other organic compounds are evident in the evolved gas analysis (EGA) experiments implemented by the Sample Analysis at Mars (SAM) instrument and utilization of SAM's derivatization agent has revealed the presence of high molecular weight compounds. Two factors complicate the search for organic compounds preserved from ancient Mars. First the nearly ubiquitous oxychlorine compounds such as perchlorates decompose on heating in the SAM ovens in the EGA experiments and there is evidence that the hot O2 released combusts organic compounds to produce CO2. Secondly, the cosmic radiation that penetrates through the thin Mars atmosphere meters into the surface transforms near surface organic compounds over time. Fortunately, the SAM mass spectrometer can measure spallogenic (3He and 21Ne) and neutron-capture (36Ar) noble gases to secure an estimate of the duration of radiation exposure. Measurement protocols developed to work around both of these limitations will be discussed. C. Freissinet et al, JGR (2015) 120(3), 495-514.

  17. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  18. Influence of heat processing on the volatile organic compounds and microbial diversity of salted and vacuum-packaged silver carp (Hypophthalmichthys molitrix) fillets during storage.

    PubMed

    Li, Dongping; Zhang, Jingbin; Song, Sijia; Feng, Ligeng; Luo, Yongkang

    2018-06-01

    Ready-to-eat products have become popular with most of the busy people in modern cities. Heat processing combined with vacuum-packaging is one of the most common methods to make ready-to-eat products with an extended shelf-life. In this study, the influence of heat processing [80 °C (LT) and 98 °C (HT) in water bath] on the quality of salted and vacuum-packaged silver carp (Hypophthalmichthys molitrix) fillets, stored at 20 ± 1 °C, was investigated by sensory analysis, biochemical analysis, and microbial diversity. SPME-GC/MS indicated the presence of 27 volatile organic compounds (VOCs) in fillets, and major VOCs were aldehydes and alcohols. Acids tended to increase during storage and caused a fetid odor at the end of storage. Culture-dependent method indicated that Bacillus dominated the spoiled LT and HT samples. In addition, Bacillus was identified as the main spoiler of deteriorated heated fillets by high-throughput sequencing. Sphingomonas and Brevibacillus dominated the indigenous bacteria of fresh raw fillets. After heat processing, LT samples exhibited higher organoleptic quality than HT samples on day 0. HT samples showed extended shelf-life at 20 °C storage compared to LT samples. Copyright © 2017. Published by Elsevier Ltd.

  19. Airborne concentrations of volatile organic compounds in neonatal incubators.

    PubMed

    Prazad, P; Cortes, D R; Puppala, B L; Donovan, R; Kumar, S; Gulati, A

    2008-08-01

    To identify and quantify airborne volatile organic compounds (VOCs) inside neonatal incubators during various modes of operation within the neonatal intensive care unit (NICU) environment. Air samples were taken from 10 unoccupied incubators in four operational settings along with ambient air samples using air sampling canisters. The samples were analyzed following EPA TO-15 using a Tekmar AutoCan interfaced to Agilent 6890 Gas Chromatograph with a 5973 Mass Spectrometer calibrated for 60 EPA TO-15 method target compounds. Non-target compounds were tentatively identified using mass spectral interpretation and with a mass spectral library created by National Institute for Standards and Technology. Two non-target compounds, 2-heptanone and n-butyl acetate, were found at elevated concentrations inside the incubators compared with ambient room air samples. Increase in temperature and addition of humidity produced further increased concentrations of these compounds. Their identities were verified by mass spectra and relative retention times using authentic standards. They were quantified using vinyl acetate and 2-hexanone as surrogate standards. The emission pattern of these two compounds and background measurements indicate that they originate inside the incubator. There is evidence that exposure to some VOCs may adversely impact the fetal and developing infants' health. Currently, as there is no definitive information available on the effects of acute or chronic low-level exposure to these compounds in neonates, future studies evaluating the health effects of neonatal exposure to these VOCs are needed.

  20. Production of volatile metabolites by grape-associated microorganisms.

    PubMed

    Verginer, Markus; Leitner, Erich; Berg, Gabriele

    2010-07-28

    Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.

Top