Sample records for san andreas transform

  1. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies

    USGS Publications Warehouse

    Griscom, A.; Jachens, R.C.

    1989-01-01

    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  2. Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California

    USGS Publications Warehouse

    Parsons, T.; Zoback, M.L.

    1997-01-01

    This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.

  3. Net dextral slip, Neogene San Gregorio–Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

    USGS Publications Warehouse

    Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.

    2005-01-01

    Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio–Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system.San Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio–Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by San Gregorio–Hosgri displacements elongated its northern end and offset its western margin delineated by the older Nacimiento fault, a sinistral strike-slip fault of latest Cretaceous to Paleocene age. North of its juncture with the San Andreas fault, dextral slip along the San Gregorio–Hosgri fault augments net San Andreas displacement. Alternate restorations of the Gualala block imply that nearly half the net San Gregorio–Hosgri slip was accommodated along the offshore Gualala fault strand lying west of the Gualala block, which is bounded on the east by the current master trace of the San Andreas fault. With San Andreas and San Gregorio–Hosgri slip restored, there remains an unresolved proto–San Andreas mismatch of ∼100 km between the offset northern end of the Salinian block and the southern end of the Sierran-Tehachapi block.On the south, San Gregorio–Hosgri strike slip is transposed into crustal shortening associated with vertical-axis tectonic rotation of fault-bounded crustal panels that form the western Transverse Ranges, and with kinematically linked deformation within the adjacent Santa Maria basin. The San Gregorio–Hosgri fault serves as the principal link between transrotation in the western Transverse Ranges and strike slip within the San Andreas transform system of central California.

  4. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.

  5. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake

    USGS Publications Warehouse

    Stein, R.S.; King, G.C.P.; Lin, J.

    1992-01-01

    The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.

  6. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  7. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas right stepover region and at least 15 km along-strike both to the SE and NW. The 1906 San Francisco earthquake may have nucleated within the San Andreas right stepover, which may help explain the bilateral nature of rupture of this event. Our analysis suggests two seismic hazards for the San Francisco Peninsula in addition to the hazard associated with a M = 7 to 8 strike-slip earthquake along the San Andreas fault: the potential for a M ??? 6 normal-faulting earthquake just 5-8 km west of San Francisco and a M = 6+ thrust faulting event in the southern peninsula.

  8. The San Andreas Fault in the San Francisco Bay area, California: a geology fieldtrip guidebook to selected stops on public lands

    USGS Publications Warehouse

    Stoffer, Philip W.

    2005-01-01

    This guidebook contains a series of geology fieldtrips with selected destinations along the San Andreas Fault in part of the region that experienced surface rupture during the Great San Francisco Earthquake of 1906. Introductory materials present general information about the San Andreas Fault System, landscape features, and ecological factors associated with faults in the South Bay, Santa Cruz Mountains, the San Francisco Peninsula, and the Point Reyes National Seashore regions. Trip stops include roadside areas and recommended hikes along regional faults and to nearby geologic and landscape features that provide opportunities to make casual observations about the geologic history and landscape evolution. Destinations include the sites along the San Andreas and Calaveras faults in the San Juan Bautista and Hollister region. Stops on public land along the San Andreas Fault in the Santa Cruz Mountains in Santa Clara and Santa Cruz counties include in the Loma Prieta summit area, Forest of Nicene Marks State Park, Lexington County Park, Sanborn County Park, Castle Rock State Park, and the Mid Peninsula Open Space Preserve. Destinations on the San Francisco Peninsula and along the coast in San Mateo County include the Crystal Springs Reservoir area, Mussel Rock Park, and parts of Golden Gate National Recreation Area, with additional stops associated with the San Gregorio Fault system at Montara State Beach, the James F. Fitzgerald Preserve, and at Half Moon Bay. Field trip destinations in the Point Reyes National Seashore and vicinity provide information about geology and character of the San Andreas Fault system north of San Francisco.

  9. Geophysical Surveys of the San Andreas and Crystal Springs Reservoir System Including Seismic-Reflection Profiles and Swath Bathymetry, San Mateo County, California

    USGS Publications Warehouse

    Finlayson, David P.; Triezenberg, Peter J.; Hart, Patrick E.

    2010-01-01

    This report describes geophysical data acquired by the U.S. Geological Survey (USGS) in San Andreas Reservoir and Upper and Lower Crystal Springs Reservoirs, San Mateo County, California, as part of an effort to refine knowledge of the location of traces of the San Andreas Fault within the reservoir system and to provide improved reservoir bathymetry for estimates of reservoir water volume. The surveys were conducted by the Western Coastal and Marine Geology (WCMG) Team of the USGS for the San Francisco Public Utilities Commission (SFPUC). The data were acquired in three separate surveys: (1) in June 2007, personnel from WCMG completed a three-day survey of San Andreas Reservoir, collecting approximately 50 km of high-resolution Chirp subbottom seismic-reflection data; (2) in November 2007, WCMG conducted a swath-bathymetry survey of San Andreas reservoir; and finally (3) in April 2008, WCMG conducted a swath-bathymetry survey of both the upper and lower Crystal Springs Reservoir system. Top of PageFor more information, contact David Finlayson.

  10. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas fault in northern California, USA

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.

    2017-01-01

    Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates. These two areas do not appear to be coincident with lithologic contacts. Assuming that changes in rock uplift rates are manifest in channel steepness values as an upstream-propagating kinematic wave that separates high and low channel steepness values, the distance that this transition has migrated vertically provides an estimate of the timing of rock uplift rate increase. This analysis suggests that rock uplift rates along the coast changed from 0.3 to 0.75 mm yr–1 between 450 and 350 ka. This zone of recent, relatively rapid crustal deformation along the plate boundary may be a result of the impingement of relatively strong crust underlying the Gualala block into the thinner, weaker oceanic crust left at the western margin of the North American plate by the westward migration of the subduction zone prior to establishment of the current transform plate boundary. The warped Pliocene marine deposits and the presence of a topographic ridge support the patterns indicated by the channel steepness analyses, and further indicate that the zone of rapid uplift may herald elevated off-fault seismic hazard if this uplift is created by periodic stick-slip motion on contractional structures.

  11. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  12. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    USGS Publications Warehouse

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.

    2011-01-01

    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (<30 mm/yr). The paleoseismic exposures at the Miller's Field site reveal a pervasive fabric of clay shear bands, oriented clockwise oblique to the San Andreas fault strike and extending into the upper-most stratigraphy. This fabric is consistent with dextral aseismic creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  13. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    PubMed

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude

  14. Earthquake swarm along the San Andreas fault near Palmdale, Southern California, 1976 to 1977

    USGS Publications Warehouse

    Mcnally, K.C.; Kanamori, H.; Pechmann, J.C.; Fuis, G.

    1978-01-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude ??? 3) occurred on or near the San Andreas fault near Palmdale, California. This swarm was the first observed along this section of the San Andreas since cataloging of instrumental data began in 1932. The activity followed partial subsidence of the 35-centimeter vertical crustal uplift known as the Palmdale bulge along this "locked" section of the San Andreas, which last broke in the great (surface-wave magnitude = 81/4+) 1857 Fort Tejon earthquake. The swarm events exhibit characteristics previously observed for some foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown. Copyright ?? 1978 AAAS.

  15. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  16. Low strength of deep San Andreas fault gouge from SAFOD core

    USGS Publications Warehouse

    Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.

    2011-01-01

    The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.

  17. Low strength of deep San Andreas fault gouge from SAFOD core

    USGS Publications Warehouse

    Lockner, D.A.; Morrow, C.; Moore, D.; Hickman, S.

    2011-01-01

    The San Andreas fault accommodates 28-"34-???mm-???yr ????'1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7-???km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  18. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    PubMed

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  19. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary

    USGS Publications Warehouse

    Jachens, R.C.; Zoback, M.L.

    1999-01-01

    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.

  20. Viscoelastic coupling model of the San Andreas fault along the big bend, southern California

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1997-01-01

    The big bend segment of the San Andreas fault is the 300-km-long segment in southern California that strikes about N65??W, roughly 25?? counterclockwise from the local tangent to the small circle about the Pacific-North America pole of rotation. The broad distribution of deformation of trilateration networks along this segment implies a locking depth of at least 25 km as interpreted by the conventional model of strain accumulation (continuous slip on the fault below the locking depth at the rate of relative plate motion), whereas the observed seismicity and laboratory data on fault strength suggest that the locking depth should be no greater than 10 to 15 km. The discrepancy is explained by the viscoelastic coupling model which accounts for the viscoelastic response of the lower crust. Thus the broad distribution of deformation observed across the big bend segment can be largely associated with the San Andreas fault itself, not subsidiary faults distributed throughout the region. The Working Group on California Earthquake Probabilities [1995] in using geodetic data to estimate the seismic risk in southern California has assumed that strain accumulated off the San Andreas fault is released by earthquakes located off the San Andreas fault. Thus they count the San Andreas contribution to total seismic moment accumulation more than once, leading to an overestimate of the seismicity for magnitude 6 and greater earthquakes in their Type C zones.

  1. M ≥ 7.0 earthquake recurrence on the San Andreas fault from a stress renewal model

    USGS Publications Warehouse

    Parsons, Thomas E.

    2006-01-01

     Forecasting M ≥ 7.0 San Andreas fault earthquakes requires an assessment of their expected frequency. I used a three-dimensional finite element model of California to calculate volumetric static stress drops from scenario M ≥ 7.0 earthquakes on three San Andreas fault sections. The ratio of stress drop to tectonic stressing rate derived from geodetic displacements yielded recovery times at points throughout the model volume. Under a renewal model, stress recovery times on ruptured fault planes can be a proxy for earthquake recurrence. I show curves of magnitude versus stress recovery time for three San Andreas fault sections. When stress recovery times were converted to expected M ≥ 7.0 earthquake frequencies, they fit Gutenberg-Richter relationships well matched to observed regional rates of M ≤ 6.0 earthquakes. Thus a stress-balanced model permits large earthquake Gutenberg-Richter behavior on an individual fault segment, though it does not require it. Modeled slip magnitudes and their expected frequencies were consistent with those observed at the Wrightwood paleoseismic site if strict time predictability does not apply to the San Andreas fault.

  2. A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault

    USGS Publications Warehouse

    Fulton, P.M.; Saffer, D.M.; Bekins, B.A.

    2009-01-01

    Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.

  3. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  4. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    USGS Publications Warehouse

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This is reflected by non-periodic coefficients of variation in earthquake recurrence of 0.4 to 0.7 for the various paleoseismic sites.

  5. Response of deformation patterns to reorganizations of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Fattaruso, L.; Dorsey, R. J.; Housen, B. A.

    2015-12-01

    Between ~1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that growth of the San Jacinto fault led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of off-fault deformation and potential incipient faulting. These patterns support the notion of north-to-south propagation of the San Jacinto fault during its initiation. The results of the present-day model are compared with microseismicity focal mechanisms to provide additional insight into the patterns of off-fault deformation within the southern San Andreas fault system.

  6. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California

    USGS Publications Warehouse

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.

    1999-01-01

    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  7. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a moderate to high stress regime for the San Andreas, which is consistent with experimental rock failure studies. Moreover, these results suggest that the previously observed lack of heat flow coaxial with the fault zone may be the result of dissipation rather than low stress. Much of the mineralogy of the cataclastic rocks is still relict from the earlier igneous or metamorphic history of the protolith; porphyroclasts, even in the most deformed rocks, consist of relict plagioclase (oligoclase to andesine), alkali feldspar, quartz, biotite, amphibole, epidote, allanite, and Fe-Ti oxides (ilmenite and magnetite). We have found no significant development of any clay minerals (illite, kaolinite, or montmorillonite). For many sites, the compositions of these minerals directly correspond to the mineral compositions in rock types on one or both sides of the fault. Whole rock major and trace element chemistry coupled with mineral compositions show that mixing within the zone of cataclasis is not uniform, and that originally micaceous foliated, or physically more heterogeneous rock units may contribute a disproportionally large amount to the resultant intrafault material. As previously found for the gouge along the San Andreas, chemical mobility is not a major factor in the formation of cataclastic rocks of the San Gabriel fault. We see only minor changes for Si and alkalies; however, there is a marked mobility of Li, which is a probable result of the alteration and formation of new mica minerals. The gouge of the San Andreas and San Gabriel faults probably formed by cataclastic flow. There is some indication, presently not well constrained, that the fine-grained matrix of the cataclasite of from the San Gabriel fault formed in response to superplastic flow.

  8. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm that the Banning strand has been the most probable rupture path for earthquakes nucleated on the southern San Andreas Fault over the past few thousand years, and is likely to remain so in the near future. This clarification of slip partitioning within the northwest Coachella Valley is timely given that the southern San Andreas Fault is considered overdue for a large earthquake.

  9. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California

    USGS Publications Warehouse

    Fumal, T.E.; Rymer, M.J.; Seitz, G.G.

    2002-01-01

    Paleoseismic investigations across the Mission Creek strand of the San Andreas fault at Thousand Palms Oasis indicate that four and probably five surface-rupturing earthquakes occurred during the past 1200 years. Calendar age estimates for these earthquakes are based on a chronological model that incorporates radio-carbon dates from 18 in situ burn layers and stratigraphic ordering constraints. These five earthquakes occurred in about A.D. 825 (770-890) (mean, 95% range), A.D. 982 (840-1150), A.D. 1231 (1170-1290), A.D. 1502 (1450-1555), and after a date in the range of A.D. 1520-1680. The most recent surface-rupturing earthquake at Thousand Palms is likely the same as the A.D. 1676 ?? 35 event at Indio reported by Sieh and Williams (1990). Each of the past five earthquakes recorded on the San Andreas fault in the Coachella Valley strongly overlaps in time with an event at the Wrightwood paleoseismic site, about 120 km northwest of Thousand Palms Oasis. Correlation of events between these two sites suggests that at least the southernmost 200 km of the San Andreas fault zone may have ruptured in each earthquake. The average repeat time for surface-rupturing earthquakes on the San Andreas fault in the Coachella Valley is 215 ?? 25 years, whereas the elapsed time since the most recent event is 326 ?? 35 years. This suggests the southernmost San Andreas fault zone likely is very near failure. The Thousand Palms Oasis site is underlain by a series of six channels cut and filled since about A.D. 800 that cross the fault at high angles. A channel margin about 900 years old is offset right laterally 2.0 ?? 0.5 m, indicating a slip rate of 4 ?? 2 mm/yr. This slip rate is low relative to geodetic and other geologic slip rate estimates (26 ?? 2 mm/yr and about 23-35 mm/yr, respectively) on the southernmost San Andreas fault zone, possibly because (1) the site is located in a small step-over in the fault trace and so the rate is not be representative of the Mission Creek fault, (2) slip is partitioned northward from the San Andreas fault and into the eastern California shear zone, and/or (3) slip is partitioned onto the Banning strand of the San Andreas fault zone.

  10. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD)

    NASA Astrophysics Data System (ADS)

    Moore, Diane E.; Rymer, Michael J.

    2012-05-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  11. San Andreas drilling sites selected

    NASA Astrophysics Data System (ADS)

    Ellsworth, Bill; Zoback, Mark

    A new initiative for drilling and coring directly into the San Andreas fault at depths up to 10 km is being proposed by an international team of scientists led by Mark Zoback, Stanford University; Steve Hickman and Bill Ellsworth, U.S. Geological Survey; and Lee Younker, Lawrence Livermore Laboratory. In addition to exhuming samples of fault rock and fluids from seismogenic depths, the hole will be used to make a wide range of geophysical measurements within the fault zone and to monitor the fault zone over time. Four areas along the San Andreas have been selected as candidates for deep drilling: the Mojave segment of the San Andreas between Leona Valley and Big Pine, the Carrizo Plain, the San Francisco Peninsula between Los Altos and Daly City, and the Northern Gabilan Range between the Cienga winery and Melendy Ranch. These sites were chosen from an initial list compiled at the International Fault Zone Drilling Workshop held in Asilomar, Calif., in December 1992 and at meetings held this winter and spring in Menlo Park, Calif.

  12. Prospects for earthquake prediction and control

    USGS Publications Warehouse

    Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.

    1972-01-01

    The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.

  13. San Andreas Fault, Southern California, Shaded Relief, Wrapped Color as Height

    NASA Image and Video Library

    2000-02-17

    This topographic map acquired by NASA Shuttle Radar Topography Mission SRTM from data collected on February 16, 2000 vividly displays California famous San Andreas Fault along the southwestern edge of the Mojave Desert, Calif.

  14. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    NASA Image and Video Library

    2000-02-17

    This topographic map acquired by NASA Shuttle Radar Topography Mission SRTM from data collected on February 16, 2000 vividly displays California famous San Andreas Fault along the southwestern edge of the Mojave Desert, Calif.

  15. Recurrence of seismic migrations along the central California segment of the San Andreas fault system

    USGS Publications Warehouse

    Wood, M.D.; Allen, S.S.

    1973-01-01

    VERIFICATIONS of tectonic concepts1 concerning seafloor spreading are emerging in a manner that has direct bearing on earthquake prediction. Although the gross pattern of worldwide seismicity contributed to the formulation of the plate tectonic hypothesis, it is the space-time characteristics of this seismicity that may contribute more toward understanding the kinematics and dynamics of the driving mechanism long speculated to originate in the mantle. If the lithosphere is composed of plates that move essentially as rigid bodies, then there should be seismic edge effects associated with this movement. It is these interplate effects, especially seismic migration patterns, that we discuss here. The unidirectional propagation at constant velocity (80 km yr-1 east to west) for earthquakes (M???7.2) on the Antblian fault for the period 1939 to 1956 (ref. 2) is one of the earliest observations of such a phenomenon. Similar studies3,4 of the Alaska Aleutian seismic zone and certain regions of the west coast of South America suggest unidirectional and recurring migrations of earthquakes (M???7.7) occur in these areas. Between these two regions along the great transform faults of the west coast of North America, there is some evidence 5 for unidirectional, constant velocity and recurrent migration of great earthquakes. The small population of earthquakes (M>7.2) in Savage's investigation5 indicates a large spatial gap along the San Andreas system in central California from 1830 to 1970. Previous work on the seismicity of this gap in central California indicates that the recurrence curves remain relatively constant, independent of large earthquakes, for periods up to a century6. Recurrence intervals for earthquakes along the San Andreas Fault have been calculated empirically by Wallace7 on the basis of geological evidence, surface measurements and assumptions restricted to the surficial seismic layer. Here we examine the evidence for recurrence of seismic migrations along the San Andreas fault system of central California for earthquakes of magnitude M???5. ?? 1973 Nature Publishing Group.

  16. 1957 Gobi-Altay, Mongolia, earthquake as a prototype for southern California's most devastating earthquake

    USGS Publications Warehouse

    Bayarsayhan, C.; Bayasgalan, A.; Enhtuvshin, B.; Hudnut, K.W.; Kurushin, R.A.; Molnar, P.; Olziybat, M.

    1996-01-01

    The 1957 Gobi-Altay earthquake was associated with both strike-slip and thrust faulting, processes similar to those along the San Andreas fault and the faults bounding the San Gabriel Mountains just north of Los Angeles, California. Clearly, a major rupture either on the San Andreas fault north of Los Angeles or on the thrust faults bounding the Los Angeles basin poses a serious hazard to inhabitants of that area. By analogy with the Gobi-Altay earthquake, we suggest that simultaneous rupturing of both the San Andreas fault and the thrust faults nearer Los Angeles is a real possibility that amplifies the hazard posed by ruptures on either fault system separately.

  17. Slip rates on San Francisco Bay area faults from anelastic deformation of the continental lithosphere

    USGS Publications Warehouse

    Geist, E.L.; Andrews, D.J.

    2000-01-01

    Long-term slip rates on major faults in the San Francisco Bay area are predicted by modeling the anelastic deformation of the continental lithosphere in response to regional relative plate motion. The model developed by Bird and Kong [1994] is used to simulate lithospheric deformation according to a Coulomb frictional rheology of the upper crust and a dislocation creep rheology at depth. The focus of this study is the long-term motion of faults in a region extending from the creeping section of the San Andreas fault to the south up to the latitude of Cape Mendocino to the north. Boundary conditions are specified by the relative motion between the Pacific plate and the Sierra Nevada - Great Valley microplate [Argus and Gordon, 2000]. Rheologic-frictional parameters are specified as independent variables, and prediction errors are calculated with respect to geologic estimates of slip rates and maximum compressive stress directions. The model that best explains the region-wide observations is one in which the coefficient of friction on all of the major faults is less than 0.15, with the coefficient of friction for the San Andreas fault being approximately 0.09, consistent with previous inferences of San Andreas fault friction. Prediction error increases with lower fault friction on the San Andreas, indicating a lower bound of ??SAF > 0.08. Discrepancies with respect to previous slip rate estimates include a higher than expected slip rate along the peninsula segment of the San Andreas fault and a slightly lower than expected slip rate along the San Gregorio fault.

  18. West margin of North America - A synthesis of recent seismic transects

    USGS Publications Warehouse

    Fuis, G.S.

    1998-01-01

    A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.

  19. Evaluation of hypotheses for right-lateral displacement of Neogene strata along the San Andreas Fault between Parkfield and Maricopa, California

    USGS Publications Warehouse

    Stanley, Richard G.; Barron, John A.; Powell, Charles L.

    2017-12-22

    We used geological field studies and diatom biostratigraphy to test a published hypothesis that Neogene marine siliceous strata in the Maricopa and Parkfield areas, located on opposite sides of the San Andreas Fault, were formerly contiguous and then were displaced by about 80–130 kilometers (km) of right-lateral slip along the fault. In the Maricopa area on the northeast side of the San Andreas Fault, the upper Miocene Bitterwater Creek Shale consists of hard, siliceous shale with dolomitic concretions and turbidite sandstone interbeds. Diatom assemblages indicate that the Bitterwater Creek Shale was deposited about 8.0–6.7 million years before present (Ma) at the same time as the uppermost part of the Monterey Formation in parts of coastal California. In the Parkfield area on the southwest side of the San Andreas Fault, the upper Miocene Pancho Rico Formation consists of soft to indurated mudstone and siltstone and fossiliferous, bioturbated sandstone. Diatom assemblages from the Pancho Rico indicate deposition about 6.7–5.7 Ma (latest Miocene), younger than the Bitterwater Creek Shale and at about the same time as parts of the Sisquoc Formation and Purisima Formation in coastal California. Our results show that the Bitterwater Creek Shale and Pancho Rico Formation are lithologically unlike and of different ages and therefore do not constitute a cross-fault tie that can be used to estimate rightlateral displacement along the San Andreas Fault.In the Maricopa area northeast of the San Andreas Fault, the Bitterwater Creek Shale overlies conglomeratic fan-delta deposits of the upper Miocene Santa Margarita Formation, which in turn overlie siliceous shale of the Miocene Monterey Formation from which we obtained a diatom assemblage dated at about 10.0–9.3 Ma. Previous investigations noted that the Santa Margarita Formation in the Maricopa area contains granitic and metamorphic clasts derived from sources in the northern Gabilan Range, on the opposite side of the San Andreas Fault, that have moved relatively northwestward by 254 ± 5 km of right-lateral displacement along the fault. Our new diatom ages suggest that Santa Margarita deposition and fault displacement began about 10–8 Ma and imply long-term average slip rates along the San Andreas Fault of about 25–32 millimeters per year (mm/yr), Evaluation of Hypotheses for Right-Lateral Displacement of Neogene Strata Along the San Andreas Fault Between Parkfield and Maricopa, California By Richard G. Stanley, John A. Barron, and Charles L. Powell, II about the same as published estimates of Quaternary average slip rates based on geologic and geodetic studies.

  20. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  1. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  2. Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey

    USGS Publications Warehouse

    Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.

    2006-01-01

    Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.

  3. Response of deformation patterns to reorganization of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Fattaruso, Laura A.; Cooke, Michele L.; Dorsey, Rebecca J.; Housen, Bernard A.

    2016-12-01

    Between 1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault zone, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that initiation and growth of the San Jacinto fault zone led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical-axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the modeled fault evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of incipient faulting, and support the notion of north-to-south propagation of the San Jacinto fault during its initiation.

  4. Northern California LIDAR Data: A Tool for Mapping the San Andreas Fault and Pleistocene Marine Terraces in Heavily Vegetated Terrain

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Crosby, C. J.; Harding, D. J.; Haugerud, R. A.; Merritts, D. J.; Gardner, T. W.; Koehler, R. D.; Baldwin, J. N.

    2003-12-01

    Recent acquisition of airborne LIDAR (also known as ALSM) data covering approximately 418 square kilometers of coastal northern California provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault and coastal uplift. LIDAR data has been previously used in the Puget Lowland region of Washington to identify and map Holocene faults and uplifted shorelines concealed under dense vegetation (Haugerud et al., 2003; see http://pugetsoundlidar.org). Our effort represents the first use of LIDAR data for this purpose along the San Andreas Fault. This data set is the result of a collaborative effort between NASA Solid Earth and Natural Hazards Program, Goddard Space Flight Center, Stennis Space Center, USGS, and TerraPoint, LLC. The coverage extends from near Fort Ross, California, in Sonoma County, along the coast northward to the town of Mendocino, in Mendocino County, and as far inland as about 1-3 km east of the San Andreas Fault. The survey area includes about 70 km of the northern San Andreas Fault under dense redwood forest, and Pleistocene coastal marine terraces both north and south of the fault. The average data density is two laser pulses per square meter, with up to four LIDAR returns per pulse. Returns are classified as ground or vegetation, allowing construction of both canopy-top and bare-earth DEMs with 1.8m grid spacing. Vertical accuracy is better than 20 cm RMSE, confirmed by a network of ground-control points established using high-precision GPS surveying. We are using hillshade images generated from the bare-earth DEMs to begin detailed mapping of geomorphic features associated with San Andreas Fault traces, such as scarps, offset streams, linear valleys, shutter ridges, and sag ponds. In addition, we are using these data in conjunction with field mapping and interpretation of conventional 1:12,000 and 1:6000 scale aerial photographs to map and correlate marine terraces to better understand rates of coastal uplift, and rates of strike-slip motion across the San Andreas Fault.

  5. Chapter E. The Loma Prieta, California, Earthquake of October 17, 1989 - Geologic Setting and Crustal Structure

    USGS Publications Warehouse

    Wells, Ray E.

    2004-01-01

    Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.

  6. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    NASA Astrophysics Data System (ADS)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely occur every 1000-1500 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940035213&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940035213&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplate%2Btectonics"><span>Measurements of strain at plate boundaries using space based geodetic techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robaudo, Stefano; Harrison, Christopher G. A.</p> <p>1993-01-01</p> <p>We have used the space based geodetic techniques of Satellite Laser Ranging (SLR) and VLBI to study strain along subduction and transform plate boundaries and have interpreted the results using a simple elastic dislocation model. Six stations located behind island arcs were analyzed as representative of subduction zones while 13 sites located on either side of the San Andreas fault were used for the transcurrent zones. The length deformation scale was then calculated for both tectonic margins by fitting the relative strain to an exponentially decreasing function of distance from the plate boundary. Results show that space-based data for the transcurrent boundary along the San Andreas fault help to define better the deformation length scale in the area while fitting nicely the elastic half-space earth model. For subduction type bonndaries the analysis indicates that there is no single scale length which uniquely describes the deformation. This is mainly due to the difference in subduction characteristics for the different areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1063/ofr20161063.pdf"><span>Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.</p> <p>2016-07-08</p> <p>High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021227','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021227"><span>Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.; Hart, P.E.</p> <p>1999-01-01</p> <p>The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020668','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020668"><span>Paleoseismic investigations in the Santa Cruz mountains, California: Implications for recurrence of large-magnitude earthquakes on the San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schwartz, D.P.; Pantosti, D.; Okumura, K.; Powers, T.J.; Hamilton, J.C.</p> <p>1998-01-01</p> <p>Trenching, microgeomorphic mapping, and tree ring analysis provide information on timing of paleoearthquakes and behavior of the San Andreas fault in the Santa Cruz mountains. At the Grizzly Flat site alluvial units dated at 1640-1659 A.D., 1679-1894 A.D., 1668-1893 A.D., and the present ground surface are displaced by a single event. This was the 1906 surface rupture. Combined trench dates and tree ring analysis suggest that the penultimate event occurred in the mid-1600s, possibly in an interval as narrow as 1632-1659 A.D. There is no direct evidence in the trenches for the 1838 or 1865 earthquakes, which have been proposed as occurring on this part of the fault zone. In a minimum time of about 340 years only one large surface faulting event (1906) occurred at Grizzly Flat, in contrast to previous recurrence estimates of 95-110 years for the Santa Cruz mountains segment. Comparison with dates of the penultimate San Andreas earthquake at sites north of San Francisco suggests that the San Andreas fault between Point Arena and the Santa Cruz mountains may have failed either as a sequence of closely timed earthquakes on adjacent segments or as a single long rupture similar in length to the 1906 rupture around the mid-1600s. The 1906 coseismic geodetic slip and the late Holocene geologic slip rate on the San Francisco peninsula and southward are about 50-70% and 70% of their values north of San Francisco, respectively. The slip gradient along the 1906 rupture section of the San Andreas reflects partitioning of plate boundary slip onto the San Gregorio, Sargent, and other faults south of the Golden Gate. If a mid-1600s event ruptured the same section of the fault that failed in 1906, it supports the concept that long strike-slip faults can contain master rupture segments that repeat in both length and slip distribution. Recognition of a persistent slip rate gradient along the northern San Andreas fault and the concept of a master segment remove the requirement that lower slip sections of large events such as 1906 must fill in on a periodic basis with smaller and more frequent earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176038','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176038"><span>The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.</p> <p>2016-01-01</p> <p>Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.2904T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.2904T"><span>The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thatcher, W.; Savage, J. C.; Simpson, R. W.</p> <p>2016-04-01</p> <p>Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013203','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013203"><span>A heat-flow reconnaissance of southeastern Alaska.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sass, J.H.; Lawver, L.A.; Munroe, R.J.</p> <p>1985-01-01</p> <p>Heat flow was measured at nine sites in crystalline and sedimentary rocks of SE Alaska. Seven of the sites, located between 115 and 155 km landward of the Queen Charlotte-Fairweather transform fault, have heat flows significantly higher than the mean in the coastal provinces between Cape Mendocino and the Queen Charlotte Islands, and lower than the mean for 81 values within 100 km of the San Andreas transform fault, even further S. There is no evidence for heat sources that might be associated with late Cainozoic thermal events.-P.Br.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2853Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2853Z"><span>The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuza, A. V.; Yin, A.; Lin, J. C.</p> <p>2015-12-01</p> <p>Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip fault systems, both on Earth and throughout the solar system (e.g., the Tiger Stripe Fractures on Enceladus).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/413/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/413/"><span>Data Files for Ground-Motion Simulations of the 1906 San Francisco Earthquake and Scenario Earthquakes on the Northern San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou</p> <p>2009-01-01</p> <p>This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020136','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020136"><span>Seismotectonics of the Loma Prieta, California, region determined from three-dimensional Vp, Vp/Vs, and seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eberhart-Phillips, D.; Michael, A.J.</p> <p>1998-01-01</p> <p>Three-dimensional Vp and Vp/Vs velocity models for the Loma Prieta region were developed from the inversion of local travel time data (21,925 P arrivals and 1,116 S arrivals) from earthquakes, refraction shots, and blasts recorded on 1700 stations from the Northern California Seismic Network and numerous portable seismograph deployments. The velocity and density models and microearthquake hypocenters reveal a complex structure that includes a San Andreas fault extending to the base of the seismogenic layer. A body with high Vp extends the length of the rupture and fills the 5 km wide volume between the Loma Prieta mainshock rupture and the San Andreas and Sargent faults. We suggest that this body controls both the pattern of background seismicity on the San Andreas and Sargent faults and the extent of rupture during the mainshock, thus explaining how the background seismicity outlined the along-strike and depth extent of the mainshock rupture on a different fault plane 5 km away. New aftershock focal mechanisms, based on three-dimensional ray tracing through the velocity model, support a heterogeneous postseismic stress field and can not resolve a uniform fault normal compression. The subvertical (or steeply dipping) San Andreas fault and the fault surfaces that ruptured in the 1989 Loma Prieta earthquake are both parts of the San Andreas fault zone and this section of the fault zone does not have a single type of characteristic event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189603','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189603"><span>A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.</p> <p>2014-01-01</p> <p>Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028930','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028930"><span>Surface fault slip associated with the 2004 Parkfield, California, earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.</p> <p>2006-01-01</p> <p>Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024068','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024068"><span>Deformation across the Pacific-North America plate boundary near San Francisco, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Prescott, W.H.; Savage, J.C.; Svarc, J.L.; Manaker, D.</p> <p>2001-01-01</p> <p>We have detected a narrow zone of compression between the Coast Ranges and the Great Valley, and we have estimated slip rates for the San Andreas, Rodgers Creek, and Green Valley faults just north of San Francisco. These results are based on an analysis of campaign and continuous Global Positioning System (GPS) data collected between 1992 and 2000 in central California. The zone of compression between the Coast Ranges and the Great Valley is 25 km wide. The observations clearly show 3.8??1.5 mm yr-1 of shortening over this narrow zone. The strike slip components are best fit by a model with 20.8??1.9 mm yr-1 slip on the San Andreas fault, 10.3??2.6 mm yr-1 on the Rodgers Creek fault, and 8.1??2.1 mm yr-1 on the Green Valley fault. The Pacific-Sierra Nevada-Great Valley motion totals 39.2??3.8 mm yr-1 across a zone that is 120 km wide (at the latitude of San Francisco). Standard deviations are one ??. The geodetic results suggest a higher than geologic rate for the Green Valley fault. The geodetic results also suggest an inconsistency between geologic estimates of the San Andreas rate and seismologic estimates of the depth of locking on the San Andreas fault. The only convergence observed is in the narrow zone along the border between the Great Valley and the Coast Ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.G21A..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.G21A..04B"><span>Holocene deceleration of the San Andreas fault zone in San Bernardino and implications for the eastern California shear zone rate debate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, R. A.; Lavier, L.; Anderson, M. L.; Matti, J.; Powell, R. E.</p> <p>2005-05-01</p> <p>New geodetic inferences for the rate of strain accumulation on the San Andreas fault associated with tectonic loading are ~20 mm/yr slower than observed Holocene surface displacement rates in the San Bernardino area, south of the fault's intersection with the San Jacinto fault zone, and north of its intersection with the eastern California shear zone (ECSZ). This displacement rate "anomaly" is significantly larger than can be easily explained by locking depth errors or earthquake cycle effects not accounted for in geodesy-constrained models for elastic loading rate. Using available time-averaged fault displacement-rates for the San Andreas and San Jacinto fault zones, we estimate instantaneous time-variable displacement rates on the San Andreas-San Jacinto-ECSZ fault zones, assuming that these fault zones form a closed system in the latitude band along which the fault zones overlap with one another and share in the accommodation of steady Pacific-North America relative plate motion. We find that the Holocene decrease in San Andreas loading rate can be compensated by a rapid increase in loading/displacement rate within the ECSZ over the past ~5 kyrs, independent of, but consistent with geodetic and geologic constraints derived from the ECSZ itself. Based on this model, we suggest that reported differences between fast contemporary strain rates observed on faults of the ECSZ using geodesy and slow rates inferred from Quaternary geology and Holocene paleoseismology (i.e., the ECSZ rate debate) may be explained by rapid changes in the pattern and rates of strain accumulation associated with fault loading largely unrelated to postseismic stress relaxation. If so, displacement rate data sets from Holocene geology and present-day geodesy could potentially provide important new constraints on the rheology of the lower crust and upper mantle representing lithospheric behavior on time-scales of thousands of years. Moreover, the results underscore that disagreement between geodetic and geologic fault displacement rates may reflect changes in strain accumulation rates associated with far-field elastic loading and thus earthquake potential, and not just transients.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.S34A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.S34A..03K"><span>Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.</p> <p>2004-12-01</p> <p>In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and individual owners, so that they can make well-informed financial decisions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S21A2141Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S21A2141Y"><span>Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yule, J.; McBurnett, P.; Ramzan, S.</p> <p>2011-12-01</p> <p>The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace. Subtle evidence for a third event is poorly constrained by age data to have occurred between 1600 and 2500 yrs ago. The southern splay at Millard Canyon forms a 1.5 ± 0.1 m scarp in an alluvial terrace that is inset into the lowest terrace at the northern Millard site, and therefore must be < ~1300 yrs old. Slip on this fault probably occurred during the most recent rupture in the Pass. In summary, we think that the most recent earthquake occurred 600-700 yrs ago and generated ~6 m of slip on the San Gorgonio Pass fault zone. The evidence for two older earthquakes is less complete but suggests that they are similar in style and magnitude to the most recent event. The available data therefore suggest that the San Gorgonio Pass fault zone has produced three large (~6 m) events in the last ~2000 yrs, a return period of ~700 yrs assuming that the next rupture is imminent. We prefer a model whereby a majority of San Andreas fault ruptures end as they approach the Pass region from the north or the south (like the Wrightwood event of A.D. 1812 and possibly the Coachella Valley event of ~A.D. 1680). Relatively rare (once-per-millennia?), through-going San Andreas events break the San Gorgonio Pass fault zone and produce the region's largest earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001094','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001094"><span>On simultaneous tilt and creep observations on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnston, M.J.S.; McHugh, S.; Burford, S.</p> <p>1976-01-01</p> <p>THE installation of an array of tiltmeters along the San Andreas Fault 1 has provided an excellent opportunity to study the amplitude and spatial scale of the tilt fields associated with fault creep. We report here preliminary results from, and some implications of, a search for interrelated surface tilts and creep event observations at four pairs of tiltmeters and creepmeters along an active 20-km stretch of the San Andreas Fault. We have observed clear creep-related tilts above the instrument resolution (10 -8 rad) only on a tiltmeter less than 0.5 km from the fault. The tilt events always preceded surface creep observations by 2-12 min, and were not purely transient in character. ?? 1975 Nature Publishing Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026100','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026100"><span>Topographically driven groundwater flow and the San Andreas heat flow paradox revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Saffer, D.M.; Bekins, B.A.; Hickman, S.</p> <p>2003-01-01</p> <p>Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041906','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041906"><span>Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,</p> <p>2011-01-01</p> <p>The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037694','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037694"><span>Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.</p> <p>2010-01-01</p> <p>Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188756"><span>Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bohannon, Robert G.; Howell, David G.</p> <p>1982-01-01</p> <p>If the San Andreas fault with about 300 km of right slip, the Carlock fault with about 60 km of left slip, and the Big Pine fault with about 15 km of left slip are considered to have been contemporaneously active, a space problem at their high-angle junctions becomes apparent. Large crustal masses converge in the area of the junctions as a result of the simultaneous large displacements on the faults. We present here a model in which an early straight north-northwest–trending San Andreas deforms to its present bent configuration in response to a westward displacement of crust north of the Garlock fault. During this deformation, the crust north of the Garlock in the vicinity of the junction undergoes north-south shortening, while the fault junction migrates along the trace of the San Andreas fault to the southeast relative to its original position. As a result of this migration, the Mojave area is displaced to the east relative to the original junction position. We suggest a similar history in mirror image for the Big Pine fault and the areas of crust adjacent to it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028715','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028715"><span>Introduction to the special issue on the 2004 Parkfield earthquake and the Parkfield earthquake prediction experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harris, R.A.; Arrowsmith, J.R.</p> <p>2006-01-01</p> <p>The 28 September 2004 M 6.0 Parkfield earthquake, a long-anticipated event on the San Andreas fault, is the world's best recorded earthquake to date, with state-of-the-art data obtained from geologic, geodetic, seismic, magnetic, and electrical field networks. This has allowed the preearthquake and postearthquake states of the San Andreas fault in this region to be analyzed in detail. Analyses of these data provide views into the San Andreas fault that show a complex geologic history, fault geometry, rheology, and response of the nearby region to the earthquake-induced ground movement. Although aspects of San Andreas fault zone behavior in the Parkfield region can be modeled simply over geological time frames, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake indicate that predicting the fine details of future earthquakes is still a challenge. Instead of a deterministic approach, forecasting future damaging behavior, such as that caused by strong ground motions, will likely continue to require probabilistic methods. However, the Parkfield Earthquake Prediction Experiment and the 2004 Parkfield earthquake have provided ample data to understand most of what did occur in 2004, culminating in significant scientific advances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9112315S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9112315S"><span>Monitoring of hydrogen along the San Andreas and Calaveras faults in central California in 1980-1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Motoaki; Sutton, A. J.; McGee, K. A.; Russell-Robinson, Susan</p> <p>1986-11-01</p> <p>Hydrogen (H2) has been monitored continuously at 1.5-m depth at nine sites along the San Andreas and Calaveras faults in central California since December 1980. Site characteristic small noninstrumental diurnal variations were recorded during quiescent periods at most sites. Abrupt H2 changes were observed concurrently at two sites on the Calaveras fault; some of these were correlated with oscillatory fault slips. Large (1000-4000 ppm) H2 increases were recorded at some sites on the San Andreas fault between July 1982 and November 1983, which may be correlated with eleven M ≥ 5 earthquakes that occurred near Coalinga during this period. We attribute both the H2 increases and the triggering of the earthquakes to a large-scale compressive stress field within the ductile mafic crust near the plate boundary. The stress perhaps caused bulging of the base of the brittle upper crust and thus caused dilation of the San Andreas fault zone, allowing the escape of pent-up H2 generated by hydration reaction of the mafic crust. At the same time, mobile serpentinites may have squeezed into the seismogenic fault beneath the Coalinga area triggering the earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160882','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160882"><span>Crustal-scale tilting of the central Salton block, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dorsey, Rebecca; Langenheim, Victoria</p> <p>2015-01-01</p> <p>The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014370','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014370"><span>The response of creeping parts of the San Andreas fault to earthquakes on nearby faults: Two examples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.</p> <p>1988-01-01</p> <p>Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41C0631Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41C0631Y"><span>Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, H.; Moresi, L. N.</p> <p>2017-12-01</p> <p>The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient < 0.1) is requisite. To the first order, there is significant density difference between the Great Valley and the adjacent Mojave block. The Great Valley block is much colder and of larger density (>200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2004/1389/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2004/1389/"><span>GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sanchez, Richard D.; Hudnut, Kenneth W.</p> <p>2004-01-01</p> <p>Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bssaonline.org/content/84/3/799.abstract','USGSPUBS'); return false;" href="http://www.bssaonline.org/content/84/3/799.abstract"><span>Continuous borehole strain in the San Andreas fault zone before, during, and after the 28 June 1992, MW 7.3 Landers, California, earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnston, M.J.S.; Linde, A.T.; Agnew, D.C.</p> <p>1994-01-01</p> <p>High-precision strain was observed with a borehole dilational strainmeter in the Devil's Punchbowl during the 11:58 UT 28 June 1992 MW 7.3 Landers earthquake and the large Big Bear aftershock (MW 6.3). The strainmeter is installed at a depth of 176 m in the fault zone approximately midway between the surface traces of the San Andreas and Punchbowl faults and is about 100 km from the 85-km-long Landers rupture. We have questioned whether unusual amplified strains indicating precursive slip or high fault compliance occurred on the faults ruptured by the Landers earthquake, or in the San Andreas fault zone before and during the earthquake, whether static offsets for both the Landers and Big Bear earthquakes agree with expectation from geodetic and seismologic models of the ruptures and with observations from a nearby two-color geodimeter network, and whether postseismic behavior indicated continued slip on the Landers rupture or local triggered slip on the San Andreas. We show that the strain observed during the earthquake at this instrument shows no apparent amplification effects. There are no indications of precursive strain in these strain data due to either local slip on the San Andreas or precursive slip on the eventual Landers rupture. The observations are generally consistent with models of the earthquake in which fault geometry and slip have the same form as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. Finally, there are some indications of minor postseismic behavior, particularly during the month following the earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189840"><span>Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from SAFOD drilling phases I and II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong</p> <p>2009-01-01</p> <p>Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m < 0.2) or strength consistent with standard laboratory tests (m > 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035174','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035174"><span>Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.</p> <p>2010-01-01</p> <p>The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic ‘non-volcanic’ tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15–80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70056384','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70056384"><span>Seismicity around Parkfield correlates with static shear stress changes following the 2003 Mw6.5 San Simeon earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.</p> <p>2013-01-01</p> <p>Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012387','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012387"><span>Heat flow and energetics of the San Andreas fault zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lachenbruch, A.H.; Sass, J.H.</p> <p>1980-01-01</p> <p>Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930007903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930007903"><span>An investigation of extensional tectonics of southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richard, Steven M.; Crowell, John C.</p> <p>1992-01-01</p> <p>Geologic mapping and interpretation of Landsat TM imagery has filled in a significant gap in the geologic database for southwestern Arizona and southeastern California. The new data acquired, along with interpretation of existing data, forms the basis for a proposed reconstruction of late Tertiary faults in these regions. This reconstruction integrates available geological and geophysical data to define the eastern limit of deformation related to the San Andreas fault, and has significant implications for other recently proposed reconstructions of Tertiary deformation in the region. This progress in interpreting deformation during the last 10 Ma in the region forms a foundation for developing and testing models of older deformation in this region, including the initiation of San Andreas fault system, and the interaction of Early Miocene extension in the Basin and Range with the evolving San Andreas system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008EOSTr..89..349V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008EOSTr..89..349V"><span>Drill Bit Noise Illuminates the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasconcelos, Ivan; Snieder, Roel; Sava, Paul; Taylor, Tom; Malin, Peter; Chavarria, Andres</p> <p>2008-09-01</p> <p>Extracting the vibration response of the subsurface from noise is a rapidly growing field of research [Curtis et al., 2006; Larose et al., 2006]. We carried out broadside imaging of the San Andreas fault zone (SAFZ) using drill bit noise created in the main hole of the San Andreas Fault Observatory at Depth (SAFOD), near Parkfield, Calif. Imaging with drill bit noise is not new, but it traditionally requires the measurement of the vibrations of the drill stem [Rector and Marion, 1991]; such measurements provide the waves radiated by the drill bit. At SAFOD, these measurements were not available due to the absence of an accelerometer mounted on the drill stem. For this reason, the new technique of deconvolution interferometry was used [Vasconcelos and Snieder, 2008]. This technique extracts the waves propagating between seismometers from recordings of incoherent noise.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042474','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042474"><span>Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Rymer, Michael J.</p> <p>2012-01-01</p> <p>Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T43D..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T43D..03W"><span>Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.</p> <p>2010-12-01</p> <p>Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412569H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412569H"><span>Recording Plate Boundary Deformation Processes Around The San Jacinto Fault, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hodgkinson, K.; Mencin, D.; Borsa, A.; Fox, O.; Walls, C.; Van Boskirk, E.</p> <p>2012-04-01</p> <p>The San Jacinto Fault is one of the major faults which form the San Andreas Fault System in southern California. The fault, which lies to the west of the San Andreas, is one of the most active in the region. While strain rates are higher along the San Andreas, 23-37 mm/yr compared to 12-22 mm/yr along the San Jacinto, there have been 11 earthquakes of M6 and greater along the San Jacinto in the past 150 years while there have been none of this magnitude on the San Andreas in this region. UNAVCO has installed an array of geodetic and seismic instruments along the San Jacinto as part of the Plate Boundary Observatory (PBO). The network includes 25 GPS stations within 20 km of the surface trace with a concentration of borehole instrumentation in the Anza region where there are nine boreholes sites. Most of the borehole sites contain a GTSM21 4-component strainmeter, a Sonde-2 seismometer, a MEMS accelerometer and a pore pressure sensor. Thus, the array has the capability to capture plate boundary deformation processes with periods of milliseconds (seismic) to decades (GPS). On July 7th 2010 a M5.4 earthquake occurred on the Coyote Creek segment of the fault. The event was preceded by a M4.9 earthquake in the same area four weeks earlier and four earthquakes of M5 and greater within a 20 km radius of the epicenter in the past 50 years. In this study we will present the signals recorded by the different instrument types for the July 7th 2010 event and will compare the coseismic displacements recorded by the GPS and strainmeters with the displacement field predicted by Okada [1992]. All data recorded as part of the PBO observatory are publically available from the UNAVCO, the IRIS Data Management Center and the Northern California Earthquake Data Center.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/902293','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/902293"><span>Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>der Woerd, J v; Klinger, Y; Sieh, K</p> <p></p> <p>We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposuremore » history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5132G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5132G"><span>Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutjahr, S.; Buske, S.</p> <p>2012-04-01</p> <p>We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70000324','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70000324"><span>The wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lynch, D.K.; Hudnut, K.W.</p> <p>2008-01-01</p> <p>We present the results of a survey of mud pots in the Wister Unit of the Imperial Wildlife Area. Thirty-three mud pots, pot clusters, or related geothermal vents (hundreds of pots in all) were identified, and most were found to cluster along a northwest-trending line that is more or less coincident with the postulated Sand Hills fault. An extrapolation of the trace of the San Andreas fault southeastward from its accepted terminus north of Bombay Beach very nearly coincides with the mud pot lineament and may represent a surface manifestation of the San Andreas fault southeast of the Salton Sea. Additionally, a recent survey of vents near Mullet Island in the Salton Sea revealed eight areas along a northwest-striking line where gas was bubbling up through the water and in two cases hot mud and water were being violently ejected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033357','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033357"><span>Paleomagnetic reorientation of San Andreas Fault Observatory at Depth (SAFOD) core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pares, J.M.; Schleicher, A.M.; van der Pluijm, B.A.; Hickman, S.</p> <p>2008-01-01</p> <p>We present a protocol for using paleomagnetic analysis to determine the absolute orientation of core recovered from the SAFOD borehole. Our approach is based on determining the direction of the primary remanent magnetization of a spot core recovered from the Great Valley Sequence during SAFOD Phase 2 and comparing its direction to the expected reference field direction for the Late Cretaceous in North America. Both thermal and alternating field demagnetization provide equally resolved magnetization, possibly residing in magnetite, that allow reorientation. Because compositionally similar siltstones and fine-grained sandstones were encountered in the San Andreas Fault Zone during Stage 2 rotary drilling, we expect that paleomagnetic reorientation will yield reliable core orientations for continuous core acquired from directly within and adjacent to the San Andreas Fault during SAFOD Phase 3, which will be key to interpretation of spatial properties of these rocks. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.S12F..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.S12F..07S"><span>The Bay Area Earthquake Cycle:A Paleoseismic Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwartz, D. P.; Seitz, G.; Lienkaemper, J. J.; Dawson, T. E.; Hecker, S.; William, L.; Kelson, K.</p> <p>2001-12-01</p> <p>Stress changes produced by the 1906 San Francisco earthquake had a profound effect on Bay Area seismicity, dramatically reducing it in the 20th century. Whether the San Francisco Bay Region (SFBR) is still within, is just emerging from it, or is out of the 1906 stress shadow is an issue of strong debate with important implications for earthquake mechanics and seismic hazards. Historically the SFBR has not experienced one complete earthquake cycle--the interval immediately following, then leading up to and repeating, a 1906-type (multi-segment rupture, M7.9) San Andreas event. The historical record of earthquake occurrence in the SFBR appears to be complete at about M5.5 back to 1850 (Bakun, 1999), which is less than half a cycle. For large events (qualitatively placed at M*7) Toppozada and Borchardt (1998) suggest the record is complete back to 1776, which may represent about half a cycle. During this period only the southern Hayward fault (1868) and the San Andreas fault (1838?, 1906) have produced their expected large events. New paleoseismic data now provide, for the first time, a more complete view of the most recent pre-1906 SFBR earthquake cycle. Focused paleoseismic efforts under the Bay Area Paleoearthquake Experiment (BAPEX) have developed a chronology of the most recent large earthquakes (MRE) on major SFBR faults. The San Andreas (SA), northern Hayward (NH), southern Hayward (SH), Rodgers Creek (RC), and northern Calaveras (NC) faults provide clear paleoseismic evidence for large events post-1600 AD. The San Gregorio (SG) may have also produced a large earthquake after this date. The timing of the MREs, in years AD, follows. The age ranges are 2-sigma radiocarbon intervals; the dates in parentheses are 1-sigma. MRE ages are: a) SA 1600-1670 (1630-1660), NH 1640-1776 (1635-1776); SH 1635-1776 (1685-1676); RC 1670-1776 (1730-1776); NC 1670-1830?; and San Gregorio 1270-1776 but possibly 1640-1776 (1685-1776). Based on present radiocarbon dating, the NH/SH/RC/NC/(SG?) sequence likely occurred subsequent to the penultimate San Andreas event. Although offset data, which reflect M, are limited, observations indicate that the penultimate SA event ruptured essentially the same fault length as 1906 (Schwartz et al, 1998). In addition, measured point-specific slip (RC, 1.8-2.3m; SG, 3.5-5m) and modeled average slip (SH, 1.9m) for the MREs indicate large magnitude earthquakes on the other regional faults. The major observation from the new paleoseismic data is that during a maximum interval of 176 years (1600 to 1776), significant seismic moment was released in the SFBR by large (M*6.7) surface-faulting earthquakes on the SA, RC, SH, NH, NC and possibly SG faults. This places an upper limit on the duration of San Andreas interaction effects (stress shadow) on the regional fault system. In fact, the interval between the penultimate San Andreas rupture and large earthquakes on other SFBR faults could have been considerably shorter. We are now 95 years out from the 1906 and the SFBR Working Group 99 probability time window extends to 2030, an interval of 124 years. The paleoearthquake data allow that within this amount of time following the penultimate San Andreas event one or more large earthquakes may have occurred on Bay Area faults. Longer paleoearthquake chronologies with more precise event dating in the SFBR and other locales provide the exciting potential for defining regional earthquake cycles and modeling long-term fault interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021770','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021770"><span>Geodetic estimates of fault slip rates in the San Francisco Bay area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savage, J.C.; Svarc, J.L.; Prescott, W.H.</p> <p>1999-01-01</p> <p>Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et al. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016318','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016318"><span>Crustal strain near the Big Bend of the San Andreas Fault: analysis of the Los Padres-Tehachapi Trilateration Networks, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eberhart-Phillips, D.; Lisowski, M.</p> <p>1990-01-01</p> <p>In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30?? from N40??W, close to that predicted by plate motion for a transform boundary, to N73??W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38??0.01??rad/yr at N63??W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19??0.01??rad/yr at N44??W. The best fitting Garlock fault model had computed left-lateral slip rate of 11??2mm/yr below 10km. Buried left-lateral slip of 15??6mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986JGR....9114080F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986JGR....9114080F"><span>Distinctive Triassic megaporphyritic monzogranite: Evidence for only 160 km offset along the San Andreas Fault, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frizzell, Virgil A., Jr.; Mattinson, James M.; Matti, Jonathan C.</p> <p>1986-12-01</p> <p>Distinctive megaporphyritic bodies of monzogranite to quartz monzonite that occur in the Mill Creek region of the San Bernardino Mountains and across the San Andreas fault on Liebre Mountain share identical modal and chemical compositions, intrusive ages, and petrogenesis and similar thermal histories. Both bodies are strontium-rich and contain large potassium feldspar phenocrysts and hornblende. U-Pb determinations on zircon from both bodies indicate Triassic intrusive ages (215 Ma) and derivation, in part, from homogeneous Precambrian continental crust. U-Pb analyses on apatite and sphene and K-Ar analyses on hornblende and biotite show that the bodies suffered a Late Cretaceous thermal event (70-75 Ma). The strong similarities between the two bodies suggest that they constitute segments of a formerly continuous pluton that has been offset about 160 km by movement on the San Andreas fault, about 80 km less than the generally accepted distance. Plutons having monzonitic compositions, reassembled with the megaporphyritic bodies are used as a piercing point, form a relatively coherent province within the varied suite of Mesozoic batholithic and prebatholithic rocks in southern California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036995','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036995"><span>San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.</p> <p>2009-01-01</p> <p>The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030106066&hterms=coulomb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoulomb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030106066&hterms=coulomb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcoulomb"><span>Coulomb Stress Accumulation along the San Andreas Fault System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Bridget; Sandwell, David</p> <p>2003-01-01</p> <p>Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1979/0584/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1979/0584/report.pdf"><span>Base and precious metal occurrences along the San Andreas Fault, Point Delgada, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McLaughlin, Robert J.; Sorg, D.H.; Ohlin, H.N.; Heropoulos, Chris</p> <p>1979-01-01</p> <p>Previously unrecognized veins containing lead, zinc, and copper sulfide minerals at Point Delgada, Calif., are associated with late Mesozoic(?) and Tertiary volcanic and sedimentary rocks of the Franciscan assemblage. Sulfide minerals include pyrite, sphalerite, galena, and minor chalcopyrite, and galena-rich samples contain substantial amounts of silver. These minerals occur in a quartz-carbonate gangue along northeast-trending faults and fractures that exhibit (left?) lateral and vertical slip. The sense of fault movement and the northeasterly strike are consistent with predicted conjugate fault sets of the present San Andreas fault system. The sulfide mineralization is younger than the Franciscan rocks of Point Delgada and King Range, and it may have accompanied or postdated the inception of San Andreas faulting. Mineralization largely preceded uplift, the formation of a marine terrace, and the emplacement of landslide-related debris-flow breccias that overlie the mineralized rocks and truncate the sulfide veins. These field relations indicate that the sulfide mineralization and inception of San Andreas faulting were clearly more recent than the early Miocene and that the mineralization could be younger than about 1.2 m.y. The sulfide veins at Point Delgada may be of economic significance. However, prior to any exploitation of the occurrence, economic and environmental conflicts of interest involving private land ownership, the Shelter Cove home development, and proximity of the coast must be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036563','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036563"><span>Seismicity rate changes along the central California coast due to stress changes from the 2003 M 6.5 San Simeon and 2004 M 6.0 Parkfield earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aron, A.; Hardebeck, J.L.</p> <p>2009-01-01</p> <p>We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129041','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129041"><span>Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrow, Carolyn A.; Lockner, David A.; Moore, Diane E.; Hickman, Stephen H.</p> <p>2014-01-01</p> <p>The San Andreas Fault Observatory at Depth (SAFOD) scientific borehole near Parkfield, California crosses two actively creeping shear zones at a depth of 2.7 km. Core samples retrieved from these active strands consist of a foliated, Mg-clay-rich gouge containing porphyroclasts of serpentinite and sedimentary rock. The adjacent damage zone and country rocks are comprised of variably deformed, fine-grained sandstones, siltstones, and mudstones. We conducted laboratory tests to measure the permeability of representative samples from each structural unit at effective confining pressures, Pe up to the maximum estimated in situ Pe of 120 MPa. Permeability values of intact samples adjacent to the creeping strands ranged from 10−18 to 10−21 m2 at Pe = 10 MPa and decreased with applied confining pressure to 10−20–10−22 m2 at 120 MPa. Values for intact foliated gouge samples (10−21–6 × 10−23 m2 over the same pressure range) were distinctly lower than those for the surrounding rocks due to their fine-grained, clay-rich character. Permeability of both intact and crushed-and-sieved foliated gouge measured during shearing at Pe ≥ 70 MPa ranged from 2 to 4 × 10−22 m2 in the direction perpendicular to shearing and was largely insensitive to shear displacement out to a maximum displacement of 10 mm. The weak, actively-deforming foliated gouge zones have ultra-low permeability, making the active strands of the San Andreas Fault effective barriers to cross-fault fluid flow. The low matrix permeability of the San Andreas Fault creeping zones and adjacent rock combined with observations of abundant fractures in the core over a range of scales suggests that fluid flow outside of the actively-deforming gouge zones is probably fracture dominated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024041','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024041"><span>Nearly frictionless faulting by unclamping in long-term interaction models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.</p> <p>2002-01-01</p> <p>In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.G11B..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.G11B..07P"><span>Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.</p> <p>2004-12-01</p> <p>We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1437/e/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1437/e/"><span>Overview of the Southern San Andreas Fault Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weldon, Ray J.; Biasi, Glenn P.; Wills, Chris J.; Dawson, Timothy E.</p> <p>2008-01-01</p> <p>This appendix summarizes the data and methodology used to generate the source model for the southern San Andreas fault. It is organized into three sections, 1) a section by section review of the geological data in the format of past Working Groups, 2) an overview of the rupture model, and 3) a manuscript by Biasi and Weldon (in review Bulletin of the Seismological Society of America) that describes the correlation methodology that was used to help develop the ?geologic insight? model. The goal of the Biasi and Weldon methodology is to quantify the insight that went into developing all A faults; as such it is in concept consistent with all other A faults but applied in a more quantitative way. The most rapidly slipping fault and the only known source of M~8 earthquakes in southern California is the San Andreas fault. As such it plays a special role in the seismic hazard of California, and has received special attention in the current Working Group. The underlying philosophy of the current Working Group is to model the recurrence behavior of large, rapidly slipping faults like the San Andreas from observed data on the size, distribution and timing of past earthquakes with as few assumptions about underlying recurrence behavior as possible. In addition, we wish to carry the uncertainties in the data and the range of reasonable extrapolations from the data to the final model. To accomplish this for the Southern San Andreas fault we have developed an objective method to combine all of the observations of size, timing, and distribution of past earthquakes into a comprehensive set of earthquake scenarios that each represent a possible history of earthquakes for the past ~1400 years. The scenarios are then ranked according to their overall consistency with the data and then the frequencies of all of the ruptures permitted by the current Working Group?s segmentation model are calculated. We also present 30-yr conditional probabilities by segment and compare to previous results. A distinctive aspect of the current model is that the probability is higher at both ends of the fault and that the ends have a much greater fraction of smaller events. There is a significant difference in the likelihood of large (M 7.7-8.0) earthquakes along the fault from north to south, with large 1857-like events common on the northern half of the southern San Andreas fault but relatively few M 7.7-8.0 expected on the southern half.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030590','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030590"><span>Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holzer, T.L.; Blair, J.L.; Noce, T.E.; Bennett, M.J.</p> <p>2006-01-01</p> <p>Predicted conditional probabilities of surface manifestations of liquefaction during a repeat of the 1906 San Francisco (M7.8) earthquake range from 0.54 to 0.79 in the area underlain by the sandy artificial fills along the eastern shore of San Francisco Bay near Oakland, California. Despite widespread liquefaction in 1906 of sandy fills in San Francisco, most of the East Bay fills were emplaced after 1906 without soil improvement to increase their liquefaction resistance. They have yet to be shaken strongly. Probabilities are based on the liquefaction potential index computed from 82 CPT soundings using median (50th percentile) estimates of PGA based on a ground-motion prediction equation. Shaking estimates consider both distance from the San Andreas Fault and local site conditions. The high probabilities indicate extensive and damaging liquefaction will occur in East Bay fills during the next M ??? 7.8 earthquake on the northern San Andreas Fault. ?? 2006, Earthquake Engineering Research Institute.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880025657&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880025657&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplate%2Btectonics"><span>A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.</p> <p>1987-01-01</p> <p>Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010301','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010301"><span>Use of microearthquakes in the study of the mechanics of earthquake generation along the San Andreas fault in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eaton, J.P.; Lee, W.H.K.; Pakiser, L.C.</p> <p>1970-01-01</p> <p>A small, dense network of independently recording portable seismograph stations was used to delineate the slip surface associated with the 1966 Parkfield-Cholame earthquake by precise three dimensional mapping of the hypocenters of its aftershocks. The aftershocks were concentrated in a very narrow vertical zone beneath or immediately adjacent to the zone of surf ace fracturing that accompanied the main shock. Focal depths ranged from less than 1 km to a maximum of 15 km. The same type of portable network was used to study microearthquakes associated with an actively creeping section of the San Andreas fault south of Hollister during the summer of 1967. Microearthquake activity during the 6-week operation of this network was dominated by aftershocks of a magnitude-4 earthquake that occurred within the network near Bear Valley on July 23. Most of the aftershocks were concentrated in an equidimensional region about 2 1 2km across that contained the hypocenter of the main shock. The zone of the concentrated aftershocks was centered near the middle of the rift zone at a depth of about 3 1 2km. Hypocenters of other aftershocks outlined a 25 km long zone of activity beneath the actively creeping strand of the fault and extending from the surface to a depth of about 13 km. A continuing study of microearthquakes along the San Andreas, Hayward, and Calaveras faults between Hollister and San Francisco has been under way for about 2 years. The permanent telemetered network constructed for this purpose has grown from about 30 stations in early 1968 to about 45 stations in late 1969. Microearthquakes between Hollister and San Francisco are heavily concentrated in narrow, nearly vertical zones along sections of the Sargent, San Andreas, and Calaveras faults. Focal depths range from less than 1 km to about 14 km. ?? 1970.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.S42B..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.S42B..08N"><span>Nonvolcanic Deep Tremors in the Transform Plate Bounding San Andreas Fault Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nadeau, R. M.; Dolenc, D.</p> <p>2004-12-01</p> <p>Recently, deep ( ˜ 20 to 40 km) nonvolcanic tremor activity has been observed on convergent plate boundaries in Japan and in the Cascadia region of North America (Obara, 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). Because of the abundance of available fluids from subduction processes in these convergent zones, fluids are believed to play an important role in the generation of the tremor activity. The transient rates of tremor activity in these regions are also observed to correlate either with the occurrence of larger earthquakes (Obara, 2002) or with geodetically determined transient creep events that release large amounts of strain energy deep beneath the locked Cascadia megathrust (M.M. Miller et al., 2002; Rodgers and Dragert, 2003; Szeliga et al., 2004). These associations suggest that nonvolcanic tremor activity may participate in a fundamental mode of deep moment release and in the triggering of large subduction zone events (Rodgers and Dragert, 2003). We report the discovery of deep ( ˜ 20 to 45 km) nonvolcanic tremor activity on the transform plate bounding San Andreas Fault (SAF) in central California where, in contrast to subduction zones, long-term deformation directions are horizontal and fluid availability from subduction zone processes is absent. The source region of the SAF tremors lies beneath the epicentral region of the great 1857 magnitude (M) ˜ 8, Fort Tejon earthquake whose rupture zone is currently locked (Sieh, 1978). Activity rate transients of the tremors occurring since early 2001 also correlate with seismicity rate variations above the tremor source region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0449/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0449/"><span>Photomosaics and logs of trenches on the San Andreas Fault, Thousand Palms Oasis, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, Thomas E.; Frost, William T.; Garvin, Christopher; Hamilton, John C.; Jaasma, Monique; Rymer, Michael J.</p> <p>2004-01-01</p> <p>We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Thousand Palms Oasis (Fig. 1). The site is located on the Mission Creek strand of the San Andreas fault zone, one of two major active strands of the fault in the Indio Hills along the northeast margin of the Coachella Valley (Fig. 2). The Coachella Valley section is the most poorly understood major part of the San Andreas fault with regard to slip rate and timing of past large-magnitude earthquakes, and therefore earthquake hazard. No large earthquakes have occurred for more than three centuries, the longest elapsed time for any part of the southern San Andreas fault. In spite of this, the Working Group on California Earthquake Probabilities (1995) assigned the lowest 30-year conditional probability on the southern San Andreas fault to the Coachella Valley. Models of the behavior of this part of the fault, however, have been based on very limited geologic data. The Thousand Palms Oasis is an attractive location for paleoseismic study primarily because of the well-bedded late Holocene sedimentary deposits with abundant layers of organic matter for radiocarbon dating necessary to constrain the timing of large prehistoric earthquakes. Previous attempts to develop a chronology of paleoearthquakes for the region have been hindered by the scarcity of in-situ 14C-dateable material for age control in this desert environment. Also, the fault in the vicinity of Thousand Palms Oasis consists of a single trace that is well expressed, both geomorphically and as a vegetation lineament (Figs. 2, 3). Results of our investigations are discussed in Fumal et al. (2002) and indicate that four and probably five surface-rupturing earthquakes occurred along this part of the fault during the past 1200 years. The average recurrence time for these earthquakes is 215 ± 25 years, although interevent times may have been as short as a few decades or as long as 400 years. Thus, although the elapsed time since the most recent earthquake, about 320 years, is about 50% longer than the average recurrence time, it is not necessarily unprecedented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........47T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........47T"><span>Deformation rates across the San Andreas Fault system, central California determined by geology and geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Titus, Sarah J.</p> <p></p> <p>The San Andreas fault system is a transpressional plate boundary characterized by sub-parallel dextral strike-slip faults separating internally deformed crustal blocks in central California. Both geodetic and geologic tools were used to understand the short- and long-term partitioning of deformation in both the crust and the lithospheric mantle across the plate boundary system. GPS data indicate that the short-term discrete deformation rate is ˜28 mm/yr for the central creeping segment of the San Andreas fault and increases to 33 mm/yr at +/-35 km from the fault. This gradient in deformation rates is interpreted to reflect elastic locking of the creeping segment at depth, distributed off-fault deformation, or some combination of these two mechanisms. These short-term fault-parallel deformation rates are slower than the expected geologic slip rate and the relative plate motion rate. Structural analysis of folds and transpressional kinematic modeling were used to quantify long-term distributed deformation adjacent to the Rinconada fault. Folding accommodates approximately 5 km of wrench deformation, which translates to a deformation rate of ˜1 mm/yr since the start of the Pliocene. Integration with discrete offset on the Rinconada fault indicates that this portion of the San Andreas fault system is approximately 80% strike-slip partitioned. This kinematic fold model can be applied to the entire San Andreas fault system and may explain some of the across-fault gradient in deformation rates recorded by the geodetic data. Petrologic examination of mantle xenoliths from the Coyote Lake basalt near the Calaveras fault was used to link crustal plate boundary deformation at the surface with models for the accommodation of deformation in the lithospheric mantle. Seismic anisotropy calculations based on xenolith petrofabrics suggest that an anisotropic mantle layer thickness of 35-85 km is required to explain the observed shear wave splitting delay times in central California. The available data are most consistent with models for a broad zone of distributed deformation in the lithospheric mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028793','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028793"><span>San Andreas fault geometry in the Parkfield, California, region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.</p> <p>2006-01-01</p> <p>In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRB..107.2142R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRB..107.2142R"><span>Aftershocks of microearthquakes as probes of the mechanics of rupture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rubin, Allan M.</p> <p>2002-07-01</p> <p>Using a waveform cross-correlation technique, Rubin and Gillard [2000] obtained precise relative locations for 4300 0.5 < M < 3.5 earthquakes occurring along 50 km of the San Andreas fault. This study adds to that another 5000 earthquakes distributed along 10 km of the San Andreas fault and 20 km of the Calaveras fault. Errors in relative location are typically tens of meters for earthquakes separated by hundreds of meters and, after correcting for time-dependent station delays, meters for earthquakes separated by tens of meters. Along both faults, the minimum separation between consecutive earthquakes scales with magnitude in a manner consistent with a magnitude-independent stress drop. By treating each earthquake on the San Andreas as if it were a main shock, scaling the distances to all subsequent earthquakes by main shock size, and stacking the results, a ``composite'' aftershock sequence is produced that has many of the characteristics predicted by rate-and-state friction models. Projected onto the fault surface, these aftershocks outline a quasi-elliptical, roughly 4-MPa stress drop main shock elongate in the slip-parallel direction by ~40%. At the ends of the major axes of this ellipse over twice as many aftershocks occur to the NW than to the SE, an asymmetry attributed to the contrast in material properties across the fault. Unlike the San Andreas, the Calaveras fault exhibits little P wave velocity contrast and no discernible aftershock asymmetry; however, the earliest part of the aftershock sequence on the Calaveras might be truncated by the ~30-s ``blind'' time of the network following a triggering event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035432','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035432"><span>Correlation between deep fluids, tremor and creep along the central San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.</p> <p>2011-01-01</p> <p>The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860009340','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860009340"><span>Dislocation model for aseismic fault slip in the transverse ranges of Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, A.; Jackson, D. D.; Matsuura, M.</p> <p>1985-01-01</p> <p>Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29662122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29662122"><span>Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique</p> <p>2018-04-16</p> <p>This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760016574','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760016574"><span>Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.</p> <p>1976-01-01</p> <p>The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0450/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0450/"><span>Photomosaics and logs of trenches on the San Andreas Fault at Arano Flat near Watsonville, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, Thomas E.; Heingartner, Gordon F.; Samrad, Laura; Dawson, Timothy E.; Hamilton, John C.; Baldwin, John N.</p> <p>2004-01-01</p> <p>We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Arano Flat, one of two sites along the San Andreas fault in the Santa Cruz Mountains on the Kelley-Thompson Ranch. At this location, the fault consists of a narrow zone along the northeast side of a low ridge adjacent to a possible sag pond and extends about 60-70 meters across a broad alluvial flat. This site was a part of Rancho Salsipuedes beginning in 1834 and was purchased by the present owner’s family in 1851.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011574','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011574"><span>Observations of strain accumulation across the San Andreas fault near Palmdale, California, with a two-color geodimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langbein, J.O.; Linker, M.F.; McGarr, A.; Slater, L.E.</p> <p>1982-01-01</p> <p>Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. Copyright ?? 1982 AAAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029271','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029271"><span>Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Matmon, A.; Schwartz, D.P.; Finkel, R.; Clemmens, S.; Hanks, T.</p> <p>2005-01-01</p> <p>Analysis of cosmogenic 10Be and 26Al in samples collected from exposed boulders (n = 20) and from buried sediment (n = 3) from offset fans along the San Andreas fault near Little Rock, California, yielded ages, ranging from 16 to 413 ka, which increase with distance from their source at the mouth of Little Rock Creek. In order to determine the age of the relatively younger fans, the erosion rate of the boulders and the cosmogenic nuclide inheritance from exposure prior to deposition in the fan were established. Cosmogenic nuclide inheritance values that range between 8.5 ?? 103 and 196 ?? 103 atoms 10Be g-1 quartz were determined by measuring the concentrations and ratios of 10Be and 26Al in boulders (n = 10) and fine sediment (n = 7) at the outlet of the present active stream. Boulder erosion rate, ranging between 17 and 160 mm k.y.-1, was estimated by measuring 10Be and 26Al concentrations in nearby bedrock outcrops (n = 8). Since the boulders on the fans represent the most resistant rocks in this environment, we used the lowest rate for the age calculations. Monte Carlo simulations were used to determine ages of 16 ?? 5 and 29 ?? 7 ka for the two younger fan surfaces. Older fans (older than 100 ka) were dated by analyzing 10Be and 26Al concentrations in buried sand samples. The ages of the three oldest fans range between 227 ?? 242 and 413 ?? 185 ka. Although fan age determinations are accompanied by large uncertainties, the results of this study show a clear trend of increasing fan ages with increasing distance from the source near Little Rock Creek and provide a long-term slip rate along this section of the San Andreas fault. Slip rate along the Mojave section of the San Andreas fault for the past 413 k.y. can be determined in several ways. The average slip rate calculated from the individual fan ages is 4.2 ?? 0.9 cm yr-1. A linear regression through the data points implies a slip rate of 3.7 ?? 1.0 cm yr-1. A most probable slip rate of 3.0 ?? 1.0 cm yr-1 is determined by using a X2 test. These rates suggest that the average slip along the Mojave section of the San Andreas fault has been relatively constant over this time period. The slip rate along the Mojave section of the San Andreas fault, determined in this study, agrees well with previous slip rate calculations for the Quaternary. ?? 2005 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.S53A1315C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.S53A1315C"><span>Interferometric imaging of the San Andreas Fault at Parkfield Using a Massive VSP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chavarria, J.; Goertz, A.; Karrenbach, M.; Paulsson, B.</p> <p>2006-12-01</p> <p>The San Andreas Fault Observatory at Depth (SAFOD) has the goal of investigating the physical processes controlling earthquakes in central California at Parkfield. The observatory consists of a deep well, that intersected the San Andreas Fault at seismogenic depths of ~3.2 km, where recurring microearthquake activity takes place. Previous to the drilling of Phase II, that intersected the fault at the end of Summer 2005, a long array of seismometers was deployed in the deeper part of the well to characterize the fault structure and to aid the monitoring activities of the natural seismicity. The Massive VSP array consisted of 80 three component seismometers that were deployed during April and May 2005. During this period of time we recorded active data from 13 explosions used to refine the velocity models that improved the locations of target events. In addition to this, we continuously monitored passive data from the natural earthquake activity in the area that was dominated by the Parkfield 2004 event aftershock sequence. During the recording time of this project we were able to record one of the target earthquakes of the SAFOD project as well as recently discovered non-volcanic tremor. The data recorded by this deep array of seismometers has provided important information to characterize the structure of the fault at scale that is comparable to the scale of the geologic observations. These observations, derived during drilling of the well, consist of cores and cuttings as well as geophysical logs. With the use of the borehole array of seismometers we have been able to directly correlate this lithologic information with seismic phases observed in the VSP data. This has lead to better understanding the nature of the scattering that takes place in this complex fault zone. Seismic reflections in the dataset were analyzed with Kirchhoff imaging methods to determine a partial image of the San Andreas Fault at depth. Due to the low density distribution of sources in the study area the illumination volume is limited but still shows clear signals originating from sub-vertical structures associated to the strands of the San Andreas fault inferred from high resolution earthquake location. The existing Kirchhoff imaging methods have been complemented with the use of interferometric imaging by which we extract the Green's function of the data recorded by the array. This takes place with the use of correlation analysis of both active and passive data resulting in a dataset where each downhole receiver acts as a virtual source. This analysis has provided a refined image of the structure of the San Andreas Fault at seismogenic depths with which a better understanding of the system can be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T42D..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T42D..06K"><span>A Model of Subduction of a Mid-Paleozoic Oceanic Ridge - Transform Fault System along the Eastern North American Margin in the Northern Appalachians</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuiper, Y. D.</p> <p>2016-12-01</p> <p>Crustal-scale dextral northeasterly trending ductile-brittle fault systems and increased igneous activity in mid-Paleozoic eastern New England and southern Maritime Canada are interpreted in terms of a subducted oceanic spreading ridge model. In the model, the fault systems form as a result of subduction of a spreading ridge-transform fault system, similar to the way the San Andreas fault system formed. Ridge subduction results in the formation of a sub-surface slab window, mantle upwelling, and increased associated magmatism in the overlying plate. The ridge-transform system existed in the Rheic Ocean, and was subducted below parts of Ganderia, Avalonia and Meguma in Maine, New Brunswick and Nova Scotia. The subduction zone jumped southeastward as a result of accretion of Avalonia. Where the ridge-transform system was subducted, plate motions changed from predominantly convergent between the northern Rheic Ocean and Laurentian plates to predominantly dextral between the southern Rheic Ocean and Laurentian plates. In the model, dextral fault systems include the Norumbega fault system between southwestern New Brunswick and southern Maine and New Hampshire, and the Kennebecasis, Belle Isle and Caledonia faults in southeastern New Brunswick. A latest Silurian transition from arc- to within-plate- magmatism in the Coastal Volcanic Belt in eastern Maine may suggest the onset of ridge subduction. Examples of increased latest Silurian to Devonian within-plate magmatism include the Cranberry Island volcanic series and coastal Maine magmatic province in Maine, and the South Mountain Batholith in Nova Scotia. Widespread Devonian to earliest Carboniferous granitic to intermediate plutons, beyond the Coastal Volcanic Belt towards southern Maine and central New Hampshire, may outline the shape of a subsurface slab window. The possibility of ridge-transform subduction in Newfoundland and in the southern Appalachians will be discussed. The northern Appalachians may be a unique location along the Eastern North American Margin and possibly on Earth, in that it may preserve the only known evidence for an ancient Mendocino-style triple junction and San Andreas-type fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1437/g/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1437/g/"><span>Development of Final A-Fault Rupture Models for WGCEP/ NSHMP Earthquake Rate Model 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Field, Edward H.; Weldon, Ray J.; Parsons, Thomas; Wills, Chris J.; Dawson, Timothy E.; Stein, Ross S.; Petersen, Mark D.</p> <p>2008-01-01</p> <p>This appendix discusses how we compute the magnitude and rate of earthquake ruptures for the seven Type-A faults (Elsinore, Garlock, San Jacinto, S. San Andreas, N. San Andreas, Hayward-Rodgers Creek, and Calaveras) in the WGCEP/NSHMP Earthquake Rate Model 2 (referred to as ERM 2. hereafter). By definition, Type-A faults are those that have relatively abundant paleoseismic information (e.g., mean recurrence-interval estimates). The first section below discusses segmentation-based models, where ruptures are assumed be confined to one or more identifiable segments. The second section discusses an un-segmented-model option, the third section discusses results and implications, and we end with a discussion of possible future improvements. General background information can be found in the main report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034898','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034898"><span>Basin geometry and cumulative offsets in the Eastern Transverse Ranges, southern California: Implications for transrotational deformation along the San Andreas fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langenheim, V.E.; Powell, R.E.</p> <p>2009-01-01</p> <p>The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037328','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037328"><span>Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Behr, W.M.; Rood, D.H.; Fletcher, K.E.; Guzman, N.; Finkel, R.; Hanks, T.C.; Hudnut, K.W.; Kendrick, K.J.; Platt, J.P.; Sharp, W.D.; Weldon, R.J.; Yule, J.D.</p> <p>2010-01-01</p> <p>This study focuses on uncertainties in estimates of the geologic slip rate along the Mission Creek strand of the southern San Andreas fault where it offsets an alluvial fan (T2) at Biskra Palms Oasis in southern California. We provide new estimates of the amount of fault offset of the T2 fan based on trench excavations and new cosmogenic 10Be age determinations from the tops of 12 boulders on the fan surface. We present three alternative fan offset models: a minimum, a maximum, and a preferred offset of 660 m, 980 m, and 770 m, respectively. We assign an age of between 45 and 54 ka to the T2 fan from the 10Be data, which is significantly older than previously reported but is consistent with both the degree of soil development associated with this surface, and with ages from U-series geochronology on pedogenic carbonate from T2, described in a companion paper by Fletcher et al. (this volume). These new constraints suggest a range of slip rates between ~12 and 22 mm/yr with a preferred estimate of ~14-17 mm/yr for the Mission Creek strand of the southern San Andreas fault. Previous studies suggested that the geologic and geodetic slip-rate estimates at Biskra Palms differed. We find, however, that considerable uncertainty affects both the geologic and geodetic slip-rate estimates, such that if a real discrepancy between these rates exists for the southern San Andreas fault at Biskra Palms, it cannot be demonstrated with available data. ?? 2010 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI51A2658G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI51A2658G"><span>Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.</p> <p>2016-12-01</p> <p>The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer indicates NW-SE fast directions below the LAB likely controlled by current Pacific plate motion. The inner Borderland indicates two layer anisotropic structure with a shallow NW-SE lithospheric fast direction that changes to NE-SW fast directions below the LAB, possibly consistent with the ancient subduction direction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018187','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018187"><span>Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Lockner, D.A.; Summers, R.; Shengli, M.; Byerlee, J.D.</p> <p>1996-01-01</p> <p>Chrysotile-bearing serpentinite is a constituent of the San Andreas fault zone in central and northern California. At room temperature, chrysotile gouge has a very low coefficient of friction (?? ??? 0.2), raising the possibility that under hydrothermal conditions ?? might be reduced sufficiently (to ???0.1) to explain the apparent weakness of the fault. To test this hypothesis, we measured the frictional strength of a pure chrysotile gouge at temperatures to 290??C and axial-shortening velocities as low as 0.001 ??m/s. As temperature increases to ???100??C, the strength of the chrysotile gouge decreases slightly at low velocities, but at temperatures ???200??C, it is substantially stronger and essentially independent of velocity at the lowest velocities tested. We estimate that pure chrysotile gouge at hydrostatic fluid pressure and appropriate temperatures would have shear strength averaged over a depth of 14 km of 50 MPa. Thus, on the sole basis of its strength, chrysotile cannot be the cause of a weak San Andreas fault. However, chrysotile may also contribute to low fault strength by forming mineral seals that promote the development of high fluid pressures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030544','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030544"><span>Monitoring microearthquakes with the San Andreas fault observatory at depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oye, V.; Ellsworth, W.L.</p> <p>2007-01-01</p> <p>In 2005, the San Andreas Fault Observatory at Depth (SAFOD) was drilled through the San Andreas Fault zone at a depth of about 3.1 km. The borehole has subsequently been instrumented with high-frequency geophones in order to better constrain locations and source processes of nearby microearthquakes that will be targeted in the upcoming phase of SAFOD. The microseismic monitoring software MIMO, developed by NORSAR, has been installed at SAFOD to provide near-real time locations and magnitude estimates using the high sampling rate (4000 Hz) waveform data. To improve the detection and location accuracy, we incorporate data from the nearby, shallow borehole (???250 m) seismometers of the High Resolution Seismic Network (HRSN). The event association algorithm of the MIMO software incorporates HRSN detections provided by the USGS real time earthworm software. The concept of the new event association is based on the generalized beam forming, primarily used in array seismology. The method requires the pre-computation of theoretical travel times in a 3D grid of potential microearthquake locations to the seismometers of the current station network. By minimizing the differences between theoretical and observed detection times an event is associated and the location accuracy is significantly improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041938','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041938"><span>Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.</p> <p>2010-01-01</p> <p>It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1002/pdf/ofr2014-1002_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1002/pdf/ofr2014-1002_pamphlet.pdf"><span>Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.</p> <p>2014-01-01</p> <p>The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-jsc2000e01554.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-jsc2000e01554.html"><span>Topographical map of San Bernadina and San Gabriel mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-02-04</p> <p>JSC2000E01554 (January 2000) --- This is a shaded relief depiction of the same data set found in JSC2000-E-01553. Radar imagery, such as that to be provided by SRTM, is instrumental in creating these types of topographic models. Both images depict the San Bernadino and San Gabriel Mountains in California, north of Los Angeles. Cajon Junction and Cajon Pass, as well as part of the San Andreas fault line, are clearly seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187066','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187066"><span>Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.</p> <p>2013-01-01</p> <p>Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PApGe.165..777A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PApGe.165..777A"><span>Earthquakes: Recurrence and Interoccurrence Times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.</p> <p>2008-04-01</p> <p>The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027513','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027513"><span>Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savage, J.C.; Gan, Weijun; Prescott, W.H.; Svarc, J.L.</p> <p>2004-01-01</p> <p>A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GIPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29??W. (The local strike of the San Andreas Fault is ???N34??W. The observed areal dilatation rate of 6.9 ?? 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the Working Group on California Earthquake Probabilities [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ?? 2.6 mm yr-1 N29.8??W ?? 2.8??, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ?? 1.2 mm yr-1 N29.0?? ?? 0.9?? right-lateral shear and 0.4 ?? 0.9 mm yr-1 N61??E ?? 0.9?? extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required. Copyright 2004 by the American Geophysical union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730021606','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730021606"><span>A simulation of the San Andreas fault experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Agreen, R. W.; Smith, D. E.</p> <p>1973-01-01</p> <p>The San Andreas Fault Experiment, which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, was simulated for an eight year observation period. The two tracking stations are located near San Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 kilometers apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C Spacecraft was simulated for these two stations during August and September for eight consecutive years. An error analysis of the recovery of the relative location of Quincy from the data was made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the San Diego site, and laser systems range biases and noise. The results of this simulation indicate that the distance of Quincy from San Diego will be determined each year with a precision of about 10 centimeters. This figure is based on the accuracy of earth models and other parameters available in 1972.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176','ERIC'); return false;" href="https://eric.ed.gov/?q=Road+AND+safety+AND+education&pg=5&id=EJ751176"><span>1906 Letter to the San Francisco Health Department</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schmachtenberg, Kristin</p> <p>2006-01-01</p> <p>On Wednesday, April 18, 1906, an earthquake, measuring 7.8 on the Richter magnitude scale and lasting 48 seconds, erupted along the San Andreas fault with a flash point originating in the San Francisco Bay area. The force of the earthquake tore apart buildings and roads, causing water and gas mains to twist and break. The resulting effects of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190456','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190456"><span>Geophysical framework of the northern San Francisco Bay region, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langenheim, Victoria; Graymer, Russell W.; Jachens, Robert C.; McLaughlin, Robert J.; Wagner, D.L.; Sweetkind, Donald</p> <p>2010-01-01</p> <p>We use geophysical data to examine the structural framework of the northern San Francisco Bay region, an area that hosts the northward continuation of the East Bay fault system. Although this fault system has accommodated ∼175 km of right-lateral offset since 12 Ma, how this offset is partitioned north of the bay is controversial and important for understanding where and how strain is accommodated along this stretch of the broader San Andreas transform margin. Using gravity and magnetic data, we map these faults, many of which influenced basin formation and volcanism. Continuity of magnetic anomalies in certain areas, such as Napa and Sonoma Valleys, the region north of Napa Valley, and the region south of the Santa Rosa Plain, preclude significant (>10 km) offset. Much of the slip is partitioned around Sonoma and Napa Valleys and onto the Carneros, Rodgers Creek, and Green Valley faults. The absence of correlative magnetic anomalies across the Hayward–Rodgers Creek–Maacama fault system suggests that this system reactivated older basement structures, which appear to influence seismicity patterns in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0469/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0469/"><span>Photomosaics and logs of trenches on the San Andreas Fault at Mill Canyon near Watsonville, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, Thomas E.; Dawson, Timothy E.; Flowers, Rebecca; Hamilton, John C.; Heingartner, Gordon F.; Kessler, James; Samrad, Laura</p> <p>2004-01-01</p> <p>We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Mill Canyon, one of two sites along the San Andreas fault in the Santa Cruz Mtns. on the Kelley-Thompson Ranch. This site was a part of Rancho Salsipuedes begining in 1834. It was purchased by the present owner’s family in 1851. Remnants of a cabin/mill operations still exist up the canyon dating from 1908 when the area was logged. At this location, faulting has moved a shutter ridge across the mouth of Mill Canyon ponding Holocene sediment. Recent faulting is confined to a narrow zone near the break in slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70100270','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70100270"><span>Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.</p> <p>2001-01-01</p> <p>Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192478','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192478"><span>Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.</p> <p>2010-01-01</p> <p>Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018276','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018276"><span>A 100-year average recurrence interval for the San Andreas fault at Wrightwood, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, T.E.; Pezzopane, S.K.; Weldon, R.J.; Schwartz, D.P.</p> <p>1993-01-01</p> <p>Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7010956-measuring-crustal-deformation-american-west','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7010956-measuring-crustal-deformation-american-west"><span>Measuring crustal deformation in the American West</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jordan, T.H.; Minster, J.B.</p> <p>1988-08-01</p> <p>The crust of the western US is deforming as the Pacific and North American plates slide past each other along the San Andreas Fault, the Great Basin is spreading apart, and mountains are being thrust up along the California coast. Monitoring of these processes over the years has resulted in the San Andreas discrepancy, the mismatch between the rate and direction of horizontal slippage along the fault and the relative motion of the Pacific and North American plates.This process will soon be measured directly using the new developed technique of space geodesy, which uses radio waves from quasars or satellitesmore » to measure between fixed stations with an accuracy of a few centimeters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1084/OF13-1084_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1084/OF13-1084_508.pdf"><span>Digital tabulation of stratigraphic data from oil and gas wells in Cuyama Valley and surrounding areas, central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sweetkind, Donald S.; Bova, Shiera C.; Langenheim, V.E.; Shumaker, Lauren E.; Scheirer, Daniel S.</p> <p>2013-01-01</p> <p>Stratigraphic information from 391 oil and gas exploration wells from Cuyama Valley, California, and surrounding areas are herein compiled in digital form from reports that were released originally in paper form. The Cuyama Basin is located within the southeasternmost part of the Coast Ranges and north of the western Transverse Ranges, west of the San Andreas fault. Knowledge of the location and elevation of stratigraphic tops of formations throughout the basin is a first step toward understanding depositional trends and the structural evolution of the basin through time, and helps in understanding the slip history and partitioning of slip on San Andreas and related faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162354','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162354"><span>History of significant earthquakes in the Parkfield area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bakun, W.H.</p> <p>1988-01-01</p> <p>Seismicity on the San Andreas fault near Parkfield occurs in a tectonic section that differs markedly from neighboring sections along the San Andreas to the northwest and to the southeast. Northwest of the Parkfield section, small shocks (magnitudes of less than 4) do occur frequently, but San Andreas movement occurs predominantly as aseismic fault creep; shocks of magnitude 6 and larger are unknown, and little, if any, strain is accumulating. In contrast, very few small earthquakes and no aseismic slip have been observed on the adjacent section to the southeast, the Cholame section, which is considered to be locked, in as much as it apparently ruptures exclusively in large earthquakes (magnitudes greater than 7), most recently during the great Fort Tejon earthquake of 1857. The Parkfield section is thus a transition zone between two sections having different modes of fault failure. In fact, the regularity of significant earthquakes at Parkfield since 1857 may be due to the nearly constant slip rate pattern on the adjoining fault sections. Until the magnitude 6.7 Coalinga earthquake on May 2, 1983, 40 kilmoeters northeast of Parkfield, the Parkfield section had been relatively free of stress changes due to nearby shocks; the effect of the Coalinga shock on the timing of the next Parkfield shock is not known. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.geoscienceworld.org/ssa/bssa/article/81/5/1480/119497/off-fault-ground-ruptures-in-the-santa-cruz','USGSPUBS'); return false;" href="https://pubs.geoscienceworld.org/ssa/bssa/article/81/5/1480/119497/off-fault-ground-ruptures-in-the-santa-cruz"><span>Off-fault ground ruptures in the Santa Cruz Mountains, California: Ridge-top spreading versus tectonic extension during the 1989 Loma Prieta earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ponti, Daniel J.; Wells, Ray E.</p> <p>1991-01-01</p> <p>The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on the linear fissures. Similar fissures occurred in the same area and elsewhere near the San Andreas fault during the predominantly right-lateral 1906 San Francisco earthquake and suggest that the Loma Prieta ground ruptures may, in large part, be independent of fault kinematics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024566','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024566"><span>Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, T.</p> <p>2002-01-01</p> <p>The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G34A..05X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G34A..05X"><span>Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, X.; Sandwell, D. T.</p> <p>2017-12-01</p> <p>We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019101','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019101"><span>Thermal regime of the San Andreas fault near Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sass, J.H.; Williams, C.F.; Lachenbruch, A.H.; Galanis, S.P.; Grubb, F.V.</p> <p>1997-01-01</p> <p>Knowledge of the temperature variation with depth near the San Andreas fault is vital to understanding the physical processes that occur within the fault zone during earthquakes and creep events. Parkfield is near the southern end of the Coast Ranges segment of the San Andreas fault. This segment has higher mean heat flow than the Cape Mendocino segment to the northwest or the Mojave segment to the southeast. Boreholes were drilled specifically for the U.S. Geological Survey's Parkfield earthquake prediction experiment or converted from other uses at 25 sites within a few kilometers of the fault near Parkfield. These holes, which range in depth from 150 to over 1500 m, were intended mainly for the deployment of volumetric strain meters, water-level recorders, and other downhole instruments. Temperature profiles were obtained from all the holes, and heat flow values were estimated from 17 of them. For a number of reasons, including a paucity of thermal conductivity data and rugged local topography, the accuracy of individual determinations was not sufficiently high to document local variations in heat flow. Values range from 54 to 92 mW m-2, with mean and 95% confidence limits of 74 ?? 4 mW m-2. This mean is slightly lower than the mean (83 ?? 3) of 39 previously published values from the central Coast Ranges, but it is consistent with the overall pattern of elevated heat flow in the Coast Ranges, and it is transitional to the mean of 68 ?? 2 mW m-2 that characterizes the Mojave segment of the San Andreas fault immediately to the south. The lack of a heat flow peak near the fault underscores the absence of a frictional thermal anomaly and provides additional support for a very small resolved shear stress parallel to the San Andreas fault and the nearly fault-normal maximum compressive stress observed in this region. Estimates of subsurface thermal conditions indicate that the seismic-aseismic transition for the Parkfield segment corresponds to temperatures in the range of 350??-400??C. Increasing heat flow to the northwest of Parkfield corresponds to a transition from locked to creeping sections and to a shallowing of the base of seismicity and confirms the importance of temperature in controlling the thickness of the seismogenic crust. Lateral variations in heat flow do not appear to have any major role in determining the regularity of M5.5-6 earthquakes at Parkfield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........25K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........25K"><span>Evaluating Seasonal Deformation in the Vicinity of Active Fault Structures in Central California Using GPS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kraner, Meredith L.</p> <p></p> <p>Central California is a tectonically active region in the Western United States, which encompasses segments of both the San Andreas and Calaveras Faults and centers around the town of Parkfield, California. Recently, statistical studies of microseismicity suggest that earthquake rates in this region can vary seasonally. Also, studies using data from modern GPS networks have revealed that crustal deformation can be influenced by seasonal and nontectonic factors, such as hydrological, temperature, and atmospheric loads. Here we analyze eight-years (2008 - 2016) of GPS data and build on this idea by developing a robust seasonal model of dilatational and shear strain in Central California. Using an inversion, we model each GPS time series in our study region to derive seasonal horizontal displacements for each month of the year. These positions are detrended using robust MIDAS velocities, destepped using a Heavyside function, and demeaned to center the time series around zero. The stations we use are carefully chosen using a selection method which allows us to exclude stations located on unstable, heavily subsiding ground and include stations on sturdy bedrock. In building our seasonal strain model, we first filter these monthly seasonal horizontal displacements using a median-spatial filter technique called GPS Imaging to remove outliers and enhance the signal common to multiple stations. We then grid these seasonal horizontal filtered displacements and use them to model our dilatational and shear strain field for each month of the year. We setup our model such that a large portion of the strain in the region is accommodated on or near the San Andreas and Calaveras Faults. We test this setup using two sets of synthetic data and explore how varying the a priori faulting constraints of the on and off-fault standard deviations in the strain tensor affects the output of the model. We additionally extract strain time series for key regions along/near the San Andreas and Calaveras Faults. We find that the most prevalent seasonal strain signal exists in the main creeping section along the San Andreas Fault in Central California. This region, which runs from Parkfield to Bitterwater Valley, shows peaks in contraction (negative dilatation) during the wet period (February/March) and peaks in extension (positive dilatation) during the dry period (August/September). The north transitional creeping section along the San Andreas Fault and the Calaveras Fault displays general similarities with the main creeping section trend. In sharp contrast, seasonality is virtually undetected in the locked section of the San Andreas Fault south of the town of Cholame. Additionally, the southern transitional creeping section shows two distinct patterns. For the most part this region, between Parkfield and Cholame, shows peaks in contraction during the wet period (February/March) and peaks in extension during the dry period (August/September), similar to the main creeping section. However, the segment of the southern transitional creeping section surrounding the town of Cholame opposes this trend with peaks in extension during the wet period and peaks in contraction during the dry period. We postulate several causes for this seasonal signal, which we plan to explore further in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA150163','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA150163"><span>Telegraph Canyon Creek, City of Chula Vista, San Diego County, California. Detailed Report for Flood Control. Volume 1. Main Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-07-01</p> <p>SECURITY CLASS. (of chi* report) Los Angeles District, Corps of Engineers Ucasfe P.O. Box 2711, Los Angeles, CA 90053 15&. DEL SI F1CATION/OWNGRAOI...greater potential for the possible occurrence of a large earthquake include the Whittier-Elsinore, Agua Caliente, San Jacinto, and the San Andreas...about 900,000 motor vehicles used within the county. 2.20 Air contaminants monitored within the San Diego Bay air basin include carbon monoxide (CO</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018229','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018229"><span>Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frankel, A.</p> <p>1993-01-01</p> <p>Three-dimensional finite difference simulations of elastic waves in the San Bernardino Valley were performed for two hypothetical earthquakes on the San Andreas fault: a point source with moment magnitude M5 and an extended rupture with M6.5. A method is presented for incorporating a source with arbitrary focal mechanism in the grid. Synthetics from the 3-D simulations are compared with those derived from 2-D (vertical cross section) and 1-D (flat-layered) models. The synthetic seismograms from the 3-D and 2-D simulations exhibit large surface waves produced by conversion of incident S waves at the edge of the basin. Seismograms from the flat-layered model do not contain these converted surface waves and underestimate the duration of shaking. Maps of maximum ground velocities occur in localized portions of the basin. The location of the largest velocities changes with the rupture propagation direction. Contours of maximum shaking are also dependent on asperity positions and radiation pattern. -from Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017964','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017964"><span>Probability of one or more M ≥7 earthquakes in southern California in 30 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savage, J.C.</p> <p>1994-01-01</p> <p>Eight earthquakes of magnitude greater than or equal to seven have occurred in southern California in the past 200 years. If one assumes that such events are the product of a Poisson process, the probability of one or more earthquakes of magnitude seven or larger in southern California within any 30 year interval is 67% ?? 23% (95% confidence interval). Because five of the eight M ??? 7 earthquakes in southern California in the last 200 years occurred away from the San Andreas fault system, the probability of one or more M ??? 7 earthquakes in southern California but not on the San Andreas fault system occurring within 30 years is 52% ?? 27% (95% confidence interval). -Author</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740030066&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740030066&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplate%2Btectonics"><span>The San Andreas fault experiment. [gross tectonic plates relative velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, D. E.; Vonbun, F. O.</p> <p>1973-01-01</p> <p>A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032933','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032933"><span>Annual modulation of seismicity along the San Andreas Fault near Parkfield, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christiansen, L.B.; Hurwitz, S.; Ingebritsen, S.E.</p> <p>2007-01-01</p> <p>We analyze seismic data from the San Andreas Fault (SAF) near Parkfield, California, to test for annual modulation in seismicity rates. We use statistical analyses to show that seismicity is modulated with an annual period in the creeping section of the fault and a semiannual period in the locked section of the fault. Although the exact mechanism for seasonal triggering is undetermined, it appears that stresses associated with the hydrologic cycle are sufficient to fracture critically stressed rocks either through pore-pressure diffusion or crustal loading/ unloading. These results shed additional light on the state of stress along the SAF, indicating that hydrologically induced stress perturbations of ???2 kPa may be sufficient to trigger earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1970/0044/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1970/0044/report.pdf"><span>Map showing recently active breaks along the San Andreas Fault between Pt. Delgada and Bolinas Bay, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brown, Robert D.; Wolfe, Edward W.</p> <p>1970-01-01</p> <p>This strip map is one of a series of maps showing recently active fault breaks along the San Andreas and other active faults in California. It is designed to inform persons who are concerned with land use near the fault of the location of those fault breaks that have moved recently. The lines on the map are lines of rupture and creep that can be identified by field evidence and that clearly affect the present surface of the land. Map users should keep in mind that these lines are intended primarily as guides to help locate the fault; the mapped lines are not necessarily shown with the precision demanded by some engineering or land utilization needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1501/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1501/report.pdf"><span>The Cenozoic evolution of the San Joaquin Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartow, J. Alan</p> <p>1991-01-01</p> <p>The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo homocline, the western limb of the valley syncline between the Stockton arch and Panoche Creek, consists of a locally faulted homocline with northeast dips. Deformation is mostly late Cenozoic, is complex in its history, and has included up-to-the-southwest reverse faulting. The west-side fold belt, the southwestern part of the valley syncline between Panoche Creek and Elk Hills and including the southern Diablo and Temblor Ranges, is characterized by a series of folds and faults trending slightly oblique to the San Andreas fault. Paleogene folding took place in the northern part of the belt; however, most folding took place in Neogene time, during which the intensity of deformation increased southeastward along the belt and southwestward toward the San Andreas fault. The Maricopa-Tejon subbasin and the south-margin deformed belt are structurally distinct, but genetically related, regions bounded by the Bakersfield arch on the north, the San Emigdio Mountains on the south, the Tehachapi Mountains on the east, and the southeast end of the fold belt on the west. This combined region, which is the most deformed part of the basin, has undergone significant late Cenozoic shortening through north-directed thrust faulting at the south margin, as well as extreme Neogene basin subsidence north of the thrust belt. The sedimentary history of the San Joaquin basin, recorded in terms of unconformity-bounded depositional sequences, has been controlled principally by tectonism, but it has also been controlled by eustatic sea-level changes and, to a lesser degree, by climate. Plate tectonic events that had an influence on the basin include (1) subduction during the early Tertiary that changed from oblique to normal convergence in the later part of the Eocene, (2) the mid-Oligocene encounter of the Pacific-Farallon spreading ridge with the trench, and the consequent establishment of the San Andreas transform, (3) the northwestward migration of the Mendocino triple junction that in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025593','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025593"><span>Aftershocks and triggered events of the Great 1906 California earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Meltzner, A.J.; Wald, D.J.</p> <p>2003-01-01</p> <p>The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley and an M ???5.0 event under or near Santa Monica Bay, 11.3 and 31.3 hr after the San Francisco mainshock, respectively. The western Arizona event is inferred to have been triggered dynamically. In general, the largest aftershocks occurred at the ends of the 1906 rupture or away from the rupture entirely; very few significant aftershocks occurred along the mainshock rupture itself. The total number of large aftershocks was less than predicted by a generic model based on typical California mainshock-aftershock statistics, and the 1906 sequence appears to have decayed more slowly than average California sequences. Similarities can be drawn between the 1906 aftershock sequence and that of the 1857 (Mw 7.9) San Andreas fault earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0814B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0814B"><span>Tidal Sensitivity of Declustered Low Frequency Earthquake Families and Inferred Creep Episodes on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babb, A.; Thomas, A.; Bletery, Q.</p> <p>2017-12-01</p> <p>Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 km section of the San Andreas Fault centered at Parkfield, CA. The LFEs are divided into 88 families based on waveform similarity. Each family is thought to represent a brittle asperity on the fault surface that repeatedly slips during aseismic slip of the surrounding fault. LFE occurrence is irregular which allows families to be divided into continuous and episodic. In continuous families a burst of a few LFE events recurs every few days while episodic families experience essentially quiescent periods often lasting months followed by bursts of hundreds of events over a few days. The occurrence of LFEs has also been shown to be sensitive to extremely small ( 1kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal sensitivity of LFE families on the deep San Andreas using a declustered catalog. In this catalog LFE bursts are isolated based on the recurrence intervals between individual LFE events for each family. Preliminary analysis suggests that declustered LFE families are still highly sensitive to tidal stress perturbations, primarily right-lateral shear stress (RLSS) and to a lesser extent fault normal stress (FNS). We also find inferred creep episodes initiate preferentially during times of positive RLSS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030111','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030111"><span>Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.</p> <p>2007-01-01</p> <p>A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036531','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036531"><span>Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity</p> <p>2011-01-01</p> <p>The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030982','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030982"><span>Putting it all together: Exhumation histories from a formal combination of heat flow and a suite of thermochronometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>d'Alessio, M. A.; Williams, C.F.</p> <p>2007-01-01</p> <p>A suite of new techniques in thermochronometry allow analysis of the thermal history of a sample over a broad range of temperature sensitivities. New analysis tools must be developed that fully and formally integrate these techniques, allowing a single geologic interpretation of the rate and timing of exhumation and burial events consistent with all data. We integrate a thermal model of burial and exhumation, (U-Th)/He age modeling, and fission track age and length modeling. We then use a genetic algorithm to efficiently explore possible time-exhumation histories of a vertical sample profile (such as a borehole), simultaneously solving for exhumation and burial rates as well as changes in background heat flow. We formally combine all data in a rigorous statistical fashion. By parameterizing the model in terms of exhumation rather than time-temperature paths (as traditionally done in fission track modeling), we can ensure that exhumation histories result in a sedimentary basin whose thickness is consistent with the observed basin, a physically based constraint that eliminates otherwise acceptable thermal histories. We apply the technique to heat flow and thermochronometry data from the 2.1 -km-deep San Andreas Fault Observatory at Depth pilot hole near the San Andreas fault, California. We find that the site experienced <1 km of exhumation or burial since the onset of San Andreas fault activity ???30 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027218','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027218"><span>Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, M.; Matti, J.; Jachens, R.</p> <p>2004-01-01</p> <p>The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JGRB..109.4404A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JGRB..109.4404A"><span>Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, Megan; Matti, Jonathan; Jachens, Robert</p> <p>2004-04-01</p> <p>The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032596','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032596"><span>Broadband simulations for Mw 7.8 southern san andreas earthquakes: Ground motion sensitivity to rupture speed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graves, R.W.; Aagaard, Brad T.; Hudnut, K.W.; Star, L.M.; Stewart, J.P.; Jordan, T.H.</p> <p>2008-01-01</p> <p>Using the high-performance computing resources of the Southern California Earthquake Center, we simulate broadband (0-10 Hz) ground motions for three Mw 7.8 rupture scenarios of the southern San Andreas fault. The scenarios incorporate a kinematic rupture description with the average rupture speed along the large slip portions of the fault set at 0.96, 0.89, and 0.84 times the local shear wave velocity. Consistent with previous simulations, a southern hypocenter efficiently channels energy into the Los Angeles region along the string of basins south of the San Gabriel Mountains. However, we find the basin ground motion levels are quite sensitive to the prescribed rupture speed, with peak ground velocities at some sites varying by over a factor of two for variations in average rupture speed of about 15%. These results have important implications for estimating seismic hazards in Southern California and emphasize the need for improved understanding of earthquake rupture processes. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03329&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bperspective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03329&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bperspective"><span>Perspective View with Landsat Overlay, San Francisco Bay Area, Calif.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>The defining landmarks of San Francisco, its bay and the San Andreas Fault are clearly seen in this computer-generated perspective viewed from the south. Running from the bottom of the scene diagonally up to the left, the trough of the San Andreas Fault is occupied by Crystal Springs Reservoir and San Andreas Lake. Interstate 280 winds along the side of the fault. San Francisco International Airport is the angular feature projecting into the bay just below San Bruno Mountain, the elongated ridge cutting across the peninsula. The hills of San Francisco can be seen beyond San Bruno Mountain and beyond the city, the Golden Gate.<p/>This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.<p/>Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.<p/>Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.<p/>Size: scale varies in this perspective image Location: 37.5 deg. North lat., 122.3 deg. West lon. Orientation: looking north Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond (30 meters or 98 feet) Date Acquired: February 2000 (SRTM)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......173A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......173A"><span>Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altintas, Ali Can</p> <p></p> <p>The goal of this project is to combine gravity measurements with geologic observations to better understand the "Big Bend" of the San Andreas Fault (SAF) and its role in producing hydrocarbon-bearing structures in the southern Central Valley of California. The SAF is the main plate boundary structure between the Pacific and North American plates and accommodates ?35 mm/yr of dextral motion. The SAF can be divided into three main parts: the northern, central and southern segments. The boundary between the central and southern segments is the "Big Bend", which is characterized by an ≈30°, eastward bend. This fault curvature led to the creation of a series of roughly east-west thrust faults and the transverse mountain ranges. Four high-resolution gravity transects were conducted across locations on either side of the bend. A total of 166 new gravity measurements were collected. Previous studies suggest significantly inclined dip angle for the San Andreas Fault in the Big Bend area. Yet, our models indicate that the San Andreas Fault is near vertical in the Big Bend area. Also gravity cross-section models suggest that flower structures occur on either side of the bend. These structures are dominated by sedimentary rocks in the north and igneous rocks in the south. The two northern transects in the Carrizo plains have an ≈-70 mgal Bouguer anomaly. The SAF has a strike of ≈315° near these transects. The northern transects are characterized by multiple fault strands which cut marine and terrestrial Miocene sedimentary rocks as well as Quaternary alluvial valley deposits. These fault strands are characterized by ?6 mgal short wavelength variations in the Bouguer gravity anomaly, which correspond to low density fault gouge and fault splays that juxtapose rocks of varying densities. The southern transects cross part of the SAF with a strike of 285°, have a Bouguer anomaly of ≈-50 mgal and are characterized by a broad 15 mgal high. At this location the rocks on either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011055','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011055"><span>Tilt precursors before earthquakes on the San Andreas fault, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnston, M.J.S.; Mortensen, C.E.</p> <p>1974-01-01</p> <p>An array of 14 biaxial shallow-borehole tiltmeters (at 10-7 radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (>10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162504','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162504"><span>The Talas-Fergana Fault, Kirghiz and Kazakh, USSR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wallace, R.E.</p> <p>1976-01-01</p> <p>The great Talas-Fergana fault transects the Soviet republic of Kirghiz in Soviet Central Asia and extends southeastward into China and northwestward into Kazakh SSR (figs. 1 and 2). This great rupture in the Earth's crust rivals the San Andreas fault in California; it is long (approximately 900 kilometers), complex, and possibly has a lateral displacement of hundreds of kilometers similar to that on the San Andreas fault. The Soviet geologist V. S. Burtman suggested that right-lateral offset of 250 kilometers has occurred, citing a shift of Devonian rocks as evidence (fig. 3). By no means do all Soviet geologists agree. Some hold the view that there is no lateral displacement along the Talas-Fergana fault and that the anomalous distribution of Paleozoic rocks is a result of the original position of deposition. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162686','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162686"><span>What is worse than the “big one”?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kerr, R. A.</p> <p>1988-01-01</p> <p>The first thought in the minds of many residents of the city of Whittier when the first shock hit them was "Is this the big one?" the San Andreas' once-in-150-years great shaker? It might as well have been for Whittier, which is 20 kilometers east of downtown Los Angeles. The ground shook harder there this month than it will when the big one does strike the distant San Andreas, which lies 50 kilometers on the other side of the mountains. And this was only a moderate, magnitude 6.1 shock. Earthquake of magnitude 7 and large 30 times more powerful, could rupture faults beneath the feet of Angelenos at any time. The loss of life and destruction could exceed that caused by the big one. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T23E..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T23E..01Z"><span>Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoback, M. D.; Hickman, S.; Ellsworth, W.</p> <p>2005-12-01</p> <p>In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033215','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033215"><span>Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.</p> <p>2007-01-01</p> <p>We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15002023','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15002023"><span>Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vincent, P</p> <p>2001-10-01</p> <p>A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this magnitude (equivalent to M{sub w} = 5.3 and 5.6 events on the Superstition Hills and San Andreas Faults respectively) are hitherto unknown and have not been captured previously by any geodetic technique.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020516','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020516"><span>Evolution of the Gorda Escarpment, San Andreas fault and Mendocino triple junction from multichannel seismic data collected across the northern Vizcaino block, offshore northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.</p> <p>1998-01-01</p> <p>The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982JGR....87.6977S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982JGR....87.6977S"><span>Long-term fault creep observations in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schulz, Sandra S.; Mavko, Gerald M.; Burford, Robert O.; Stuart, William D.</p> <p>1982-08-01</p> <p>The U.S. Geological Survey (USGS) has been monitoring aseismic fault slip in central California for more than 10 years as part of an earthquake prediction experiment. Since 1968, the USGS creep network has grown from one creep meter at the Cienega Winery south of Hollister to a 44-station network that stretches from Hayward, east of San Francisco Bay, to Palmdale in southern California. In general, the long-term slip pattern is most variable on sections of the faults where several magnitude 4 and larger earthquakes occurred during the recording period (e.g., Calaveras fault near Hollister and San Andreas fault between San Juan Bautista and Bear Valley). These fault sections are the most difficult to characterize with a single long-term slip rate. In contrast, sections of the faults that are seismically relatively quiet (e.g., San Andreas fault between Bear Valley and Parkfield) produce the steadiest creep records and are easiest to fit with a single long-term slip rate. Appendix is available with entire article on microfiche. Order from the American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C. 20009. Document J82-004; $1.00. Payment must accompany order.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036286','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036286"><span>Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.; Johnson, Kaj M.</p> <p>2011-01-01</p> <p>The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........91M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........91M"><span>Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mourhatch, Ramses</p> <p></p> <p>This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS13B0014F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS13B0014F"><span>Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faherty, D.; Polet, J.; Osborn, S. G.</p> <p>2017-12-01</p> <p>The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70101407','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70101407"><span>Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.</p> <p>2014-01-01</p> <p>In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70137269','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70137269"><span>Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.</p> <p>2014-01-01</p> <p>While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026834','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026834"><span>Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lutter, W.J.; Fuis, G.S.; Ryberg, T.; Okaya, D.A.; Clayton, R.W.; Davis, P.M.; Prodehl, C.; Murphy, J.M.; Langenheim, V.E.; Benthien, M.L.; Godfrey, N.J.; Christensen, N.I.; Thygesen, K.; Thurber, C.H.; Simila, G.; Keller, Gordon R.</p> <p>2004-01-01</p> <p>In 1999, the U.S. Geological Survey and the Southern California Earthquake Center (SCEC) collected refraction and low-fold reflection data along a 150-km-long corridor extending from the Santa Monica Mountains northward to the Sierra Nevada. This profile was part of the second phase of the Los Angeles Region Seismic Experiment (LARSE II). Chief imaging targets included sedimentary basins beneath the San Fernando and Santa Clarita Valleys and the deep structure of major faults along the transect, including causative faults for the 1971 M 6.7 San Fernando and 1994 M 6.7 Northridge earthquakes, the San Gabriel Fault, and the San Andreas Fault. Tomographic modeling of first arrivals using the methods of Hole (1992) and Lutter et al. (1999) produces velocity models that are similar to each other and are well resolved to depths of 5-7.5 km. These models, together with oil-test well data and independent forward modeling of LARSE II refraction data, suggest that regions of relatively low velocity and high velocity gradient in the San Fernando Valley and the northern Santa Clarita Valley (north of the San Gabriel Fault) correspond to Cenozoic sedimentary basin fill and reach maximum depths along the profile of ???4.3 km and >3 km , respectively. The Antelope Valley, within the western Mojave Desert, is also underlain by low-velocity, high-gradient sedimentary fill to an interpreted maximum depth of ???2.4 km. Below depths of ???2 km, velocities of basement rocks in the Santa Monica Mountains and the central Transverse Ranges vary between 5.5 and 6.0 km/sec, but in the Mojave Desert, basement rocks vary in velocity between 5.25 and 6.25 km/sec. The San Andreas Fault separates differing velocity structures of the central Transverse Ranges and Mojave Desert. A weak low-velocity zone is centered approximately on the north-dipping aftershock zone of the 1971 San Fernando earthquake and possibly along the deep projection of the San Gabriel Fault. Modeling of gravity data, using densities inferred from the velocity model, indicates that different velocity-density relationships hold for both sedimentary and basement rocks as one crosses the San Andreas Fault. The LARSE II velocity model can now be used to improve the SCEC Community Velocity Model, which is used to calculate seismic amplitudes for large scenario earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.bssaonline.org/content/84/3/935.abstract','USGSPUBS'); return false;" href="http://www.bssaonline.org/content/84/3/935.abstract"><span>Static stress changes and the triggering of earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>King, Geoffrey C.P.; Stein, Ross S.; Lin, Jian</p> <p>1994-01-01</p> <p>To understand whether the 1992 M = 7.4 Landers earthquake changed the proximity to failure on the San Andreas fault system, we examine the general problem of how one earthquake might trigger another. The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events. We first consider a Coulomb criterion appropriate for the production of aftershocks, where faults most likely to slip are those optimally orientated for failure as a result of the prevailing regional stress field and the stress change caused by the mainshock. We find that the distribution of aftershocks for the Landers earthquake, as well as for several other moderate events in its vicinity, can be explained by the Coulomb criterion as follows: aftershocks are abundant where the Coulomb stress on optimally orientated faults rose by more than one-half bar, and aftershocks are sparse where the Coulomb stress dropped by a similar amount. Further, we find that several moderate shocks raised the stress at the future Landers epicenter and along much of the Landers rupture zone by about a bar, advancing the Landers shock by 1 to 3 centuries. The Landers rupture, in turn, raised the stress at site of the future M = 6.5 Big Bear aftershock site by 3 bars. The Coulomb stress change on a specified fault is independent of regional stress but depends on the fault geometry, sense of slip, and the coefficient of friction. We use this method to resolve stress changes on the San Andreas and San Jacinto faults imposed by the Landers sequence. Together the Landers and Big Bear earthquakes raised the stress along the San Bernardino segment of the southern San Andreas fault by 2 to 6 bars, hastening the next great earthquake there by about a decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2274K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2274K"><span>Multiscale Dynamics of Aseismic Slip on Central San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khoshmanesh, M.; Shirzaei, M.</p> <p>2018-03-01</p> <p>Understanding the evolution of aseismic slip enables constraining the fault's seismic budget and provides insight into dynamics of creep. Inverting the time series of surface deformation measured along the Central San Andreas Fault obtained from interferometric synthetic aperture radar in combination with measurements of repeating earthquakes, we constrain the spatiotemporal distribution of creep during 1992-2010. We identify a new class of intermediate-term creep rate variations that evolve over decadal scale, releasing stress on the accelerating zone and loading adjacent decelerating patches. We further show that in short-term (<2 year period), creep avalanches, that is, isolated clusters of accelerated aseismic slip with velocities exceeding the long-term rate, govern the dynamics of creep. The statistical properties of these avalanches suggest existence of elevated pore pressure in the fault zone, consistent with laboratory experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880045604&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsauber','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880045604&hterms=sauber&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsauber"><span>Geodetic measurement of deformation east of the San Andreas Fault in Central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael</p> <p>1988-01-01</p> <p>The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.3739S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.3739S"><span>A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shelly, David R.</p> <p>2017-05-01</p> <p>Low-frequency earthquakes (LFEs) are small, rapidly recurring slip events that occur on the deep extensions of some major faults. Their collective activation is often observed as a semicontinuous signal known as tectonic (or nonvolcanic) tremor. This manuscript presents a catalog of more than 1 million LFEs detected along the central San Andreas Fault from 2001 to 2016. These events have been detected via a multichannel matched-filter search, cross-correlating waveform templates representing 88 different LFE families with continuous seismic data. Together, these source locations span nearly 150 km along the central San Andreas Fault, ranging in depth from 16 to 30 km. This accumulating catalog has been the source for numerous studies examining the behavior of these LFE sources and the inferred slip behavior of the deep fault. The relatively high temporal and spatial resolutions of the catalog have provided new insights into properties such as tremor migration, recurrence, and triggering by static and dynamic stress perturbations. Collectively, these characteristics are inferred to reflect a very weak fault likely under near-lithostatic fluid pressure, yet the physical processes controlling the stuttering rupture observed as tremor and LFE signals remain poorly understood. This paper aims to document the LFE catalog assembly process and associated caveats, while also updating earlier observations and inferred physical constraints. The catalog itself accompanies this manuscript as part of the electronic supplement, with the goal of providing a useful resource for continued future investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017620','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017620"><span>The earthquake prediction experiment at Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roeloffs, E.; Langbein, J.</p> <p>1994-01-01</p> <p>Since 1985, a focused earthquake prediction experiment has been in progress along the San Andreas fault near the town of Parkfield in central California. Parkfield has experienced six moderate earthquakes since 1857 at average intervals of 22 years, the most recent a magnitude 6 event in 1966. The probability of another moderate earthquake soon appears high, but studies assigning it a 95% chance of occurring before 1993 now appear to have been oversimplified. The identification of a Parkfield fault "segment" was initially based on geometric features in the surface trace of the San Andreas fault, but more recent microearthquake studies have demonstrated that those features do not extend to seismogenic depths. On the other hand, geodetic measurements are consistent with the existence of a "locked" patch on the fault beneath Parkfield that has presently accumulated a slip deficit equal to the slip in the 1966 earthquake. A magnitude 4.7 earthquake in October 1992 brought the Parkfield experiment to its highest level of alert, with a 72-hour public warning that there was a 37% chance of a magnitude 6 event. However, this warning proved to be a false alarm. Most data collected at Parkfield indicate that strain is accumulating at a constant rate on this part of the San Andreas fault, but some interesting departures from this behavior have been recorded. Here we outline the scientific arguments bearing on when the next Parkfield earthquake is likely to occur and summarize geophysical observations to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1147/ofr20151147_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1147/ofr20151147_pamphlet.pdf"><span>Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 5–24, San Andreas Fault Zone, southern California (2010–2012)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.</p> <p>2015-08-24</p> <p>The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017953','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017953"><span>San Andreas fault zone drilling project: scientific objectives and technological challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,</p> <p>1994-01-01</p> <p>We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019035','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019035"><span>San Andreas fault zone drilling project: scientific objectives and technological challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hickman, S.H.; Younker, L.W.; Zoback, M.D.</p> <p>1995-01-01</p> <p>We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021083','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021083"><span>The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryberg, T.; Fuis, G.S.</p> <p>1998-01-01</p> <p>During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault zones, where 'fault-valve' action has been postulated. Less likely alternative explanations for this velocity reduction include the presence of magma and a change in composition to serpentinite or metagraywacke. (2) It occurs at or near the brittle-ductile transition, at least in the southern San Gabriel Mountains, a possible zone of concentrated shear. (3) A thin reflection rising from its top in the southern San Gabriel Mountains projects to the hypocenter of the 1987 M 5.9 Whittier Narrows earthquake, a blind thrust-fault earthquake with one focal plane subparallel to the reflection. Alternatively, one could argue that the bends or disruptions in the reflective zone seen at the San Gabriel and San Andreas faults are actually offsets and that the reflective zone is therefore an older feature, possibly an older fault zone. ?? 1998 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED21D3471R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED21D3471R"><span>Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reinen, L. A.; Yule, J. D.</p> <p>2014-12-01</p> <p>Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the following summer, the same 5 enrolled in the follow-up course for Fall 2014, and one student changed her major from the social sciences in order to conduct geology senior thesis research. PCAST: http://www.whitehouse.gov/administration/eop/ostp/pcast/docsreports Reinen et al., CUR-Quarterly, 2006. Yule, Geology, 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26PSL.399...14C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26PSL.399...14C"><span>Lithosphere-asthenosphere interactions near the San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chamberlain, C. J.; Houlié, N.; Bentham, H. L. M.; Stern, T. A.</p> <p>2014-08-01</p> <p>We decipher the strain history of the upper mantle in California through the comparison of the long-term finite strain field in the mantle and the surface strain-rate field, respectively inferred from fast polarization directions of seismic phases (SKS and SKKS), and Global Positioning System (GPS) surface velocity fields. We show that mantle strain and surface strain-rate fields are consistent in the vicinity of San Andreas Fault (SAF) in California. Such an agreement suggests that the lithosphere and strong asthenosphere have been deformed coherently and steadily since >1 Ma. We find that the crustal stress field rotates (up to 40° of rotation across a 50 km distance from 50° relative to the strike of the SAF, in the near-field of SAF) from San Francisco to the Central Valley. Both observations suggest that the SAF extends to depth, likely through the entire lithosphere. From Central Valley towards the Basin and Range, the orientations of GPS strain-rates, shear wave splitting measurements and seismic stress fields diverge indicating reduced coupling or/and shallow crustal extension and/or presence of frozen anisotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/project/misr/gallery/california_coast','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/project/misr/gallery/california_coast"><span>California Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2014-05-15</p> <p>... shades of red. The distinctive chevron shape of the Mojave Desert is bordered by the San Andreas Fault on the south and the Garlock Fault ... March 14, 2000 - Southern California with the Mojave Desert and surrounding area. project:  MISR ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1360/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1360/report.pdf"><span>Evaluating earthquake hazards in the Los Angeles region; an earth-science perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ziony, Joseph I.</p> <p>1985-01-01</p> <p>Potentially destructive earthquakes are inevitable in the Los Angeles region of California, but hazards prediction can provide a basis for reducing damage and loss. This volume identifies the principal geologically controlled earthquake hazards of the region (surface faulting, strong shaking, ground failure, and tsunamis), summarizes methods for characterizing their extent and severity, and suggests opportunities for their reduction. Two systems of active faults generate earthquakes in the Los Angeles region: northwest-trending, chiefly horizontal-slip faults, such as the San Andreas, and west-trending, chiefly vertical-slip faults, such as those of the Transverse Ranges. Faults in these two systems have produced more than 40 damaging earthquakes since 1800. Ninety-five faults have slipped in late Quaternary time (approximately the past 750,000 yr) and are judged capable of generating future moderate to large earthquakes and displacing the ground surface. Average rates of late Quaternary slip or separation along these faults provide an index of their relative activity. The San Andreas and San Jacinto faults have slip rates measured in tens of millimeters per year, but most other faults have rates of about 1 mm/yr or less. Intermediate rates of as much as 6 mm/yr characterize a belt of Transverse Ranges faults that extends from near Santa Barbara to near San Bernardino. The dimensions of late Quaternary faults provide a basis for estimating the maximum sizes of likely future earthquakes in the Los Angeles region: moment magnitude .(M) 8 for the San Andreas, M 7 for the other northwest-trending elements of that fault system, and M 7.5 for the Transverse Ranges faults. Geologic and seismologic evidence along these faults, however, suggests that, for planning and designing noncritical facilities, appropriate sizes would be M 8 for the San Andreas, M 7 for the San Jacinto, M 6.5 for other northwest-trending faults, and M 6.5 to 7 for the Transverse Ranges faults. The geologic and seismologic record indicates that parts of the San Andreas and San Jacinto faults have generated major earthquakes having recurrence intervals of several tens to a few hundred years. In contrast, the geologic evidence at points along other active faults suggests recurrence intervals measured in many hundreds to several thousands of years. The distribution and character of late Quaternary surface faulting permit estimation of the likely location, style, and amount of future surface displacements. An extensive body of geologic and geotechnical information is used to evaluate areal differences in future levels of shaking. Bedrock and alluvial deposits are differentiated according to the physical properties that control shaking response; maps of these properties are prepared by analyzing existing geologic and soils maps, the geomorphology of surficial units, and. geotechnical data obtained from boreholes. The shear-wave velocities of near-surface geologic units must be estimated for some methods of evaluating shaking potential. Regional-scale maps of highly generalized shearwave velocity groups, based on the age and texture of exposed geologic units and on a simple two-dimensional model of Quaternary sediment distribution, provide a first approximation of the areal variability in shaking response. More accurate depictions of near-surface shear-wave velocity useful for predicting ground-motion parameters take into account the thickness of the Quaternary deposits, vertical variations in sediment .type, and the correlation of shear-wave velocity with standard penetration resistance of different sediments. A map of the upper Santa Ana River basin showing shear-wave velocities to depths equal to one-quarter wavelength of a 1-s shear wave demonstrates the three-dimensional mapping procedure. Four methods for predicting the distribution and strength of shaking from future earthquakes are presented. These techniques use different measures of strong-motion</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T21B2815D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T21B2815D"><span>Southern San Andreas Fault Slip History Refined Using Pliocene Colorado River Deposits in the Western Salton Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorsey, R. J.; Bennett, S. E. K.; Housen, B. A.</p> <p>2016-12-01</p> <p>Tectonic reconstructions of Pacific-North America plate motion in the Salton Trough region (Bennett et al., 2016) are constrained by: (1) late Miocene volcanic rocks that record 255 +/-10 km of transform offset across the northern Gulf of California since 6 Ma (average 42 mm/yr; Oskin and Stock, 2003); and (2) GPS data that show modern rates of 50-52 mm/yr between Pacific and North America plates, and 46-48 mm/yr between Baja California (BC) and North America (NAM) (Plattner et al., 2007). New data from Pliocene Colorado River deposits in the Salton Trough provide an important additional constraint on the geologic history of slip on the southern San Andreas Fault (SAF). The Arroyo Diablo Formation (ADF) in the San Felipe Hills SW of the Salton Sea contains abundant cross-bedded channel sandstones deformed in the dextral Clark fault zone. The ADF ranges in age from 4.3 to 2.8 Ma in the Fish Creek-Vallecito basin, and in the Borrego Badlands its upper contact with the Borrego Formation is 2.9 Ma based on our new magnetostratigraphy. ADF paleocurrent data from a 20-km wide, NW-oriented belt near Salton City record overall transport to the SW (corrected for bedding dip, N=165), with directions ranging from NW to SE. Spatial domain analysis reveals radial divergence of paleoflow to the: W and NW in the NW domain; SW in the central domain; and S in the SE domain. Data near Borrego Sink, which restores to south of Salton City after removing offset on the San Jacinto fault zone, show overall transport to the SE. Pliocene patterns of radial paleoflow divergence strongly resemble downstream bifurcation of fluvial distributary channels on the modern Colorado River delta SW of Yuma, and indicate that Salton City has translated 120-130 km NW along the SAF since 3 Ma. We propose a model in which post-6 Ma BC-NAM relative motion gradually accelerated to 50 mm/yr by 4 Ma, continued at 50 mm/yr from 4-1 Ma, and decreased to 46 mm/yr from 1-0 Ma (split equally between the SAF and San Jacinto fault). This model satisfies long-term offsets across the northern Gulf, our new paleocurrent data, and modern GPS rates. We suggest that BC-NAM motion on the southern SAF accelerated during latest Miocene to Pliocene progressive localization of plate-boundary strain into the northern Gulf, and slowed slightly at 1 Ma due to oblique collision in San Gorgonio Pass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/946928','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/946928"><span>Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aagaard, B; Brocher, T; Dreger, D</p> <p>2007-02-09</p> <p>We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sitesmore » throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032137','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032137"><span>Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.</p> <p>2008-01-01</p> <p>We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-S39-89-053.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-S39-89-053.html"><span>San Francisco and Bay Area, CA, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1991-05-06</p> <p>STS039-89-053 (28 April-6 May 1991) --- A 70mm, infrared frame of the city of San Francisco, taken on a clear day. The gray areas represent urban regions, and the red areas are vegetated. Within the city of San Francisco, parks like Golden Gate park and the Presidio at the base of the Golden Gate Bridge easily stand out from the well-developed parts of the city. Major thoroughfares and bridges (Golden Gate and Bay Bridges) are seen as are other landmarks such as Candlestick Park and Alcatraz. The trace of the San Andreas faults show as a straight valley running northerly along the San Francisco peninsula. Good detail is visible in the turbid waters of San Francisco Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G32A..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G32A..07D"><span>How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.</p> <p>2016-12-01</p> <p>The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from a small UAV on the southern San Andreas fault and the San Jacinto fault south of Anza, decimeter level B4 lidar data, GPS, and UAVSAR observations flown as recently as June 2016 will serve as baseline data for future large earthquakes in the region. Models that combine the different data sets are required to better understand the interconnections of the faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s40-152-100.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s40-152-100.html"><span>San Francisco and Bay Area, CA, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1991-06-14</p> <p>STS040-152-100 (5-14 June 1991) --- Although clouds obscure part of the city of San Francisco and the mouth of San Francisco Bay, development and physiographic features in the immediate vicinity of the bay are well displayed. The photograph clearly shows the eastern part of the city, including the Embarcadero, the Bay Bridge, which was damaged in the 1989 earthquake, and Candlestick Park, San Mateo, and Dumbarton Bridges, cross the southern portion of the bay. Vari-colored salt ponds also rim the southern Bay near Moffett Field. Highway 280 runs along the San Andreas fault south of the city. On the eastern margin of the bay are Berkeley the Sacramento River and the Haywood and Calaveras faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3967J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3967J"><span>An Anisotropic Contrast in the Lithosphere Across the Central San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Chengxin; Schmandt, Brandon; Clayton, Robert W.</p> <p>2018-05-01</p> <p>Seismic anisotropy of the lithosphere and asthenosphere was investigated with a dense broadband seismic transect nearly orthogonal to the central San Andreas fault (SAF). A contrast in SK(K)S splitting was found across the SAF, with a clockwise rotation of the fast orientation 26° closer to the strike of the SAF and greater delay times for stations located within 35 km to the east. Dense seismograph spacing requires heterogeneous anisotropy east of the SAF in the uppermost mantle or crust. Based on existing station coverage, such a contrast in splitting orientations across the SAF may be unusual along strike and its location coincides with the high-velocity Isabella anomaly in the upper mantle. If the Isabella anomaly is a fossil slab fragment translating with the Pacific plate, the anomalous splitting east of the SAF could indicate a zone of margin-parallel shear beneath the western edge of North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.earthquakegeology.com/index.php?page=publications&s=6','USGSPUBS'); return false;" href="http://www.earthquakegeology.com/index.php?page=publications&s=6"><span>Testing geomorphology-derived rupture histories against the paleoseismic record of the southern San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Weldon, Ray; Bemis, Sean</p> <p>2016-01-01</p> <p>Evidence for the 340-km-long Fort Tejon earthquake of 1857 is found at each of the high-resolution paleoseismic sites on the southern San Andreas Fault. Using trenching data from these sites, we find that the assemblage of dated paleoearthquakes recurs quasi-periodically (coefficient of variation, COV, of 0.6, Biasi, 2013) and requires ~80% of ruptures were shorter than the 1857 rupture with an average of Mw7.5. In contrast, paleorupture lengths reconstructed from preserved geomorphic offsets extracted from lidar are longer and have repeating displacements that are quite regular (COV=0.2; Zielke et al., 2015). Direct comparison shows that paleoruptures determined from geomorphic offset populations cannot be reconciled with dated paleoearthquakes. Our study concludes that the 1857 rupture was larger than average, average displacements must be < 5 m, and suggests that fault geometry may play a role in fault behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21B0704S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21B0704S"><span>Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shebalin, P.; Narteau, C.; Vorobieva, I.</p> <p>2017-12-01</p> <p>Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, andin most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodeticmeasurements are therefore two complementary data sets that together document ongoing deformationalong active tectonic structures. Here we study the influence of stable sliding on earthquake statistics.We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake sizedistribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas itshows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficitof large events under conditions of faster creep where seismic ruptures are less likely to propagate. Theseresults suggest that the earthquake size distribution does not only depend on the level of stress but also onthe type of deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730004626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730004626"><span>Earthquake epicenters and fault intersections in central and southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdel-Gawad, M. (Principal Investigator); Silverstein, J.</p> <p>1972-01-01</p> <p>The author has identifed the following significant results. ERTS-1 imagery provided evidence for the existence of short transverse fault segments lodged between faults of the San Andreas system in the Coast Ranges, California. They indicate that an early episode of transverse shear has affected the Coast Ranges prior to the establishment of the present San Andreas fault. The fault has been offset by transverse faults of the Transverse Ranges. It appears feasible to identify from ERTS-1 imagery geomorphic criteria of recent fault movements. Plots of historic earthquakes in the Coast Ranges and western Transverse Ranges show clusters in areas where structures are complicated by interaction of tow active fault systems. A fault lineament apparently not previously mapped was identified in the Uinta Mountains, Utah. Part of the lineament show evidence of recent faulting which corresponds to a moderate earthquake cluster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042290','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042290"><span>Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, David R.; Hardebeck, Jeanne L.</p> <p>2010-01-01</p> <p>We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.G31A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.G31A..06H"><span>Characterization of a Strain Rate Transient Along the San Andreas and San Jacinto Faults Following the October 1999 Hector Mine Earthquake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, D.; Holt, W. E.; Bennett, R. A.; Dimitrova, L.; Haines, A. J.</p> <p>2006-12-01</p> <p>We are continuing work on developing and refining a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. We determined time-averaged velocity values in 0.05 year epochs using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. A self-consistent model velocity gradient tensor field solution is determined for each epoch by fitting bi-cubic Bessel interpolation to the GPS velocity vectors and we determine model dilatation strain rates, shear strain rates, and the rotation rates. Departures of the time dependent model strain rate and velocity fields from a master solution, obtained from a time-averaged solution for the period 1999-2004, with imposed plate motion constraints and Quaternary fault data, are evaluated in order to best characterize the time dependent strain rate field. A particular problem in determining the transient strain rate fields is the level of smoothing or damping that is applied. Our current approach is to choose a damping that both maximizes the departure of the transient strain rate field from the long-term master solution and achieves a reduced chi-squared value between model and observed GPS velocities of around 1.0 for all time epochs. We observe several noteworthy time-dependent changes. First, in the Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, there occurs a significant spatial increase of relatively high shear strain rate, which encompasses a significant portion of the ECSZ. Second, also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting the ECSZ to the San Andreas fault segment in the Salton Trough region. As this signal slowly decays, shear strain rates on segments of the San Andreas fault, just east of Palm Springs, and the San Jacinto fault increase during 2001-2004. During this period shear strain rates increase by roughly 20 nanostrain per year on the San Andreas fault and 20-30 nanostrain per year on the San Jacinto fault (over a zone approximately 20 km wide). Lastly, a further investigation into this strain rate recovery reveals a power law flow mechanism during the first six months after the earthquake for the Anza segment, after which strain rates appear to reach a steady state for the remainder of the data. Moreover, seismicity rates increase along these segments following the period of shear strain rate increase. These results quantify the spatial coverage of the strain rate changes and provide some bounds on their magnitude and confidence, as well as constraints on the associated regional rheology and interseismic cycle strain rate pattern. The compiled epoch solution "movies" may be viewed at the additional resources site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021171','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021171"><span>Middle Miocene paleotemperature anomalies within the Franciscan Complex of northern California: Thermo-tectonic responses near the Mendocino triple junction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.</p> <p>1999-01-01</p> <p>This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas plate boundary. Contouring of vitrinite reflectance values to the north of an area affected by A.D. 1906 surface rupture indicates that the maximum dextral offset within the interior of the King Range terrane is only 2.5 km. If this fault extends inland, and if it has been accommodating most of the strike-slip component of San Andreas offset at a rate of 3-4 cm/yr, then its activity began only 83-62 ka. This interpretation would also mean that a longer term trace of the San Andreas fault must be nearby, either offshore or along the northeast boundary of the King Range terrane. An offshore fault trace would be consistent with peak heating of King Range strata north of the Mendocino triple junction. Conversely, shifting the fault to the east would be compatible with a slabless window heat source and long-distance northward translation of the King Range terrane after peak heating.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..699M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..699M"><span>Aseismic Transform Fault Slip at the Mendocino Triple Junction From Characteristically Repeating Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland</p> <p>2018-01-01</p> <p>The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby <fi>M</fi>5.7 earthquake in 2015, we observe a possible decrease in aseismic slip on the near-shore MFZ that lasts from 2015 to at least early 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1083/f/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1083/f/"><span>Seismicity of the Earth 1900-2010 Mexico and vicinity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rhea, Susan; Dart, Richard L.; Villaseñor, Antonio; Hayes, Gavin P.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.</p> <p>2011-01-01</p> <p>Mexico, located in one of the world's most seismically active regions, lies on three large tectonic plates: the North American plate, Pacific plate, and Cocos plate. The relative motion of these tectonic plates causes frequent earthquakes and active volcanism and mountain building. Mexico's most seismically active region is in southern Mexico where the Cocos plate is subducting northwestward beneath Mexico creating the deep Middle America trench. The Gulf of California, which extends from approximately the northern terminus of the Middle America trench to the U.S.-Mexico border, overlies the plate boundary between the Pacific and North American plates where the Pacific plate is moving northwestward relative to the North American plate. This region of transform faulting is the southern extension of the well-known San Andreas Fault system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024102','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024102"><span>Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.</p> <p>2002-01-01</p> <p>We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182765','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182765"><span>Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.</p> <p>2015-01-01</p> <p>The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880011370','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880011370"><span>Geodetic Measurement of Deformation East of the San Andreas Fault in Central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sauber, Jeanne M.; Lisowski, Michael; Solomon, Sean C.</p> <p>1988-01-01</p> <p>Triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas fault have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in Central California. Within the Diablo Range the average shear strain rate was determined for the time period between 1962 and 1982 to be 0.15 + or - 0.08 microrad/yr, with the orientation of the most compressive strain at N 16 deg E + or - 14 deg. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E. It is inferred that the measured strain is due to compression across the folds of this area: the average shear straining corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. From an examination of wellbore breakout orientations and the azimuths of P-axes from earthquake focal mechanisms the inferred orientation of maximum compressive stress was found to be similar to the direction of maximum compressive strain implied by the trend of local fold structures. Results do not support the hypothesis of uniform fault-normal compression within the Coast Ranges. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10 to 12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate of the Paicines fault decreases to 4 mm/yr near Bitter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70135097','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70135097"><span>Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon</p> <p>2014-01-01</p> <p>Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_58935.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_58935.htm"><span>Preliminary geologic map and digital database of the San Bernardino 30' x 60' quadrangle, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morton, Douglas M.; Miller, Fred K.</p> <p>2003-01-01</p> <p>The San Bernardino 30'x60' quadrangle, southern California, is diagonally bisected by the San Andreas Fault Zone, separating the San Gabriel and San Bernardino Mountains, major elements of California's east-oriented Transverse Ranges Province. Included in the southern part of the quadrangle is the northern part of the Peninsular Ranges Province and the northeastern part of the oil-producing Los Angeles basin. The northern part of the quadrangle includes the southern part of the Mojave Desert Province. Pre-Quaternary rocks within the San Bernardino quadrangle consist of three extensive, well-defined basement rock assemblages, the San Gabriel Mountains, San Bernardino Mountains, and the Peninsular Ranges assemblages, and a fourth assemblage restricted to a narrow block bounded by the active San Andreas Fault and the Mill Creek Fault. Each of these basement rock assemblages is characterized by a relatively unique suite of rocks that was amalgamated by the end of the Cretaceous and (or) early Cenozoic. Some Tertiary sedimentary and volcanic rocks are unique to specific assemblages, and some overlap adjacent assemblages. A few Miocene and Pliocene units cross the boundaries of adjacent assemblages, but are dominant in only one. Tectonic events directly and indirectly related to the San Andreas Fault system have partly dismembered the basement rocks during the Neogene, forming the modern-day physiographic provinces. Rocks of the four basement rock assemblages are divisible into an older suite of Late Cretaceous and older rocks and a younger suite of post-Late Cretaceous rocks. The age span of the older suite varies considerably from assemblage to assemblage, and the point in time that separates the two suites varies slightly. In the Peninsular Ranges, the older rocks were formed from the Paleozoic to the end of Late Cretaceous plutonism, and in the Transverse Ranges over a longer period of time extending from the Proterozoic to metamorphism at the end of the Cretaceous. Within the Peninsular Ranges a profound diachronous unconformity marks the pre-Late Cretaceous-post-Late Cretaceous subdivision, but within the Transverse Ranges the division appears to be slightly younger, perhaps coinciding with the end of the Cretaceous or extending into the early Cenozoic. Initial docking of Peninsular Ranges rocks with Transverse Ranges rocks appears to have occurred at the terminus of plutonism within the Peninsular Ranges. During the Paleogene there was apparently discontinuous but widespread deposition on the basement rocks and little tectonic disruption of the amalgamated older rocks. Dismemberment of these Paleogene and older rocks by strike-slip, thrust, and reverse faulting began in the Neogene and is ongoing. The Peninsular Ranges basement rock assemblage is made up of the Peninsular Ranges batholith and a variety of metasedimentary rocks. Most of the plutonic rocks of the batholith are granodiorite and tonalite in composition; primary foliation is common, mainly in the eastern part. Tertiary sedimentary rocks of the Los Angeles Basin crop out in the Puente and San Jose Hills along with the spatially associated Glendora Volcanics; both units span the boundary between the Peninsular Ranges and San Gabriel Mountains basement rock assemblages. The San Gabriel Mountains basement rock assemblage includes two discrete areas, the high standing San Gabriel Mountains and the relatively low San Bernardino basin east of the San Jacinto Fault. The basement rock assemblage is characterized by a unique suite of rocks that include anorthosite, Proterozoic and Paleozoic gneiss and schist, the Triassic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CG....114...84S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CG....114...84S"><span>Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandwell, David; Smith-Konter, Bridget</p> <p>2018-05-01</p> <p>We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G33A1082M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G33A1082M"><span>Shallow and deep creep events observed and quantified with strainmeters along the San Andreas Fault near Parkfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mencin, D.; Hodgkinson, K. M.; Mattioli, G. S.; Johnson, W.; Gottlieb, M. H.; Meertens, C. M.</p> <p>2016-12-01</p> <p>Three-component strainmeter data from numerous borehole strainmeters (BSM) along the San Andreas Fault (SAF), including those that were installed and maintained as part of the EarthScope Plate Boundary Observatory (PBO), demonstrate that the characteristics of creep propagation events with sub-cm slip amplitudes can be quantified for slip events at 10 km source-to-sensor distances. The strainmeters are installed at depths of approximately 100 - 250 m and record data at a rate of 100 samples per second. Noise levels at periods of less than a few minutes are 10-11 strain, and for periods in the bandwidth hours to weeks, the periods of interest in the search for slow slip events, are of the order of 10-8 to 10-10 strain. Strainmeters, creepmeters, and tiltmeters have been operated along the San Andreas Fault, observing creep events for decades. BSM data proximal to the SAF cover a significant temporal portion of the inferred earthquake cycle along this portion of the fault. A single instrument is capable of providing broad scale constraints of creep event asperity size, location, and depth and moreover can capture slow slip, coseismic rupture as well as afterslip. The synthesis of these BSM data presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that the creepmeters confirm that creep events that are imaged by the strainmeters, previously catalogued by the authors, are indeed occurring on the SAF, and are simultaneously being recorded on local creepmeters. We further show that simple models allow us to loosely constrain the location and depth of the creep event on the fault, even with a single instrument, and to image the accumulation and behavior of surface as well as crustal creep with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T43C3011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T43C3011M"><span>Synthesis of Creep Measurements from Strainmeters and Creepmeters along the San Andreas Fault: Implications for Seismic vs. Aseismic Partitioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mencin, D.; Gottlieb, M. H.; Hodgkinson, K. M.; Bilham, R. G.; Mattioli, G. S.; Johnson, W.; Van Boskirk, E.; Meertens, C. M.</p> <p>2015-12-01</p> <p>Strainmeters and creepmeters have been operated along the San Andreas Fault, observing creep events for decades. In particular, the EarthScope Plate Boundary Observatory (PBO) has added a significant number of borehole strainmeters along the San Andreas Fault (SAF) over the last decade. The geodetic data cover a significant temporal portion of the inferred earthquake cycle along this portion of the SAF. Creepmeters measure the surface displacement over time (creep) with short apertures and have the ability to capture slow slip, coseismic rupture, and afterslip. Modern creepmeters deployed by the authors have a resolution of 5 µm over a range of 10 mm and a dynamic sensor with a resolution 25 µm over a range 2.2 m. Borehole strainmeters measure local deformation some distance from the fault with a broader aperture. Borehole tensor strainmeters principally deployed as part of the PBO, measure the horizontal strain tensor at a depth of 100-200 m with a resolution of 10-11 strain and are located 4 - 10 km from the fault with the ability to image a 1 mm creep event acting on an area of ~500 m2 from over 4 km away (fault perpendicular). A single borehole tensor strainmeter is capable of providing broad constraints on the creep event asperity size, location, direction and depth of a single creep event. The synthesis of these data from all the available geodetic instruments proximal to the SAF presents a unique opportunity to constrain the partitioning between aseismic and seismic slip on the central SAF. We show that simple elastic half-space models allow us to loosely constrain the location and depth of any individual creep event on the fault, even with a single instrument, and to image the accumulation of creep with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169888','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169888"><span>Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron</p> <p>2015-01-01</p> <p>Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191859','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191859"><span>Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.</p> <p>2017-01-01</p> <p>Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030106079&hterms=InSAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DInSAR','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030106079&hterms=InSAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DInSAR"><span>Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, Suzanne; Sandwell, David</p> <p>2003-01-01</p> <p>Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSG....42..246H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSG....42..246H"><span>A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.</p> <p>2012-09-01</p> <p>The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70128987','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70128987"><span>Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John</p> <p>2014-01-01</p> <p>Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189779','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189779"><span>Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.</p> <p>2014-01-01</p> <p>Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024510','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024510"><span>Response of the San Andreas fault to the 1983 Coalinga-Nuñez earthquakes: an application of interaction-based probabilities for Parkfield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Toda, Shinji; Stein, Ross S.</p> <p>2002-01-01</p> <p>The Parkfield-Cholame section of the San Andreas fault, site of an unfulfilled earthquake forecast in 1985, is the best monitored section of the world's most closely watched fault. In 1983, the M = 6.5 Coalinga and M = 6.0 Nuñez events struck 25 km northeast of Parkfield. Seismicity rates climbed for 18 months along the creeping section of the San Andreas north of Parkfield and dropped for 6 years along the locked section to the south. Right-lateral creep also slowed or reversed from Parkfield south. Here we calculate that the Coalinga sequence increased the shear and Coulomb stress on the creeping section, causing the rate of small shocks to rise until the added stress was shed by additional slip. However, the 1983 events decreased the shear and Coulomb stress on the Parkfield segment, causing surface creep and seismicity rates to drop. We use these observations to cast the likelihood of a Parkfield earthquake into an interaction-based probability, which includes both the renewal of stress following the 1966 Parkfield earthquake and the stress transfer from the 1983 Coalinga events. We calculate that the 1983 shocks dropped the 10-year probability of a M ∼ 6 Parkfield earthquake by 22% (from 54 ± 22% to 42 ± 23%) and that the probability did not recover until about 1991, when seismicity and creep resumed. Our analysis may thus explain why the Parkfield earthquake did not strike in the 1980s, but not why it was absent in the 1990s. We calculate a 58 ± 17% probability of a M ∼ 6 Parkfield earthquake during 2001–2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6595955-sequence-stratigraphy-tectonics-hydrocarbon-trap-geometries-middle-tertiary-strata-southern-san-joaquin-basin-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6595955-sequence-stratigraphy-tectonics-hydrocarbon-trap-geometries-middle-tertiary-strata-southern-san-joaquin-basin-california"><span>Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.</p> <p>1996-01-01</p> <p>Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic [open quotes]lowstand[close quotes] systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/425794-sequence-stratigraphy-tectonics-hydrocarbon-trap-geometries-middle-tertiary-strata-southern-san-joaquin-basin-california','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/425794-sequence-stratigraphy-tectonics-hydrocarbon-trap-geometries-middle-tertiary-strata-southern-san-joaquin-basin-california"><span>Sequence stratigraphy, tectonics and hydrocarbon trap geometries of Middle Tertiary strata in the southern San Joaquin Basin, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Phillips, S.; Hewlett, J.S.; Bazeley, W.J.M.</p> <p>1996-12-31</p> <p>Tectonic evolution of the southern San Joaquin basin exerted a fundamental control on Cenozoic sequence boundary development, reservoir, source and seal facies distribution, and hydrocarbon trap development. Spatial and temporal variations in Tertiary sequence architecture across the basin reflect differences in eastside versus westside basin-margin geometries and deformation histories. Deposition of Tertiary sequences initiated in a forearc basin setting, bounded on the east by a ramp-margin adjacent to the eroded Sierran arc complex and on the west by the imbricated accretionary wedge of the Coast Ranges thrust. The major stages of Cenozoic basin evolution are: (1) Episodic compressional folding andmore » thrusting associated with oblique convergence of the Farallon and North American plates (Late Cretaceous to Oligocene), (2) localized folding and onset of basin subsidence related to Pacific Plate reorganization, microplate formation and rotation (Oligocene to Early Miocene), (3) transtensional faulting, folding basin subsidence associated with initiation of the San Andreas transform and continued microplate rotation (Micocene to Pliocene), and (4) compressional folding, extensional and strike- slip faulting related to evolution of the Pacific-North American transform boundary (Plio- Pleistocene). Complex stratigraphic relationships within Eocene to Middle Miocene rocks provide examples of tectonic influences on sequence architecture. These include development of: (1) Tectonically enhanced sequence boundaries (Early Eocene base Domengine unconformity) and local mid-sequence angular unconformities, (2) westside-derived syntectonic {open_quotes}lowstand{close_quotes} systems (Yokut/Turitella Silt wedge and Leda Sand/Cymric/Salt Creek wedge), (3) regional seals associated with subsidence-related transgressions (Round Mountain Silt), and (4) combination traps formed by structural inversion of distal lowstand delta reservoirs (e.g. Coalinga East Extension field).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022128','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022128"><span>Analysis of the tsunami generated by the MW 7.8 1906 San Francisco earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, E.L.; Zoback, M.L.</p> <p>1999-01-01</p> <p>We examine possible sources of a small tsunami produced by the 1906 San Francisco earthquake, recorded at a single tide gauge station situated at the opening to San Francisco Bay. Coseismic vertical displacement fields were calculated using elastic dislocation theory for geodetically constrained horizontal slip along a variety of offshore fault geometries. Propagation of the ensuing tsunami was calculated using a shallow-water hydrodynamic model that takes into account the effects of bottom friction. The observed amplitude and negative pulse of the first arrival are shown to be inconsistent with small vertical displacements (~4-6 cm) arising from pure horizontal slip along a continuous right bend in the San Andreas fault offshore. The primary source region of the tsunami was most likely a recently recognized 3 km right step in the San Andreas fault that is also the probable epicentral region for the 1906 earthquake. Tsunami models that include the 3 km right step with pure horizontal slip match the arrival time of the tsunami, but underestimate the amplitude of the negative first-arrival pulse. Both the amplitude and time of the first arrival are adequately matched by using a rupture geometry similar to that defined for the 1995 MW (moment magnitude) 6.9 Kobe earthquake: i.e., fault segments dipping toward each other within the stepover region (83??dip, intersecting at 10 km depth) and a small component of slip in the dip direction (rake=-172??). Analysis of the tsunami provides confirming evidence that the 1906 San Francisco earthquake initiated at a right step in a right-lateral fault and propagated bilaterally, suggesting a rupture initiation mechanism similar to that for the 1995 Kobe earthquake.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02786&hterms=earth+quakes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bquakes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02786&hterms=earth+quakes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bquakes"><span>San Andreas Fault in the Carrizo Plain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p>The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.<p/>The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet) long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif, for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena.<p/>Distance to Horizon: 73 kilometers (45.3 miles) Location: 35.42 deg. North lat., 119.5 deg. West lon. View: Toward the Southeast Date Acquired: February 16, 2000 SRTM, December 14, 1984 Landsat Image: NASA/JPL/NIMA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1341854-tidal-triggering-earthquakes-suggests-poroelastic-behavior-san-andreas-fault','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1341854-tidal-triggering-earthquakes-suggests-poroelastic-behavior-san-andreas-fault"><span>Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan</p> <p>2016-12-28</p> <p>Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010493','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010493"><span>Crustal deformation along the San Andreas, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Victor C.</p> <p>1992-01-01</p> <p>The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/misc/tl/0001/tl0001.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/misc/tl/0001/tl0001.pdf"><span>The Parkfield-Cholame, California, earthquakes of June-August, 1966; instrumental seismic studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eaton, Jerry P.</p> <p>1967-01-01</p> <p>U.S. Geological Survey instrumental seismic studies in the Parkfield-Cholame area consist of three related parts that were undertaken as pilot studies in a program designed to develop improved tools and concepts for investigating the properties and behavior of the San Andreas fault. These studies include: 1. The long=term monitoring of the seismic background on the San Andreas fault in Cholame Valley by means of a short-period Benioff seismograph station at Gold Hill. 2. The investigation of the geometry of the zone of aftershocks of the June 27 earthquakes by means of a small portable cluster of short-period, primarily vertical-component seismographs. 3. The seismic-refraction calibration of the region enclosing the aftershock source by means of three short reversed refraction profiles and a "calibration shot" near the epicenter of the main June 27 earthquake. This brief report outlines the work that has been completed and presents some preliminary results obtained from analysis of records from Gold Hill and the portable cluster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70127834','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70127834"><span>Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scharer, Katherine M.; Weldon, Ray; Streig, Ashley; Fumal, Thomas</p> <p>2014-01-01</p> <p>Large earthquakes are infrequent along a single fault, and therefore historic, well-characterized earthquakes exert a strong influence on fault behavior models. This is true of the 1857 Fort Tejon earthquake (estimated M7.7–7.9) on the southern San Andreas Fault (SSAF), but an outstanding question is whether the 330 km long rupture was typical. New paleoseismic data for six to seven ground-rupturing earthquakes on the Big Bend of the SSAF restrict the pattern of possible ruptures on the 1857 stretch of the fault. In conjunction with existing sites, we show that over the last ~650 years, at least 75% of the surface ruptures are shorter than the 1857 earthquake, with estimated rupture lengths of 100 to <300 km. These results suggest that the 1857 rupture was unusual, perhaps leading to the long open interval, and that a return to pre-1857 behavior would increase the rate of M7.3–M7.7 earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026734','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026734"><span>Re-evaluation of heat flow data near Parkfield, CA: Evidence for a weak San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fulton, P.M.; Saffer, D.M.; Harris, Reid N.; Bekins, B.A.</p> <p>2004-01-01</p> <p>Improved interpretations of the strength of the San Andreas Fault near Parkfield, CA based on thermal data require quantification of processes causing significant scatter and uncertainty in existing heat flow data. These effects include topographic refraction, heat advection by topographically-driven groundwater flow, and uncertainty in thermal conductivity. Here, we re-evaluate the heat flow data in this area by correcting for full 3-D terrain effects. We then investigate the potential role of groundwater flow in redistributing fault-generated heat, using numerical models of coupled heat and fluid flow for a wide range of hydrologic scenarios. We find that a large degree of the scatter in the data can be accounted for by 3-D terrain effects, and that for plausible groundwater flow scenarios frictional heat generated along a strong fault is unlikely to be redistributed by topographically-driven groundwater flow in a manner consistent with the 3-D corrected data. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1341854','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1341854"><span>Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul Allan</p> <p></p> <p>Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering ofmore » earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760016696','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760016696"><span>Strain buildup and release, earthquake prediction and selection of VLB sites for the margins of the North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scholz, C. H.; Johnson, T.</p> <p>1976-01-01</p> <p>Microearthquake studies of the southern section of the San Andreas fault system were conducted in order to elucidate the role of known but little studied complications in the fault system which could affect the SAFE measurement. Data reduction from microearthquake studies in Baja California, Mexico, was completed. In addition, styles of deformation on the Alpine fault in New Zealand and on the San Andreas fault were compared. Sections of these faults with comparable physical characteristics seem to deform in a similar manner, indicating that deformation style is controlled by certain fundamental relations and will continue in the future. The geology of eastern New Guinea is also discussed. Deformation in the area is proposed to be related to collision of a series of island arcs with central New Guinea, which is part of the Australian continent. Among other unusual properties, eastern New Guinea contains the highest anomaly of the gravimetrically determined geoid based on GEM 6 and surface gravity data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015405','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015405"><span>Historic surface slip along the San Andreas Fault near Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lienkaemper, J.J.; Prescott, W.H.</p> <p>1989-01-01</p> <p>The Parkfield Earthquake Prediction Experiment is focusing close attention on the 44-km-long section of the San Andreas fault that last ruptured seismically in 1966 (Ms 6.0). The 20-km-long central segment of the 1966 Parkfield rupture, extending from the mainshock epicenter at Middle Mountain southeastward to Gold Hill, forms a 1- to 2-km salient northeastward away from the dominant N40??W strike. Following the 1966 earthquake afterslip, aseismic slip has been nearly constant. Moderate Parkfield earthquakes have recurred on average every 21 years since 1857, when a great earthquake (M ~ 8) ruptured at least as far north as the southern Parkfield segment. Many measurements of slip have been made near Parkfield since 1966. Nevertheless, much of the history of surface slip remained uncertain, especially the total amount associated with the 1966 event. In 1985 we measured accumulated slip on the four oldest cultural features offset by the fault along the 1966 Parkfield rupture segment. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035969','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035969"><span>Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.</p> <p>2009-01-01</p> <p>We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026946','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026946"><span>Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thurber, C.; Roecker, S.; Zhang, H.; Baher, S.; Ellsworth, W.</p> <p>2004-01-01</p> <p>We present results from the tomographic analysis of seismic data from the Parkfield area using three different inversion codes. The models provide a consistent view of the complex velocity structure in the vicinity of the San Andreas, including a sharp velocity contrast across the fault. We use the inversion results to assess our confidence in the absolute location accuracy of a potential target earthquake. We derive two types of accuracy estimates, one based on a consideration of the location differences from the three inversion methods, and the other based on the absolute location accuracy of "virtual earthquakes." Location differences are on the order of 100-200 m horizontally and up to 500 m vertically. Bounds on the absolute location errors based on the "virtual earthquake" relocations are ??? 50 m horizontally and vertically. The average of our locations places the target event epicenter within about 100 m of the SAF surface trace. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770006642','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770006642"><span>Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kumar, M.</p> <p>1976-01-01</p> <p>The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192213','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192213"><span>Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul</p> <p>2017-01-01</p> <p>Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.T21B0406K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.T21B0406K"><span>Fragmented Landscapes in the San Gorgonio Pass Region: Insights into Quaternary Strain History of the Southern San Andreas Fault System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.; Landis, G. P.; Alvarez, R. M.</p> <p>2006-12-01</p> <p>The San Gorgonio Pass (SGP) region is a zone of structural complexity within the southern San Andreas Fault system that is characterized by (1) multiple strands of the San Andreas Fault (SAF), (2) intense and diverse microseismicity, (3) contraction within the SGP fault zone (SGPfz), and (4) complex and diverse landforms - all a consequence of structural complications in the vicinity of the southeastern San Bernardino Mountains (SBM). Multiple strands of the SAF zone in the SGP region partition the landscape into discrete geomorphic/geologic domains, including: San Gorgonio Mountain (SGM), Yucaipa Ridge (YR), Kitching Peak (KP), Pisgah Peak (PP), and Coachella Valley (CV) domains. The morphology of each domain reflects the tectonic history unique to that region. Development of the SGP knot in the Mission Creek strand of the SAF (SAFmi) led to westward deflection of the SAFmi, juxtaposition of the KP, PP, and SGM domains, initiation of uplift of YR domain along thrust faults in headwaters of San Gorgonio River, and development of the San Jacinto Fault. Slip on the SAF diminished as a result, thereby allowing integrated drainage systems to develop in the greater SGP region. San Gorgonio River, Whitewater River, and Mission Creek are discrete drainages that transport sediment across the SGM, YR, PP, KP, and CV domains into alluvial systems peripheral to the SGP region. There, depositional units (San Timoteo Formation, upper member, deformed gravels of Whitewater River) all contain clasts of SBM-type and San Gabriel Mountain-type basement, thus constraining slip on the SAF in the SGP region. Middle and late Pleistocene slip on the Mill Creek strand of the SAF (SAFm) in the SGP region has attempted to bypass the SGP knot, and has disrupted landscapes established during SAFmi quiescence. Restoration of right-slip on the SAFm is key to deciphering landscape history. Matti and others (1985, 1992) proposed that a bi-lobed alluvial deposit in the Raywood Flats area has been displaced by 8-10 km from entrenched bedrock drainages north of the SAFm (North Fork Whitewater River and Hell-For-Sure Canyon). This restoration, along with restoration of 3-4 km of dextral-slip along SAFmi, leads to an integrated drainage network that extended from San Gorgonio Peak southward across the SAFm and SAFmi, through the San Timoteo drainage basin and ultimately to the Santa Ana River drainage. Following final slip on the SAFmi, which occurred between approximately 1.2 and 0.5 Ma, the 8-10 km dextral-slip reconstruction on the SAFm can be used to restore the ancestral Mission Creek drainage system, which has always flowed southeast. A large alluvial-fan complex that overlies the SAFmi strand developed where the ancestral Mission Creek River debouched into the Coachella Valley. Analysis of cosmogenic radionuclides (21Ne from quartz) from surface boulders indicates that oldest deposits in the fan complex are about 400ka old, compatible with pedogenic development on the oldest surface. Approximately 2-4 km dextral slip on the youngest strands of the SAF (Banning and Garnet Hill) represents the latest bypass of the SGP structural knot. Cumulative displacement on all strands of the SAF in the greater SGP region appears to have been no more than ~18 km since inception of the left step in the SAFmi. Regional evidence suggests that this event initiated at ~1.2Ma, leading to a Quaternary slip rate on the SAF at SGP of no more than 10-15 mm/yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G53A0876L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G53A0876L"><span>Geoloogic slip on offshore San Clemente fault, Southern California, understated in GPS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Legg, M. R.</p> <p>2005-12-01</p> <p>The San Clemente fault offshore southern California exhibits prominent geomorphic evidence of major late Quaternary right-slip. Like the San Andreas fault, where modern Pacific-North America transform motion is focused, the San Clemente fault stretches more than 700 km along the continental margin with a well-defined principal displacement zone (PDZ). Lateral offset is generally concentrated in a zone less than about 1 km wide, and linear seafloor fault scarps cutting across active submarine fans and basin-filling turbidites demonstrate Holocene activity. Dextral offset of middle Miocene circular crater structures suggest as much as 60 km of Neogene and younger displacement. Offset submarine fan depositional features suggest a rate of about 4-7 mm/yr of late Quaternary slip. Nearly 75 years of seismograph recording in southern California registered at least three moderate (M~6) earthquakes, activity which exceeds that of the Elsinore fault with a similar measured slip rate. Geodetic data based only on a few decades of GPS observations have been interpreted to show less than 1 mm/yr right-slip on the San Clemente fault, whereas larger rates, of about 5-10 mm/yr are described in the Inner Borderland between Catalina Island and the coast. Extrapolations of data from GPS stations on the Pacific Plate offshore Baja California also suggest larger rates west of San Clemente Island. Because there are few offshore locations (islands) for GPS observations, and San Clemente Island is likely within the broader zone of deformation of its namesake fault, these data miss the full slip rate. Seafloor observations from submersible discovered youthful fault scarps in turbidite muds that are inferred to represent large prehistoric earthquakes, (M~7). The potential for large offshore earthquakes, with tsunami generation that would affect the heavily populated adjacent coastal areas underscores the importance of resolving the slip rate and quantifying the hazard potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.T11A1838M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.T11A1838M"><span>Does the West Salton Detachment extend through San Gorgonio Pass, southern California?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matti, J. C.; Langenheim, V. E.</p> <p>2008-12-01</p> <p>Rift-related extension and low-angle crustal detachment are key structural elements of the late Cenozoic southern San Andreas Fault system, as manifested by the West Salton Detachment (WSD). The most northwestern exposure of the WSD is in the Santa Rosa Mts (SRM), where the Zosel Fault bottoms a hangingwall sequence of upper Cenozoic marine and terrestrial sedimentary deposits that include stratigraphic units well known throughout the Salton Trough region. We have used geologic and geophysical data to investigate the distribution of the WSD system in the northern Salton Trough, including its possible extension into and beyond San Gorgonio Pass. Although the WSD is not exposed north of the SRM, late Miocene marine and terrigenous sedimentary rocks at Garnet Hill probably are hangingwall deposits squeezed up within the San Andreas Fault zone. West of Garnet Hill lie San Gorgonio Pass (SGP) and the 3 km-high northern escarpment of the San Jacinto Mountains (SJM). In SGP, upper Cenozoic sedimentary rocks south of the Banning strand of the San Gabriel Fault include the marine Imperial Formation and associated terrestrial deposits, a sequence similar to that in the WSD hangingwall throughout the greater Salton Trough region. We propose that the WSD originally extended from the NW head of Coachella Valley west into SGP, where the detachment may form the base of the Cenozoic marine and terrestrial sedimentary sequence. The WSD probably continues west beyond SGP, with extensional translation decreasing until the detachment intersects the Banning Fault near Calimesa. There, we propose that the WSD underlies a subsurface sedimentary package north of the San Timoteo badlands and south of the Banning Fault that a gravity low suggests is 2 km thick, and that reportedly contains marine sediment penetrated in boreholes. When ~44 km of right-slip is restored on the Banning Fault (Matti and Morton, 1993), the Calimesa low restores opposite a similar low in the northwestern Coachella Valley. The juxtaposed gravity lows mark a late Cenozoic depocenter that formed at the NW head of the Salton Trough during evolution of the San Gabriel and San Andreas Faults (10 Ma to 1.2 Ma). This reconstruction has several implications: (1) the WSD was active while the late Cenozoic sedimentary sequence in SGP accumulated in its hangingwall at 7 Ma (marine Imperial Fm) and probably as early as 10 Ma (Hathaway Fm); (2) At that time the San Jacinto Mts (SJM) began to rise in the WSD footwall, shedding sediment and landslide breccia into the SGP basin. Simultaneously, Transverse Ranges sources shed sediment southwest, south, and southeast into the SGP basin and the adjoining San Timoteo basin; (3) Prior to disruption by right-slip on the Banning Fault, the WSD probably extended around the NW head of the Salton Trough, where the detachment would have separated footwall crystalline rocks of SGP from hangingwall deposits of the Salton Trough (Coachella Fanglomerate, Imperial and Painted Hill fms). The enigmatic Whitewater Fault in the SE San Bernardino Mts may be part of the WSD. (4) Because extensional translation on the WSD diminished westward through SGP, it is doubtful that >3 km of topographic relief on the WSD footwall in the SJM resulted from footwall uplift alone during the period 10 Ma to 1.2 Ma. Post-WSD Quaternary uplift must account for an unknown component of this relief.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1254/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1254/"><span>Potential Effects of a Scenario Earthquake on the Economy of Southern California: Intraregional Commuter, Worker, and Earnings Flow Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherrouse, Benson C.; Hester, David J.</p> <p>2008-01-01</p> <p>The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards (Jones and others, 2007). In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 (M7.8) earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region (Jones and others, 2008). This report uses selected datasets from the U.S. Census Bureau and the State of California's Employment Development Department to develop preliminary estimates of the number and spatial distribution of commuters who cross the San Andreas Fault and to characterize these commuters by the industries in which they work and their total earnings. The analysis concerns the relative exposure of the region's economy to the effects of the earthquake as described by the location, volume, and earnings of those commuters who work in each of the region's economic sectors. It is anticipated that damage to transportation corridors traversing the fault would lead to at least short-term disruptions in the ability of commuters to travel between their places of residence and work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T23C2969K"><span>Geomorphological expression of a complex structural region: San Andreas Fault through the San Gorgonio Pass, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.</p> <p>2015-12-01</p> <p>The San Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the San Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the San Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the San Bernardino Basin to the NW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930007904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930007904"><span>Palinspastic reconstruction of southeastern California and southwestern Arizona for the middle Miocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richard, Stephen M.</p> <p>1992-01-01</p> <p>A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San Andreas fault, projects eastward towards Arizona, where early Miocene rocks and structures are continuous across its trace. The model predicts a 14 deg clockwise rotation and 55 km extension along the present trace of the San Andreas fault during late Miocene and early Pliocene time. Palinspastic reconstructions of the San Andreas system based on this proposed reconstruction may be significantly modified from current models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1978/0802/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1978/0802/report.pdf"><span>Depositional history and fault-related studies, Bolinas Lagoon, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berquist, Joel R.</p> <p>1978-01-01</p> <p>Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of the lagoon indicates (1) that mid-nineteenth-century redwood logging correlates with rates of sediment accumulation of l.3 to 1.9 cm/yr that are three to 6 times higher than post-1906 rates of 0.3 to 0.4 cm/yr, (2) accumulation of up to 115 cm of sediment since 1849, and (3) an anomalously coarse-grained sediment that may correlate with the 1906 earthquake.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021050','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021050"><span>Source character of microseismicity in the San Francisco Bay block, California, and implications for seismic hazard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olson, J.A.; Zoback, M.L.</p> <p>1998-01-01</p> <p>We examine relocated seismicity within a 30-km-wide crustal block containing San Francisco Bay and bounded by two major right-lateral strike-slip fault systems, the Hayward and San Andreas faults, to determine seismicity distribution, source character, and possible relationship to proposed faults. Well-located low-level seismicity (Md ??? 3.0) has occurred persistently within this block throughout the recording interval (1969 to 1995), with the highest levels of activity occurring along or directly adjacent to (within ???5 km) the bounding faults and falling off toward the long axis of the bay. The total seismic moment release within the interior of the Bay block since 1969 is equivalent to one ML 3.8 earthquake, one to two orders of magnitude lower than activity along and within 5 km of the bounding faults. Focal depths of reliably located events within the Bay block are generally less than 13 km with most seismicity in the depth range of 7 to 12 km, similar to focal depths along both the adjacent portions of the San Andreas and Hayward faults. Focal mechanisms for Md 2 to 3 events within the Bay block mimic focal mechanisms along the adjacent San Andreas fault zone and in the East Bay, suggesting that Bay block is responding to a similar regional stress field. Two potential seismic source zones have been suggested within the Bay block. Our hypocentral depths and focal mechanisms suggest that a proposed subhorizontal detachment fault 15 to 18 km beneath the Bay is not seismically active. Several large-scale linear NW-trending aeromagnetic anomalies within the Bay block were previously suggested to represent large through-going subvertical fault zones. The two largest earthquakes (both Md 3.0) in the Bay block since 1969 occur near two of these large-scale linear aeromagnetic anomalies; both have subvertical nodal planes with right-lateral slip subparallel to the magnetic anomalies, suggesting that structures related to the anomalies may be capable of brittle failure. Geodetic, focal mechanism and seismicity data all suggest the Bay block is responding elastically to the same regional stresses affecting the bounding faults; however, continuous Holocene reflectors across the proposed fault zones suggest that if the magnetic anomalies represent basement fault zones, then these faults must have recurrence times one to several orders of magnitude longer than on the bounding faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042483','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042483"><span>High-frequency Born synthetic seismograms based on coupled normal modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, Fred F.</p> <p>2011-01-01</p> <p>High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032195','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032195"><span>Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Lockner, David A.</p> <p>2008-01-01</p> <p>Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169887','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169887"><span>Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon</p> <p>2015-01-01</p> <p>The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985EOSTr..66..773K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985EOSTr..66..773K"><span>Earthquake watch to be discussed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katzoff, Judith A.</p> <p></p> <p>The most intensive earthquake monitoring program ever mounted in this country is going on near Parkfield, Calif., about midway between Los Angeles and San Francisco on the San Andreas fault. Although no particularly large or destructive quake is feared in Parkfield, the regularity with which earthquakes have occurred there in the past makes the site unique. Since the next quake has been forecast for 1988 (±5 years), seismologists have decided to blanket the area with data-gathering equipment in hopes of having front-row seats for the expected seismic show. The studies in Parkfield will be the topic of an all-day session sponsored by the Seismology Section on Friday, December 13, at the AGU Fall Meeting in San Francisco, Calif.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.194.1295P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.194.1295P"><span>Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Platt, J. P.; Becker, T. W.</p> <p>2013-09-01</p> <p>Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.719...66M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.719...66M"><span>Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.</p> <p>2017-11-01</p> <p>A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin formation and deformation along an active transform margin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS31A0004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS31A0004A"><span>Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.</p> <p>2017-12-01</p> <p>Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........40K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........40K"><span>The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kell, Anna Marie</p> <p></p> <p>The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery documents the timing of strain transfer from the Imperial fault onto the San Andreas fault through the application of sequence stratigraphy. Evidence shows that the formation of the Salton and Mesquite sub-basins and the associated change of strain partitioning occurred within the last 20-40 k.y., essentially modifying a broader zone of transtension bounding the Imperial and San Andreas faults into two smaller zones of focused extension. The north-central Walker Lane contains a diffuse network of both strike-slip and normal faults, with some degree of strain partitioning characterized by normal faulting to the west along the eastern edge of the Sierra Nevada mountain range, and strike-slip faults to the east that define a diffuse boundary against the Basin and Range proper. A seismic study across the Mount Rose fault zone, bounding the Carson Range near Reno, Nevada, was carried out to investigate slip across a potential low-angle normal fault. A hammer seismic reflection and refraction profile combined with airborne LiDAR (light detection and ranging) imagery highlights fault scarp modification through minor slumping/landslides, providing a better understanding of the nature of slip on this fault. The northeastern margin of the Walker Lane is a region where both "Basin and Range" style normal faults and dextral strike-slip faults contribute to the northward propagation of the Walker Lane (essentially parallel to an equivalent northward propagation of the Mendocino triple junction). Near this intersection lies Pyramid Lake, bounded to the southwest by the dextral Pyramid Lake fault and to the northeast by the normal Lake Range fault. A high-resolution (sub-meter) seismic CHIRP survey collected in 2010 shows intriguing relationships into fault architecture beneath Pyramid Lake. Over 500 line-km of seismic data reveal a polarity flip in basin structure as down-to-the-east motion at the northern end of the Pyramid Lake fault rapidly gives way to down-to-the-west normal motion along the Lake Range fault. Alternating patterns of asymmetric and symmetric stratal patterns west of the Lake Range fault provides some evidence for segmentation of total slip along this large normal fault. Using dated sediment cores, slip rate for the Lake Range fault was found to be approximately 1 mm/yr during the Holocene. A complex zone of transtenstion was also observed in seismic CHIRP data in the northwest quadrant of the lake, where short, discontinuous faults hint at the development of a nascent shear zone trending to the northwest. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017733','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017733"><span>Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.</p> <p>1996-01-01</p> <p>Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21C0582W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21C0582W"><span>Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.</p> <p>2017-12-01</p> <p>The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Descartes&pg=5&id=EJ407793','ERIC'); return false;" href="https://eric.ed.gov/?q=Descartes&pg=5&id=EJ407793"><span>The Fateful Rift: The San Andreas Fault in the Modern Mind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Percy, Walker</p> <p>1990-01-01</p> <p>Claims that modern science is radically incoherent and that this incoherence lies within the practice of science. Details the work of the scientist and philosopher Charles Sanders Pierce, expounding on the difference between Rene Descartes' dualistic philosophy and Pierce's triadic view. Concludes with a brief description of the human existence.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018183','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018183"><span>A slow earthquake sequence on the San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Linde, A.T.; Gladwin, M.T.; Johnston, M.J.S.; Gwyther, R.L.; Bilham, R.G.</p> <p>1996-01-01</p> <p>EARTHQUAKES typically release stored strain energy on timescales of the order of seconds, limited by the velocity of sound in rock. Over the past 20 years, observations and laboratory experiments have indicated that capture can also occur more slowly, with durations up to hours. Such events may be important in earthquake nucleation and in accounting for the excess of plate convergence over seismic slip in subduction zones. The detection of events with larger timescales requires near-field deformation measurements. In December 1992, two borehole strainmeters close to the San Andreas fault in California recorded a slow strain event of about a week in duration, and we show here that the strain changes were produced by a slow earthquake sequence (equivalent magnitude 4.8) with complexity similar to that of regular earthquakes. The largest earthquakes associated with these slow events were small (local magnitude 3.7) and contributed negligible strain release. The importance of slow earthquakes in the seismogenic process remains an open question, but these observations extend the observed timescale for slow events by two orders of magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940014955','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940014955"><span>Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turcotte, Donald L.</p> <p>1991-01-01</p> <p>A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6270383-seismicity-near-palmdale-california-its-relation-strain-changes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6270383-seismicity-near-palmdale-california-its-relation-strain-changes"><span>Seismicity near Palmdale, California, and its relation to strain changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sauber, J.; McNally, K.; Pechmann, J.C.</p> <p></p> <p>We evaluate the relationships between the spatio-temporal patterns and faulting mechanisms of small earthquakes and the recent temporal changes in horizontal strain observed along the 'big bend' portion of the San Andreas fault near Palmdale, California. Microearthquake activity along the entire big bend of the San Andreas fault increased in November 1976 concurrent with the initiation of an earthquake swarm at Juniper Hills. This activity then decreased abruptly to the northwest and southeast of Juniter Hills during the beginning of 1979. This drop in seismic activity occurred around the time that crustal dilatation was observed on the U.S. Geological Surveymore » Palmdale trilateration network. Focal mechanisms from the study region are predominantly thrust. There are two time periods when the mechanisms are closer to strike slip than to thrust. The first period (December 1976 to February 1977) corresponds to the beginning of the Juniper Hills swarm. The second period (November 1978 to April 1979) approximately coincides with a change in trend of the strain data from uniaxial N-S compression to dilatation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193652','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193652"><span>Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peng, Zhigang; Shelly, David R.; Ellsworth, William L.</p> <p>2015-01-01</p> <p>Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187389','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187389"><span>Structural superposition in fault systems bounding Santa Clara Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.</p> <p>2015-01-01</p> <p>Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2000/0494/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2000/0494/"><span>High-resolution marine seismic reflection data from the San Francisco Bay area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Childs, Jonathan R.; Hart, Patrick; Bruns, Terry R.; Marlow, Michael S.; Sliter, Ray</p> <p>2000-01-01</p> <p>Between 1993 and 1997, the U.S. Geological Survey acquired high-resolution, marine seismic-reflection profile data across submerged portions of known and inferred upper crustal fault zones throughout the greater San Francisco Bay area. Surveys were conducted oversouth San Francisco Bay in the vicinity of the San Bruno shoal (roughly between the San Francisco and Oakland airports), over the offshore extension of the San Andreas fault system west of the Golden Gate, over the Hayward fault to Rodgers Creek fault step-over in San Pablo Bay, and over the Kirby Hills fault where it crosses the western Sacramento Delta. Reconnaissance profiles were acquired elsewhere throughout the San Francisco and San Pablo Bays. These data were acquired by the U.S. Geological Survey, Western Coastal and Marine Geology Team, under the auspices of the Central California/San Francisco Bay Earthquake Hazards Project. Analysis and interpretation of some of these profiles has been published by Marlow and others (1996, 1999). Further analysis and interpretation of these data are available in a USGS. Professional Paper Crustal Structure of the Coastal and Marine San Francisco Bay Region, T. Parsons, editor, http://geopubs.wr.usgs.gov/prof-paper/pp1658/ [link added 2012 mfd].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188368','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188368"><span>Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Huang, Mong-Han; Burgmann, Roland; Pollitz, Fred</p> <p>2016-01-01</p> <p>The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1–4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989–1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼6 × 1018 Pas, underlain by a viscous upper mantle with viscosity between 3 × 1018 and 2 × 1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2018/1093/ofr20181093.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2018/1093/ofr20181093.pdf"><span>Reexamination of the subsurface fault structure in the vicinity of the 1989 moment-magnitude-6.9 Loma Prieta earthquake, central California, using steep-reflection, earthquake, and magnetic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, Edward; Fuis, Gary S.; Catchings, Rufus D.; Scheirer, Daniel S.; Goldman, Mark; Bauer, Klaus</p> <p>2018-06-13</p> <p>We reexamine the geometry of the causative fault structure of the 1989 moment-magnitude-6.9 Loma Prieta earthquake in central California, using seismic-reflection, earthquake-hypocenter, and magnetic data. Our study is prompted by recent interpretations of a two-part dip of the San Andreas Fault (SAF) accompanied by a flower-like structure in the Coachella Valley, in southern California. Initially, the prevailing interpretation of fault geometry in the vicinity of the Loma Prieta earthquake was that the mainshock did not rupture the SAF, but rather a secondary fault within the SAF system, because network locations of aftershocks defined neither a vertical plane nor a fault plane that projected to the surface trace of the SAF. Subsequent waveform cross-correlation and double-difference relocations of Loma Prieta aftershocks appear to have clarified the fault geometry somewhat, with steeply dipping faults in the upper crust possibly connecting to the more moderately southwest-dipping mainshock rupture in the middle crust. Examination of steep-reflection data, extracted from a 1991 seismic-refraction profile through the Loma Prieta area, reveals three robust fault-like features that agree approximately in geometry with the clusters of upper-crustal relocated aftershocks. The subsurface geometry of the San Andreas, Sargent, and Berrocal Faults can be mapped using these features and the aftershock clusters. The San Andreas and Sargent Faults appear to dip northeastward in the uppermost crust and change dip continuously toward the southwest with depth. Previous models of gravity and magnetic data on profiles through the aftershock region also define a steeply dipping SAF, with an initial northeastward dip in the uppermost crust that changes with depth. At a depth 6 to 9 km, upper-crustal faults appear to project into the moderately southwest-dipping, planar mainshock rupture. The change to a planar dipping rupture at 6–9 km is similar to fault geometry seen in the Coachella Valley.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020656','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020656"><span>Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mueller, R.J.; Johnston, M.J.S.</p> <p>1998-01-01</p> <p>Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T31A1790H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T31A1790H"><span>The Salton Seismic Imaging Project (SSIP): Rift Processes and Earthquake Hazards in the Salton Trough (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Murphy, J. M.; Sickler, R. R.; Criley, C. J.; Goldman, M.; Catchings, R. D.; Ricketts, J. W.; Gonzalez-Fernandez, A.; Driscoll, N.; Kent, G.; Harding, A. J.; Klemperer, S. L.</p> <p>2009-12-01</p> <p>The Salton Seismic Imaging Project (SSIP) and coordinated projects will acquire seismic data in and across the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. These projects address both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The new data will constrain the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structures of the fault and adjacent basins are poorly constrained. To improve hazard models, SSIP will image the geometry of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle. SSIP and collaborating projects have been funded by several different programs at NSF and the USGS. These projects include seven lines of land refraction and low-fold reflection data, airguns and OBS data in the Salton Sea, coordinated fieldwork for onshore-offshore and 3-D data, and a densely sampled line of broadband stations across the trough. Fieldwork is tentatively scheduled for 2010. Preliminary work in 2009 included calibration shots in the Imperial Valley that quantified strong ground motion and proved lack of harm to agricultural irrigation tile drains from explosive shots. Piggyback and complementary studies are encouraged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/0698/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/0698/report.pdf"><span>Petrographic and chemical reconnaissance study of some granitic and gneissic rocks near the San Andreas fault from Bodega Head to Cajon Pass, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ross, Donald C.</p> <p>1972-01-01</p> <p>This petrographic and chemical study is based on reconnaissance sampling of granitic and related gneissic rock in the California Coast and Transverse Ranges. In the Coast Ranges, granitic rocks are restricted to an elongate belt, the Salinian block, between the San Andreas and Sur-Nacimiento fault zones. These rocks have a considerable compositional range, but are dominantly quartz monzonite and granodiorite. Moist of the Salinian block seems to be a structurally coherent basement block of chemically related granitic rocks. However, on both the east and the west sides of the block, gneiss crops out in abundance; these rocks may be structurally separate from the main part of the Salinian block. In the Transverse Ranges, the granitic and related rocks are dominantly of granodiorite composition, and in many areas granitic and gneissic rocks are intimately intermixed.Chemically the rocks of the California Coast and Transverse Ranges are somewhat intermediate in character between those of the east-central part of the Sierra Nevada batholith and those of the western part of the Sierra Nevada batholith and the southern California batholith. Probably the closest similarity is to the east-central Sierra Nevada rocks, but the rocks of the Coast and Transverse Ranges are somewhat higher in Al2O3 and lower in K2O than Sierran rocks of the comparable SiO2 content.Granitic basement rocks of the Salinian block are now anomalously sandwiched between Franciscan terranes. The petrographic and chemical data are compatible with the concept that the Salinian rocks were originally part of the great batholithic belt along the west coast, which is exemplified by the Sierra Nevada hatholith. It also seems most likely that the Salinian block was transported from somewhere south of the Sierra Nevada batholith by large-scale right-lateral movement along the San Andreas fault zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024218','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024218"><span>Spatial and temporal deformation along the northern San Jacinto fault, southern California: Implications for slip rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kendrick, K.J.; Morton, D.M.; Wells, S.G.; Simpson, R.W.</p> <p>2002-01-01</p> <p>The San Timoteo badlands is an area of uplift and erosional dissection that has formed as a result of late Quaternary uplift along a restraining bend in the San Jacinto fault, of the San Andreas fault system in southern California. This bend currently is located in a region where late Quaternary deposits and associated surfaces have formed in lower San Timoteo Canyon. We have used morphometric analysis of these surfaces, in conjunction with computer modeling of deformational patterns along the San Jacinto fault, to reconstruct spatial and temporal variations in uplift along the bend. Morphometric techniques used include envelope/subenvelope mapping, a gradient-length index along channels, and denudation values. Age control is determined using a combination of thermoluminescence (TL) and near infrared optical simulation luminescence dating (IROSL) and correlation of soil-development indices. These approaches are combined with an elastic half-space model used to determine the deformation associated with the fault bend. The region of modeled uplift has a similar distribution as that determined by morphometric techniques. Luminescence dates and soil-correlation age estimates generally agree. Based on soil development, surfaces within the study area were stabilized at approximately 300-700 ka for Q3, 43-67 ka for Q2, and 27.5-67 ka for Q1. Luminescence ages (both TL and IROSL) for the formation of the younger two surfaces are 58 to 94 ka for Q2 and 37 to 62 ka for Q1 (ages reported to 1?? uncertainty). Periods of uplift were determined for the surfaces in the study area, resulting in approximate uplift rates of 0.34 to 0.84 m/ka for the past 100 ka and 0.13 to 1.00 m/ka for the past 66 ka. Comparison of these rates of uplift to those generated by the model support a higher rate of lateral slip along the San Jacinto fault than commonly assumed (greater than 20 mm/yr, as compared to 8-12 mm/yr commonly cited). This higher slip rate supports the proposal that a greater amount of slip has transferred from the San Andreas fault to the San Jacinto fault than generally held. The San Jacinto fault may have accommodated a significant portion of the plate boundary slip during the past 100 ka.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......132L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......132L"><span>Fault properties, rheology and interseismic deformation in Southern California from high-precision space geodesy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindsey, Eric Ostrom</p> <p></p> <p>This dissertation presents the collection and processing of dense high-precision geode- tic data across major faults throughout Southern California. The results are used to inform numerical models of the long-term slip rate and interseismic behavior of these faults, as well as their frictional and rheological properties at shallow depths. The data include campaign surveys of dense networks of GPS monuments crossing the faults, and Interferometric Synthetic Aperture Radar (InSAR) observations from ENVISAT. Using a Bayesian framework, we first assess to what extent these data constrain relative fault slip rates on the San Andreas and San Jacinto faults, and show that the inferred parameters depend critically on the assumed fault geometry. We next look in detail at near-field observations of strain across the San Jacinto fault, and show that the source of this strain may be either deep anomalous creep or a new form of shallow, distributed yielding in the top few kilometers of the crust. On the San Andreas fault, we show that this type of shallow yielding does occur, and its presence or absence is controlled by variations in the local normal stress that result from subtle bends in the fault. Finally, we investigate shallow creep on the Imperial fault, and show that thanks to observations from all parts of the earthquake cycle it is now possible to obtain a strong constraint on the shallow frictional rheology and depth of the material responsible for creep. The results also suggest activity on a hidden fault to the West, whose existence has been previously suggested but never confirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025291','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025291"><span>Salton Trough regional deformation estimated from combined trilateration and survey-mode GPS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, G.; Agnew, D.C.; Johnson, H.O.</p> <p>2003-01-01</p> <p>The Salton Trough in southeastern California, United States, has one of the highest seismicity and deformation rates in southern California, including 20 earthquakes M 6 or larger since 1892. From 1972 through 1987, the U.S. Geological Survey (USGS) measured a 41-station trilateration network in this region. We remeasured 37 of the USGS baselines using survey-mode Global Positioning System methods from 1995 through 1999. We estimate the Salton Trough deformation field over a nearly 30-year period through combined analysis of baseline length time series from these two datasets. Our primary result is that strain accumulation has been steady over our observation span, at a resolution of about 0.05 ??strain/yr at 95% confidence, with no evidence for significant long-term strain transients despite the occurrence of seven large regional earthquakes during our observation period. Similar to earlier studies, we find that the regional strain field is consistent with 0.5 ?? 0.03 ??strain/yr total engineering shear strain along an axis oriented 311.6?? ?? 23?? east of north, approximately parallel to the strike of the major regional faults, the San Andreas and San Jacinto (all uncertainties in the text and tables are standard deviations unless otherwise noted). We also find that (1) the shear strain rate near the San Jacinto fault is at least as high as it is near the San Andreas fault, (2) the areal dilatation near the southeastern Salton Sea is significant, and (3) one station near the southeastern Salton Sea moved anomalously during the period 1987.95-1995.11.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1550/pp1550a/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1550/pp1550a/"><span>Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Main Shock Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Spudich, Paul</p> <p>1996-01-01</p> <p>The October 17, 1989, Loma Prieta, Calif., earthquake (0004:15.2 G.m.t. October 18; lat 37.036? N., long 121.883? W.; 19-km depth) had a local magnitude (ML) of about 6.7, a surface-wave magnitude (MS) of 7.1, a seismic moment of 2.2x1019 N-m to 3.5x1019 N-m, a source duration of 6 to 15 s, and an average stress drop of at least 50 bars. Slip occurred on a dipping fault surface about 35 km long and was largely confined to a depth of about 7 to 20 km. The slip vector had a large vertical component, and slip was distributed in two main regions situated northwest and southeast of the hypocenter. This slip distribution caused about half of the earthquake's energy to be focused toward the urbanized San Francisco Bay region, while the other half was focused toward the southeast. Had the rupture initiated at the southeast end of the aftershock zone, shaking in the bay region would have been both longer and stronger. These source parameters suggest that the earthquake was not a typical shallow San Andreas-type event but a deeper event on a different fault with a recurrence interval of many hundreds of years. Therefore, the potential for a damaging shallow event on the San Andreas fault in the Santa Cruz Mountains may still exist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1321/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1321/"><span>Documentation for a web site to serve ULF-EM (Ultra-Low Frequency Electromagnetic) data to the public</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neumann, Danny A.; McPherson, Selwyn; Klemperer, Simon L.; Glen, Jonathan M.G.; McPhee, Darcy K.; Kappler, Karl</p> <p>2011-01-01</p> <p>The Stanford Ultra-Low Frequency Electromagnetic (ULF-EM) Monitoring Project is recording naturally varying electromagnetic signals adjacent to active earthquake faults, in an attempt to establish whether there is any variation in these signals associated with earthquakes. Our project is collaborative between Stanford University, the U.S. Geological Survey (USGS), and UC Berkeley. Lead scientists are Simon Klemperer (Stanford University), Jonathan Glen (USGS) and Darcy Karakelian McPhee (USGS). Our initial sites are in the San Francisco Bay Area, monitoring different strands of the San Andreas fault system, at Stanford University's Jasper Ridge Biological Preserve (JRSC), Marin Headlands of the Golden Gate National Recreation Area (MHDL), and the UC Berkeley's Russell Reservation Field Station adjacent to Briones Regional Park (BRIB). In addition, we maintain in conjunction with the Berkeley Seismological Laboratory (BSL) two remote reference stations at the Bear Valley Ranch in Parkfield, Calif., (PKD) and the San Andreas Geophysical Observatory at Hollister, Calif., (SAO). Metadata about our site can be found at http://ulfem-data.stanford.edu/info.html. Site descriptions can be found at the BSL at http://seismo.berkeley.edu/, and seismic data can be obtained from the Northern California Earthquake Data Center at http://www.ncedc.org/. The site http://ulfem-data.stanford.edu/ allows access to data from the Stanford-USGS sites JRSC, MHDL and BRIB, as well as UC Berkeley sites PKD and SAO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192794','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192794"><span>A new perspective on the geometry of the San Andreas Fault in southern California and its relationship to lithospheric structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fuis, Gary S.; Scheirer, Daniel S.; Langenheim, Victoria; Kohler, Monica D.</p> <p>2012-01-01</p> <p>The widely held perception that the San Andreas fault (SAF) is vertical or steeply dipping in most places in southern California may not be correct. From studies of potential‐field data, active‐source imaging, and seismicity, the dip of the SAF is significantly nonvertical in many locations. The direction of dip appears to change in a systematic way through the Transverse Ranges: moderately southwest (55°–75°) in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep in the Mojave Desert; and moderately northeast (37°–65°) in a region extending from San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Transverse Ranges. The shape of the modeled SAF is crudely that of a propeller. If confirmed by further studies, the geometry of the modeled SAF would have important implications for tectonics and strong ground motions from SAF earthquakes. The SAF can be traced or projected through the crust to the north side of a well documented high‐velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The north side of this HVB may be an extension of the plate boundary into the mantle, and the HVB would appear to be part of the Pacific plate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2868M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2868M"><span>Late Cenozoic Vertical Motions of the Coachella Valley Using Apatite U-Th/He and 4/3He Thermochronometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, C. C.; Spotila, J. A.; Fame, M. L.; Dorsey, R. J.; Shuster, D. L.</p> <p>2015-12-01</p> <p>The Coachella Valley of southern California (USA) is a late Cenozoic transform-related sedimentary basin created by top-to-the-east extension on the West Salton detachment fault and dextral strike-slip offset on the San Andreas fault (Axen and Fletcher, 1998), which has continued to subside as a result of northeastward tilting since initiation of the San Jacinto fault ca. 1.2 Ma. Though it is generally agreed that these large regional faults are responsible for creation of high relief and deep subsidence in the Coachella Valley, the timing, magnitude, and geometries of fault offsets on these structures are still debated. This project applies an integrated source-to-sink approach to investigate tectonic models for evolution of the Pacific-North American plate boundary as recorded in the world-class natural laboratory of the Coachella Valley. In this study we integrate new thermochronometry-constrained kinematic models with tectonostratigraphic interpretations to help quantify the timing, rates, and magnitudes of tectonically driven vertical crustal motions and resulting mass fluxes. We sampled bedrock for U-Th/He (A-He) thermochronometry in the Mecca Hills, Santa Rosa, San Jacinto, and Little San Bernardino Mountains in both spatially focused and widely distributed areas. We also present new results from apatite 4/3He thermochronometry to help constrain the most recent exhumation histories. A-He results reveal spatially variable exhumation ages. The southwest Santa Rosa Mountains experienced late Miocene-early Pliocene exhumation along their southwest flank, while new A-He ages from ranges bounding Coachella Valley reveal complex uplift histories. We integrate our data set with previously published thermochronometric data to improve a regional synthesis of late Cenozoic vertical motions of the Coachella Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01645&hterms=red+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dred%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01645&hterms=red+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dred%2Btide"><span>The San Andreas Fault and a Strike-slip Fault on Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p><p/>The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. <p/>The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). <p/>A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. <p/>Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may be filled in mostly by sedimentary and erosional material deposited from above. Comparisons between faults on Europa and Earth may generate ideas useful in the study of terrestrial faulting. <p/>One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. The tidal tension opens the fault; subsequent tidal stress causes it to move lengthwise in one direction. Then the tidal forces close the fault up again. This prevents the area from moving back to its original position. If it moves forward with the next daily tidal cycle, the result is a steady accumulation of these lengthwise offset motions. <p/>Unlike Europa, here on Earth, large strike-slip faults such as the San Andreas are set in motion not by tidal pull, but by plate tectonic forces from the planet's mantle. <p/>North is to the top of the picture. The Earth picture (left) shows a LandSat Thematic Mapper image acquired in the infrared (1.55 to 1.75 micrometers) by LandSat5 on Friday, October 20th 1989 at 10:21 am. The original resolution was 28.5 meters per picture element. <p/>The Europa picture (right)is centered at 66 degrees south latitude and 195 degrees west longitude. The highest resolution frames, obtained at 40 meters per picture element with a spacecraft range of less than 4200 kilometers (2600 miles), are set in the context of lower resolution regional frames obtained at 200 meters per picture element and a range of 22,000 kilometers (13,600 miles). The images were taken on September 26, 1998 by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. <p/>The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. <p/>This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL HTTP://www.jpl.nasa.gov/galileo/sepo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-61a-051-045.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-61a-051-045.html"><span>STS-61A earth observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1985-10-31</p> <p>61A-51-045 (31 Oct 1985) --- San Francisco Bay and the San Andreas fault line stand out in this 70mm frame exposed from the Earth-orbiting Space Shuttle Challenger on October 31, 1985. The California coastline extends from Tomales Bay on the north almost to Santa Cruz (just out of frame) on the south. Parts of the Sacramento and San Joaquin valleys are seen along the frame's right edge. Some of the bay's salt evaporators are recognizable by their unique hews, near Fremont and near Vallejo. Center point coordinates are located at 37.5 degrees north latitude and 122.5 degrees west longitude. The Challenger was 180 nautical miles directly above a point centered at 38.8 degrees north latitude and 126.5 degrees west longitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014341','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014341"><span>Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burford, R.O.</p> <p>1988-01-01</p> <p>Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of ML=5.3 and ML=5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 ML=5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of ML=5.2 and ML=6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip. ?? 1988 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988PApGe.126..499B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988PApGe.126..499B"><span>Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burford, Robert O.</p> <p>1988-06-01</p> <p>Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of M L =5.3 and M L =5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 M L =5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for the past 5 years. Retardations with durations of 21 and 19 months also occurred at Shore Road before the 1974 and 1984 earthquakes of M L =5.2 and M L =6.2, respectively. Although creep retardation remains poorly understood, several possible explanations have been discussed previously. (1) Certain onsets of apparent creep retardation may be explained as abrupt terminations of afterslip generated from previous moderate-mainshock sequences. (2) Retardations may be related to significant decreases in the rate of seismic and/or aseismic slip occurring within or beneath the underlying seismogenic zone. Such decreases may be caused by changes in local conditions related to growth of asperities, strain hardening, or dilatancy, or perhaps by passage of stress-waves or other fluctuations in driving stresses. (3) Finally, creep rates may be lowered (or increased) by stresses imposed on the fault by seismic or aseismic slip on neighboring faults. In addition to causing creep-rate increases or retardations, such fault interactions occasionally may trigger earthquakes. Regardless of the actual mechanisms involved and the current lack of understanding of creep retardation, it appears that shallow fault creep is sensitive to local and regional effects that promote or accompany intermediate-term preparation stages leading to moderate earthquakes. A strategy for more complete monitoring of fault creep, wherever it is known to occur, therefore should be assigned a higher priority in our continuing efforts to test various hypotheses concerning the mechanical relations between seismic and aseismic slip.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title27-vol1/pdf/CFR-2010-title27-vol1-sec9-212.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title27-vol1/pdf/CFR-2010-title27-vol1-sec9-212.pdf"><span>27 CFR 9.212 - Leona Valley.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... approximately 0.25 mile to its intersection with a trail and the 3,800-foot elevation line, T6N, R13W; then (9... (21) Proceed north and then generally southeast along the 3,600-foot elevation line that runs parallel... elevation line that runs north of the San Andreas Rift Zone to its intersection with the section 16 east...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title27-vol1/pdf/CFR-2011-title27-vol1-sec9-212.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title27-vol1/pdf/CFR-2011-title27-vol1-sec9-212.pdf"><span>27 CFR 9.212 - Leona Valley.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... approximately 0.25 mile to its intersection with a trail and the 3,800-foot elevation line, T6N, R13W; then (9... (21) Proceed north and then generally southeast along the 3,600-foot elevation line that runs parallel... elevation line that runs north of the San Andreas Rift Zone to its intersection with the section 16 east...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=273969','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=273969"><span>Compariative analysis of strawberry total phenolics via fast blue BB vs. folin-ciocalteu: assay interference by ascorbic acid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Strawberry (Fragaria ×ananassa Duchesne ex Rozier) fruit were harvested from two field plots of five day-neutral cultivars: Albion, Monterey, Portola, San Andreas and Seacape. Marketable (salable) berries were harvested from each plot on 22 and 25 August, and unblemished fully ripe fruit were selec...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.S43A1054C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.S43A1054C"><span>Repeat microearthquakes observed in western Nagano, Japan and implications to rupture dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, X.; Niu, F.; Silver, P.; Horiuchi, S.; Takai, K.</p> <p>2005-12-01</p> <p>Repeat earthquakes appear to be pervasive in many fault systems, and have been used to detect temporal variations, either coseismic or post seismic near fault zones as well as to understand dynamic rupture processes. For example, Rubin and Gillard (2000) found no evidence of "immediate repeaters" in the San Juan Bautista section of the San Andreas Fault. Consecutive repeat earthquakes occurred no closer than a distance equal to the radius of the first rupture, which is estimated by a stress drop of 10 MPa. Here we reported similar characteristics of repeat microearthquakes from a very different environment, a complicated intraplate fault system in Western Nagao, Central Japan. A magnitude 6.8 shallow earthquake (roughly right lateral strike slip) occurred in the study area in 1984. Very high level of seismicity continues since then. A very dense seismic network with 56 stations including two borehole seismometers has been set up to monitor the high level seismic activity in 1995. Continuous data have been recorded at a very high sampling rate 10 KHz. We have searched repeat events from a catalog of more than 20,000 microearthquakes with a magnitude between 0 and 4.5. We calculated the cross-correlation of all the possible pairs of events and found less than 1% of the events can be categorized as repeat events, which is extremely lower compared to those observed at San Andreas Fault. More than 80% of the repeaters are actually aftershocks with the second events occurred within one day after the first ones. To avoid the tradeoff between origin time and event depth, we use relative S-P travel times to determine the relative locations of these consecutive repeat events. Based on the signal-to-noise ratio, we were able to estimate S-P time to an accuracy of 0.01 - 0.1 ms (1/10 to 1 sample interval). The corresponding errors in relative location are estimated to be a few tenths to a few meters. We also found that the second events occurred at least one radius away from the first rupture, (i.e., no intermediate repeaters), similar to those observed by Rubin and Gillard (2000). Stress drop seems to be independent to earthquake size, and is estimated to be a few tens of mega-Pascal, which is slightly higher than those observed at the San Andreas Fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2371/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2371/report.pdf"><span>Geologic map of the Palo Alto and part of the Redwood Point 7-1/2' quadrangles, San Mateo and Santa Clara counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pampeyan, Earl H.</p> <p>1993-01-01</p> <p>The Palo Alto and southern part of the Redwood Point 7-1/2' quadrangles cover an area on the San Francisco peninsula between San Francisco Bay and the Santa Cruz Mountains. San Francisquito and Los Trancos Creeks, in the southeastern part of the map area, form the boundary between San Mateo and Santa Clara Counties. The area covered by the geologic map extends from tidal and marsh lands at the edge of the bay southward across a gently sloping alluvial plain to the foothills of the northern Santa Cruz Mountains. The foothills are separated from the main mass of the mountains by two northwest-striking faults, the San Andreas and Pilarcitos, that cross the southwest corner of the map area (fig. 1). The map and adjoining areas are here divided into three structural blocks juxtaposed along these faults, adopting the scheme of Nilsen and Brabb (1979): (1) the San Francisco Bay block lying east of the San Andreas Fault Zone; (2) the Pilarcitos block lying between the San Andreas and Pilarcitos Faults; and (3) the La Honda block that includes the main mass of the Santa Cruz Mountains lying west of the Pilarcitos Fault. The west boundary of the La Honda block is the Seal Cove-San Gregorio Fault. Pre-late Pleistocene Cenozoic rocks of the foothills have been compressed into northwest-striking folds, which have been overridden by Mesozoic rocks along southwest-dipping low-angle faults. Coarse- to fine-grained upper Pleistocene and Holocene alluvial and estuarine deposits, eroded from the foothills and composing the alluvial plain, are essentially undeformed. Most of the alluvial plain, including some parts of the marsh land that borders the bay, has been covered by residential and commercial developments, and virtually all of the remaining marsh land has been diked off and used as salt evaporating ponds. The map area includes parts of the municipalities of San Carlos, Redwood City, Atherton, Woodside, Portola Valley, Menlo Park, and East Palo Alto in San Mateo County; and Palo Alto, Stanford University, Los Altos, and Los Altos Hills in Santa Clara County (fig. 2). Much of the university land remains as undeveloped open space surrounded by densely urbanized lands. Geologic maps of all or part of the present map area have been prepared previously by Branner and others (1909), Thomas (1949), Dobbs and Forbes (1960), Dibblee (1966), Page and Tabor (1967), Pampeyan (1970a, 1970b), Beaulieu (1970), Helley and others (1979), and by numerous Stanford University students working on topical earth science problems. In addition, numerous engineering geologic studies have been conducted for site investigations relating to residential and commercial developments and, in particular, for construction of the Stanford Linear Accelerator Center (SLAC). The reports pertaining to SLAC are summarized in Skjei and others (1965) and more recently in a report by Earth Sciences Associates (1983). The interested reader is referred to Brabb and Pampeyan (1983), Brabb and others (1982), Wentworth and others (1985), Wieczorek and others (1985), Thomson and Evernden (1986), Brabb and Olson (1986), Youd and Perkins (1987), Perkins (1987), and Mark and Newman (1988) for information pertaining to geology, history, slope stability, seismic shaking, liquifaction potential, and faulting and seismicity in San Mateo County, some of which can be applied directly to northern Santa Clara County. Field work for the present geologic map was done in 1962-1964 and 1966 when SLAC and Interstate 280 were in early stages of construction. Only minor additions and revisions have been made since this mapping was first released (Pampeyan, 1970a; 1970b) as it was impractical to keep pace with accelerating urban development of the area. Geologic units of the flatlands area are largely adapted from Helley and Lajoie (1979).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss018e005058.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss018e005058.html"><span>Earth Observations taken by the Expedition 18 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2008-10-24</p> <p>ISS018-E-005058 (24 Oct. 2008) --- Southern California's coastline, from southern Los Angeles to Tijuana in Mexico, a distance of about 225 kilometers, is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Port facilities of Los Angeles Harbor give much detail to the coastline at the north end and arcuate San Diego Bay is highly recognizable at the south end (right bottom). The image includes much of one of the most densely populated parts of the USA, with approximately 20 million people within the parts of five counties shown here. The dense urban areas appear gray, with the largest conurbation in the north of the view, in the region Long Beach--Los Angeles--San Bernardino. A smaller zone appears around San Diego--Tijuana in the south. Major highways with their associated strip development snake through these dense urban areas. The geography and geomorphology of Southern California is defined by long linear features that are surface traces of large transform faults. These faults, including the Elsinore fault and San Jacinto fault seen here, are generally considered part of the San Andreas system, and make up the broad zone comprising the tectonic plate boundary between North America to the east and the Pacific plate to the west. The Elsinore fault marks the steep eastern scarp of the Santa Ana Mountains, as well as the precipitation boundary between the wetter mountains and the drier deserts to the east. The rainfall difference is reflected in the darker appearance (more vegetation) of the mountains and coastal regions. Inland of the mountains, climates are far drier, and the natural vegetation is scrubby and much less dense which allows brown and yellow soils to show through. However, the entire region is arid; water management is a critical issue for the large urban areas of the state. Several reservoirs that are visible east of the Santa Ana Mountains provide water for both cities and agriculture in southern California.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S41C..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S41C..04W"><span>Long-term changes in regular and low-frequency earthquake inter-event times near Parkfield, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, C.; Shelly, D. R.; Johnson, P. A.; Gomberg, J. S.; Peng, Z.</p> <p>2012-12-01</p> <p>The temporal evolution of earthquake inter-event time may provide important clues for the timing of future events and underlying physical mechanisms of earthquake nucleation. In this study, we examine inter-event times from 12-yr catalogs of ~50,000 earthquakes and ~730,000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault. We focus on the long-term evolution of inter-event times after the 2003 Mw6.5 San Simeon and 2004 Mw6.0 Parkfield earthquakes. We find that inter-event times decrease by ~4 orders of magnitudes after the Parkfield and San Simeon earthquakes and are followed by a long-term recovery with time scales of ~3 years and more than 8 years for earthquakes along and to the southwest of the San Andreas fault, respectively. The differing long-term recovery of the earthquake inter-event times is likely a manifestation of different aftershock recovery time scales that reflect the different tectonic loading rates in the two regions. We also observe a possible decrease of LFE inter-event times in some LFE families, followed by a recovery with time scales of ~4 months to several years. The drop in the recurrence time of LFE after the Parkfield earthquake is likely caused by a combination of the dynamic and positive static stress induced by the Parkfield earthquake, and the long-term recovery in LFE recurrence time could be due to post-seismic relaxation or gradual recovery of the fault zone material properties. Our on-going work includes better constraining and understanding the physical mechanisms responsible for the observed long-term recovery in earthquake and LFE inter-event times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T41B2923M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T41B2923M"><span>Holocene geologic slip rate for the Mission Creek strand of the Southern San Andreas Fault, northern Coachella Valley, CA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munoz, J. J.; Behr, W. M.; Sharp, W. D.; Fryer, R.; Gold, P. O.</p> <p>2016-12-01</p> <p>Slip on the southern San Andreas fault in the northwestern Coachella Valley in Southern California is partitioned between three strands, the Mission Creek, Garnet Hill, and Banning strands. In the vicinity of the Indio Hills, the NW striking Mission Creek strand extends from the Indio Hills into the San Bernardino Mountains, whereas the Banning and Garnet Hill strands strike WNW and transfer slip into the San Gorgonio Pass region. Together, these three faults accommodate 20 mm/yr of right-lateral motion. Determining which strand accommodates the majority of fault slip and how slip rates on these strands have varied during the Quaternary is critical to seismic hazard assessment for the southern California region. Here we present a new Holocene geologic slip rate from an alluvial fan offset along the Mission Creek strand at the Three Palms site in the Indio Hills. Field mapping and remote sensing using the B4 LiDAR data indicates that the Three Palms fan is offset 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr. This Holocene maximum slip rate overlaps within errors with a previously published late Pleistocene slip rate of 12-22 mm/yr measured at Biskra Palms, a few kilometers to the south. Cosmogenic 10Be surface exposure samples were also collected from the fan surface to bracket the maximum depositional age. These samples have been processed and are currently awaiting AMS measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA093986','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA093986"><span>Greece and NATO: Problems and Prospects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-06-06</p> <p>adept diplomatic maneuvers. Andreas Papandreou, the leader of PASOK (the main opposition party in Greece), maintains that Karamanlis is still pro...at the expense of the center party, was PASOK (Panhellenic Socialist Movement) led by Andreas Papandreou. PASOK polled 25% of the vote, almost double...its 1974 vote. This gave PASOK 93 seats in the Greek parliament. PASOK’s platform advocates the transformation of Greece into a socialist state. It is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1104/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1104/"><span>Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McPhee, D.K.; Langenheim, V.E.; Watt, J.T.</p> <p>2011-01-01</p> <p>This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25521005','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25521005"><span>Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gottscho, Andrew D</p> <p>2016-02-01</p> <p>The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. © 2014 Cambridge Philosophical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S33A2824D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S33A2824D"><span>Median Filtering Methods for Non-volcanic Tremor Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.</p> <p>2016-12-01</p> <p>Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017905','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017905"><span>Geodetic slip rate for the eastern California shear zone and the recurrence time of Mojave desert earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sauber, J.; Thatcher, W.; Solomon, S.C.; Lisowski, M.</p> <p>1994-01-01</p> <p>Where the San Andreas fault passes along the southwestern margin of the Mojave desert, it exhibits a large change in trend, and the deformation associated with the Pacific/North American plate boundary is distributed broadly over a complex shear zone. The importance of understanding the partitioning of strain across this region, especially to the east of the Mojave segment of the San Andreas in a region known as the eastern California shear zone (ECSZ), was highlighted by the occurrence (on 28 June 1992) of the magnitude 7.3 Landers earthquake in this zone. Here we use geodetic observations in the central Mojave desert to obtain new estimates for the rate and distribution of strain across a segment of the ECSZ, and to determine a coseismic strain drop of ~770 ??rad for the Landers earthquake. From these results we infer a strain energy recharge time of 3,500-5,000 yr for a Landers-type earthquake and a slip rate of ~12 mm yr-1 across the faults of the central Mojave. The latter estimate implies that a greater fraction of plate motion than heretofore inferred from geodetic data is accommodated across the ECSZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015672"><span>EFFECTS OF THE 1906 EARTHQUAKE ON THE BALD HILL OUTLET SYSTEM, SAN MATEO COUNTY, CALIFORNIA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pampeyan, Earl H.</p> <p>1986-01-01</p> <p>Following the earthquake of April 18, 1906, it was discovered that a brick forebay and other parts of the reservoir outlet system were in the slip zone of the San Andreas fault. The original outlet through which water was directed to San Francisco consisted of two tunnels joined at the brick forebay; one tunnel extends 2,820 ft to the east under Bald Hill on Buri Buri Ridge, and the other tunnel intersects the lake bottom about 250 ft west of the forebay. In 1897 a second intake was added to the system, also joining the original forebay. During the present study the accessible parts of this original outlet system were examined with the hope of learning how the system had been affected by fault slip in 1906.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188534','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188534"><span>Imaging P and S attenuation in the Sacramento-San Joaquin Delta region, northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eberhart-Phillips, Donna; Thurber, Clifford; Fletcher, Jon Peter B.</p> <p>2014-01-01</p> <p>We obtain 3-D Qp and Qs models for the Delta region of the Sacramento and San Joaquin Rivers, a large fluvial-agricultural portion of the Great Valley located between the Sierra Nevada batholith and the San Francisco Bay - Coast Ranges region of active faulting. Path attenuation t* values have been obtained for P and S data from 124 distributed earthquakes, with a longer variable window for S based on the energy integral. We use frequency dependence of 0.5 consistent with other studies, and weakly favored by the t* S data. A regional initial model was obtained by solving for Q as a function of velocity. In the final model, the Great Valley basin has low Q with very low Q (<50) for the shallowest portion of the Delta. There is an underlying strong Q contrast to the ophiolite basement which is thickest with highest Q under the Sacramento basin, and a change in structure is apparent across the Suisun Bay as a transition to thinner ophiolite. Moderately low Q is found in the upper crust west of the Delta region along the faults in the eastern North Bay Area, while, moderately high Q is found south of the Delta, implying potentially stronger ground motion for earthquake sources to the south. Very low Q values in the shallow crust along parts of the major fault zones may relate to sediment and abundant microfractures. In the lower crust below the San Andreas and Calaveras-Hayward-Rodgers Creek fault zones, the observed low Q is consistent with grain-size reduction in ductile shear zones and is lowest under the San Andreas which has large cumulative strain. Similarly moderately low Q in the ductile lower crust of the Bay Area block between the major fault zones implies a broad distributed shear zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.T21A1073M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.T21A1073M"><span>Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the San Gregorio Fault; Moss Beach, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mazzoni, S.; Moore, J.; Bish, D. L.</p> <p>2002-12-01</p> <p>The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.6893Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.6893Y"><span>How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Jiyang; Liu, Mian</p> <p>2017-08-01</p> <p>In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21A0543R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21A0543R"><span>Searching for geodetic transient slip signals along the Parkfield segment of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousset, B.; Burgmann, R.</p> <p>2017-12-01</p> <p>The Parkfield section of the San Andreas fault is at the transition between a segment locked since the 1857 Mw 7.9 Fort Tejon earthquake to its south and a creeping segment to the north. It is particularly well instrumented since it is the many previous studies have focused on studying the coseismic and postseismic phases of the two most recent earthquake cycles, the interseismic phase is exhibiting interesting dynamics at the down-dip edge of the seismogenic zone, characterized by a very large number of low frequency earthquakes (LFE) with different behaviors depending on location. Interseismic fault creep rates appear to vary over a wide range of spatial and temporal scales, from the Earth's surface to the base of crust. In this study, we take advantage of the dense Global Positioning System (GPS) network, with 77 continuous stations located within a circle of radius 80 km centered on Parkfield. We correct these time series for the co- and postseismic signals of the 2003 Mw 6.3 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. We then cross-correlate the residual time series with synthetic slow-slip templates following the approach of Rousset et al. (2017). Synthetic tests with transient events contained in GPS time series with realistic noise show the limit of detection of the method. In the application with real GPS time series, the highest correlation amplitudes are compared with micro-seismicity rates, as well as tremor and LFE observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034453','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034453"><span>High-frequency Born synthetic seismograms based on coupled normal modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.</p> <p>2011-01-01</p> <p>High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ~4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD). ?? The Author Geophysical Journal International ?? 2011 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70142380','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70142380"><span>Resilience by Design: Bringing Science to Policy Makers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Lucile M.</p> <p>2015-01-01</p> <p>No one questions that Los Angeles has an earthquake problem. The “Big Bend” of the San Andreas fault in southern California complicates the plate boundary between the North American and Pacific plates, creating a convergent component to the primarily transform boundary. The Southern California Earthquake Center Community Fault Model has over 150 fault segments, each capable of generating a damaging earthquake, in an area with more than 23 million residents (Fig. 1). A Federal Emergency Management Agency (FEMA) analysis of the expected losses from all future earthquakes in the National Seismic Hazard Maps (Petersen et al., 2014) predicts an annual average of more than $3 billion per year in the eight counties of southern California, with half of those losses in Los Angeles County alone (Federal Emergency Management Agency [FEMA], 2008). According to Swiss Re, one of the world’s largest reinsurance companies, Los Angeles faces one of the greatest risks of catastrophic losses from earthquakes of any city in the world, eclipsed only by Tokyo, Jakarta, and Manila (Swiss Re, 2013).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T51C0676K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T51C0676K"><span>Core Across the San Andreas Fault at SAFOD - Photographs, Physical Properties Data, and Core-Handling Procedures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirschner, D. L.; Carpenter, B.; Keenan, T.; Sandusky, E.; Sone, H.; Ellsworth, B.; Hickman, S.; Weiland, C.; Zoback, M.</p> <p>2007-12-01</p> <p>Core samples were obtained that cross three faults of the San Andreas Fault Zone north of Parkfield, California, during the summer of 2007. The cored intervals were obtained by sidetracking off the SAFOD Main Hole that was rotary drilled across the San Andreas in 2005. The first cored interval targeted the pronounced lithologic boundary between the Salinian terrane and the Great Valley and Franciscan formations. Eleven meters of pebbly conglomerate (with minor amounts of fine sands and shale) were obtained from 3141 to 3152 m (measured depth, MD). The two conglomerate units are heavily fractured with many fractures having accommodated displacement. Within this cored interval, there is a ~1m zone with highly sheared, fine-grained material, possibly ultracataclasite in part. The second cored interval crosses a creeping segment of a fault that has been deforming the cemented casing of the adjacent Main Hole. This cored interval sampled the fault 100 m above a seismogenic patch of M2 repeating earthquakes. Thirteen meters of core were obtained across this fault from 3186 to 3199 m (MD). This fault, which is hosted primarily in siltstones and shales, contains a serpentinite body embedded in a highly sheared shale and serpentinite-bearing fault gouge unit. The third cored interval crosses a second creeping fault that has also been deforming the cemented casing of the Main Hole. This fault, which is the most rapidly shearing fault in the San Andreas fault zone based on casing deformation, contains multiple fine- grained clay-rich fault strands embedded in highly sheared shales and lesser deformed sandstones. Initial processing of the cores was carried out at the drill site. Each core came to the surface in 9 meter-long aluminum core barrels. These were cut into more manageable three-foot sections. The quarter-inch-thick aluminum liner of each section was cut and then split apart to reveal the 10 cm diameter cores. Depending on the fragility and porosity of the rock, the drilling fluid was removed either by washing with dilute calcium chloride brine (to approximately match the salinity of the formation fluids) or by gently scraping away drilling mud on the core surface. Once cleaned, each core section was photographed to very high resolution on a Geotek Multi- Sensor Core Logging (MSCL) system. This system was also used to determine the bulk density and magnetic susceptibility of each section. The 25 MB high-resolution photographs and the raw and processed physical properties data were then uploaded to the ICDP web server in Potsdam for public access (http://safod.icdp- online.org). The cores will be archived at the Gulf Coast Repository of the Integrated Ocean Drilling Program in College Station, TX. The MSCL photographs, physical property measurements, and other related data, such as geophysical logs, will be integrated using CoreWall, and will be on display at the meeting. All samples, data, and imagery are available to the science community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995EOSTr..76..450.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995EOSTr..76..450."><span>Rock-solid information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>The National Science Foundation's Southern California Earthquake Center and the U.S. Geological Survey have collaborated to provide residents of America's most famous earthquake zone with some hard facts about temblors. Putting Down Roots in Earthquake Country, a 32-page handbook on coping with life near the many earthen faults in Southern California, was distributed in October to all public libraries from San Luis Obispo to Tijuana. The book summarizes for lay people what is known about the San Andreas fault and the many others that cris-cross California. It also offers guidance on how to prevent earthquake damage, how to retrofit a home, and how to assess earthquake hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022596','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022596"><span>Three-dimensional seismic velocity structure of the San Francisco Bay area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hole, J.A.; Brocher, T.M.; Klemperer, S.L.; Parsons, T.; Benz, H.M.; Furlong, K.P.</p> <p>2000-01-01</p> <p>Seismic travel times from the northern California earthquake catalogue and from the 1991 Bay Area Seismic Imaging Experiment (BASIX) refraction survey were used to obtain a three-dimensional model of the seismic velocity structure of the San Francisco Bay area. Nonlinear tomography was used to simultaneously invert for both velocity and hypocenters. The new hypocenter inversion algorithm uses finite difference travel times and is an extension of an existing velocity tomography algorithm. Numerous inversions were performed with different parameters to test the reliability of the resulting velocity model. Most hypocenters were relocated 12 km under the Sacramento River Delta, 6 km beneath Livermore Valley, 5 km beneath the Santa Clara Valley, and 4 km beneath eastern San Pablo Bay. The Great Valley Sequence east of San Francisco Bay is 4-6 km thick. A relatively high velocity body exists in the upper 10 km beneath the Sonoma volcanic field, but no evidence for a large intrusion or magma chamber exists in the crust under The Geysers or the Clear Lake volcanic center. Lateral velocity contrasts indicate that the major strike-slip faults extend subvertically beneath their surface locations through most of the crust. Strong lateral velocity contrasts of 0.3-0.6 km/s are observed across the San Andreas Fault in the middle crust and across the Hayward, Rogers Creek, Calaveras, and Greenville Faults at shallow depth. Weaker velocity contrasts (0.1-0.3 km/s) exist across the San Andreas, Hayward, and Rogers Creek Faults at all other depths. Low spatial resolution evidence in the lower crust suggests that the top of high-velocity mafic rocks gets deeper from west to east and may be offset under the major faults. The data suggest that the major strike-slip faults extend subvertically through the middle and perhaps the lower crust and juxtapose differing lithology due to accumulated strike-slip motion. The extent and physical properties of the major geologic units as constrained by the model should be used to improve studies of seismicity, strong ground motion, and regional stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5598551-trenching-new-madrid-seismic-zone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5598551-trenching-new-madrid-seismic-zone"><span>Trenching in the New Madrid seismic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1990-01-01</p> <p>Trenching studies of the San Andreas fault have been of great value to geologists in California for determining not only the prehistoric occurrences of earthquakes on the fault but also the age of these movements. In the New Madrid seismic zone, US Geological Survey scientists have been trenching across suspected faults to try to assess earthquake frequency in the Central US. The following photographs document these trenching studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041925','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041925"><span>Scientific drilling into the San Andreas Fault Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zoback, Mark; Hickman, Stephen; Ellsworth, William</p> <p>2010-01-01</p> <p>This year, the world has faced energetic and destructive earthquakes almost every month. In January, an M = 7.0 event rocked Haiti, killing an estimated 230,000 people. In February, an M = 8.8 earthquake and tsunami claimed over 500 lives and caused billions of dollars of damage in Chile. Fatal earthquakes also occurred in Turkey in March and in China and Mexico in April.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029429','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029429"><span>Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kellogg, K.S.; Minor, S.A.</p> <p>2005-01-01</p> <p>The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar to other Tertiary structural basins in southern California, such those that underlie Cuyama Valley, the Ridge basin, and the east Ventura basin.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5877721-current-sierra-nevada-north-america-motion-from-very-long-baseline-interferometry-implications-kinematics-western-united-states','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5877721-current-sierra-nevada-north-america-motion-from-very-long-baseline-interferometry-implications-kinematics-western-united-states"><span>Current Sierra Nevada-North America motion from very long baseline interferometry: Implications for the kinematics of the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Argus, D.F.; Gordon, R.G.</p> <p>1991-11-01</p> <p>The authors use geodetic measurements from very long baseline interferometry to estimate the motion of the Sierra Nevadan microplate. The motion of the Sierra Nevadan microplate relative to the North American plate is described by a right-handed rotation of 0.61{degree}/m.y. about lat 32{degree}N, long 128{degree}W. This Euler pole predicts a significant counterclockwise rotation about a local vertical axis. It further predicts a velocity of the eastern edge of the Sierra Nevada relative to stable North America of 11 {plus minus}1 mm/yr toward N36{degree} {plus minus}3{degree}W, which accounts for about one-fourth of the velocity between the Pacific and North American platesmore » and is {approximately}25{degree} clockwise of many prior estimates. The velocity nearly parallels the boundary between the Sierra Nevada and the Great Basin, which implies that current motion within the Great Basin results in a rotational, noncoaxial deformation. The authors use this velocity to estimate how motion is distributed across the broad deforming zone taking up Pacific-North America plate motion. They find that the vector sum of strike slip along the San Andreas fault and motion of the Sierra Nevada relative to stable North America (taken up by deformation within the Great Basin) differs little from the Pacific-north America plate velocity. The difference can be described at 36{degree}N along the San Andreas fault by a vector of 6 mm/yr directed toward N20{degree}W. This vector resolves into components of 5 mm/yr parallel to the fault and 2 mm/yr perpendicular to the fault with 95% confidence intervals of 0 to 10 mm/yr and {minus}1 to +5 mm/yr, respectively. The authors conclude that motion previously inferred to be taken up by deformation other than strike slip along the San Andreas fault or deformation within the Great Basin is much smaller than previously thought.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024275','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024275"><span>Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California paleoseismic site: A.D. 500 to present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, T.E.; Weldon, R.J.; Biasi, G.P.; Dawson, T.E.; Seitz, G.G.; Frost, W.T.; Schwartz, D.P.</p> <p>2002-01-01</p> <p>We present structural and stratigraphic evidence from a paleoseismic site near Wrightwood, California, for 14 large earthquakes that occurred on the southern San Andreas fault during the past 1500 years. In a network of 38 trenches and creek-bank exposures, we have exposed a composite section of interbedded debris flow deposits and thin peat layers more than 24 m thick; fluvial deposits occur along the northern margin of the site. The site is a 150-m-wide zone of deformation bounded on the surface by a main fault zone along the northwest margin and a secondary fault zone to the southwest. Evidence for most of the 14 earthquakes occurs along structures within both zones. We identify paleoearthquake horizons using infilled fissures, scarps, multiple rupture terminations, and widespread folding and tilting of beds. Ages of stratigraphic units and earthquakes are constrained by historic data and 72 14C ages, mostly from samples of peat and some from plant fibers, wood, pine cones, and charcoal. Comparison of the long, well-resolved paleoseimic record at Wrightwood with records at other sites along the fault indicates that rupture lengths of past earthquakes were at least 100 km long. Paleoseismic records at sites in the Coachella Valley suggest that each of the past five large earthquakes recorded there ruptured the fault at least as far northwest as Wrightwood. Comparisons with event chronologies at Pallett Creek and sites to the northwest suggests that approximately the same part of the fault that ruptured in 1857 may also have failed in the early to mid-sixteenth century and several other times during the past 1200 years. Records at Pallett Creek and Pitman Canyon suggest that, in addition to the 14 earthquakes we document, one and possibly two other large earthquakes ruptured the part of the fault including Wrightwood since about A.D. 500. These observations and elapsed times that are significantly longer than mean recurrence intervals at Wrightwood and sites to the southeast suggest that at least the southermost 200 km of the San Andreas fault is near failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195621','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195621"><span>Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi</p> <p>2018-01-01</p> <p>The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3–4 Ma pulse of basaltic magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028956','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028956"><span>Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T.</p> <p>2006-01-01</p> <p>We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 2002 and 3 months after the 2004 M 6.0 mainshock show ???1.0%-1.5% decreases in seismic-wave velocity within an ???200-m-wide zone along the fault strike and smaller changes (0.2%-0.5%) beyond this zone, most likely due to the coseismic damage of rocks during dynamic rupture in the 2004 M 6.0 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the San Andreas fault, near Parkfield, that we derived from fault-zone trapped waves (Li et al., 2004). The damage zone is not symmetric but extends farther on the southwest side of the main fault trace. Waveform cross-correlations for repeated aftershocks in 21 clusters, with a total of ???130 events, located at different depths and distances from the array site show ???0.7%-1.1% increases in S-wave velocity within the fault zone in 3 months starting a week after the earthquake. The velocity recovery indicates that the damaged rock has been healing and regaining the strength through rigidity recovery with time, most likely . due to the closure of cracks opened during the mainshock. We estimate that the net decrease in seismic velocities within the fault zone was at least ???2.5%, caused by the 2004 M 6.0 Parkfield earthquake. The healing rate was largest in the earlier stage of the postmainshock healing process. The magnitude of fault healing varies along the rupture zone, being slightly larger for the healing beneath Middle Mountain, correlating well with an area of large mapped slip. The fault healing is most prominent at depths above ???7 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.488...14J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.488...14J"><span>Rayleigh and S wave tomography constraints on subduction termination and lithospheric foundering in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi</p> <p>2018-04-01</p> <p>The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift and a ∼3-4 Ma pulse of basaltic magmatism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026626','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026626"><span>Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weldon, R.; Scharer, K.; Fumal, T.; Biasi, G.</p> <p>2004-01-01</p> <p>The concept of the earthquake cycle is so well established that one often hears statements in the popular media like, "the Big One is overdue" and "the longer it waits, the bigger it will be." Surprisingly, data to critically test the variability in recurrence intervals, rupture displacements, and relationships between the two are almost nonexistent. To generate a long series of earthquake intervals and offsets, we have conducted paleoseismic investigations across the San Andreas fault near the town of Wrightwood, California, excavating 45 trenches over 18 years, and can now provide some answers to basic questions about recurrence behavior of large earthquakes. To date, we have characterized at least 30 prehistoric earthquakes in a 6000-yr-long record, complete for the past 1500 yr and for the interval 3000-1500 B.C. For the past 1500 yr, the mean recurrence interval is 105 yr (31-165 yr for individual intervals) and the mean slip is 3.2 m (0.7-7 m per event). The series is slightly more ordered than random and has a notable cluster of events, during which strain was released at 3 times the long-term average rate. Slip associated with an earthquake is not well predicted by the interval preceding it, and only the largest two earthquakes appear to affect the time interval to the next earthquake. Generally, short intervals tend to coincide with large displacements and long intervals with small displacements. The most significant correlation we find is that earthquakes are more frequent following periods of net strain accumulation spanning multiple seismic cycles. The extent of paleoearthquake ruptures may be inferred by correlating event ages between different sites along the San Andreas fault. Wrightwood and other nearby sites experience rupture that could be attributed to overlap of relatively independent segments that each behave in a more regular manner. However, the data are equally consistent with a model in which the irregular behavior seen at Wrightwood typifies the entire southern San Andreas fault; more long event series will be required to definitively outline prehistoric rupture extents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.S41B..06W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.S41B..06W"><span>Heat Flow in the SAFOD Pilot Hole and Implications for the Strength of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, C. F.; Grubb, F. V.; Galanis, S. P.</p> <p>2003-12-01</p> <p>As part of an investigation into the physical properties of the San Andreas fault (SAF) and adjacent crust, detailed thermal measurements have been acquired in the 2.2-km-deep pilot hole for the San Andreas Fault Observatory at Depth (SAFOD), located 1.8 km west of the SAF near Parkfield, California. Precision temperature logs have been combined with thermal conductivity measurements on drill cuttings in a detailed vertical profile of heat flow. The temperature at the bottom of the borehole is 92 ° C, and heat flow from the basement section of the borehole (770 to 2160 m) is 91+/-2 mW m-2. Within the resolution of the measurements, heat flow is constant across the identified faults that intersect the borehole, suggesting that any active fluid flow along these faults is at rates too low to alter the background conductive thermal regime. Heat flow in the SAFOD pilot hole is significantly higher than the 74 mW m-2 average for the Parkfield area reported by Sass et al. (JGR, v. 102, 1997) based on measurements in shallow holes but consistent with five measurements ranging from 84 to 100 mW m-2 near the SAF in Pancho Rico Canyon 20 km to the northwest. Reanalysis of the regional heat flow pattern indicates that high heat flow at the SAFOD site reflects an abrupt increase in heat flow along the SAF and within the Coast Ranges northwest of Parkfield. This transition corresponds to a shallowing of the base of seismicity on the SAF and may be related to a change in the mechanical behavior of the fault near the northern terminus of the M6 1966 Parkfield earthquake rupture. The persistence of elevated heat flow at sites more than 40 km west of the SAFOD pilot hole appears to rule out frictional heating on the SAF as a major source of the high SAFOD value. However, the correlation of along-strike variations in heat flow with changes in rupture patterns and fault characteristics may indicate a previously overlooked connection between laterally heterogeneous frictional properties and active thermal processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020682','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020682"><span>Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thatcher, W.; England, P.C.</p> <p>1998-01-01</p> <p>We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now inactive strands of the San Andreas system can explain the breadth of the heat flux anomaly across central California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G43B0943V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G43B0943V"><span>Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vadman, M.; Bemis, S. P.</p> <p>2017-12-01</p> <p>Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of this fault (1857). Where sufficient aerial photograph coverage is available, this approach has the potential to illuminate complex fault zone processes for this and other major strike-slip faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T21B2806F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T21B2806F"><span>Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.</p> <p>2016-12-01</p> <p>The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015888','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015888"><span>Textural development of clayey and quartzofeldspathic fault gouges relative to their sliding behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Byerlee, J.D.</p> <p>1990-01-01</p> <p>Many of the secondary fault structures developed during triaxial friction experiments have been generally correlated with the structures of natural fault zones. Therefore, any physical differences that can be found between laboratory samples that slide stably and those that show stick-slip motion may help to identify the cause of earthquakes. We have examined petrographically the run products of many triaxial friction experiments using clayey and quartzofeldspathic gouges, which comprise the principal types of natural fault gouge material. The examined samples were tested under a wide range of temperature, confining and fluid pressure, and velocity conditions. The clayey and quartzofeldspathic gouges show some textural differences, owing to their different mineral contents and grain sizes and shapes. In the clayey gouges, for example, a clay mineral fabric and kink band sets are commonly developed, whereas in the quartzofeldspathic gouges fracturing and crushing of the predominately quartz and feldspar grains are important processes. For both types of gouge, however, and whatever the pressure-temperature-velocity conditions of the experiments, the transition from stable sliding to stick-slip motion is correlated with: (i) a change from pervasive deformation of the gouge layer to localized slip in subsidiary shears; and (ii) an increase in the angle betweem the shears that crosscut the gouge layer (Riedel shears) and ones that form along the gouge-rock cylinder boundaries (boundary shears). This suggests that the localization of shear within a fault zone combined with relatively high Riedel-shear angles are somehow connected with earthquakes. Secondary fracture sets similar to Riedel shears have been identified at various scales in major strike-slip faults such as the San Andreas of the western United States (Wallace, 1973) and the Luhuo and Fuyun earthquake faults of China (Deng and Zhang, 1984; Deng et al., 1986). The San Andreas also contains locked and creeping sections that correspond to the stick-slip and stably sliding experimental samples, respectively. We plan to study the physical structure of the San Andreas fault, to see if the experimentally observed differences related to sliding behavior can also be distinguished in the field. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S53C4544M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S53C4544M"><span>Geometry and Pore Pressure Shape the Pattern of the Tectonic Tremors Activity on the Deep San Andreas Fault with Periodic, Period-Multiplying Recurrence Intervals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mele Veedu, D.; Barbot, S.</p> <p>2014-12-01</p> <p>A never before recorded pattern of periodic, chaotic, and doubled, earthquake recurrence intervals was detected in the sequence of deep tectonic tremors of the Parkfield segment of the San Andreas Fault (Shelly, 2010). These observations may be the most puzzling seismological observations of the last decade: The pattern was regularly oscillating with a period doubling of 3 and 6 days from mid-2003 until it was disrupted by the 2004 Mw 6.0 Parkfield earthquake. But by the end of 2007, the previous pattern resumed. Here, we assume that the complex dynamics of the tremors is caused by slip on a single asperity on the San Andreas Fault with homogeneous friction properties. We developed a three-dimensional model based on the rate-and-state friction law with a single patch and simulated fault slip during all stages of the earthquake cycle using the boundary integral method of Lapusta & Liu (2009). We find that homogeneous penny-shaped asperities cannot induce the observed period doubling, and that the geometry itself of the velocity-weakening asperity is critical in enabling the characteristic behavior of the Parkfield tremors. We also find that the system is sensitive to perturbations in pore pressure, such that the ones induced by the 2004 Parkfield earthquake are sufficient to dramatically alter the dynamics of the tremors for two years, as observed by Shelly (2010). An important finding is that tremor magnitude is amplified more by macroscopic slip duration on the source asperity than by slip amplitude, indicative of a time-dependent process for the breakage of micro-asperities that leads to seismic emissions. Our simulated event duration is in the range of 25 to 150 seconds, closely comparable to the event duration of a typical Parkfield tectonic tremor. Our simulations reproduce the unique observations of the Parkfield tremor activity. This study vividly illustrates the critical role of geometry in shaping the dynamics of fault slip evolution on a seismogenic fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....95.1139E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....95.1139E"><span>Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.</p> <p>1990-02-01</p> <p>In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042315','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042315"><span>Low-altitude aerial color digital photographic survey of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.</p> <p>2010-01-01</p> <p>Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the southeast leg and 300 m AGL on the northwest leg. Spatial resolution (pixel size or ground sample distance) is a few centimeters. Time and geographic coordinates of the aircraft were automatically written into the exchangeable image file format (EXIF) data within each jpeg photograph. A few hours after acquisition and validation, the photographs were uploaded to a publically accessible Web page. The goal was to obtain quick-turnaround, low-cost, high-resolution, overlapping, and contiguous imagery for use in planning field operations, and to provide imagery for a wide variety of land use and educational studies. This work was carried out in support of ongoing geological research on the San Andreas fault, but the technique is widely applicable beyond geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986PApGe.124..127W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986PApGe.124..127W"><span>Gravity anomaly and density structure of the San Andreas fault zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi</p> <p>1986-01-01</p> <p>A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2734C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2734C"><span>Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaussard, E.; Bürgmann, R.; Fattahi, H.; Nadeau, R. M.; Taira, T.; Johnson, C. W.; Johanson, I.</p> <p>2015-04-01</p> <p>The Hayward and Calaveras Faults, two strike-slip faults of the San Andreas System located in the East San Francisco Bay Area, are commonly considered independent structures for seismic hazard assessment. We use Interferometric Synthetic Aperture RADAR to show that surface creep on the Hayward Fault continues 15 km farther south than previously known, revealing new potential for rupture and damage south of Fremont. The extended trace of the Hayward Fault, also illuminated by shallow repeating micro-earthquakes, documents a surface connection with the Calaveras Fault. At depths greater than 3-5 km, repeating micro-earthquakes located 10 km north of the surface connection highlight the 3-D wedge geometry of the junction. Our new model of the Hayward and Calaveras Faults argues that they should be treated as a single system with potential for earthquake ruptures generating events with magnitudes greater than 7, posing a higher seismic hazard to the East San Francisco Bay Area than previously considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01791.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01791.html"><span>Space Radar Image of San Francisco, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-04-15</p> <p>This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA01791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA607736','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA607736"><span>Citizenship and Terrorism: The Significance of a Pathway to Citizenship on Homeland Security</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-03-01</p> <p>allowing for any perpetrator to claim affiliation with them. As the majority of their incidents involve targets associated with animal cruelty or...terrorist organizations known as the Earth Liberation Front and the Animal Liberation Front, which anonymously claimed credit for the vast majority...nation’s most wanted domestic terrorist suspect. . . . [Daniel Andreas] San Diego, 36, is suspected to be an animal rights extremist. He is charged</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss028e006059.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss028e006059.html"><span>Earth Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-05-28</p> <p>ISS028-E-006059 (28 May 2011) --- One of the Expedition 28 crew members, photographing Earth images onboard the International Space Station while docked with the space shuttle Endeavour and flying at an altitude of just under 220 miles, captured this frame of the Salton Sea. The body of water, easily identifiable from low orbit spacecraft, is a saline, endorheic rift lake located directly on the San Andreas Fault. The agricultural area is within the Coachella Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.S24A..08D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.S24A..08D"><span>Ground Motion Prediction for M7+ scenarios on the San Andreas Fault using the Virtual Earthquake Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denolle, M.; Dunham, E. M.; Prieto, G.; Beroza, G. C.</p> <p>2013-05-01</p> <p>There is no clearer example of the increase in hazard due to prolonged and amplified shaking in sedimentary, than the case of Mexico City in the 1985 Michoacan earthquake. It is critically important to identify what other cities might be susceptible to similar basin amplification effects. Physics-based simulations in 3D crustal structure can be used to model and anticipate those effects, but they rely on our knowledge of the complexity of the medium. We propose a parallel approach to validate ground motion simulations using the ambient seismic field. We compute the Earth's impulse response combining the ambient seismic field and coda-wave enforcing causality and symmetry constraints. We correct the surface impulse responses to account for the source depth, mechanism and duration using a 1D approximation of the local surface-wave excitation. We call the new responses virtual earthquakes. We validate the ground motion predicted from the virtual earthquakes against moderate earthquakes in southern California. We then combine temporary seismic stations on the southern San Andreas Fault and extend the point source approximation of the Virtual Earthquake Approach to model finite kinematic ruptures. We confirm the coupling between source directivity and amplification in downtown Los Angeles seen in simulations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017140','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017140"><span>The change in orientation of subsidiary shears near faults containing pore fluid under high pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Byerlee, J.</p> <p>1992-01-01</p> <p>Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S33D2485R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S33D2485R"><span>Seasonal variability in Tibetan seismicity 1991-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randolph-Flagg, N. G.; Day, J.; Burgmann, R.; Manga, M.</p> <p>2013-12-01</p> <p>Seismicity in the High Himalaya in Nepal (Bollinger et al., GRL, 2007, Bettinelli et al., EPSL, 2008), the San Andreas fault near Parkfield, California (Christiansen et al., 2007), Mt. Hochstaufen in Germany (Hainzl et al., 2006), and some Cascade Range volcanoes (Christiansen et al., GRL, 2005; Saar and Manga, EPSL, 2003) shows seasonal modulation. From 1991 to 2013, seismicity throughout the ~500 km by ~1000 km Tibetan Plateau also appears to be modulated with 66% more shallow (depth < 20km) earthquakes in spring and fall than in the summer and winter. This variation cannot be explained by seasonal changes in seismic network coverage or triggering by (or occurrence of) large magnitude earthquakes. Significant foreshocks and aftershocks of the 2008 M7.9 Wenchuan earthquake in Sichuan dominate the seismic record from 2008 to 2009 and those years are not considered in the statistical analysis. The Tibetan seismicity, although weaker, is very similar to the modulation observed in Nepal and in the locked section of the San Andreas fault at Parkfield. To explain this biannual signal, we assess the possible effects of hydrologic loading (and unloading), pore pressure diffusion, fault plane orientation, evapotranspiration, earth tides, and atmospheric pressure. The similarity in seasonal signals throughout the area suggests that many faults on the Tibetan Plateau are critically stressed and sensitive to small transient stresses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T44A..05D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T44A..05D"><span>A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darin, M. H.; Dorsey, R. J.</p> <p>2012-12-01</p> <p>Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC-NAM) relative plate motion since ~12 Ma (Atwater and Stock, 1998). We propose that the continental component of PAC-NAM shear is accommodated by: (1) 195 ± 15 km on the southern SAF (this study); (2) 12 ± 2 km on the Whittier-Elsinore fault; (3) 75 ± 20 km of cumulative shear across the central Mojave in the eastern California shear zone; (4) 30 ± 4 km of post-13 Ma slip on the Stateline fault; and (5) 47 ± 18 km of NW-directed translation produced by north-south shortening. Together, these components sum to 359 ± 31 km of net dextral displacement on the SAF system (sensu lato) in southern California since ca. 12 Ma, or ~300 km less than what is required by the global plate circuit. This suggests that the continental component of post-12 Ma PAC-NAM transform motion can be no more than ~390 km in the adjacent northern Gulf of California, substantially less than the 450 km of shear proposed in some models. We suggest that the remaining ~270-300 km of NW-directed relative plate motion is accommodated by a small component of late Miocene extension and roughly 225 km of slip on the offshore borderland fault system west of Baja California.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T21E..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T21E..02M"><span>Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madden, E. H.; McBeck, J.; Cooke, M. L.</p> <p>2013-12-01</p> <p>Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in efficiency provided by both hard-linkage and soft-linkage to be quantified and compared. Specialized models of interactions over the past 1 Ma between the Clark and Coyote Creek faults within the San Jacinto system reveal increasing mechanical efficiency as these fault structures change over time. Alongside this increasing efficiency is an increasing likelihood for single, larger earthquakes that rupture multiple fault segments. These models reinforce the sensitivity of mechanical efficiency to both fault structure and the regional tectonic stress orientation controlled by plate motions and provide insight into how slip may have been partitioned between the San Andreas and San Jacinto systems over the past 1 Ma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G43A0845A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G43A0845A"><span>Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agram, P. S.; Wortham, C.; Zebker, H. A.</p> <p>2010-12-01</p> <p>In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (< 3-4 Km) is virtually impossible due to heavy decorrelation at C-band (6cm wavelength). Shanker and Zebker (2009) [4] used the Persistent Scatterer (PS) time-series InSAR technique to estimate a time-dependent non-uniform creep signal across a section of the creeping segment of the San Andreas Fault. However, the identified PS network was spatially very sparse (1 per sq. km) to study temporal characteristics of deformation of areas close to the fault. In this work, we use L-band (24cm wavelength) SAR data from the PALSAR instrument on-board the ALOS satellite, launched by Japanese Aerospace Exploration Agency (JAXA) in 2006, to study the temporal characteristics of creep across the Central San Andreas Fault. The longer wavelength at L-band improves observed correlation over the entire scene which significantly increased the ground area coverage of estimated deformation in each interferogram but at the cost of decreased sensitivity of interferometric phase to surface deformation. However, noise levels in our deformation estimates can be decreased by combining information from multiple SAR acquisitions using time-series InSAR techniques. We analyze 13 SAR acquisitions spanning the time-period from March 2007 to Dec 2009 using the Short Baseline Subset Analysis (SBAS) time-series InSAR technique [3]. We present detailed comparisons of estimated time-series of fault creep as a function of position along the fault including the locked section around Parkfield, CA. We also present comparisons between the InSAR time-series and GPS network observations in the Parkfield region. During these three years of observation, the average fault creep is estimated to be 35 mm/yr. References [1] Bürgmann,R., E. Fielding and, J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry, Geology,26, 559-562, 1998. [2] Ferretti, A., C. Prati and F. Rocca, Permanent Scatterers in SAR Interferometry, IEEE Trans. Geosci. Remote Sens., 39, 8-20, 2001. [3] Lanari, R.,F. Casu, M. Manzo, and P. Lundgren, Application of SBAS D- InSAR technique to fault creep: A case study of the Hayward Fault, California. Remote Sensing of Environment, 109(1), 20-28, 2007. [4] Shanker, A. P., and H. Zebker, Edgelist phase unwrapping algorithm for time-series InSAR. J. Opt. Soc. Am. A, 37(4), 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-SL2-03-126.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-SL2-03-126.html"><span>Mojave Desert, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-06-22</p> <p>SL2-03-126 (June 1973) --- A color infrared photograph of the Los Angeles County and Kern County area, taken from the Skylab space station in Earth orbit during its first manned Skylab mission. The Mojave Desert occupies the northeast one-fourth of the photograph. Lake Isabella in the Sierra Nevada Mountains is the v-shaped body of water. The San Gabriel Mountains extend across the southern part of the picture. At lower center is the intersection of the San Andreas and Garlock faults. The San Joaquin Valley is in the center at the left edge. (The picture should be held with the heavy cloud cover at lower right corner so that north will be at top.) This picture was exposed by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility experiment in the Multiple Docking Adapter of the Skylab space station. Type 2443 film was used. Photo credit: NASA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033689','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033689"><span>Revisiting the 1872 Owens Valley, California, Earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hough, S.E.; Hutton, K.</p> <p>2008-01-01</p> <p>The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T12A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T12A..02L"><span>Geometry of the southern San Andreas fault and its implications for seismic hazard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langenheim, V. E.; Dorsey, R. J.; Fuis, G. S.; Cooke, M. L.; Fattaruso, L.; Barak, S.</p> <p>2015-12-01</p> <p>The southern San Andreas fault (SSAF) provides rich opportunities for studying the geometry and connectivity of fault stepovers and intersections, including recently recognized NE tilting of the Salton block between the SSAF and San Jacinto fault (SJF) that likely results from slight obliquity of relative plate motion to the strike of the SSAF. Fault geometry and predictions of whether the SSAF will rupture through the restraining bend in San Gorgonio Pass (SGP) are controversial, with significant implications for seismic hazard. The evolution of faulting in SGP has led to various models of strain accommodation, including clockwise rotation of fault-bounded blocks east of the restraining bend, and generation of faults that siphon strike slip away from the restraining bend onto the SJF (also parallel to the SSAF). Complex deformation is not restricted to the upper crust but extends to mid- and lower-crustal depths according to magnetic data and ambient-noise surface-wave tomography. Initiation of the SJF ~1.2 Ma led to formation of the relatively intact Salton block, and end of extension on the West Salton detachment fault on the west side of Coachella Valley. Geologic and geomorphic data show asymmetry of the southern Santa Rosa Mountains, with a steep fault-bounded SW flank produced by active uplift, and gentler topographic gradients on the NE flank with tilted, inactive late Pleistocene fans that are incised by modern upper fan channels. Gravity data indicate the basin floor beneath Coachella Valley is also asymmetric, with a gently NE-dipping basin floor bound by a steep SSAF; seismic-reflection data suggest that NE tilting took place during Quaternary time. 3D numerical modeling predicts gentle NE dips in the Salton block that result from the slight clockwise orientation of relative motion across a NE-dipping SSAF. A NE dip of the SSAF, supported by various geophysical datasets, would reduce shaking in Coachella Valley compared to a vertical fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013903','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013903"><span>Instability model for recurring large and great earthquakes in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stuart, W.D.</p> <p>1985-01-01</p> <p>The locked section of the San Andreas fault in southern California has experienced a number of large and great earthquakes in the past, and thus is expected to have more in the future. To estimate the location, time, and slip of the next few earthquakes, an earthquake instability model is formulated. The model is similar to one recently developed for moderate earthquakes on the San Andreas fault near Parkfield, California. In both models, unstable faulting (the earthquake analog) is caused by failure of all or part of a patch of brittle, strain-softening fault zone. In the present model the patch extends downward from the ground surface to about 12 km depth, and extends 500 km along strike from Parkfield to the Salton Sea. The variation of patch strength along strike is adjusted by trial until the computed sequence of instabilities matches the sequence of large and great earthquakes since a.d. 1080 reported by Sieh and others. The last earthquake was the M=8.3 Ft. Tejon event in 1857. The resulting strength variation has five contiguous sections of alternately low and high strength. From north to south, the approximate locations of the sections are: (1) Parkfield to Bitterwater Valley, (2) Bitterwater Valley to Lake Hughes, (3) Lake Hughes to San Bernardino, (4) San Bernardino to Palm Springs, and (5) Palm Springs to the Salton Sea. Sections 1, 3, and 5 have strengths between 53 and 88 bars; sections 2 and 4 have strengths between 164 and 193 bars. Patch section ends and unstable rupture ends usually coincide, although one or more adjacent patch sections may fail unstably at once. The model predicts that the next sections of the fault to slip unstably will be 1, 3, and 5; the order and dates depend on the assumed length of an earthquake rupture in about 1700. ?? 1985 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155511','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155511"><span>Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barbour, Andrew J.</p> <p>2015-01-01</p> <p>Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the pore pressure response in fluid-saturated rock near active faults is controlled by shear strain accumulation associated with tectonic loading, which implies a strong feedback between fault strength and permeability: dynamic triggering susceptibilities may vary in space and also in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830006327','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830006327"><span>Neotectonics of the San Andreas Fault system: Basin and range province juncture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Estes, J. E.; Crowell, J. C. (Principal Investigator)</p> <p>1981-01-01</p> <p>A thorough evaluation of all LANDSAT coverage of the study area (considering atmospheric clarity, seasonal aspects, specific swath location, and digital quality) resulted in the selection of two consecutive (continuously recorded) scenes for detailed analyses. The acquisition of HCMM and SEASAT imagery as well as high altitude U-2 uniform coverage is being considered. A bibliography of previous geological studies and methodological examples is estimated to be 70% complete.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720021706&hterms=Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKilauea%2Bvolcano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720021706&hterms=Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKilauea%2Bvolcano"><span>Satellite relay telemetry in the surveillance of active volcanoes and major fault zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eaton, J. P.; Ward, P. L.</p> <p>1972-01-01</p> <p>A review was made of efforts to develop a dense telemetered microearthquake network to study earthquake mechanics along the San Andreas fault and the strain mechanics of the Kilauea Volcano. The principle elements and objectives of the ERTS-A proposal are outlined. Some of the aspects of the earthquake network and the results obtained from it as well as some promising experiments in computerized record processing are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T33G2506B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T33G2506B"><span>Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.</p> <p>2011-12-01</p> <p>The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four younger Quaternary unconformities across portions of these faults to test whether the post- ~1.8 Ma deformation continues into late Quaternary. This will provide critical information for a meaningful assessment of the seismic hazards facing Newport beach through metropolitan San Diego.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3306/pdf/sim3306_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3306/pdf/sim3306_pamphlet.pdf"><span>California State Waters Map Series: offshore of San Gregorio, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.</p> <p>2014-01-01</p> <p>In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in the northern and southern parts of the map area are the result of right-lateral motion on strands of the San Gregorio Fault system. In the south, headlands near Pescadero Point have been uplifted by motion along the west strand of the San Gregorio Fault (also called the Frijoles Fault), which separates rocks of the Pigeon Point Formation south of the fault from rocks of the Purisima Formation north of the fault. The regional uplift in this map area has caused relatively shallow water depths within California's State Waters and, thus, little accommodation space for sediment accumulation. Sediment is observed offshore in the central part of the map area, in the shelter of the headlands north of the east strand of the San Gregorio Fault (also called the Coastways Fault) around Miramontes Point (about 5 km north of the map area) and also on the outer half of the California's State Waters shelf in the south where depths exceed 40 m. Sediment in the outer shelf of California's State Waters is rippled, indicating some mobility. The Offshore of San Gregorio map area lies within the cold-temperate biogeographic zone that is called either the "Oregonian province" or the "northern California ecoregion." This biogeographic province is maintained by the long-term stability of the southward-flowing California Current, an eastern limb of the North Pacific subtropical gyre that flows from Oregon to Baja California. At its midpoint off central California, the California Current transports subarctic surface (0–500 m deep) waters southward, about 150 to 1,300 km from shore. Seasonal northwesterly winds that are, in part, responsible for the California Current, generate coastal upwelling. The south end of the Oregonian province is at Point Conception (about 350 km south of the map area), although its associated phylogeographic group of marine fauna may extend beyond to the area offshore of Los Angeles in southern California. The ocean off of central California has experienced a warming over the last 50 years that is driving an ecosystem shift away from the productive subarctic regime towards a depopulated subtropical environment. Seafloor habitats in the Offshore of San Gregorio map area, which lies within the Shelf (continental shelf) megahabitat, range from significant rocky outcrops that support kelp-forest communities nearshore to rocky-reef communities in deep water. Biological productivity resulting from coastal upwelling supports diverse populations of sea birds such as Sooty Shearwater, Western Gull, Common Murre, Cassin's Auklet, and many other less populous bird species. In addition, an observable recovery of Humpback and Blue Whales has occurred in the area; both species are dependent on coastal upwelling to provide nutrients. The large extent of exposed inner shelf bedrock supports large forests of "bull kelp," which is well adapted for high wave-energy environments. Common fish species found in the kelp beds and rocky reefs include lingcod and various species of rockfish and greenling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T44C..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T44C..07C"><span>Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cochran, W. J.; Spotila, J. A.</p> <p>2017-12-01</p> <p>Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51G0554K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51G0554K"><span>Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.</p> <p>2017-12-01</p> <p>The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4379H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4379H"><span>Using Geomorphologic Data and Numerical Hydrodynamic Models To Delineate Flood Hazards On Alluvial Fans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamilton, D.; Shaller, P.; Cattarossi, A.</p> <p></p> <p>The 100-year flood hazard was reappraised for a parcel of land in the central Coachella Valley of southern California, USA, by use of geologic mapping, geomorphic analy- sis, analysis of historical aerial photos, and computer-aided hydrologic modeling. An- nual precipitation is only about 6 inches, but the area is subject to rare but extreme rainfall events resulting from thunderstorms and hurricanes. The principal flooding hazard at the parcel is from nearby Thousand Palms Wash, which transmits drainage directly from the Little San Bernardino Mountains into the central Coachella Valley. A perceived secondary flood hazard originates from several drainage basins in the Little San Bernardino Mountains northwest of the Indio Hills. This source was the subject of this investigation. The San Andreas fault, which consists of two major active strands in the upper Coachella Valley area, dominates the geology, landforms, groundwater conditions and surface hydrology in the study area. Gouge associated with the faults impedes groundwater flow, resulting in shallow groundwater levels, lush vegetation, and the stabilization of large masses of sand dunes along the fault traces. Sand forms dominate the surface of the Coachella Valley and pose two barriers to storm water flow: a physical barrier created by their height, and a hydrologic barrier caused by their high infiltration rate. Probable routes of future storm water flows in the study area were evaluated using historical aerial photos of flood events that struck the area between 1974 and 1991. The Willow Hole gap is the most direct route for storm waters from the Little San Bernardino Mountains to the central Coachella Valley. Historical air photo data indicate that storm water from the Little San Bernardino Mountains does not normally flow through the gap, but rather is shunted around a large shutter ridge associated with the San Andreas fault. Two FLO-2D hydrologic models were developed to evaluate the 100-year flooding potential at the subject property from sources in the Little San Bernardino Mountains. The upstream model, which was run assuming no infiltration, was used as input to the downstream model, which was run using three different values for infiltration. Where infiltration was considered at all (even at a level much lower than the minimum predicted from soils mapping of the area), no storm water from the Little San Bernardino Mountains was able reach the 1 subject property whatsoever. The subject property therefore does not appear to be at risk from secondary flooding sources in the Little San Bernardino Mountains in the 100-year storm. This case study was performed in accordance with new guidelines for flood hazards on alluvial fans issued by the Federal Emergency Management Agency who is the lead agency in the USA that identifies flood prone areas. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1197/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1197/"><span>Structure of the San Bernardino Basin Along Two Seismic Transects: Rialto-Colton Fault to the San Andreas Fault and Along the I-215 Freeway (I-10 to SR30)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.; Steedman, C.E.</p> <p>2008-01-01</p> <p>In this report, we present seismic data and acquisition parameters for two seismic profiles acquired in the San Bernardino, California area in May and October 2003. We refer to these seismic profiles as the San Bernardino Regional (SBR) and San Bernardino High-Resolution (SBHR) seismic profiles. We present both un-interpreted and interpreted seismic images so that the structure of the area can independently interpreted by others. We explain the rationale for our interpretations within the text of this report, and in addition, we provide a large body of supporting evidence. The SBR seismic profile extended across the San Bernardino Basin approximately N30?E from the town of Colton to the town of Highland. The data were acquired at night when the signal-to-noise ratios were reasonably good, and for the larger shots, seismic energy propagated across the ~20-km-long array. Tomographic velocity data are available to depths of about 4 km, and low-fold reflection data are available to depths in excess of 5 km. The SBR seismic data reveal an asymmetric, fault-bound basin to about 5 km depth. The SBHR seismic profile trended along the I-215 freeway from its intersection with the Santa Ana River to approximately State Road 30 in San Bernardino. Seismic data acquired along the I-215 freeway provide detailed images, with CDP spacing of approximately 2.5 m along an approximately 8.2-km-long profile; shot and geophone spacing was 5 m. For logistical reasons, the high-resolution (SBHR) seismic data were acquired during daylight hours on the shoulder of the I-215 freeway and within 5 to 10 m of high-traffic volumes, resulting in low signal-to-noise ratios. The limited offset at which refracted first-arrivals could be measured along the SBHR seismic profile limited our measurements of tomographic refraction velocities to relatively shallow (< 150 m) depths. The SBHR reflection data reveal a basin with complex structural details within the upper kilometer. The two seismic profiles show internal consistency and consistency with other existing geophysical data. Collectively, the data suggest that the I-215 freeway trends along the faulted edge of a pull-apart basin, within a zone where the principal slip of the San Jacinto Fault is transferred to the San Andreas Fault. Because the I-215 freeway trends at low angles to these flower-structure faults, both primary and numerous secondary faults are apparent between the I-10 exchange and State Road-30, suggesting that much of the 8-km-long segment of the I-215 freeway could experience movement along primary or secondary faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026764','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026764"><span>A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chery, J.; Zoback, M.D.; Hickman, S.</p> <p>2004-01-01</p> <p>Stress measurements made in the SAFOD pilot hole provide an opportunity to study the relation between crustal stress outside the fault zone and the stress state within it using an integrated mechanical model of a transform fault loaded in transpression. The results of this modeling indicate that only a fault model in which the effective friction is very low (<0.1) through the seismogenic thickness of the crust is capable of matching stress measurements made in both the far field and in the SAFOD pilot hole. The stress rotation measured with depth in the SAFOD pilot hole (???28??) appears to be a typical feature of a weak fault embedded in a strong crust and a weak upper mantle with laterally variable heat flow, although our best model predicts less rotation (15??) than observed. Stress magnitudes predicted by our model within the fault zone indicate low shear stress on planes parallel to the fault but a very anomalous mean stress, approximately twice the lithostatic stress. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192091','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192091"><span>The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria</p> <p>2017-01-01</p> <p>The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras fault to the Hayward fault across the Mission seismic trend northeast of the Evergreen basin, whereas slip above a depth of 5 km is transferred through a complex zone of oblique-reverse faults along and over the northeast basin margin. However, a prominent groundwater flow barrier and related land-subsidence discontinuity coincident with the concealed Silver Creek fault, a discontinuity in the pattern of seismicity on the Calaveras fault at the Silver Creek fault intersection, and a structural sag indicative of a negative flower structure in Quaternary sediments along the southwest basin margin indicate that the Silver Creek fault has had minor ongoing slip over the past few hundred thousand years. Two earthquakes with ∼M6 occurred in A.D. 1903 in the vicinity of the Silver Creek fault, but the available information is not sufficient to reliably identify them as Silver Creek fault events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021830','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021830"><span>Foreshocks and aftershocks of the Great 1857 California earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Meltzner, A.J.; Wald, D.J.</p> <p>1999-01-01</p> <p>The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T34C..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T34C..06B"><span>Constraints from Xenoliths on Cenozoic Deformation and Rheology of the Western North American Mantle Lithosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behr, W. M.; Smith, D.; Bernard, R. E.</p> <p>2015-12-01</p> <p>We investigate xenoliths from several volcanic centers in the western US Cordillera, including the Navajo Volcanic Field in the Four Corners region of the Colorado Plateau, the San Carlos Volcanic Field in Arizona, and the Cima and Dish Hill volcanic fields in the western Mojave. We use these xenolith suites to determine to what extent and by what mechanisms the western North American lithospheric mantle has deformed during Cenozoic tectonic events, including Laramide flat-slab subduction, Basin-and-Range extension, and Quaternary strike-slip faulting associated with the San Andreas Fault System. We find the following. 1) Laramide flat-slab subduction substantially and heterogeneously deformed the North American lithospheric mantle. Despite some serpentinization, deformation along the plate interface was accommodated primarily by olivine dislocation creep, and was cold enough that the mantle lithosphere was strong and could transmit basal shear tractions into the upper plate crust, generating high topography. 2) During B&R extension, the mantle lithosphere was thinned and heated, and Laramide-age shear zone foliations were obliterated by grain growth, even in mixed phase lithologies. Despite annealing, LPO in olivine is preserved in several samples. This fossil LPO may control present-day mantle lid seismic anisotropy in the Basin and Range and may also provide an important source of viscous anisotropy. 3) The mantle lithosphere is actively deforming in localized zones beneath faults of the San Andreas system, but high sub-Moho temperatures render it very weak such that most of the strength of the lithosphere resides in the crust. Because deformation is localized, mantle lid anisotropy in the Mojave region is likely controlled by a fossil LPO, despite present-day deformation in the lithospheric mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.T43A1099T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.T43A1099T"><span>Paleomagnetic and Seismologic Evidence for Oblique-Slip Partitioning to the Coalinga Anticline From the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tetreault, J. L.; Jones, C. H.</p> <p>2007-12-01</p> <p>The Coalinga Anticline is a one of a series of fault-related folds in the central Coast Ranges, California, oriented subparallel to the San Andreas Fault (SAF). The development of the Central Coast Range anticlines can be related to the relative strength of the SAF. If positing a weak SAF, fault-normal slip is partitioned to these subparallel compressional folds. If the SAF is strong, these folds rotated to their current orientation during wrenching. Another possibility is that the Coast Range anticlines are accommodating oblique-slip partitioned from the SAF. The 1983 Coalinga earthquake does not have a purely thrusting focal mechanism (rake =100°), reflecting the likelihood that oblique slip is being partitioned to this anticline, even though surface expression of fold-axis-parallel slip has not been identified. Paleomagnetic vertical-axis rotations and focal mechanism strain inversions were used to quantify oblique-slip deformation within the Coalinga Anticline. Clockwise rotations of 10° to 16° are inferred from paleomagnetic sites located in late Miocene to Pliocene beds on the steeply dipping forelimb and backlimb of the fold. Significant vertical-axis rotations are not identified in the paleomagnetic sites within the nose of the anticline. The varying vertical axis rotations conflict with wrench tectonics (strong SAF) as the mechanism of fold development. We use focal mechanisms inversions of earthquakes that occurred between 1983 to 2006 to constrain the seismogenic strain within the fold that presumably help to build it over time. In the upper 7 km, the principal shortening axis is oriented N37E to N40E, statistically indistinguishable from normal to the fold (N45E). The right-lateral shear in the folded strata above the fault tip, evident from the paleomagnetically determined clockwise vertical-axis rotations, is being accommodated aseismically or interseismically. In the region between 7 and 11 km, where the mainshock occurred, the shortening direction ranges from oblique to normal to the fold trend. Our results show that right-lateral slip is resolved along the main fault plane and not distributed to the smaller aftershocks at depths of 7-11 km. The principal strain axes and clockwise paleomagnetic rotations indicate that the Coalinga Anticline is accommodating minor right-lateral shearing and thus shares some of the strike-slip motion of the San Andreas system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009CoMP..157..173S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009CoMP..157..173S"><span>On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5-3 km vertical depth (SAFOD drillhole at Parkfield, California)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schleicher, A. M.; Warr, L. N.; van der Pluijm, B. A.</p> <p>2009-02-01</p> <p>A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite-smectite (I-S) and chlorite-smectite (C-S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I-S mineral with ca. 20-25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2-5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300-3,353 m (true vertical depth of ca. 2.7 km), with I-S (70:30) and C-S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I-S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I-S growth can be evaluated. Assuming a typical K+ concentration of 100-200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I-S minerals can be predicted to have formed over the last 4-11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NHESS..12.3191N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NHESS..12.3191N"><span>Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.</p> <p>2012-11-01</p> <p>We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2014/3120/downloads/fs2014-3120.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2014/3120/downloads/fs2014-3120.pdf"><span>The California Volcano Observatory: Monitoring the state's restless volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.</p> <p>2014-01-01</p> <p>Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2005/3107/pdf/FS-3107.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2005/3107/pdf/FS-3107.pdf"><span>Southern California landslides-an overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,</p> <p>2005-01-01</p> <p>Southern California lies astride a major tectonic plate boundary defined by the San Andreas Fault and numerous related faults that are spread across a broad region. This dynamic tectonic environment has created a spectacular landscape of rugged mountains and steep-walled valleys that compose much of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents serious geologic hazards. Just as tectonic forces are steadily pushing the landscape upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides can occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA241312','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA241312"><span>Proceedings of Damping 󈨟, Held in San Diego, California on 13 - 15 February 1991. Volume 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-08-01</p> <p>Efficiency CBC* Dr. L. H. Sperling , J. J. Fay, and Dr. D. A. Thomas The Thermorheologically Complex Material CBD* Lt. Col. Ronald L. Bagley SESSION CC...Andrew S. Bicos. and J. S. Fechter The Need for Passive Damping in Feedback Controlled Flexible Struc- GBB tures Dr. Andreas von Flotow and D. W. Vos...Vibration Research, Southampton, England (R.C. Drew) Lehigh University, Bethlehem, Pennsylvania (L. Sperling ) MrS Corporation, Minneapolis, Minnesota</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5880989','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5880989"><span>Enhanced recovery after surgery and video-assisted thoracic surgery lobectomy: the Italian VATS Group**List of collaborators of the Italian ERAS Group: Jacopo Vannucci, MD (University of Perugia); Antonio D’Andrilli, MD (S. Andrea Hospital, Roma); Majed Refai, MD (Ospedali Riuniti, Ancona); Guendalina Graffigna, MD (Università Cattolica del Sacro Cuore, Milano); Stefano Lovadina, MD (Ospedali Riuniti, Trieste); Marzia Umari (Ospedali Riuniti, Trieste), Paolo Ferrari, MD (IRCCS ISMETT-UPMC, University of Pittsburgh, Palermo); Michele Zuliani, MD (Ospedali Riuniti, Trieste); Marco Taurchini, MD (Casa Sollievo della Sofferenza, San Giovanni Rotondo); Carlo Del Naja, MD (Casa Sollievo della Sofferenza, San Giovanni Rotondo); Domenico Massullo, MD (S. Andrea Hospital, Roma), Olha Putina, MD (ASST Mantova), Nicoletta Pia Ardò (University of Foggia). surgical protocol</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Viggiano, Domenico; Voltolini, Luca; Bertani, Alessandro; Bertolaccini, Luca; Crisci, Roberto; Droghetti, Andrea</p> <p>2018-01-01</p> <p>Enhanced recovery after surgery (ERAS®) is a strategy that seeks to reduce patients’ perioperative stress response, thereby reducing potential complications, decreasing hospital length of stay and enabling patients to return more quickly to their baseline functional status. The concept was introduced in the late 1990s and was first adopted in patients undergoing open colorectal surgery. Since then, the concept of ERAS has been adopted by multiple surgical specialties. The diffusion of video-assisted thoracic surgery lobectomy (VATS-L) sets also the surgical treatment of lung cancer as a new area for ERAS development. In this paper, we present the Italian VATS Group (www.vatsgroup.org) surgical protocol as part of the ERAS clinical pathway belonging to the VATS-L national database. PMID:29629203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034995','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034995"><span>The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Porter, K.; Jones, L.; Cox, D.; Goltz, J.; Hudnut, K.; Mileti, D.; Perry, S.; Ponti, D.; Reichle, M.; Rose, A.Z.; Scawthorn, C.R.; Seligson, H.A.; Shoaf, K.I.; Treiman, J.; Wein, A.</p> <p>2011-01-01</p> <p>In 2008, an earthquake-planning scenario document was released by the U.S. Geological Survey (USGS) and California Geological Survey that hypothesizes the occurrence and effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more than 300 scientists and engineers. Fault offsets reach 13 m and up to 8 m at lifeline crossings. Physics-based modeling was used to generate maps of shaking intensity, with peak ground velocities of 3 m/sec near the fault and exceeding 0.5 m/sec over 10,000 km2. A custom HAZUS??MH analysis and 18 special studies were performed to characterize the effects of the earthquake on the built environment. The scenario posits 1,800 deaths and 53,000 injuries requiring emergency room care. Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 billion in property and business interruption loss, out of the total $191 billion in economic loss, with most of the rest coming from shakerelated building and content damage ($46 billion) and business interruption loss from water outages ($24 billion). Emergency response activities are depicted in detail, in an innovative grid showing activities versus time, a new format introduced in this study. ?? 2011, Earthquake Engineering Research Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019264','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019264"><span>Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.</p> <p>1997-01-01</p> <p>A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020131','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020131"><span>Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.</p> <p>1997-01-01</p> <p>Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984PApGe.122..376S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984PApGe.122..376S"><span>Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Motoaki; Sutton, A. J.; McGee, K. A.</p> <p>1984-03-01</p> <p>We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1 10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031960','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031960"><span>Dislocation models of interseismic deformation in the western United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.</p> <p>2008-01-01</p> <p>The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154742','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154742"><span>Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Page, Morgan T.; Felzer, Karen</p> <p>2015-01-01</p> <p>The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T43A2649K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T43A2649K"><span>Integrating geology and geomorphology; the key to unlocking Quaternary tectonic framework of the San Andreas Fault zone in the San Gorgonio Pass region, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, K. J.; Matti, J. C.</p> <p>2012-12-01</p> <p>The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some older than 500 ka, has a wide spatial footprint along a N-S axis, and Holocene alluvium is disrupted by numerous fault scarps. By contrast, south of PPB the SGPFZ consists of fewer thrust-fault strands, has a relatively narrow footprint, and faults breaking Holocene deposits are uncommon. The San Bernardino strand of the SAF intersects the SGPFZ at about the boundary between these two domains. Morphometric data indicate that the KPB has undergone significantly greater uplift than the PPB since inception of the San Bernardino strand, proposed by Matti and Morton (1993) to have occurred at ~125ka. Age estimates associated with the PPB and DGB allow us to broadly estimate relative uplift rates. Drainage reconstruction of the Whitewater River and its tributaries across the YRB likewise allow us to validate and refine the uplift estimated by Spotila and others (2001). YRB has been uplifted relative to SGB since the inception of the Mill Creek Strand of the SAF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA02745&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bperspective','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA02745&hterms=time+perspective&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dtime%2Bperspective"><span>Perspective View, San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2000-01-01</p> <p><p/> The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.<p/>This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.<p/>SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.<p/>Size: Varies in a perspective view Location: 34.70 deg. North lat., 118.57 deg. West lon. Orientation: Looking Northwest Original Data Resolution: SRTM and Landsat: 30 meters (99 feet) Date Acquired: February 16, 2000</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......308S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......308S"><span>Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stang, Dallon Michael</p> <p></p> <p>Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the Cajon Valley formation. Detrital-zircon ages were determined from the Cajon Valley formation and related strata. These data are slightly more variable than sandstone composition, with distinct age peaks at 85-90 Ma, 150 Ma and 250 Ma. These ages correlate with batholiths in the SW Mojave Desert. Of the nine samples from six formations collected as potential offset equivalents, Branch Canyon and Santa Margarita samples are most similar to Cajon Valley samples, in terms of both detrital-zircon ages and sandstone composition. Based on 310km of post-Miocene offset on the San Andreas fault system, the Cajon Valley formation restores adjacent to shallow-marine sandstone of the Santa Margarita Formation and Branch Canyon Sandstone Member of the Monterey Formation in the Caliente and La Panza ranges. Cajon Valley sandstone is interpreted to represent a Miocene fluvial system on a coastal plain, flowing toward a delta on a narrow continental shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T21A2308W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T21A2308W"><span>Evaluating the relationship between lateral slip and repeated fold deformation along a transtensive step-over on the San Andreas fault at the Frazier Mountain site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weldon, R. J.; Streig, A. R.; Frazier Mountain SoSAFE Trenching Team</p> <p>2011-12-01</p> <p>Transtensive step-overs known as sags are among the most ubiquitous features of strike slip faults. These structures create closed depressions that collect sediment, are often wet and thus preserve organic material that can be used to date the thick and rapidly accumulating section. It is clear from historical ruptures that these depressions grow incrementally with each earthquake. We are developing methods to carefully document and separate individual folding events, and to relate the amount of sagging or folding to the amount of horizontal slip creating the sag, with the goal of generating slip per event chronologies. This will be useful as sags are often the best sites for preserving evidence of earthquake timing, and determining slip at these sites will eliminate the ambiguity inherent in tying earthquake age data from micro-stratigraphic sites to nearby undated sites with good micro-geomorphic slip evidence. We apply this approach to the Frazier Mountain site on the Southern San Andreas fault where we integrate trenching, cone penetrometer testing (CPT), surveying, photomosaicing, B4 LiDAR data and GIS techniques to make a detailed 3D map of subsurface geology, fault traces and related folds across the site. These data are used to generate structure contour and isopach maps for key stratigraphic units in order to evaluate fold deformation of paleo-ground surfaces across a transtensional step-over on the San Andreas fault. Approximately 20 trenches show the main active trace of the San Andreas fault right stepping ~30 m over ~100 m along strike producing two small synclinal sags that dramatically thicken the stratigraphic section. The northwest sag is about 50 m long, 5 m wide, and the southwest sag measures 20 m long and about 8 m wide. The Frazier Mountain site has yielded good earthquake chronologies, and relationships between fold deformation and surface fault rupture for the last 6 earthquakes. We observe that the degree of sagging in the synclines varies along strike for each feature, but that the ratio of fold deformation between earthquake horizons remains constant in both synclines. The penultimate earthquake, E2, produced a depression that was infilled by gravel which was subsequently folded in the most recent earthquake in 1857. Fine-grained alluvial units overlie the gravel and fill the 1857 depression such that the current surface is relatively horizontal. E2 has double the observed folding associated with the 1857 event in the core of the NW syncline. Earthquake E6 has double the amount of fold deformation observed across the E3 paleo-surface in both sags, and three times the deformation observed on the E2 surface in the NW sag. Ratios of fold deformation between events are E2 = 2*E1, E6 = 3*E2, and E6 = 2*E3. We plan to model the folding to quantitatively assess the lateral offset, but to date we have only been able to establish minimum offset values (Scharer, Gibson, Weldon, Streig, this meeting). Qualitatively, the realitive amounts of folding suggest all slip events are similar to 1857, which had ~5 meters slip at this site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186661','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186661"><span>The 1992 Landers earthquake sequence; seismological observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Egill Hauksson,; Jones, Lucile M.; Hutton, Kate; Eberhart-Phillips, Donna</p> <p>1993-01-01</p> <p>The (MW6.1, 7.3, 6.2) 1992 Landers earthquakes began on April 23 with the MW6.1 1992 Joshua Tree preshock and form the most substantial earthquake sequence to occur in California in the last 40 years. This sequence ruptured almost 100 km of both surficial and concealed faults and caused aftershocks over an area 100 km wide by 180 km long. The faulting was predominantly strike slip and three main events in the sequence had unilateral rupture to the north away from the San Andreas fault. The MW6.1 Joshua Tree preshock at 33°N58′ and 116°W19′ on 0451 UT April 23 was preceded by a tightly clustered foreshock sequence (M≤4.6) beginning 2 hours before the mainshock and followed by a large aftershock sequence with more than 6000 aftershocks. The aftershocks extended along a northerly trend from about 10 km north of the San Andreas fault, northwest of Indio, to the east-striking Pinto Mountain fault. The Mw7.3 Landers mainshock occurred at 34°N13′ and 116°W26′ at 1158 UT, June 28, 1992, and was preceded for 12 hours by 25 small M≤3 earthquakes at the mainshock epicenter. The distribution of more than 20,000 aftershocks, analyzed in this study, and short-period focal mechanisms illuminate a complex sequence of faulting. The aftershocks extend 60 km to the north of the mainshock epicenter along a system of at least five different surficial faults, and 40 km to the south, crossing the Pinto Mountain fault through the Joshua Tree aftershock zone towards the San Andreas fault near Indio. The rupture initiated in the depth range of 3–6 km, similar to previous M∼5 earthquakes in the region, although the maximum depth of aftershocks is about 15 km. The mainshock focal mechanism showed right-lateral strike-slip faulting with a strike of N10°W on an almost vertical fault. The rupture formed an arclike zone well defined by both surficial faulting and aftershocks, with more westerly faulting to the north. This change in strike is accomplished by jumping across dilational jogs connecting surficial faults with strikes rotated progressively to the west. A 20-km-long linear cluster of aftershocks occurred 10–20 km north of Barstow, or 30–40 km north of the end of the mainshock rupture. The most prominent off-fault aftershock cluster occurred 30 km to the west of the Landers mainshock. The largest aftershock was within this cluster, the Mw6.2 Big Bear aftershock occurring at 34°N10′ and 116°W49′ at 1505 UT June 28. It exhibited left-lateral strike-slip faulting on a northeast striking and steeply dipping plane. The Big Bear aftershocks form a linear trend extending 20 km to the northeast with a scattered distribution to the north. The Landers mainshock occurred near the southernmost extent of the Eastern California Shear Zone, an 80-km-wide, more than 400-km-long zone of deformation. This zone extends into the Death Valley region and accommodates about 10 to 20% of the plate motion between the Pacific and North American plates. The Joshua Tree preshock, its aftershocks, and Landers aftershocks form a previously missing link that connects the Eastern California Shear Zone to the southern San Andreas fault.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA062095','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA062095"><span>Regional Geological Maps of the Northeast Pacific - Standard Navy Ocean Area NP-9</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-01-01</p> <p>creates the next Washington, and British Columbia. All the land area, except island in the chain. Thus, many island chains, for example. the that seaward of...the San Andreas Fault of California, is part of Hawaiian Islands , seem to indicate the path of the plate over the North American Plate. such "hot...turbiditc deposition from the nearby been deposited by bottom currents, volcanic sources such as the Hawaiian Islands and from the deposition of sediments</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA569489','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA569489"><span>Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-09-01</p> <p>method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO) array (Thurber et al., 2004...limitations in mind, we apply our method to ~ 4 Hz wave propagation using SAFOD borehole seismometers and the Parkfield Array Seismic Observatory (PASO...Proposal No. BAA09-69 ABSTRACT Surface array and deep borehole recordings of chemical explosions in the near-source (0-20 km) region are studied to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568814','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568814"><span>Analysis and Modeling of Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-01</p> <p>No. BAA09-69 ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km...NNSA). 14. ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km depth...generated using the direct Green’s function (DGF) method of Friederich and Dalkolmo (1995). This method synthesizes the seismic wavefield for a spherically</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017260','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017260"><span>Creep, compaction and the weak rheology of major faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sleep, Norman H.; Blanpied, M.L.</p> <p>1992-01-01</p> <p>Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S51B2375M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S51B2375M"><span>Rupture Synchronicity in Complex Fault Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milner, K. R.; Jordan, T. H.</p> <p>2013-12-01</p> <p>While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a dozen fault-spanning volumes. At the magnitude threshold M = 7, the ACDF can be well fit by renewal models with fairly small aperiodicity parameters (α < 0.2) for all fault volumes but one (on the San Jacinto fault). At interseismic (Reid) time scales, we observe pairs of fault segments that are tightly locked, such as the Cholame and Carrizo sections of the San Andreas Fault (SAF), where the CCDF and two ACDFs are nearly equal; segments out of phase (Carrizo-SAF/Coachella-SAF and Coachella-SAF/San Jacinto), where the CCDF variation is an odd function of time; and segments where events are in phase with integer ratios of recurrence times (2:1 synchronicity of Coachella-SAF/Mojave-SAF and Carrizo-SAF/Mojave-SAF). At near-seismic (Omori) time scales, we observe various modes of clustering, triggering, and shadowing in RSQSim catalogs; e.g., events on Mojave-SAF trigger Garlock events, and events on Coachella-SAF shut down events on San Jacinto. Therefore, despite its geometrical complexity and multiplicity of time scales, the RSQSim model of the San Andreas fault system exhibits a variety of synchronous behaviors that increase the predictability of large ruptures within the system. A key question for earthquake forecasting is whether the real San Andreas system is equally, or much less, synchronous.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018170','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018170"><span>Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cai, J.; McMechan, G.A.; Fisher, M.A.</p> <p>1996-01-01</p> <p>In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1998/of98-348/pageo.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1998/of98-348/pageo.pdf"><span>Geology of the Palo Alto 30 x 60 minute quadrangle, California: A digital database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brabb, Earl E.; Graymer, R.W.; Jones, David Lawrence</p> <p>1998-01-01</p> <p>This map database represents the integration of previously published and unpublished maps by several workers (see Sources of Data index map on Sheet 2 and the corresponding table below) and new geologic mapping and field checking by the authors with the previously published geologic map of San Mateo County (Brabb and Pampeyan, 1983) and Santa Cruz County (Brabb, 1989, Brabb and others, 1997), and various sources in a small part of Santa Clara County. These new data are released in digital form to provide an opportunity for regional planners, local, state, and federal agencies, teachers, consultants, and others interested in geologic data to have the new data long before a traditional paper map is published. The new data include a new depiction of Quaternary units in the San Francisco Bay plain emphasizing depositional environment, important new observations between the San Andreas and Pilarcitos faults, and a new interpretation of structural and stratigraphic relationships of rock packages (Assemblages).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981GeoRL...8..425K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981GeoRL...8..425K"><span>Anomalous chemical changes in well waters and possible relation to earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Chi-Yu; Evans, William C.; Presser, Theresa; Husk, Robert H.</p> <p></p> <p>Water level, temperature, salinity, electric conductivity, and pH have been measured periodically for several years at three water wells located along a 17-km segment of the San Andreas fault between San Juan Bautista and Cienega Winery in central California. Water samples were collected at the same time for subsequent chemical analyses in the laboratory. Some sudden large changes in salinity and conductivity were recorded in early March 1980 at the two wells near San Juan Bautista. These changes coincided approximately with the beginning of an episode of increased local seismicity, including a magnitude 4.8 earthquake on April 13. Analyses of water samples revealed corresponding changes in ion concentrations, especially of Na+, Ca++, Mg++, SO4--, HCO3-, F-, and Cl-. The observed changes may be the result of mixing of waters from different aquifers through cracks developed in the water barriers by a possible crustal strain episode that may have occurred in the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011837','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011837"><span>Anomalous chemical changes in well waters and possible relation to earthquakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chi-Yu, King; Evans, William C.; Presser, T.; Husk, R.H.</p> <p>1981-01-01</p> <p>Water level, temperature, salinity, electric conductivity, and pH have been measured periodically for several years at three water wells located along a 17km segment of the San Andreas fault between San Juan Bautista and Cienega Winery in central California. Water samples were collected at the same time for subsequent chemical analyses in the laboratory. Some sudden large changes in salinity and conductivity were recorded in early March 1980 at the two wells near San Juan Bautista. These changes coincided approximately with the beginning of an episode of increased local seismicity, including a magnitude 4.8 earthquake on April 13. Analyses of water samples revealed corresponding changes in ion concentrations, especially of Na+, Ca2+, Mg2+, 035SO42-, 046HCO3-, F-, and Cl-. The observed changes may be the result of mixing of waters from different aquifers through cracks developed in the water barriers by a possible crustal strain episode that may have occurred in the study area.-Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9607L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9607L"><span>Stress- and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zefeng; Peng, Zhigang</p> <p>2017-10-01</p> <p>We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......146T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......146T"><span>Transform Faults and Lithospheric Structure: Insights from Numerical Models and Shipboard and Geodetic Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeuchi, Christopher S.</p> <p></p> <p>In this dissertation, I study the influence of transform faults on the structure and deformation of the lithosphere, using shipboard and geodetic observations as well as numerical experiments. I use marine topography, gravity, and magnetics to examine the effects of the large age-offset Andrew Bain transform fault on accretionary processes within two adjacent segments of the Southwest Indian Ridge. I infer from morphology, high gravity, and low magnetization that the extremely cold and thick lithosphere associated with the Andrew Bain strongly suppresses melt production and crustal emplacement to the west of the transform fault. These effects are counteracted by enhanced temperature and melt production near the Marion Hotspot, east of the transform fault. I use numerical models to study the development of lithospheric shear zones underneath continental transform faults (e.g. the San Andreas Fault in California), with a particular focus on thermomechanical coupling and shear heating produced by long-term fault slip. I find that these processes may give rise to long-lived localized shear zones, and that such shear zones may in part control the magnitude of stress in the lithosphere. Localized ductile shear participates in both interseismic loading and postseismic relaxation, and predictions of models including shear zones are within observational constraints provided by geodetic and surface heat flow data. I numerically investigate the effects of shear zones on three-dimensional postseismic deformation. I conclude that the presence of a thermally-activated shear zone minimally impacts postseismic deformation, and that thermomechanical coupling alone is unable to generate sufficient localization for postseismic relaxation within a ductile shear zone to kinematically resemble that by aseismic fault creep (afterslip). I find that the current record geodetic observations of postseismic deformation do not provide robust discriminating power between candidate linear and power-law rheologies for the sub-Mojave Desert mantle, but longer observations may potentially allow such discrimination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811741P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811741P"><span>Seismo-thermo-mechanical modeling of mature and immature transform faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Preuss, Simon; Gerya, Taras; van Dinther, Ylona</p> <p>2016-04-01</p> <p>Transform faults (TF) are subdivided into continental and oceanic ones due to their markedly different tectonic position, structure, surface expression, dynamics and seismicity. Both continental and oceanic TFs are zones of rheological weakness, which is a pre-requisite for their existence and long-term stability. Compared to subduction zones, TFs are typically characterized by smaller earthquake magnitudes as both their potential seismogenic width and length are reduced. However, a few very large magnitude (Mw>8) strike-slip events were documented, which are presumably related to the generation of new transform boundaries and/or sudden reactivation of pre-existing fossil structures. In particular, the 11 April 2012 Sumatra Mw 8.6 earthquake is challenging the general concept that such high magnitude events only occur at megathrusts. Hence, the processes of TF nucleation, propagation and their direct relation to the seismic cycle and long-term deformation at both oceanic and continental transforms needs to be investigated jointly to overcome the restricted direct observations in time and space. To gain fundamental understanding of involved physical processes the numerical seismo-thermo-mechanical (STM) modeling approach, validated in a subduction zone setting (Van Dinther et al. 2013), will be adapted for TFs. A simple 2D plane view model geometry using visco-elasto-plastic material behavior will be adopted. We will study and compare seismicity patterns and evolution in two end member TF setups, each with strain-dependent and rate-dependent brittle-plastic weakening processes: (1) A single weak and mature transform fault separating two strong plates (e.g., in between oceanic ridges) and (2) A nucleating or evolving (continental) TF system with disconnected predefined faults within a plate subjected to simple shear deformation (e.g., San Andreas Fault system). The modeling of TFs provides a first tool to establish the STM model approach for transform faults in a more general case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1974/0691b/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1974/0691b/report.pdf"><span>Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.</p> <p>1974-01-01</p> <p>The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper and lower Van Norman dams, rupturing of the ground surface by faulting along parts of the zone of old faults that extends easterly through the reservoir area and across the northern part of the valley, folding or arching of the ground surface, and differential horizontal displacement of the terrane north and south of the fault zone. Although a zone of old faults extends through the reservoir area, the 1971 surface ruptures apparently did not; however, arching and horizontal displacements caused small relative displacements of the abutment areas of each of the three damsites. The 1971 arching coincided with preexisting topographic highs, and the surface ruptures coincided with eroded fault scarps and a buried ground-water impediment formed by pre-1971 faulting in young valley fill. This coincidence with evidence of past deformation indicates that the 1971 deformations were the result of a continuing geologic process that is expected to produce similar deformations during future events. The 1971 San Fernando earthquake probably was not the largest that has occurred in this area during the last approximately 200 years, as indicated by a buried fault like scarp about 200 years old that is higher than, and aligned with, 1971 fault scarps. In addition, the San Fernando zone of 1971 ruptures is part of a regional tectonic system that includes the San Andreas and associated faults; one of these, the White Wolf fault north of the San Andreas, is symmetrical in structural attitude with the San Fernando zone and ruptured the ground surface during the 1952 Kern County earthquake (M 7.7). Other large earthquakes associated with surface rupturing on faults of this system include the 1857 Fort Tejon earthquake (M 8+) and possibly the 1852 Big Pine earthquake. Several other historic earthquakes in this general area are not known to be associated with surface ruptures, but were large enough to cause damage in the northern San Fernando Valley. The Van Norman rese</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/1974/0691a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/1974/0691a/report.pdf"><span>Geologic environment of the Van Norman Reservoirs area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yerkes, R.F.; Bonilla, M.G.; Youd, T.L.; Sims, J.D.</p> <p>1974-01-01</p> <p>The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper and lower Van Norman dams, rupturing of the ground surface by faulting along parts of the zone of old faults that extends easterly through the reservoir area and across the northern part of the valley, folding or arching of the ground surface, and differential horizontal displacement of the terrane north and south of the fault zone. Although a zone of old faults extends through the reservoir area, the 1971 surface ruptures apparently did not; however, arching and horizontal displacements caused small relative displacements of the abutment areas of each of the three damsites. The 1971 arching coincided with preexisting topographic highs, and the surface ruptures coincided with eroded fault scarps and a buried ground-water impediment formed by pre-1971 faulting in young valley fill. This coincidence with evidence of past deformation indicates that the 1971 deformations were the result of a continuing geologic process that is expected to produce similar deformations during future events. The 1971 San Fernando earthquake probably was not the largest that has occurred in this area during the last approximately 200 years, as indicated by a buried fault like scarp about 200 years old that is higher than, and aligned with, 1971 fault scarps. In addition, the San Fernando zone of 1971 ruptures is part of a regional tectonic system that includes the San Andreas and associated faults; one of these, the White Wolf fault north of the San Andreas, is symmetrical in structural attitude with the San Fernando zone and ruptured the ground surface during the 1952 Kern County earthquake (M 7.7). Other large earthquakes associated with surface rupturing on faults of this system include the 1857 Fort Tejon earthquake (M 8+) and possibly the 1852 Big Pine earthquake. Several other historic earthquakes in this general area are not known to be associated with surface ruptures, but were large enough to cause damage in the northern San Fernando Valley. The Van Norman rese</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T43E3102H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T43E3102H"><span>Heterogeneous State of Stress and Seismicity Distribution Along the San Andreas Fault in Southern California: New Insights into Rupture Terminations of Past Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hauksson, E.; Ross, Z. E.; Yu, C.</p> <p>2016-12-01</p> <p>The southern San Andreas Fault (SAF) accommodates 80% of the plate motion between the Pacific and North America plates in southern California. We image complex patterns of the state of stress, style of faulting, and seismicity adjacent to the SAF, both along strike and away from the fault. This complexity is not captured in previous one-dimensional profiles of stress orientations across the fault. On average the maximum principal stress (S1) rotates from N30°E in central California, along the Cholame segment, to N0°-20°W along the Mojave and San Bernardino segments. Farther south, along the Coachella Valley segment the orientation is again N30°E. On a broad scale these changes in S1 orientation coincide with the more westerly strike of the SAF across the Mojave Desert but in detail they suggest significant variations in frictional coefficient or strength along strike. Similarly, on a more detailed scale, the size of the S1 rotations is spatially heterogeneous, with the largest rotations associated with the two bends in the SAF, at Gorman and Cajon Pass. In each location a major fault, Garlock fault and San Jacinto fault, intersects the SAF. In these intersected regions, the seismicity is more abundant and the S1 orientation is more likely to exhibit abrupt changes in trend by up to 10° across the fault. The GPS maximum principal strain rate orientations exhibit a similar but smoother pattern with mostly west of north orientations along the Mojave and San Bernardino segments. The style of faulting as derived from stress inversion is similarly heterogeneous with a mixture of strike-slip and thrust faulting forming complex spatial patterns. The D95% maximum depth of earthquakes changes abruptly both along and across the SAF suggesting that local variations in composition affect the maximum seismicity depth. The heterogeneity in the state of stress is not influenced by the average heat flow, which is similar along the whole length of the southern SAF. The crustal composition, background seismicity, and the strength of the SAF vary along strike, with the strongest fault segments being near the two bends, Gorman and Cajon Pass, where past major earthquake ruptures may have preferentially terminated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029416','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029416"><span>Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Becker, T.W.; Hardebeck, J.L.; Anderson, G.</p> <p>2005-01-01</p> <p>We use Global Positioning System (GPS) velocities and stress orientations inferred from seismicity to invert for the distribution of slip on faults in the southern California plate-boundary region. Of particular interest is how long-term slip rates are partitioned between the Indio segment of the San Andreas fault (SAF), the San Jacinto fault (SJF) and the San Bernardino segment of the SAE We use two new sets of constraints to address this problem. The first is geodetic velocities from the Southern California Earthquake Center's (SCEC) Crustal Motion Map (version 3 by Shen et al.), which includes significantly more data than previous models. The second is a regional model of stress-field orientations at seismogenic depths, as determined from earthquake focal mechanisms. While GPS data have been used in similar studies before, this is the first application of stress-field observations to this problem. We construct a simplified model of the southern California fault system, and estimate the interseismic surface velocities using a backslip approach with purely elastic strain accumulation, following Meade et al. In addition, we model the stress orientations at seismogenic depths, assuming that crustal stress results from the loading of active faults. The geodetically derived stressing rates are found to be aligned with the stress orientations from seismicity. We therefore proceed to invert simultaneously GPS and stress observations for slip rates of the faults in our network. We find that the regional patterns of crustal deformation as imaged by both data sets can be explained by our model, and that joint inversions lead to better constrained slip rates. In our preferred model, the SJF accommodates ???15 mm yr-1 and the Indio segment of the SAF ???23 mm yr-1 of right-lateral motion, accompanied by a low slip rate on the San Bernardino segment of the SAF 'Anomalous' fault segments such as around the 1992 Mw = 7.3 Landers surface rupture can be detected. There, observed stresses deviate strongly from the long-term loading as predicted by our simple model. Evaluation of model misfits together with information from palaeoseismology may provide further insights into the time dependence of strain accumulation along the San Andreas system. ?? 2004 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP13A1024Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP13A1024Z"><span>Detrital Zircon Provenance response to slip transfer from the San Gabriel Fault to the San Andreas Fault in Late Miocene-Early Pliocene Ridge Basin, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, V.; Cohen, H.; Cecil, R.; Heermance, R. V., III</p> <p>2016-12-01</p> <p>The San Andreas Fault (SAF) in southern California has created a dynamic plate-boundary that has controlled basin depocenters, fluvial systems, and range uplift since the early Miocene. From 11-5 Ma, dextral slip was localized along the San Gabriel Fault (SGF) north of Los Angeles. Slip was transferred onto the SAF in the Late Miocene or Early Pliocene, but the timing and landscape implications of this tectonic reorganization are not well constrained. We use detrital zircon (DZ) geochronology from the Ridge Basin, located at the nexus of the SGF and SAF, to determine the provenance of stratigraphy during this fault reorganization. We present data from two samples (n=187) from Middle to Upper Miocene Ridge Route Formation (RRF) and four samples (n=483) from Pliocene Hungry Valley Formation (HVF) of Ridge Basin Group. All Ridge Basin samples have peaks at ca. 1.7 Ga, though the relative proportion of Precambrian grains decreases upsection. RRF samples have two dominant Mesozoic peaks at ca. 150 Ma and at ca. 80 Ma. HVF has peak ages of 145-135 Ma and ca. 77 Ma. HVF samples also have Triassic peaks at 235-220 Ma, which is absent in the RRF. To evaluate the provenance of these samples, modern sands were collected from five major drainages in the San Gabriel (SGM, n=181), the San Bernardino Mountains (SBM, n=258) and a rock sample from the Middle Miocene Crowder Formation (n=99) between the ranges. DZ spectra of the RRF is dissimilar to that of modern rivers draining the SGM, although we acknowledge that a more proximal source from the western Transverse Ranges or Sierra Pelona is possible. The source for HVF is more problematic, in that the DZ spectra of the HVF is unlike that of all modern rivers and Crowder Formation. Triassic zircons combined with the presence of unique volcanic clasts suggest a source from the Granite Mountain area in the Mojave Desert. The differences in DZ spectra between RRF and HVF suggests that the transfer of slip from the SGF to the SAF in the early Pliocene caused a major drainage reorganization that opened up the HVF to sediment input from the Mojave region to the north. While the Ridge Basin was likely adjacent to the SBM during the Miocene, the DZ data suggest that the SBM were low lying and did not contribute sediment to HVF. This study constrains the paleogeography and potential sources for Ridge Basin strata.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G11A1059S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G11A1059S"><span>Six years after the El Mayor-Cucapah earthquake: Transient far-field postseismic vertical motion observed by tide gauges and GPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith-Konter, B. R.; Gonzalez-Ortega, J. A.; Merrifield, M. A.; Tong, X.; Sandwell, D. T.; Hardy, S.; Howell, S. M.</p> <p>2016-12-01</p> <p>On April 4, 2010, the El Mayor-Cucapah earthquake (Mw 7.2) ruptured a 120 km long set of faults of the southernmost San Andreas Fault System in northeastern Baja California, Mexico. Near-field coseismic GPS observations revealed up to 1.1 m of horizontal surface slip and 0.6 m of vertical subsidence at near-field stations. Early near-field InSAR and GPS time series postseismic observations also suggested several tens of centimeters of afterslip occurred within the first two years, however postseismic transients due to viscoelastic or poroelastic relaxation have also been offered as candidate models. Here we investigate the role of viscoelastic transients from six years of regional far-field ( 200 km from rupture) tide gauge and vertical GPS time series observations to further constrain postseismic deformation mechanisms. Vertical viscoelastic postseismic models of the El Mayor-Cucapah earthquake suggest alternating quadrants of uplift and subsidence straddling the rupture, with uplift to the north near the Salton Trough and subsidence to the west spanning the San Diego and Ensenada regions. These decaying transient motions are confirmed by both vertical postseismic GPS and tide gauge-altimetry observations, in both the near- and far fields. For example, tide gauge data in San Diego, which typically record vertical land motions on the order of a few millimeters per year, recorded nearly 30 mm of transient land subsidence over the first 3 years. We find that the magnitude and decay of far-field postseismic subsidence can be attributed to viscoelastic relaxation of the mantle assuming a temporally varying rheology; viscosities as low as 1017 Pa-s for at least the first 6-12 months, followed by an increasing viscosity on the order of 1018 Pa-s in the years following, best fit the data. While transient viscosity anomalies have been previously suggested from GPS data spanning the first 1.5 years following the earthquake [Pollitz et al., 2012], the combined results from transient far-field sea level rise spanning an additional 5 years help to place additional constraints on the variability of crust-mantle rheology of the southern San Andreas Fault System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026433','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026433"><span>Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.</p> <p>2004-01-01</p> <p>We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024576','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024576"><span>Delineation of faulting and basin geometry along a seismic reflection transect in urbanized San Bernardino Valley, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Anderson, M.L.</p> <p>2002-01-01</p> <p>Fourteen kilometers of continuous, shallow seismic reflection data acquired through the urbanized San Bernardino Valley, California, have revealed numerous faults between the San Jacinto and San Andreas faults as well as a complex pattern of downdropped and uplifted blocks. These data also indicate that the Loma Linda fault continues northeastward at least 4.5 km beyond its last mapped location on the southern edge of the valley and to within at least 2 km of downtown San Bernardino. Previously undetected faults within the valley northeast of the San Jacinto fault are also imaged, including the inferred western extension of the Banning fault and several unnamed faults. The Rialto-Colton fault is interpreted southwest of the San Jacinto fault. The seismic data image the top of the crystalline basement complex across 70% of the profile length and show that the basement has an overall dip of roughly 10?? southwest between Perris Hill and the San Jacinto fault. Gravity and aeromagnetic data corroborate the interpreted location of the San Jacinto fault and better constrain the basin depth along the seismic profile to be as deep as 1.7 km. These data also corroborate other fault locations and the general dip of the basement surface. At least 1.2 km of apparent vertical displacement on the basement is observed across the San Jacinto fault at the profile location. The basin geometry delineated by these data was used to generate modeled ground motions that show peak horizontal amplifications of 2-3.5 above bedrock response in the 0.05- to 1.0-Hz frequency band, which is consistent with recorded earthquake data in the valley.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1084/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1084/"><span>Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.</p> <p>2006-01-01</p> <p>The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29283528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29283528"><span>Vesalius, Röntgen and the origins of Modern Anatomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomas, Adrian M K</p> <p>2016-06-01</p> <p>The discovery of X-rays in 1895 by Wilhelm Conrad Röntgen transformed our understanding of both the physical world and our understanding of ourselves. Traditional anatomy as shown by Andreas Vesalius was learnt from dissection of the supine deceased body. Radiology showed anatomy in the living in a manner previously not possible, and has transformed our anatomical understanding, particularly of human growth and variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041916','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041916"><span>Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol</p> <p>2010-01-01</p> <p>We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S12A..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S12A..05P"><span>Tremor evidence for dynamically triggered creep events on the deep San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Z.; Shelly, D. R.; Hill, D. P.; Aiken, C.</p> <p>2010-12-01</p> <p>Deep tectonic tremor has been observed along major subduction zones and the San Andreas fault (SAF) in central and southern California. It appears to reflect deep fault slip, and it is often seen to be triggered by small stresses, including passing seismic waves from large regional and teleseismic earthquakes. Here we examine tremor activity along the Parkfield-Cholame section of the SAF from mid-2001 to early 2010, scrutinizing its relationship with regional and teleseismic earthquakes. Based on similarities in the shape and timing of seismic waveforms, we conclude that triggered and ambient tremor share common sources and a common physical mechanism. Utilizing this similarity in waveforms, we detect tremor triggered by numerous large events, including previously unreported triggering from the recent 2009 Mw7.3 Honduras, 2009 Mw8.1 Samoa, and 2010 Mw8.8 Chile earthquakes at teleseismic distances, and the relatively small 2007 Mw5.4 Alum Rock and 2008 Mw5.4 Chino Hills earthquakes at regional distances. We also find multiple examples of systematic migration in triggered tremor, similar to ambient tremor migration episodes observed at other times. Because these episodes propagate much more slowly than the triggering waves, the migration likely reflects a small, triggered creep event. As with ambient tremor bursts, triggered tremor at times persists for multiple days, probably indicating a somewhat larger creep event. This activity provides a clear example of delayed dynamic triggering, with a mechanism perhaps also relevant for triggering of regular earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014061','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014061"><span>Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sato, M.; Sutton, A.J.; McGee, K.A.</p> <p>1985-01-01</p> <p>We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1-10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake. ?? 1985 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70048665','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70048665"><span>Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ellsworth, William L.; Malin, Peter E.</p> <p>2011-01-01</p> <p>Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1550/pp1550d/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1550/pp1550d/"><span>Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Aftershocks and Postseismic Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reasenberg, Paul A.</p> <p>1997-01-01</p> <p>While the damaging effects of the earthquake represent a significant social setback and economic loss, the geophysical effects have produced a wealth of data that have provided important insights into the structure and mechanics of the San Andreas Fault system. Generally, the period after a large earthquake is vitally important to monitor. During this part of the seismic cycle, the primary fault and the surrounding faults, rock bodies, and crustal fluids rapidly readjust in response to the earthquake's sudden movement. Geophysical measurements made at this time can provide unique information about fundamental properties of the fault zone, including its state of stress and the geometry and frictional/rheological properties of the faults within it. Because postseismic readjustments are rapid compared with corresponding changes occurring in the preseismic period, the amount and rate of information that is available during the postseismic period is relatively high. From a geophysical viewpoint, the occurrence of the Loma Prieta earthquake in a section of the San Andreas fault zone that is surrounded by multiple and extensive geophysical monitoring networks has produced nothing less than a scientific bonanza. The reports assembled in this chapter collectively examine available geophysical observations made before and after the earthquake and model the earthquake's principal postseismic effects. The chapter covers four broad categories of postseismic effect: (1) aftershocks; (2) postseismic fault movements; (3) postseismic surface deformation; and (4) changes in electrical conductivity and crustal fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020720','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020720"><span>Seismicity alert probabilities at Parkfield, California, revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Michael, A.J.; Jones, L.M.</p> <p>1998-01-01</p> <p>For a decade, the US Geological Survey has used the Parkfield Earthquake Prediction Experiment scenario document to estimate the probability that earthquakes observed on the San Andreas fault near Parkfield will turn out to be foreshocks followed by the expected magnitude six mainshock. During this time, we have learned much about the seismogenic process at Parkfield, about the long-term probability of the Parkfield mainshock, and about the estimation of these types of probabilities. The probabilities for potential foreshocks at Parkfield are reexamined and revised in light of these advances. As part of this process, we have confirmed both the rate of foreshocks before strike-slip earthquakes in the San Andreas physiographic province and the uniform distribution of foreshocks with magnitude proposed by earlier studies. Compared to the earlier assessment, these new estimates of the long-term probability of the Parkfield mainshock are lower, our estimate of the rate of background seismicity is higher, and we find that the assumption that foreshocks at Parkfield occur in a unique way is not statistically significant at the 95% confidence level. While the exact numbers vary depending on the assumptions that are made, the new alert probabilities are lower than previously estimated. Considering the various assumptions and the statistical uncertainties in the input parameters, we also compute a plausible range for the probabilities. The range is large, partly due to the extra knowledge that exists for the Parkfield segment, making us question the usefulness of these numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175071','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175071"><span>Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.</p> <p>2016-01-01</p> <p>We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1550/pp1550b/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1550/pp1550b/"><span>Chapter B. The Loma Prieta, California, Earthquake of October 17, 1989 - Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harris, Ruth A.</p> <p>1998-01-01</p> <p>The magnitude (Mw) 6.9 Loma Prieta earthquake struck the San Francisco Bay region of central California at 5:04 p.m. P.d.t. on October 17, 1989, killing 62 people and generating billions of dollars in property damage. Scientists were not surprised by the occurrence of a destructive earthquake in this region and had, in fact, been attempting to forecast the location of the next large earthquake in the San Francisco Bay region for decades. This paper summarizes more than 20 scientifically based forecasts made before the 1989 Loma Prieta earthquake for a large earthquake that might occur in the Loma Prieta area. The forecasts geographically closest to the actual earthquake primarily consisted of right-lateral strike-slip motion on the San Andreas Fault northwest of San Juan Bautista. Several of the forecasts did encompass the magnitude of the actual earthquake, and at least one approximately encompassed the along-strike rupture length. The 1989 Loma Prieta earthquake differed from most of the forecasted events in two ways: (1) it occurred with considerable dip-slip in addition to strike-slip motion, and (2) it was much deeper than expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21D..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21D..03S"><span>A Chicken-Or-Egg Riddle: Why Do Many Large Basin and Range Ruptures Terminate in Seismically Active Geothermal Zones?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stein, R. S.; Sevilgen, V.</p> <p>2016-12-01</p> <p>The 26 March 1872 M 7.6 Owens Valley, CA, rupture extended between two seismically active geothermal areas: Ridgecrest-Coso to the south and Mammoth-Long Valley to the north. Is this a coincidence, or is the rupture extent related to the geothermal and seismic activity? The 1872 rupture might have been confined between these two shattered, fluid-saturated zones if, because of very low friction, they do not accumulate stress. Alternatively, the 1872 earthquake could have activated these zones, as they are located where the rupture is calculated to have increased the Coulomb stress by 1-2 bars. Cause or effect, this phenomenon may be common in trans-tensional regimes: There are geothermal areas near or just beyond the ends of the 1954 M=7.1 Fairview Peak and M=6.8 Dixie Valley, NV, ruptures, with some seismicity clusters beyond the rupture tips. The 2008 Mw=6.0 South Iceland earthquake, another site of trans-tensional faulting and geothermal activity, shows intense aftershock clusters off the ends of the main rupture, resembling the 1872 earthquake. This chicken-or-egg riddle would be easy to solve if it were known whether the earthquake rate in the geothermal areas increased as a result of the 1872 shock. There is only one recorded quake before the mainshock, a July 1871 M 5.5 event at the southern tip of the 1872 rupture; this suggests the clusters might have been active before the mainshock. On the other hand, one of the two largest aftershocks of the 1872 event, a M 6.8 near Bishop two weeks after the mainshock, stuck in the center of the northern cluster, which supports the clusters were activated by the mainshock. We walk away with a tie. If the 1872 rupture did trigger the activity in the clusters, it begs a harder question: Could aftershocks or triggered seismicity have continued almost 150 years after the mainshock? The Owens Valley Fault slips 2-3 mm/yr, about a tenth of the San Andreas Fault rate. Rate/state theory and observations from the central US and Japan indicate that an Owens Valley aftershock sequence should last about ten times longer than one on the San Andreas. The Owens Valley Fault appears to produce M 7.5 shocks roughly every 3,500 yr, and so 150 yr is 4% of the interevent time, equivalent to about 10 yr on the San Andreas. Therefore, one cannot exclude the possibility that these earthquakes are aftershocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031927','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031927"><span>A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.</p> <p>2008-01-01</p> <p>Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024800','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024800"><span>Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.</p> <p>2002-01-01</p> <p>Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (~1-2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2869K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2869K"><span>Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.</p> <p>2015-12-01</p> <p>Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung-and-ladder" seismicity seen within the Salton Sea. Additionally, the presence of the STF may explain the gaps seen in the paleoseismic record along the SSAF (i.e. Philibosian et al., 2011), which shows an extended period of non-rupture. The STF may play a role in strain release along the SSAF, so a combined history may yield improved insight to the long periods of quiescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188293','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188293"><span>Spatio-temporal mapping of plate boundary faults in California using geodetic imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.</p> <p>2017-01-01</p> <p>The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation Satellite System (GNSS), and high-resolution topography and can improve our understanding of tectonic deformation and rupture characteristics within the broad plate boundary zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760010443&hterms=technology+educational&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtechnology%2Beducational','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760010443&hterms=technology+educational&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtechnology%2Beducational"><span>Space technology putting it in the educational perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hankins, D. B.</p> <p>1975-01-01</p> <p>One of the precepts of the company was to provide educators with practical, innovative, and manageable audio-visual teaching aids in a wide spectrum of educational fields, but primarily geography, geology and social science. A pilot slide set was prepared, demonstrating primary areas along the entire length of the San Andreas Fault Zone in California and Mexico. This set utilized several NASA infrared research aircraft photos, to more clearly delineate fault traces. A decision was made to mount a massive program of repackaging NASA generated infrared aircraft imagery into topical teaching sets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28983883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28983883"><span>Correction to: Impact of a mixed educational and semi-restrictive antimicrobial stewardship project in a large teaching hospital in Northern Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giacobbe, Daniele Roberto; Del Bono, Valerio; Mikulska, Malgorzata; Gustinetti, Giulia; Marchese, Anna; Mina, Federica; Signori, Alessio; Orsi, Andrea; Rudello, Fulvio; Alicino, Cristiano; Bonalumi, Beatrice; Morando, Alessandra; Icardi, Giancarlo; Beltramini, Sabrina; Viscoli, Claudio</p> <p>2017-12-01</p> <p>A technical error led to incorrect rendering of the author group in this article. The correct authorship is as follows: Daniele Roberto Giacobbe 1 , Valerio Del Bono 1 , Malgorzata Mikulska 1 , Giulia Gustinetti 1 , Anna Marchese 2 , Federica Mina 3 , Alessio Signori 4 , Andrea Orsi 5 , Fulvio Rudello 6 , Cristiano Alicino 5 , Beatrice Bonalumi 3 , Alessandra Morando 7 , Giancarlo Icardi 5 , Sabrina Beltramini 3 , Claudio Viscoli 1 ; On behalf of the San Martino Antimicrobial Stewardship Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA113363','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA113363"><span>MX Siting Investigation. Geotechnical Report. Volume IIB. Gila Bend Group and White Sands Missile Range Extension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1976-05-07</p> <p>are: (1) portions of the San Andrea* systaft 11n greater than 100 nm to the northwest; (2) the Agua -640 Slanc fut lying approximately __nm to the...Ratio values, both in- situ and recompacted, (CBRI Avert- * can Society for Testing and Materials, Designation D 1863),, AASHO classifications (Appendix...it is estimated that a value of 10 to 20 is reasonable for in- situ material (VA.p 19701. . CBR value of greater than 20 and on the order of 30 abhold</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA569733','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA569733"><span>Analysis and Modeling of the Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>09NA29328 Proposal No. BAA09-69 ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3...Administration (NNSA). 14. ABSTRACT Using a deep deployment of an 80-element, 3-component borehole seismic array stretching from 1.5 to 2.3 kilometer (km) depth...in the lower half of the borehole array . The strong velocity discontinuity at 2.0 km depth gives rise to another converted S wave, best seen in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1261960','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1261960"><span>Tularosa Basin Play Fairway Analysis: Hydrothermal Alteration Map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Adam Brandt</p> <p>2015-11-15</p> <p>This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done. This work was done under U.S. D.O.E. Contract #DE-EE0006730</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01791&hterms=image+alignment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimage%2Balignment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01791&hterms=image+alignment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimage%2Balignment"><span>Space Radar Image of San Francisco, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-STS098-714A-020.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-STS098-714A-020.html"><span>Earth observations taken during STS-98 mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2001-02-07</p> <p>STS098-714A-020 (7-20 February 2001) ---One of the STS-98 astronauts aboard the Earth-orbiting Space Shuttle Atlantis used a 70mm handheld camera to record this image of Southern California. Snow blanketing the higher elevations in the Los Padres National Forest (center of the image) and that covering the Angeles National Forest (right middle) help to accentuate and separate three major landform regions in southern California. The northern Los Angeles Basin that includes the San Fernando Valley and the Santa Monica Mountains is visible in the lower right quadrant of the image. The western end of the Mojave Desert (upper right) shows the two distinctive mountain boundaries along the southwest and northwest edge of the desert. The San Andreas Fault and the Garlock Fault converge (snow covered in this scene) at the western end of the desert. The intensively irrigated and cultivated southern end of the San Joaquin Valley that includes Bakersfield is visible (upper left) north of the snow-covered, northeast-southwest trending Tehachapi Mountains. The island off of the California coast (bottom left) is Santa Cruz Island.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031374','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031374"><span>Finite-frequency traveltime tomography of San Francisco Bay region crustal velocity structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.F.</p> <p>2007-01-01</p> <p>Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5-1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P-wave velocity structure over a 341 ?? 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P-wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ???10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust. ?? Journal compilation ?? 2007 RAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1295/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1295/"><span>Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg</p> <p>2011-01-01</p> <p>Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5.9 Whittier Narrows earthquakes. The project also succeeded in determining the depths and seismic-velocity distributions of several sedimentary basins, including the Los Angeles Basin, San Fernando Valley, and Antelope Valley. These results advanced our ability to understand and assess earthquake hazards in the Los Angeles region. In order to facilitate permitting and planning for the data collection phase of SSIP, in June of 2009 we set off calibration shots and recorded the seismic data with a variety of instruments at varying distances. We also exposed sections of buried clay drainage pipe near the shot points to determine the effect of seismic energy on the pipes. Clay drainage pipes are used by the irrigation districts in both the Coachella and Imperial Valleys to prevent ponding and remove salts and irrigation water. This report chronicles the calibration project. We present new near-source velocity data that are used to test the regression curves that were determined for the LARSE project. These curves are used to create setback tables to determine explosive charge size and for placement of shot points. We also found that our shots did not damage the irrigation pipes and that the ODEX drilling system did well in the clay rich soils of the Imperial Valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033568','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033568"><span>Long-period building response to earthquakes in the San Francisco Bay Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.</p> <p>2008-01-01</p> <p>This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/ca1788.photos.322809p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/ca1788.photos.322809p/"><span>27. DUCT LINES AND HOLES TO BE LEFT IN TRANSFORMER ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>27. DUCT LINES AND HOLES TO BE LEFT IN TRANSFORMER ROOM AND GALLERY, MENTONE, MAR. 13, 1904. R.S. MASSON, CONSULTING ELECTRICAL ENGINEER, SAN FRANCISCO AND LOS ANGELES. SCE drawing no. 52319. - Santa Ana River Hydroelectric System, SAR-3 Powerhouse, San Bernardino National Forest, Redlands, San Bernardino County, CA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..583B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..583B"><span>Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David</p> <p>2018-01-01</p> <p>Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoJI.205.1326L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoJI.205.1326L"><span>Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zefeng; Peng, Zhigang</p> <p>2016-06-01</p> <p>Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025730','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025730"><span>Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lewicki, J.L.; Evans, William C.; Hilley, G.E.; Sorey, M.L.; Rogie, J.D.; Brantley, S.L.</p> <p>2003-01-01</p> <p>We evaluate a comprehensive soil CO2 survey along the San Andreas fault (SAF) in Parkfield, and the Calaveras fault (CF) in Hollister, California, in the context of spatial and temporal variability, origin, and transport of CO2 in fractured terrain. CO2 efflux was measured within grids with portable instrumentation and continously with meteorological parameters at a fixed station, in both faulted and unfaulted areas. Spatial and temporal variability of surface CO2 effluxes was observed to be higher at faulted SAF and CF sites, relative to comparable background areas. However, ??13C (-23.3 to - 16.4???) and ??14C (75.5 to 94.4???) values of soil CO2 in both faulted and unfaulted areas are indicative of biogenic CO2, even though CO2 effluxes in faulted areas reached values as high as 428 g m-2 d-1. Profiles of soil CO2 concentration as a function of depth were measured at multiple sites within SAF and CF grids and repeatedly at two locations at the SAF grid. Many of these profiles suggest a surprisingly high component of advective CO2 flow. Spectral and correlation analysis of SAF CO2 efflux and meteorological parameter time series indicates that effects of wind speed variations on atmospheric air flow though fractures modulate surface efflux of biogenic CO2. The resulting areal patterns in CO2 effluxes could be erroneously attributed to a deep gas source in the absence of isotopic data, a problem that must be addressed in fault zone soil gas studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041766','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041766"><span>Postseismic relaxation following the 1994 Mw6.7 Northridge earthquake, southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savage, J.C.; Svarc, J.L.</p> <p>2010-01-01</p> <p>We have reexamined the postearthquake deformation of a 65 km long linear array of 11 geodetic monuments extending north–south across the rupture (reverse slip on a blind thrust dipping 40°S–20°W) associated with the 1994 Mw6.7 Northridge earthquake. That array was surveyed frequently in the interval from 4 to 2650 days after the earthquake. The velocity of each of the monuments over the interval 100–2650 days postearthquake appears to be constant. Moreover, the profile of those velocities along the length of the array is very similar to a preearthquake velocity profile for a nearby, similarly oriented array. We take this to indicate that significant postseismic relaxation is evident only in the first 100 days postseismic and that the subsequent linear trend is typical of the interseismic interval. The postseismic relaxation (postseismic displacement less displacement that would have occurred at the preseismic velocity) is found to be almost wholly parallel (N70°W) to the nearby (40 km) San Andreas Fault with only negligible relaxation in the direction of coseismic slip (N20°E) on the Northridge rupture. We suggest that the N70°W relaxation is caused by aseismic, right-lateral slip at depth on the San Andreas Fault, excess slip presumably triggered by the Northridge rupture. Finally, using the Dieterich (1994) stress-seismicity relation, we show that return to the preseismic deformation rate within 100 days following the earthquake could be consistent with the cumulative number of M > 2.5 earthquakes observed following the main shock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1071/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1071/report.pdf"><span>Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kistler, Ronald Wayne; Peterman, Zell E.</p> <p>1978-01-01</p> <p>Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GGG....15.1419S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GGG....15.1419S"><span>Nonlinear attenuation of S-waves and Love waves within ambient rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sleep, Norman H.; Erickson, Brittany A.</p> <p>2014-04-01</p> <p>obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029192','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029192"><span>Orientation of three-component geophones in the San Andreas Fault observatory at depth Pilot Hole, Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Oye, V.; Ellsworth, W.L.</p> <p>2005-01-01</p> <p>To identify and constrain the target zone for the planned SAFOD Main Hole through the San Andreas Fault (SAF) near Parkfield, California, a 32-level three-component (3C) geophone string was installed in the Pilot Hole (PH) to monitor and improve the locations of nearby earthquakes. The orientation of the 3C geophones is essential for this purpose, because ray directions from sources may be determined directly from the 3D particle motion for both P and S waves. Due to the complex local velocity structure, rays traced from explosions and earthquakes to the PH show strong ray bending. Observed azimuths are obtained from P-wave polarization analysis, and ray tracing provides theoretical estimates of the incoming wave field. The differences between the theoretical and the observed angles define the calibration azimuths. To investigate the process of orientation with respect to the assumed velocity model, we compare calibration azimuths derived from both a homogeneous and 3D velocity model. Uncertainties in the relative orientation between the geophone levels were also estimated for a cluster of 36 earthquakes that was not used in the orientation process. The comparison between the homogeneous and the 3D velocity model shows that there are only minor changes in these relative orientations. In contrast, the absolute orientations, with respect to global North, were significantly improved by application of the 3D model. The average data residual decreased from 13?? to 7??, supporting the importance of an accurate velocity model. We explain the remaining residuals by methodological uncertainties and noise and with errors in the velocity model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193655','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193655"><span>Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.</p> <p>2016-01-01</p> <p>Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRB..11612111S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRB..11612111S"><span>A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J., II</p> <p>2011-12-01</p> <p>The Pallett Creek paleoseismic record occupies a keystone position in most attempts to develop rupture histories for the southern San Andreas fault. Previous estimates of earthquake ages at Pallett Creek were determined by decay counting radiocarbon methods. That method requires large samples which can lead to unaccounted sources of uncertainty in radiocarbon ages because of the heterogeneous composition of organic layers. In contrast, accelerator mass spectrometry (AMS) radiocarbon dates may be obtained from small samples that have known carbon sources and also allow for a more complete sampling of the section. We present 65 new AMS radiocarbon dates that span nine ground-rupturing earthquakes at Pallett Creek. Overall, the AMS dates are similar to and reveal no dramatic bias in the conventional dates. For many layers, however, individual charcoal samples were younger than the conventional dates, leading to earthquake ages that are overall slightly younger than previously reported. New earthquake ages are determined by Bayesian refinement of the layer ages based on stratigraphic ordering and sedimentological constraints. The new chronology is more regular than previously published records in large part due to new samples constraining the age of event R. The closed interval from event C to 1857 has a mean recurrence of 135 years (σ = 83.2 years) and a quasiperiodic coefficient of variation (COV) of 0.61. We show that the new dates and resultant earthquake chronology have a stronger effect on COV than the specific membership of this long series and dating precision improvements from sedimentation rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..457T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..457T"><span>Using Low-Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, A. M.; Beeler, N. M.; Bletery, Q.; Burgmann, R.; Shelly, D. R.</p> <p>2018-01-01</p> <p>The central section of the San Andreas Fault hosts tectonic tremor and low-frequency earthquakes (LFEs) similar to subduction zone environments. LFEs are often interpreted as persistent regions that repeatedly fail during the aseismic shear of the surrounding fault allowing them to be used as creepmeters. We test this idea by using the recurrence intervals of individual LFEs within LFE families to estimate the timing, duration, recurrence interval, slip, and slip rate associated with inferred slow slip events. We formalize the definition of a creepmeter and determine whether this definition is consistent with our observations. We find that episodic families reflect surrounding creep over the interevent time, while the continuous families and the short time scale bursts that occur as part of the episodic families do not. However, when these families are evaluated on time scales longer than the interevent time these events can also be used to meter slip. A straightforward interpretation of episodic families is that they define sections of the fault where slip is distinctly episodic in well-defined slow slip events that slip 16 times the long-term rate. In contrast, the frequent short-term bursts of the continuous and short time scale episodic families likely do not represent individual creep events but rather are persistent asperities that are driven to failure by quasi-continuous creep on the surrounding fault. Finally, we find that the moment-duration scaling of our inferred creep events are inconsistent with the proposed linear moment-duration scaling. However, caution must be exercised when attempting to determine scaling with incomplete knowledge of scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028656','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028656"><span>Slip on the San Andreas fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Murray, J.; Langbein, J.</p> <p>2006-01-01</p> <p>Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70164444','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70164444"><span>Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.</p> <p>2016-01-01</p> <p>Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (<15  km depth), and the deep fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HydJ...19..237A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HydJ...19..237A"><span>Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.</p> <p>2011-02-01</p> <p>4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2006/1014/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2006/1014/"><span>Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Catchings, R.D.; Goldman, M.R.; Gandhok, G.</p> <p>2006-01-01</p> <p>Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss036e011034.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss036e011034.html"><span>Earth Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-06-21</p> <p>ISS036-E-011034 (21 June 2013) --- The Salton Trough is featured in this image photographed by an Expedition 36 crew member on the International Space Station. The Imperial and Coachella Valleys of southern California – and the corresponding Mexicali Valley and Colorado River Delta in Mexico – are part of the Salton Trough, a large geologic structure known to geologists as a graben or rift valley that extends into the Gulf of California. The trough is a geologically complex zone formed by interaction of the San Andreas transform fault system that is, broadly speaking, moving southern California towards Alaska; and the northward motion of the Gulf of California segment of the East Pacific Rise that continues to widen the Gulf of California by sea-floor spreading. According to scientists, sediments deposited by the Colorado River have been filling the northern rift valley (the Salton Trough) for the past several million years, excluding the waters of the Gulf of California and providing a fertile environment – together with irrigation—for the development of extensive agriculture in the region (visible as green and yellow-brown fields at center). The Salton Sea, a favorite landmark of astronauts in low Earth orbit, was formed by an irrigation canal rupture in 1905, and today is sustained by agricultural runoff water. A wide array of varying landforms and land uses in the Salton Trough are visible from space. In addition to the agricultural fields and Salton Sea, easily visible metropolitan areas include Yuma, AZ (lower left); Mexicali, Baja California, Mexico (center); and the San Diego-Tijuana conurbation on the Pacific Coast (right). The approximately 72-kilometer-long Algodones Dunefield is visible at lower left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1065264.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1065264.pdf"><span>2002-2004 and the Transformation of CCTE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Maxie, Andrea</p> <p>2015-01-01</p> <p>In 2001, the California Council on the Education of Teachers (CCET), the State of California Association of Teacher Educators (SCATE), and the California Association of Colleges for Teacher Education (CACTE) became a single merged organization--the California Council on Teacher Education (CCTE). As the last president of CACTE, Andrea Maxie was…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/unnumbered/70039527/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/unnumbered/70039527/report.pdf"><span>The Loma Prieta earthquake of October 17, 1989 : a brief geologic view of what caused the Loma Prieta earthquake and implications for future California earthquakes: What happened ... what is expected ... what can be done.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ward, Peter L.; Page, Robert A.</p> <p>1990-01-01</p> <p>The San Andreas fault, in California, is the primary boundary between the North American plate and the Pacific plate. Land west of the fault has been moving northwestward relative to land on the east at an average rate of 2 inches per year for millions of years. This motion is not constant but occurs typically in sudden jumps during large earthquakes. This motion is relentless; therefore earthquakes in California are inevitable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/fs-096-03/pdf/fs-096-03.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/fs-096-03/pdf/fs-096-03.pdf"><span>Earthquakes-Rattling the Earth's Plumbing System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.</p> <p>2003-01-01</p> <p>Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156114','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156114"><span>Earth science: lasting earthquake legacy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parsons, Thomas E.</p> <p>2009-01-01</p> <p>On 31 August 1886, a magnitude-7 shock struck Charleston, South Carolina; low-level activity continues there today. One view of seismic hazard is that large earthquakes will return to New Madrid and Charleston at intervals of about 500 years. With expected ground motions that would be stronger than average, that prospect produces estimates of earthquake hazard that rival those at the plate boundaries marked by the San Andreas fault and Cascadia subduction zone. The result is two large 'bull's-eyes' on the US National Seismic Hazard Maps — which, for example, influence regional building codes and perceptions of public safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720014718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720014718"><span>Microwave radiometric studies and ground truth measurements of the NASA/USGS Southern California test site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edgerton, A. T.; Trexler, D. T.; Sakamoto, S.; Jenkins, J. E.</p> <p>1969-01-01</p> <p>The field measurement program conducted at the NASA/USGS Southern California Test Site is discussed. Ground truth data and multifrequency microwave brightness data were acquired by a mobile field laboratory operating in conjunction with airborne instruments. The ground based investigations were performed at a number of locales representing a variety of terrains including open desert, cultivated fields, barren fields, portions of the San Andreas Fault Zone, and the Salton Sea. The measurements acquired ground truth data and microwave brightness data at wavelengths of 0.8 cm, 2.2 cm, and 21 cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013834','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013834"><span>Dissolved gases in the DOSECC Cajon Pass well: first year results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Evans, William C.; White, L.D.; Kharaka, Y.K.</p> <p>1988-01-01</p> <p>Fluid sampled from granitic rock near the 2 km depth in the DOSECC Cajon Pass well contained He, H2, CH4, C2H6, and C2 H4 in concentrations much greater than in air-saturated water. Measured pCO2 values were very low, about 10-5 atm., and the carbon isotopes (??13C = -18.9 per mil) point to an organic source such as plant root respiration for the dissolved carbonate species. No evidence of mantle volatiles was found despite proximity of the well to the San Andreas fault. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.T13C1395Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.T13C1395Z"><span>Noncharacteristic Slip on the Northern San Andreas Fault at the Vedanta Marsh, Marin County, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, H.; Niemi, T. M.; Allison, A.; Fumal, T. E.</p> <p>2004-12-01</p> <p>Three-dimensional excavations along the 1906 trace of the northern San Andreas fault at the Vedanta marsh paleoseismic site near Olema, CA have yielded new data on the timing and amount of slip during the penultimate earthquake on this fault section. The excavations exposed a 3-m-wide paleochannel that has been offset right-laterally 7.8-8.3 m by coseismic slip during the past two large earthquakes: 1906 and the penultimate earthquake. The paleochannel was eroded into a silty clay marsh deposit and was filled after AD 1400. Both the silty clay layer and the paleochannel deposit are directly overlain by an in situ burn/peat sequence. The penultimate earthquake occurred while the peat was at the ground surface whereas faulting from the 1906 earthquake terminates within an overlying gravel/fill sequence. Preliminary OxCal analyses of radiocarbon dates indicate that the penultimate earthquake occurred in the late 17th to early 18th century. In plan view, two main fault traces were mapped in the excavation. The northwestern portion of the paleochannel is offset across a single fault trace. Just southeast of this portion of the channel the fault splits into two traces. We believe that one of these traces likely slipped only during 1906 and the other trace slipped on during the penultimate earthquake. Unfortunately, the overlying stratigraphic section that could resolve the exact reconstruction of movement on these faults is missing due to the excavation of an artificial drainage ditch at this location in the 1940's. Matching the north margin of the paleochannel to the first exposure of gravel in the zone between the two fault traces gives an offset of 5 m. We have historic records that show the 1906 coseismic slip near the study site was about 5m from field notes of David Starr Jordan (Stanford University Archives) who describes two 16 ft (5m) offsets: one of a tree located about 150m SE of the offset channel and the other of a path to the Shafter barn located about 300m NW. As the locations of these two historical records are so close to the study site, it is reasonable to assume that our excavation site has the same amount of coseismic slip in 1906. Our data indicate that the paleochannel was offset about 2.8 to 3.3 m during the penultimate earthquake which occurred in the late 17th to early 18th century, and that the San Andreas fault at this section is capable of slip in earthquakes smaller than 1906.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010424','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010424"><span>Quaternary crustal deformation along a major branch of the San Andreas fault in central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.</p> <p>1979-01-01</p> <p>Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01644&hterms=red+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dred%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01644&hterms=red+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dred%2Btide"><span>San Andreas-sized Strike-slip Fault on Europa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p><p/>This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. <p/>In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. <p/> [figure removed for brevity, see original site] <p/>The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. <p/>Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. <p/>One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and subsequent tidal stress causes it to move lengthwise in one direction. Then tidal forces close the fault again, preventing the area from moving back to its original position. Daily tidal cycles produce a steady accumulation of lengthwise offset motions. Here on Earth, unlike Europa, large strike-slip faults like the San Andreas are set in motion by plate tectonic forces. <p/>North is to the top of the picture and the sun illuminates the surface from the top. The image, centered at 66 degrees south latitude and 195 degrees west longitude, covers an area approximately 300 by 203 kilometers(185 by 125 miles). The pictures were taken on September 26, 1998by Galileo's solid-state imaging system. <p/>This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T51B2583C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T51B2583C"><span>Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.</p> <p>2012-12-01</p> <p>The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone in basement rocks between about 2 and 7 km depth beneath and southwest of the MCF, suggesting a vertical or slightly southwest-dipping MCF. The apparent northeast dip of the BF and the apparent vertical or southwest dip of the MCF suggests that the two main strands of the SAF (MCF and BF) merge at about 10 km depth. A plot of double-difference earthquake hypocenters (Hauksson, 2000) along the seismic profile shows events that occurred between 1980-2000 (excluding those in 1992, prior to and after the Joshua Tree and Landers earthquakes) are largely confined to the vicinity of the basement low-velocity zone between the MCF and BF. However, a separate alignment of hypocenters occurs southwest of the BF and projects toward the surface beneath Mt. San Jacinto. Collectively, the velocity images and the seismicity data suggest the BF strand of the SAF dips to the northeast at about 50 degrees in the upper 10 km, and the MCF strand is either vertical or dips southwestward about 80 degrees, with both strands merging at about 10 km depth and forming a near-vertical zone of faults to at least 15 km depth. The SSIP Line 6 data are consistent with structures interpreted by Catchings et al. (2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036491','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036491"><span>Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wagner, David L.; Saucedo, George J.; Clahan, Kevin B.; Fleck, Robert J.; Langenheim, Victoria E.; McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Allen, James R.; Deino, Alan L.</p> <p>2011-01-01</p> <p>Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10–8 Ma), and the Sonoma Volcanics (ca. 8–2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ± 0.06 and 9.13 ± 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the Rodgers Creek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek–Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was displaced to its present location along the Rodgers Creek–Hayward and older faults. The Tolay fault, previously thought to be a major dextral fault, is part of a fold-and-thrust belt that does not exhibit lateral displacement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993MarGR..15..283F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993MarGR..15..283F"><span>Emergence and petrology of the Mendocino Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisk, Martin R.; Duncan, Robert A.; Fox, Christopher G.; Witter, Jeffrey B.</p> <p>1993-11-01</p> <p>The Mendocino Fracture Zone, a 3,000-km-long transform fault, extends from the San Andreas Fault at Cape Mendocino, California due west into the central Pacific basin. The shallow crest of this fracture zone, known as the Mendocino Ridge, rises to within 1,100 m of the sea surface at 270 km west of the California Coast. Rounded basalt pebbles and cobbles, indicative of a beach environment, are the dominant lithology at two locations on the crest of Mendocino Ridge and a40Ar/39 Ar incremental heating age of 11.0 ± 1.0 million years was determined for one of the these cobbles. This basalt must have been erupted on the Gorda Ridge because the crust immediately to the south of the fracture zone is older than 27 Ma. This age also implies that the crest of Mendocino Ridge was at sea level and would have blocked Pacific Ocean eastern boundary currents and affected the climate of the North American continent at some time since the late Miocene. Basalts from the Mendocino Fracture Zone (MFZ) are FeTi basalts similar to those commonly found at intersections of mid-ocean ridges and fracture zones. These basalts are chemically distinct from the nearby Gorda Ridge but they could have been derived from the same mantle source as the Gorda Ridge basalts. The location of the 11 Ma basalt suggests that Mendocino Ridge was transferred from the Gorda Plate to the Pacific Plate and the southern end of Gorda Ridge was truncated by a northward jump in the transform fault of MFZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1128680.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1128680.pdf"><span>Textual Transformations in Contemporary Black Writing in Britain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dhouib, Jawhar Ahmed</p> <p>2014-01-01</p> <p>While the first wave of Caribbean immigrant writers brilliantly explored race-related issues, black Britons like Andrea Levy, Zadie Smith and Caryl Phillips, among others, have sought to depart from earlier fiction, motivated in their project by the changing white face of Britain. In this article, I would like to argue that cultural change in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33A0849N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33A0849N"><span>Imaging Stress Transients and Fault Zone Processes with Crosswell Continuous Active-Source Seismic Monitoring at the San Andreas Fault Observatory at Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.</p> <p>2017-12-01</p> <p>Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018410','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018410"><span>Crustal velocity field near the big bend of California's San Andreas fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.</p> <p>1996-01-01</p> <p>We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1550/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1550/"><span>The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coordinated by Bakun, William H.; Prescott, William H.</p> <p>1993-01-01</p> <p>Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tecto..36.2863M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tecto..36.2863M"><span>Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.</p> <p>2017-12-01</p> <p>Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; <fi>n</fi> = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123..815S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123..815S"><span>"3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.</p> <p>2018-01-01</p> <p>Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041940','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041940"><span>Timing of large earthquakes during the past 500 years along the Santa Cruz Mountains segment of the San Andreas fault at Mill Canyon, near Watsonville, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fumal, Thomas E.</p> <p>2012-01-01</p> <p>A paleoseismic investigation across the Santa Cruz Mountains section of the San Andreas fault at Mill Canyon indicates that four surface‐rupturing earthquakes have occurred there during the past ~500  years. At this site, right‐lateral fault slip has moved a low shutter ridge across the mouth of the canyon, ponding latest Holocene sediments. These alluvial deposits are deformed along a narrow zone of faulting. There is excellent evidence for a 1906 (M 7.8) and three earlier earthquakes consisting of well‐developed fissures, scarps, and colluvial wedges. Deformation resulting from the earlier earthquakes is comparable to that from 1906, suggesting they also were large‐magnitude events. The earthquake prior to 1906 occurred either about A.D. 1750 (1711–1770) or A.D. 1855 (1789–1904), depending on assumptions incorporated into two alternative OxCal models. If the later age range is correct, then the earthquake may have been a historical early‐to‐mid‐nineteenth‐century earthquake, possibly the A.D. 1838 earthquake. Both models are viable, and there is no way to select one over the other with the available data. Two earlier earthquakes occurred about A.D. 1690 (1660–1720) and A.D. 1522 (1454–1605). Using OxCal, recalculation of the age of the reported penultimate earthquake reported from the Grizzly Flat site, located about 10 km northwest of Mill Canyon, indicates it occurred about A.D. 1105–1545, earlier than any of the past three earthquakes, and possibly correlates to the fourth earthquake at Mill Canyon.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169150','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169150"><span>Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.</p> <p>2016-01-01</p> <p>Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1132114-faulting-processes-active-faults-evidences-from-tcdp-safod-drill-core-samples','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1132114-faulting-processes-active-faults-evidences-from-tcdp-safod-drill-core-samples"><span>Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Janssen, C.; Wirth, R.; Wenk, H. -R.</p> <p></p> <p>The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has beenmore » observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047748','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047748"><span>Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Lockner, David A.</p> <p>2013-01-01</p> <p>The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035851','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035851"><span>Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, H.; Thurber, C.; Bedrosian, P.</p> <p>2009-01-01</p> <p>We refined the three-dimensional (3-D) Vp, Vs and Vp/Vs models around the San Andreas Fault Observatory at Depth (SAFOD) site using a new double-difference (DD) seismic tomography code (tomoDDPS) that simultaneously solves for earthquake locations and all three velocity models using both absolute and differential P, S, and S-P times. This new method is able to provide a more robust Vp/Vs model than that from the original DD tomography code (tomoDD), obtained simply by dividing Vp by Vs. For the new inversion, waveform cross-correlation times for earthquakes from 2001 to 2002 were also used, in addition to arrival times from earthquakes and explosions in the region. The Vp values extracted from the model along the SAFOD trajectory match well with the borehole log data, providing in situ confirmation of our results. Similar to previous tomographic studies, the 3-D structure around Parkfield is dominated by the velocity contrast across the San Andreas Fault (SAF). In both the Vp and Vs models, there is a clear low-velocity zone as deep as 7 km along the SAF trace, compatible with the findings from fault zone guided waves. There is a high Vp/Vs anomaly zone on the southwest side of the SAF trace that is about 1-2 km wide and extends as deep as 4 km, which is interpreted to be due to fluids and fractures in the package of sedimentary rocks abutting the Salinian basement rock to the southwest. The relocated earthquakes align beneath the northeast edge of this high Vp/Vs zone. We carried out a 2-D correlation analysis for an existing resistivity model and the corresponding profiles through our model, yielding a classification that distinguishes several major lithologies. ?? 2009 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T11A2280G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T11A2280G"><span>A kinematic model of patchy slip at depth explains observed tremor waveforms on the San Andreas fault near Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.</p> <p>2011-12-01</p> <p>Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026358','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026358"><span>New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fitzenz, D.D.; Miller, S.A.</p> <p>2004-01-01</p> <p>Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSM.S23A..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSM.S23A..04G"><span>The Tidal Triggering of Earthquakes Under Certain Circumstances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodacre, A. K.</p> <p>2004-05-01</p> <p>Although it would be lunacy to claim that all earthquakes are triggered by the motions of the Moon and Sun, there are certain circumstances where these celestial bodies might play a role. This would especially be the case where pre-existing, nearly vertical zones of weakness are present and, hence, the solid-earth tidal stresses would have maximum effect. I have investigated two possible areas: i) the Charlevoix seismic region of Québec along the St. Lawrence River and )ii the San Andreas and Calaveras Faults in California. In the Charlevoix region there a few suites of earthquakes, recognized by Maurice Lamontagne and lying mainly beneath or at the edge of the St. Lawrence River, in which the events in each suite occur in a relatively small volume of rock and produce similar waveforms characteristic of the particular location involved. This sort of repeated rupturing suggests the possibility of triggering by solid-earth and/or marine tides. In one sequence of 9 events (2 of which are left out of the analysis because they are aftershocks) it appears that there is only about one chance in ten that this sequence occurred at random. Unfortunately, there are no fault-plane solutions for any events in this particular set of earthquakes and so it is difficult to comment on failure mechanisms. However, in the case of the Calaveras and San Andreas Faults of California where fault-plane solutions are often available, if we restrict our attention to the larger, strike-slip earthquakes, it appears that lunar and solar tides (both solid-earth and marine) do, in fact, play a role in the timing of these events and the triggering mechanism may involve the amount of incremental normal stress acting upon these two faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189075','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189075"><span>Joint innversion of seismic and magnetotelluric data in the Parkfield Region of California using the normalized cross-gradient constraint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bennington, Ninfa L.; Zhang, Haijiang; Thurber, Cliff; Bedrosian, Paul A.</p> <p>2015-01-01</p> <p>We present jointly inverted models of P-wave velocity (Vp) and electrical resistivity for a two-dimensional profile centered on the San Andreas Fault Observatory at Depth (SAFOD). Significant structural similarity between main features of the separately inverted Vp and resistivity models is exploited by carrying out a joint inversion of the two datasets using the normalized cross-gradient constraint. This constraint favors structurally similar Vp and resistivity images that adequately fit the seismic and magnetotelluric (MT) datasets. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD and the forward modeling and sensitivity kernel subroutines of the MT inversion code OCCAM2DMT. TomoDDMT is tested on a synthetic dataset and demonstrates the code’s ability to more accurately resolve features of the input synthetic structure relative to the separately inverted resistivity and velocity models. Using tomoDDMT, we are able to resolve a number of key issues raised during drilling at SAFOD. We are able to infer the distribution of several geologic units including the Salinian granitoids, the Great Valley sequence, and the Franciscan Formation. The distribution and transport of fluids at both shallow and great depths is also examined. Low values of velocity/resistivity attributed to a feature known as the Eastern Conductor (EC) can be explained in two ways: the EC is a brine-filled, high porosity region, or this region is composed largely of clay-rich shales of the Franciscan. The Eastern Wall, which lies immediately adjacent to the EC, is unlikely to be a fluid pathway into the San Andreas Fault’s seismogenic zone due to its observed higher resistivity and velocity values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41A2859H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41A2859H"><span>Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.</p> <p>2015-12-01</p> <p>The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G23A0886L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G23A0886L"><span>Mapping tectonic and anthropogenic processes in central California using satellite and airborne InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.</p> <p>2017-12-01</p> <p>The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We present model results to assess the influence of anthropogenic processes on surface deformation and fault mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.G22B..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.G22B..06A"><span>Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.</p> <p>2012-12-01</p> <p>Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits). Incorporating sedimentary basin rock either reduces the slip rate by 10 per cent or increases the locking rate by 20 per cent. The 9 mm/yr rate for the Puente Hills Thrust and nearby faults exceeds the cumulative 3-5 mm/yr rate estimated using paleoseismology along the Puente Hills Thrust (1.2-1.6 mm/yr, Dolan et al. 2003), upper Elysian Park Thrust (0.6-2.2 mm/yr, Oskin et al. 2000), and western Compton Thrust (1.2 mm/yr, Leon et al. 2009], though all the paleoseismic estimates are minimums. We infer that M 7 earthquakes in northern metropolitan Los Angeles may occur more frequently that previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730007655_1973007655.pdf','USGSPUBS'); return false;" href="http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730007655_1973007655.pdf"><span>Satellite relay telemetry of seismic data in earthquake prediction and control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jackson, Wayne H.; Eaton, Jerry P.</p> <p>1971-01-01</p> <p>The Satellite Telemetry Earthquake Monitoring Program was started in FY 1968 to evaluate the applicability of satellite relay telemetry in the collection of seismic data from a large number of dense seismograph clusters laid out along the major fault systems of western North America. Prototype clusters utilizing phone-line telemetry were then being installed by the National Center for Earthquake Research (NCER) in 3 regions along the San Andreas fault in central California; and the experience of installing and operating the clusters and in reducing and analyzing the seismic data from them was to provide the raw materials for evaluation in the satellite relay telemetry project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17747526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17747526"><span>North-South contraction of the mojave block and strike-slip tectonics in southern california.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bartley, J M; Glazner, A F; Schermer, E R</p> <p>1990-06-15</p> <p>The Mojave block of southern California has undergone significant late Cenozoic north-south contraction. This previously unappreciated deformation may account for part of the discrepancy between neotectonic and plate-tectonic estimates of Pacific-North American plate motion, and for part of the Big Bend in the San Andreas fault. In the eastern Mojave block, contraction is superimposed on early Miocene crustal extension. In the western Mojave block, contractional folds and reverse faults have been mistaken for extensional structures. The three-dimensional complexity of the contractional structures may mean that rigid-block tectonic models of the region based primarily on paleomagnetic data are unreliable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21B0705R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21B0705R"><span>Spatio-temporal analysis of Modified Omori law in Bayesian framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rezanezhad, V.; Narteau, C.; Shebalin, P.; Zoeller, G.; Holschneider, M.</p> <p>2017-12-01</p> <p>This work presents a study of the spatio temporal evolution of the modified Omori parameters in southern California in then time period of 1981-2016. A nearest-neighbor approach is applied for earthquake clustering. This study targets small mainshocks and corresponding big aftershocks ( 2.5 ≤ mmainshocks ≤ 4.5 and 1.8 ≤ maftershocks ≤ 2.8 ). We invert for the spatio temporal behavior of c and p values (especially c) all over the area using a MCMC based maximum likelihood estimator. As parameterizing families we use Voronoi cells with randomly distributed cell centers. Considering that c value represents a physical character like stress change we expect to see a coherent c value pattern over seismologically coacting areas. This correlation of c valus can actually be seen for the San Andreas, San Jacinto and Elsinore faults. Moreover, the depth dependency of c value is studied which shows a linear behavior of log(c) with respect to aftershock's depth within 5 to 15 km depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009CQGra..26t0401.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009CQGra..26t0401."><span>COMMITTEES: Proceedings of the 13th Gravitational Waves Data Analysis Workshop (GWDAW13), San Juan, Puerto Rico, 19-22 January 2009 Proceedings of the 13th Gravitational Waves Data Analysis Workshop (GWDAW13), San Juan, Puerto Rico, 19-22 January 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>2009-10-01</p> <p>Science Organising Committee (SOC) Bruce Allen, AEI, Germany Patrick Brady, University of Wisconsin Milwaukee, USA Deepto Chakrabarty, MIT, USA Eugenio Coccia, INFN, Gran Sasso, Italy James Cordes, Cornell University, USA Mario Díaz (Chair), University of Texas Brownsville, USA Sam Finn, Penn State, USA Neil Gehrels, NASA GSFC, USA Fredrick A Jenet, University of Texas Brownsville, USA Nobuyuki Kanda, Osaka City University, Japan Erik Katsavounides, MIT, USA Dick Manchester, ATNF, Australia Soumya Mohanty, University of Texas Brownsville, USA Benoit Mours, LAPP-Annecy, France Maria Alessandra Papa, AEI, Germany Kate Scholberg, Duke University, USA Susan Scott, The Australian National University Alberto Vecchio, University of Birmingham, UK Andrea Vicere, INFN - Sezione di Firenze, Italy Stan Whitcomb, LIGO CALTECH, USA Local Organising Committee (LOC) Paulo Freire (Arecibo Observatory, Puerto Rico) Murray Lewis (Arecibo Observatory, Puerto Rico) Wanda Wiley (University of Texas Brownsville, USA)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.earthquakegeology.com/materials/proceedings/2016_Crestone.pdf','USGSPUBS'); return false;" href="http://www.earthquakegeology.com/materials/proceedings/2016_Crestone.pdf"><span>The Elizabeth Lake paleoseismic site: Rupture pattern constraints for the past ~800 years for the Mojave section of the south-central San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bemis, Sean; Scharer, Katherine M.; Dolan, James F.; Rhodes, Ed</p> <p>2016-01-01</p> <p>The southern San Andreas Fault in California has hosted two historic surface-rupturing earthquakes, the ~M7 1812 Wrightwood earthquake and the ~M7.9 1857 Fort Tejon earthquake (e.g., Sieh, 1978; Jacoby et al., 1988). Numerous paleoseismic studies have established chronologies of historic and prehistoric earthquakes at sites along the full length of the 1857 rupture (e.g., Sieh, 1978; Scharer et al., 2014). These studies provide an unparalleled opportunity to examine patterns of recent ruptures; however, at least two significant spatial gaps in high-quality paleoseismic sites remain. At ~100 km long each, these gaps contribute up to 100 km of uncertainty to paleo-rupture lengths and could also permit a surface rupture from an earthquake up to ~M7.2 to go undetected [using scaling relationships of Wells and Coppersmith (1994)]. Given the known occurrence of an ~M7 earthquake on this portion of the SAF (1812), it is critical to fill these gaps in order to better constrain paleo-rupture lengths and to increase the probability of capturing the full spatial record of surface rupturing earthquakes.   In this study, we target a new site within the 100 km long stretch of the San Andreas Fault between the Frazier Mountain and Pallett Creek paleoseismic sites (Figure 1), near Elizabeth Lake, California. Prior excavations at the site during 1998-1999 encountered promising stratigraphy but these studies were hindered by shallow groundwater throughout the site. We began our current phase of investigations in 2012, targeting the northwestern end of a 40 x 350 m fault-parallel depression that defines the site (Figure 2). Subsequent investigations in 2013 and 2014 focused on the southeastern end of the depression where the fault trace is constrained between topographic highs and is proximal to an active drainage. In total, our paleoseismic investigations consist of 10 fault-perpendicular trenches that cross the depression (Figure 2) and expose a >2000 year depositional record. These trenches reveal that the thickest section of young stratigraphy occurs at the southeastern end of the site where the fault zone projects through an area of relatively continuous sediment accumulation from a northeast-flowing drainage. This portion of the site contains a 3-m-wide pop-up structure within the fault zone that separates alternating alluvial and paludal deposits south of the fault zone from a thick organic-rich loam on the north side of the fault zone. Faults, fissures, and tilted blocks provide evidence for 4 to 5 paleoearthquakes since ca. 1250 A.D. Radiocarbon dating established that the site has a significant component of detrital charcoal producing an age spread of up to 500 years. To supplement our age chronology we incorporated ages from collections of micro-scale organic fractions and post-IR infrared stimulated luminescence dating in order to better estimate true layer ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T24B..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T24B..04E"><span>Observing the San Andreas Fault at Depth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellsworth, W.; Hickman, S.; Zoback, M.; Davis, E.; Gee, L.; Huggins, R.; Krug, R.; Lippus, C.; Malin, P.; Neuhauser, D.; Paulsson, B.; Shalev, E.; Vajapeyam, B.; Weiland, C.; Zumberge, M.</p> <p>2005-12-01</p> <p>Extending 4 km into the Earth along a diagonal path that crosses the divide between Salinian basement accreted to the Pacific Plate and Cretaceous sediments of North America, the main hole at the San Andreas Fault Observatory at Depth (SAFOD) was designed to provide a portal into the inner workings of a major plate boundary fault. The successful drilling and casing of the main hole in the summer of 2005 to a total vertical depth of 3.1 km make it possible to conduct spatially extensive and long-duration observations of active tectonic processes within the actively deforming core of the San Andreas Fault. In brief, the observatory consists of retrievable seismic, deformation and environmental sensors deployed inside the casing in both the main hole (maximum temperature 135 C) and the collocated pilot hole (1.1 km depth), and a fiber optic strainmeter installed behind casing in the main hole. By using retrievable systems deployed on either wire line or rigid tubing, each hole can be used for a wide range of scientific purposes, with instrumentation that takes maximum advantage of advances in sensor technology. To meet the scientific and technical challenges of building the observatory, borehole instrumentation systems developed for use in the petroleum industry and by the academic community in other deep research boreholes have been deployed in the SAFOD pilot hole and main hole over the past year. These systems included 15Hz omni-directional and 4.5 Hz gimbaled seismometers, micro-electro-mechanical accelerometers, tiltmeters, sigma-delta digitizers, and a fiber optic interferometeric strainmeter. A 1200-m-long, 3-component 80-level clamped seismic array was also operated in the main hole for 2 weeks of recording in May of 2005, collecting continuous seismic data at 4000 sps. Some of the observational highlights include capturing one of the M 2 SAFOD target repeating earthquakes in the near-field at a distance of 420 m, with accelerations of up to 200 cm/s and a static displacement of a few microns. Numerous other local events were observed over the summer by the tilt and seismic instruments in the pilot hole, some of which produced strain offsets of several nanostrain on the fiber optic strainmeter. We were fortunate to observe several episodes of non-volcanic tremor on the 80-level seismic array in May, 2005. These spatially unaliased recordings of the tremor wavefield reveal that the complex tremor time series is comprised of up-and down-going shear waves that produce a spatially stationary interference pattern over time scales of 10s of seconds. All data collected at SAFOD as part of the EarthScope project are open and freely available to all. The Northern California Earthquake Data Center at U.C. Berkeley is the principal data repository for SAFOD. The more than 2 TB of 80-level array data are also available at the IRIS DMC as an assembled data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T41A2100H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T41A2100H"><span>Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.</p> <p>2010-12-01</p> <p>The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating M<3 earthquakes. Seismic inversion studies indicate that the ruptures occur on clusters of stationary patches making up 1% or less of the total fault surface area. The existence of these so-called asperity patches, although not critical in determining the fault strength, suggests interaction of different deformation mechanisms. What are the deformation mechanisms, and how do the mechanisms couple and factor into the current strength models for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/833997','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/833997"><span>Vibroseis Monitoring of San Andreas Fault in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Korneev, Valeri; Nadeau, Robert</p> <p>2004-06-11</p> <p>A unique data set of seismograms for 720 source-receiver paths has been collected as part of a controlled source Vibroseis experiment San Andreas Fault (SAF) at Parkfield. In the experiment, seismic waves repeatedly illuminated the epicentral region of the expected M6 event at Parkfield from June 1987 until November 1996. For this effort, a large shear-wave vibrator was interfaced with the 3-component (3-C) borehole High-Resolution Seismic Network (HRSN), providing precisely timed collection of data for detailed studies of changes in wave propagation associated with stress and strain accumulation in the fault zone (FZ). Data collected by the borehole network weremore » examined for evidence of changes associated with the nucleation process of the anticipated M6 earthquake at Parkfield. These investigations reported significant traveltime changes in the S coda for paths crossing the fault zone southeast of the epicenter and above the rupture zone of the 1966 M6 earthquake. Analysis and modeling of these data and comparison with observed changes in creep, water level, microseismicity, slip-at-depth and propagation from characteristic repeating microearthquakes showed temporal variations in a variety of wave propagation attributes that were synchronous with changes in deformation and local seismicity patterns. Numerical modeling suggests 200 meters as an effective thickness of SAF. The observed variations can be explained by velocity 6 percent velocity variation within SAF core. Numerical modeling studies and a growing number of observations have argued for the propagation of fault-zone guided waves (FZGW) within a SAF zone that is 100 to 200 m wide at seismogenic depths and with 20 to 40 percent lower shear-wave velocity than the adjacent unfaulted rock. Guided wave amplitude tomographic inversion for SAF using microearthquakes, shows clearly that FZGW are significantly less attenuated in a well-defined region of the FZ. This region plunges to the northwest along the northwest boundary of the region of highest moment release and separates locked and slipping sections of the SAF at depth, as determined independently from geodesy, seismicity and the recurrence rates of characteristically repeating microearthquakes. The mechanism for low FZGW attenuation in the zone is possibly due to dewatering by fracture closure and/or fault-normal compression, or changes in fracture orientation due to a complex stress or strain field at the boundary between creeping and locked zones of the San Andreas Fault. Temporal changes of FZGW correlates with changes in overall seismicity. Active monitoring of changes in FZGW has a potential for imaging and detecting of changes in stress within FZ cores. Since FZGW primarily propagate in the low-velocity core region of fault zones, they sample the most active zone of fault deformation and provide greater structural detail of the inner fault core than body waves which propagate primarily outside of the central core region. FZGW also can be used for FZ continuity studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.T51B2584R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.T51B2584R"><span>Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.</p> <p>2012-12-01</p> <p>The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43D..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43D..08M"><span>Measuring Aseismic Slip through Characteristically Repeating Earthquakes at the Mendocino Triple Junction, Northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Materna, K.; Taira, T.; Burgmann, R.</p> <p>2016-12-01</p> <p>The Mendocino Triple Junction (MTJ), at the transition point between the San Andreas fault system, the Mendocino Transform Fault, and the Cascadia Subduction Zone, undergoes rapid tectonic deformation and produces more large (M>6.0) earthquakes than any region in California. Most of the active faults of the triple junction are located offshore, making it difficult to characterize both seismic slip and aseismic creep. In this work, we study aseismic creep rates near the MTJ using characteristically repeating earthquakes (CREs) as indicators of creep rate. CREs are generally interpreted as repeated failures of the same seismic patch within an otherwise creeping fault zone; as a consequence, the magnitude and recurrence time of the CREs can be used to determine a fault's creep rate through empirically calibrated scaling relations. Using seismic data from 2010-2016, we identify CREs as recorded by an array of eight 100-Hz PBO borehole seismometers deployed in the Cape Mendocino area. For each event pair with epicenters less than 30 km apart, we compute the cross-spectral coherence of 20 seconds of data starting one second before the P-wave arrival. We then select pairs with high coherence in an appropriate frequency band, which is determined uniquely for each event pair based on event magnitude, station distance, and signal-to-noise ratio. The most similar events (with median coherence above 0.95 at two or more stations) are selected as CREs and then grouped into CRE families, and each family is used to infer a local creep rate. On the Mendocino Transform Fault, we find relatively high creep rates of >5 cm/year that increase closer to the Gorda Ridge. Closer to shore and to the MTJ itself, we find many families of repeaters on and off the transform fault with highly variable creep rates, indicative of the complex deformation that takes place there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.719...51P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.719...51P"><span>A bottom-driven mechanism for distributed faulting in the Gulf of California rift</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc</p> <p>2017-11-01</p> <p>Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI23B2612R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI23B2612R"><span>Genesis of Silica-Carbonate Type Mercury Ore Deposits in Coast Range California from Mantle Derived Fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rytuba, J. J.; Kirby, S. H.; Kellner, C. R.</p> <p>2016-12-01</p> <p>In the Coast Range of California 51 major mercury (Hg) deposits and numerous smaller Hg occurrences began forming when subduction transitioned to the transpressive continental-transform kinematics of the San Andreas Fault System. The Hg deposits become progressively younger to the north reflecting the change in tectonic environment as the Mendocino Triple Junction moved 400 km northward since the Miocene to its present location in northern California. The silica-carbonate mercury deposits are vein and replacement ore bodies developed within and adjacent to serpentinite that was emplaced along regional faults and altered to an assemblage of silica and carbonate minerals. The initial alteration process consists of the addition of carbonate to the serpentinite followed by introduction of silica into the central core. The peripheral zone of calcite-dolomite veining may extend for several kilometers outward from a mercury deposit. The large Hg deposits formed in structural traps, such as antiformal structures, and the ores locally extend into adjacent clastic metasedimentary rocks. The mineralogy of the primary ores is simple consisting of cinnabar, metacinnabar and elemental Hg. The deposits formed from low-temperature, <120oC, CO2-CH4-H2S-rich fluids. The hydrothermal fluids are consistent with a mantle source water derived from the former forearc during subduction and after the transition to transpressive continental-transform boundary as proposed by Kirby et al. (EPS, 2014). Some of the silica-carbonate Hg deposits are overprinted by younger hot spring type Hg mineralization associated temporally with volcanic vents. These Hg deposits have distinctly different types of alteration and geochemistry and formed in the near surface from meteoric waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1975/0180/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1975/0180/report.pdf"><span>Prediction of maximum earthquake intensities for the San Francisco Bay region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Borcherdt, Roger D.; Gibbs, James F.</p> <p>1975-01-01</p> <p>The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1599L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1599L"><span>Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Peng; Thurber, Clifford</p> <p>2018-06-01</p> <p>We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013941','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013941"><span>Oligocene tectonics and sedimentation, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nilsen, T.H.</p> <p>1984-01-01</p> <p>During the Oligocene epoch, California was marked by extensive nonmarine sedimentation, in contrast to its pre-Oligocene and post-Oligocene depositional history. The Oligocene continental deposits are especially widespread in southern California and fill a number of small and generally partly restricted basins. Fluvial facies in many basins prograded over previously deposited lower Tertiary turbidites. Volcanism, from widespread centers, was associated with the nonmarine sedimentation. However, some basins remained marine and a few contain Oligocene turbidites and pelagic sediments deposited at bathyal depths. The Oligocene redbeds of California do not form a post-orogenic molasse sequence comparable to the Old Red Sandstone or Alpine molasse. They are synorogenic and record local uplift of basins and surrounding source areas. Late Cretaceous to contemporary orogenesis in California has been generally characterized by the formation of small restricted basins of variable depth adjacent to small upland areas in response to strike-slip faulting. Deposition of Oligocene redbeds was associated with climatic change from warm and humid to cold and semiarid, and a global lowering of sea level. Oligocene tectonism occurred during the transition from subduction of the Farallon Plate to initiation of the modern San Andreas transform system. However, the major influence that caused uplift, formation of fault-bounded basins, and extensive redbed deposition, especially in southern California, was the approach of the Pacific-Farallon spreading ridge to the western margin of California. ?? 1984.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169263','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169263"><span>Water-level monitoring in the area of the Palmdale Uplift, Southern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lamar, D.L.; Merifield, P.M.</p> <p>1978-01-01</p> <p>Abnormal behavior of water levels in wells has been observed prior to a number of earthquakes. For instance, water-level minima have been noted in the Cienega Winery well before earthquakes on the San Andreas fault. Abnormal water-level fluctuations were used in conjunctions with other precursors to predict the February 4, 1975, Haicheng earthquake in northeastern China. That such changes should occur prior to earthquakes is not surprising. Ground water that occupies the void spaces in porous rocks or alluvium can be expected to rise in wells when an aquifer is squeezed and fall when it is distended. COnfined aquifers, in particualr, have been found to be highly sensitive to Earth strain changes. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880029593&hterms=Crustal+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DCrustal%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880029593&hterms=Crustal+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DCrustal%2Btectonics"><span>Crustal deformation in Great California Earthquake cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Victor C.; Rice, James R.</p> <p>1987-01-01</p> <p>A model in which coupling is described approximately through a generalized Elsasser model is proposed for computation of the periodic crustal deformation associated with repeated strike-slip earthquakes. The model is found to provide a more realistic physical description of tectonic loading than do simpler kinematic models. Parameters are chosen to model the 1857 and 1906 San Andreas ruptures, and predictions are found to be consistent with data on variations of contemporary surface strain and displacement rates as a function of distance from the 1857 and 1906 rupture traces. Results indicate that the asthenosphere appropriate to describe crustal deformation on the earthquake cycle time scale lies in the lower crust and perhaps the crust-mantle transition zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740020728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740020728"><span>Mineral exploration potential of ERTS-1 data. [porphyry copper deposits in Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brewer, W. A. (Principal Investigator); Erskine, M. C., Jr.; Prindle, R. O.; Haenggi, W. T.</p> <p>1974-01-01</p> <p>The author has identified the following significant results. ERTS-1 imagery of an area approximately 15,000 square miles in Arizona was interpreted for regional structure and tectonic units. Eight fault systems were identified by trend, of which two, northeast and northwest, are considered to be related to porphyry copper mineralization. Nine tectonic units can be identified on the imagery as distinct geological identities. The boundaries between these units can be correlated with theoretical shear directions related to the San Andreas stress system. Fourier analysis of the N 50 W fault trend indicates a fundamental spacing between Fourier energy maxima that can be related to distances between copper deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760008463','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760008463"><span>Error analysis for the proposed close grid geodynamic satellite measurement system (CLOGEOS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mueller, I. I.; Vangelder, B. H. W.; Kumar, M.</p> <p>1975-01-01</p> <p>The close grid geodynamic measurement system experiment which envisages an active ranging satellite and a grid of retro-reflectors or transponders in the San Andreas fault area is a detailed simulated study for recovering the relative positions in the grid. The close grid geodynamic measurement system for determining the relative motion of two plates in the California region (if feasible) could be used in other areas of the world to delineate and complete the picture of crustal motions over the entire globe and serve as a geodetic survey system. In addition, with less stringent accuracy standards, the system would also find usage in allied geological and marine geodesy fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750017167','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750017167"><span>Identification and interpretation of tectonic features from ERTS-1 imagery: Southwestern North America and the Red Sea area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.</p> <p>1975-01-01</p> <p>The author has identified the following significant results. The ERTS-1 imagery was utilized to study major fault and tectonic lines and their intersections in southwestern North America. A system of transverse shear faults was recognized in the California Coast Ranges, the Sierra Nevada, the Great Basin, and Mexico. They are interpreted as expressions of a major left-lateral shear which predated the San Andreas system, the opening of the Gulf of California and Basin and Range rift development. Tectonic models for Basin and Range, Coast Ranges, and Texas-Parras shears were developed. Geological structures and Precambrian metamorphic trend lines of schistosity were studied across the Red Sea rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA565896','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA565896"><span>Transformation of Army National Guard Environmental Performance Assessment System (EPAS): Technologies and Best Practices in Field Audit Automation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-01</p> <p>Lorenzo Richmond San Francisco San Mateo Sunnyvale Salinas Oakdale Reedley Hanford Visalia Fresno Modesto Stockton Indio Burbank Orange Fullerton Glendale...Riverside El Centro Camp Morena National City San Diego Barstow Ontario Bakersfield Apple Valley Los Angeles Santa Barbara Santa Maria Camp San Luis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_81179.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_81179.htm"><span>Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graymer, R.W.; Brabb, E.E.; Jones, D.L.; Barnes, J.; Nicholson, R.S.; Stamski, R.E.</p> <p>2007-01-01</p> <p>Introduction This report contains a new 1:100,000-scale geologic map, derived from a set of geologic map databases (Arc-Info coverages) containing information at 1:62,500-scale resolution, and a new description of the geologic map units and structural relations in the map area. Prepared as part of the San Francisco Bay Region Mapping Project, the study area includes the north-central part of the San Francisco Bay region, and forms the final piece of the effort to generate new, digital geologic maps and map databases for an area which includes Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano, and Sonoma Counties. Geologic mapping in Lake County in the north-central part of the map extent was not within the scope of the Project. The map and map database integrates both previously published reports and new geologic mapping and field checking by the authors (see Sources of Data index map on the map sheet or the Arc-Info coverage eswn-so and the textfile eswn-so.txt). This report contains new ideas about the geologic structures in the map area, including the active San Andreas Fault system, as well as the geologic units and their relations. Together, the map (or map database) and the unit descriptions in this report describe the composition, distribution, and orientation of geologic materials and structures within the study area at regional scale. Regional geologic information is important for analysis of earthquake shaking, liquifaction susceptibility, landslide susceptibility, engineering materials properties, mineral resources and hazards, as well as groundwater resources and hazards. These data also assist in answering questions about the geologic history and development of the California Coast Ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413717R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413717R"><span>Isothermal thermoluminescence dating of K-feldspar from sediments to determine fault slip rates: development and assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhodes, E. J.; Roder, B. J.; Lawson, M. J.; Dolan, J. F.; McGill, S. F.; McAuliffe, L.</p> <p>2012-04-01</p> <p>Faults in California accommodate most of the relative motion between the Pacific and North American tectonic plates, along either one main strike-slip fault, - the San Andreas fault - or a network of sub-parallel faults (e.g., the San Jacinto, Elsinore and San Andreas faults). Slip is also accommodated along many other associated faults and folds, and the region suffers frequent damaging earthquakes. Contemporary movements of different fault-bounded blocks are relatively well established on decadal timescales using remote sensing and GPS, and on timescales of 106 to 107 years, by dating offset geologic features with radiometric methods. However, on timescales of decades to several hundred thousand years, determining total fault offset and mean slip rate is harder. Critical questions for understanding fault dynamics and improving earthquake risk assessment include the degree to which slip is clustered into episodes of more rapid movement, and how slip is accommodated by different sub-parallel faults. In many cases, streams with offset courses can be recognised, and in some cases offset terrace surfaces can be located, especially when using LiDAR data to complement field mapping. Radiocarbon and terrestrial cosmogenic nuclides have been used to date these features, but both have limitations of age range, sample suitability and availability. OSL (optically stimulated luminescence) and IRSL (infra-red stimulated luminescence) have great potential to complement these techniques, though the characteristics of quartz in some parts of southern California are suboptimal, displaying low sensitivity and other limitations. In order to overcome these limitations encountered using quartz OSL, we are developing a new geochronometer based on the isothermal thermoluminescence (ITL) signal of K feldspar measured at 250°C. Preliminary ITL age estimates from the paleoseismic site of El Paso Peaks on the Central Garlock fault in the Mojave Desert, California, agree well with a well-established radiocarbon chronology based on 29 samples spanning the last 7,000 years (Dawson et al., 2003). We examine the basis of this new ITL approach and assess its potential for application within California and beyond. Reference cited Dawson, T.E., McGill, S.F. and Rockwell, T.K. 2003 Irregular recurrence of paleoearthquakes along the central Garlock fault near El Paso peaks, California. Journal of Geophysical Research 108, No. B7, 2356, doi:10.1029/2001JB001744.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-SL3-88-0004.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-SL3-88-0004.html"><span>View of the Salinas River Valley area south of Monterey Bay, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-08-15</p> <p>SL3-88-004 (July-September 1973) --- A vertical view of the Salinas River Valley area south of Monterey Bay, California area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch Earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The valley is an irrigated agricultural area, and is indicated by the dark-green and light-gray rectangular patterns in the centre of the picture. The city of Salinas is barely visible under the cloud cover at the top (north) end of the valley. The dark mass on the left (west) side of the valley is the Santa Lucia mountain range. The Big Sur area is on the left and partly covered by clouds. The Diablo Range forms the dark mass in the lower right (southeast) corner of the photograph. The town of Hollister is the gray area in the dark-green rectangular farm tracts which occupy the floor of the San Benito Valley in the upper right (northeast) corner of the photograph. The Salinas River flows northwestward toward Monterey Bay. The towns of Soledad, Greenfield and King City appear as gray areas along U.S. 101 in the Salinas Valley. The geology of the area is complex, and has been racked by several earthquakes resulting from movement along the San Andreas and subsidiary faults. Here, the surface expression of the San Andreas Fault can be traced from a point just west of Hollister at the contrast of dark brown and tan to a point about one inch left of the lower right (southeast) corner of the picture. Subsidiary faults are indicated by the curving trend of the rocks along the right side. The photograph will provide detailed information on land use patterns (Dr. R. Colwell, University of California, Berkeley) and fault tectonics (Dr. P. Merifield, Earth Science Res., Inc. and Dr. M. Abdel-Gawad, Rockwell International). Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior’s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800064372&hterms=gravity+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Bmeter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800064372&hterms=gravity+meter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Bmeter"><span>Time-dependent gravity in Southern California, May 1974 to April 1979</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitcomb, J. H.; Franzen, W. O.; Given, J. W.; Pechmann, J. C.; Ruff, L. J.</p> <p>1980-01-01</p> <p>The Southern California gravity survey, begun in May 1974 to obtain high spatial and temporal density gravity measurements to be coordinated with long-baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project, is presented. Gravity data was obtained from 28 stations located in and near the seismically active San Gabriel section of the Southern California Transverse Ranges and adjoining San Andreas Fault at intervals of one to two months using gravity meters relative to a base station standard meter. A single-reading standard deviation of 11 microGal is obtained which leads to a relative deviation of 16 microGal between stations, with data averaging reducing the standard error to 2 to 3 microGal. The largest gravity variations observed are found to correlate with nearby well water variations and smoothed rainfall levels, indicating the importance of ground water variations to gravity measurements. The largest earthquake to occur during the survey, which extended to April, 1979, is found to be accompanied in the station closest to the earthquake by the largest measured gravity changes that cannot be related to factors other than tectonic distortion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186532','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186532"><span>Paleo­geographic implications of molluscan assemblages in the Upper Cretaceous (Campanian) Pigeon Point Formation, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elder, William P.; Saul, LouElla</p> <p>1993-01-01</p> <p>The Pigeon Point Formation crops out along the San Mateo County coastline in a northern and southern sequence of folded and faulted strata. Correlation of the two sequences remains somewhat equivocal, although on the basis of biostratigraphy and a reversed magnetic interval both appear to have been deposited during the early to middle Campanian. Sedimentary structures suggest that the northern sequence was deposited by turbidity currents in a continental rise setting, whereas the southern sequence primarily reflects deposition in shelf and slope environments . Right-lateral offset on the San Andreas and subsidiary faults to the east of the Pigeon Point Formation can account for 100's of km of northward transport since its deposition. However, Champion and others (1984) suggested 2500 km of northward transport from a tropical setting of about 21°N. Molluscan assemblages in the formation argue strongly for a less tropical site of deposition. Relative abundances of warm and temperate taxa and the presence or absence of key species are similar to those of the Santa Ana Mountains Cretaceous section, and are indicative of a war</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2004/5206/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2004/5206/"><span>Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kellogg, Karl S.</p> <p>2005-01-01</p> <p>Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in the western Transverse Ranges as part of the U.S. Geological Survey's Southern California Areal Mapping Project (SCAMP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T41A2092C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T41A2092C"><span>Frictional and hydrologic behavior of the San Andreas Fault: Insights from laboratory experiments on SAFOD cuttings and core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carpenter, B. M.; Marone, C.; Saffer, D. M.</p> <p>2010-12-01</p> <p>The debate concerning the apparent low strength of tectonic faults, including the San Andreas Fault (SAF), continues to focus on: 1) low intrinsic friction resulting from mineralogy and/or fabric, and 2) decreased effective normal stress due to elevated pore pressure. Here we inform this debate with laboratory measurements of the frictional behavior and permeability of cuttings and core returned from the SAF at a vertical depth of 2.7 km. We conducted experiments on cuttings and core recovered during SAFOD Phase III drilling. All samples in this study are adjacent to and within the active fault zone penetrated at 10814.5 ft (3296m) measured depth in the SAFOD borehole. We sheared gouge samples composed of drilling cuttings in a double-direct shear configuration subject to true-triaxial loading under constant effective normal stress, confining pressure, and pore pressure. Intact wafers of material were sheared in a single-direct shear configuration under similar conditions of effective stress, confining pressure, and pore pressure. We also report on permeability measurements on intact wafers of wall rock and fault gouge prior to shearing. Initial results from experiments on cuttings show: 1) a weak fault (µ=~0.21) compared to the surrounding wall rock (µ=~0.35), 2) velocity strengthening behavior, (a-b > 0), consistent with aseismic slip, and 3) near zero healing rates in material from the active fault. XRD analysis on cuttings indicates the main mineralogical difference between fault rock and wall rock, is the presence of significant amounts of smectite within the fault rock. Taken together, the measured frictional behavior and clay mineral content suggest that the clay composition exhibits a basic control on fault behavior. Our results document the first direct evidence of weak material from an active fault at seismogenic depths. In addition, our results could explain why the SAF in central California fails aseismically and hosts only small earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042475','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042475"><span>Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Michael, Andrew J.</p> <p>2012-01-01</p> <p>Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T14C..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T14C..01F"><span>Along-strike Translation of a Fossil Slab Beneath California (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsyth, D. W.</p> <p>2013-12-01</p> <p>There are three places where subduction ceased before a spreading ridge was consumed at a trench, leaving behind remnant microplates that were incorporated into the non-subducting oceanic plate. In the cases of the Phoenix plate off the Antarctic peninsula and the Guadalupe and Magdalena microplates off Baja California, fossil slabs still attached to the microplates have been traced into the asthenosphere using seismological techniques. Apparently deep subducting plates can tear off from the surface plate leaving behind fossil pieces of young oceanic lithosphere extending 100 km or more into the asthenosphere. The young slab fragments may be close to neutral buoyancy with their asthenospheric surroundings. In the case of the Monterey microplate off central California, now part of the Pacific plate, oceanic crust has been traced beneath the continental margin using active source seismology. Nicholson et al. (1994) suggested that the translation of the Monterey microplate under North America dragged bits of the overriding plate with it, causing the rotation of the Transverse Ranges in southern California. They also suggested that the San Andreas initiated as a low angle fault between the overriding North American plate and the subducted Monterey plate. There is a gap in coastal, post-subduction volcanic activity opposite the microplate, perhaps because a slab window never formed. A steeply dipping seismic anomaly, the Isabella anomaly, also lies opposite the microplate, probably indicating the continuation of the Monterey slab deep into the asthenosphere. Between the Isabella anomaly and the surface remnants of the Monterey microplate lies the aseismic, creeping section of the San Andreas fault, which we speculate may be caused by the migration of fluids from the subducted plate. The Monterey case differs from the Phoenix and Guadalupe cases in that the hypothesized fossil slab lies beneath the North American plate, which is translating relative to the Pacific/Monterey plate. We have shown that the fossil slab could translate with the Monterey plate with reasonable viscosity contrast with the surrounding asthenosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=39436','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=39436"><span>What electrical measurements can say about changes in fault systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Madden, T R; Mackie, R L</p> <p>1996-01-01</p> <p>Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017128','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017128"><span>Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Diane E.; Byerlee, J.</p> <p>1992-01-01</p> <p>Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159233','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159233"><span>Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.</p> <p>2015-01-01</p> <p>We present a new method to locate low-frequency earthquakes (LFEs) within tectonic tremor episodes based on time-reverse imaging techniques. The modified time-reverse imaging technique presented here is the first method that locates individual LFEs within tremor episodes within 5 km uncertainty without relying on high-amplitude P-wave arrivals and that produces similar hypocentral locations to methods that locate events by stacking hundreds of LFEs without having to assume event co-location. In contrast to classic time-reverse imaging algorithms, we implement a modification to the method that searches for phase coherence over a short time period rather than identifying the maximum amplitude of a superpositioned wavefield. The method is independent of amplitude and can help constrain event origin time. The method uses individual LFE origin times, but does not rely on a priori information on LFE templates and families.We apply the method to locate 34 individual LFEs within tremor episodes that occur between 2010 and 2011 on the San Andreas Fault, near Cholame, California. Individual LFE location accuracies range from 2.6 to 5 km horizontally and 4.8 km vertically. Other methods that have been able to locate individual LFEs with accuracy of less than 5 km have mainly used large-amplitude events where a P-phase arrival can be identified. The method described here has the potential to locate a larger number of individual low-amplitude events with only the S-phase arrival. Location accuracy is controlled by the velocity model resolution and the wavelength of the dominant energy of the signal. Location results are also dependent on the number of stations used and are negligibly correlated with other factors such as the maximum gap in azimuthal coverage, source–station distance and signal-to-noise ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.195..130T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.195..130T"><span>Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tietze, Kristina; Ritter, Oliver</p> <p>2013-10-01</p> <p>3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T41C0634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T41C0634D"><span>Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeLong, S.; Donnellan, A.; Pickering, A.</p> <p>2017-12-01</p> <p>Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51J..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51J..01C"><span>Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.</p> <p>2017-12-01</p> <p>The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G43A0900W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G43A0900W"><span>New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.</p> <p>2017-12-01</p> <p>After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central Valley and ocean lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023066','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023066"><span>Viscoelastic shear zone model of a strike-slip earthquake cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pollitz, F.F.</p> <p>2001-01-01</p> <p>I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault-parallel motion distributed between the San Andreas fault system and Eastern California Shear Zone. Copyright 2001 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........87B"><span>Advances in Geophysical Methods at Parkfield, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennington, Ninfa</p> <p></p> <p>The Parkfield segment of the San Andreas fault (SAF) is one of the most highly monitored fault sites in the world. I carry out two studies, taking advantage of the dense set of geophysical observations obtained for this segment of the fault. In the first study, I use geodetic data to had a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches preferentially align with aftershocks. Application of the aftershock distribution constraint on coseismic slip yields a model that agrees in location and amplitude with features observed in previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock "streaks" with the continuation of moderate levels of slip towards the 2004 Parkfield earthquake hypocenter. The observed continuation of coseismic slip towards the hypocenter is in good agreement with strong motion studies but is not observed in the majority of published geodetic slip models, which I attribute to resolution limitations. In the second study, I develop tomoDDMT, a joint inversion code that simultaneously inverts for resistivity and seismic velocity models under the cross- gradient constraint. This constraint uses a weighted penalty function to encourage areas where the two models are changing to be structurally similar. I present jointly inverted models of P-wave velocity (Vp) and resistivity for a cross-section centered on the San Andreas Fault Observatory at Depth (SAFOD). The joint inversion scheme achieves structurally similar Vp and resistivity images that adequately fit the seismic and MT data without forcing model similarity where none exists. Using tomoDDMT, I obtain models or resistivity and Vp that yield increased insight into the geologic structure at Parkfield. I address key issues including: the location of the Franciscan formation at depth, the spatial extent of the Upper Great Valley sequence, the validity of the eastern wall as a fluid pathway, the distribution of the eastern conductor, and the distribution of the Salinian block at depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213775G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213775G"><span>Seismic reflection images of the central California coast ranges and the tremor region of the San-Andreas-Fault system near Cholame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutjahr, Stine; Buske, Stefan</p> <p>2010-05-01</p> <p>The SJ-6 seismic reflection profile was acquired in 1981 over a distance of about 180 km from Morro Bay to the Sierra Nevada foothills in South Central California. The profile runs across several prominent fault systems, e.g. the Riconada Fault (RF) in the western part as well as the San Andreas Fault (SAF) in its central part. The latter includes the region of increased tremor activity near Cholame, as reported recently by several authors. We have recorrelated the original field data to 26 seconds two-way traveltime which allows us to image the crust and uppermost mantle down to approximately 40 km depth. A 3D tomographic velocity model derived from local earthquake data (Thurber et al., 2006) was used and Kirchhoff prestack depth migration as well as Fresnel-Volume-Migration were applied to the data set. Both imaging techniques were implemented in 3D by taking into account the true shot and receiver locations. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the SAF. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the RF and the SAF. In the southwestern part strong reflectors can be identified that are dipping slightly to the northeast at depths of around 15-25 km. The eastern part consists of west dipping sediments at depths of 2-10 km that form a syncline structure in the west of the eastern part. The resulting images are compared to existing interpretations (Trehu and Wheeler, 1987; Wentworth and Zoback, 1989; Bloch et al., 1993) and discussed in the frame of the suggested tremor locations in that area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S23C4543X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S23C4543X"><span>Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.</p> <p>2014-12-01</p> <p>A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.S53A1817Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.S53A1817Z"><span>Identification of repeating earthquakes and spatio-temporal variations of fault zone properties around the Parkfield section of the San Andreas fault and the central Calaveras fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, P.; Peng, Z.</p> <p>2008-12-01</p> <p>We systemically identify repeating earthquakes and investigate spatio-temporal variations of fault zone properties associated with the 2004 Mw6.0 Parkfield earthquake along the Parkfield section of the San Andreas fault, and the 1984 Mw6.2 Morgan Hill earthquake along the central Calaveras fault. The procedure for identifying repeating earthquakes is based on overlapping of the source regions and the waveform similarity, and is briefly described as follows. First, we estimate the source radius of each event based on a circular crack model and a normal stress drop of 3 MPa. Next, we compute inter-hypocentral distance for events listed in the relocated catalog of Thurber et al. (2006) around Parkfield, and Schaff et al. (2002) along the Calaveras fault. Then, we group all events into 'initial' clusters by requiring the separation distance between each event pair to be less than the source radius of larger event, and their magnitude difference to be less than 1. Next, we calculate the correlation coefficients between every event pair within each 'initial' cluster using a 3-s time window around the direct P waves for all available stations. The median value of the correlation coefficients is used as a measure of similarity between each event pair. We drop an event if the median similarity to the rest events in that cluster is less than 0.9. After identifying repeating clusters in both regions, our next step is to apply a sliding window waveform cross-correlation technique (Niu et al., 2003; Peng and Ben-Zion, 2006) to calculate the delay time and decorrelation index for each repeating cluster. By measuring temporal changes in waveforms of repeating clusters at different locations and depth, we hope to obtain a better constraint on spatio-temporal variations of fault zone properties and near-surface layers associated with the occurrence of major earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP32A..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP32A..05Z"><span>Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamudio, K. D.; Bedrosian, P.; Ball, L. B.</p> <p>2017-12-01</p> <p>Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G21A1005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G21A1005T"><span>Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tymofyeyeva, E.; Fialko, Y. A.</p> <p>2015-12-01</p> <p>We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1150/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1150/"><span>The ShakeOut Scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Lucile M.; Bernknopf, Richard; Cox, Dale; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Perry, Suzanne; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne</p> <p>2008-01-01</p> <p>This is the initial publication of the results of a cooperative project to examine the implications of a major earthquake in southern California. The study comprised eight counties: Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura. Its results will be used as the basis of an emergency response and preparedness exercise, the Great Southern California ShakeOut, and for this purpose we defined our earthquake as occurring at 10:00 a.m. on November 13, 2008. As members of the southern California community use the ShakeOut Scenario to plan and execute the exercise, we anticipate discussion and feedback. This community input will be used to refine our assessment and will lead to a formal publication in early 2009. Our goal in the ShakeOut Scenario is to identify the physical, social and economic consequences of a major earthquake in southern California and in so doing, enable the users of our results to identify what they can change now?before the earthquake?to avoid catastrophic impact after the inevitable earthquake occurs. To do so, we had to determine the physical damages (casualties and losses) caused by the earthquake and the impact of those damages on the region?s social and economic systems. To do this, we needed to know about the earthquake ground shaking and fault rupture. So we first constructed an earthquake, taking all available earthquake research information, from trenching and exposed evidence of prehistoric earthquakes, to analysis of instrumental recordings of large earthquakes and the latest theory in earthquake source physics. We modeled a magnitude (M) 7.8 earthquake on the southern San Andreas Fault, a plausible event on the fault most likely to produce a major earthquake. This information was then fed forward into the rest of the ShakeOut Scenario. The damage impacts of the scenario earthquake were estimated using both HAZUS-MH and expert opinion through 13 special studies and 6 expert panels, and fall into four categories: building damages, non-structural damages, damage to lifelines and infrastructure, and fire losses. The magnitude 7.8 ShakeOut earthquake is modeled to cause about 1800 deaths and $213 billion of economic losses. These numbers are as low as they are because of aggressive retrofitting programs that have increased the seismic resistance of buildings, highways and lifelines, and economic resiliency. These numbers are as large as they are because much more retrofitting could still be done. The earthquake modeled here may never happen. Big earthquakes on the San Andreas Fault are inevitable, and by geologic standards extremely common, but probably will not be exactly like this one. The next very damaging earthquake could easily be on another fault. However, lessons learned from this particular event apply to many other events and could provide benefits in many possible future events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020017755','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020017755"><span>Large Scale Deformation of the Western US Cordillera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bennett, Richard A.</p> <p>2001-01-01</p> <p>Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012765','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012765"><span>Earthquake swarms and local crustal spreading along major strike-slip faults in California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Weaver, C.S.; Hill, D.P.</p> <p>1978-01-01</p> <p>Earthquake swarms in California are often localized to areas within dextral offsets in the linear trend in active fault strands, suggesting a relation between earthquake swarms and local crustal spreading. Local crustal spereading is required by the geometry of dextral offsets when, as in the San Andreas system, faults have dominantly strike-slip motion with right-lateral displacement. Three clear examples of this relation occur in the Imperial Valley, Coso Hot Springs, and the Danville region, all in California. The first two of these areas are known for their Holocene volcanism and geothermal potential, which is consistent with crustal spreading and magmatic intrusion. The third example, however, shows no evidence for volcanism or geothermal activity at the surface. ?? 1978 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010799','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010799"><span>Evaluation of nine-frame enhanced multiband photography San Andreas fault zone, Carrizo Plain, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wallace, R. E.</p> <p>1969-01-01</p> <p>Nine-frame multiband aerial photography of a sample area 4500 feet on a side was processed to enhance spectral contrasts. The area concerned is in the Carrizo Plain, 45 miles west of Bakersfield, California, in sec. 29, T 31 S., R. 21 E., as shown on the Panorama Hills quadrangle topographic map published by the U. S. Geological Survey. The accompany illustrations include an index map showing the location of the Carrizo Plain area; a geologic map of the area based on field studies and examination of black and white aerial photographs; an enhanced multiband aerial photograph; an Aero Ektachrome photograph; black and white aerial photographs; and infrared image in the 8-13 micron band.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870011229&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplate%2Btectonics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870011229&hterms=plate+tectonics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplate%2Btectonics"><span>The interpretation of crustal dynamics data in terms of plate interactions and active tectonics of the Anatolian Plate and surrounding regions in the Middle East</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Toksoz, M. Nafi</p> <p>1987-01-01</p> <p>The primary effort in this study during the past year has been directed along two separate lines: (1) expanding finite element models to include the entire Anatolian plate, the Aegean Sea and the Northeastern Mediterranean Sea, and (2) investigating the relationship between fault geometry and earthquake activity for the North Anatolian and similar strike-slip faults (e.g., San Andreas Fault). Both efforts are designed to provide an improved basis for interpreting the Crustal Dynamics measurements NASA has planned for this region. The initial phases of both investigations have been completed and the results are being prepared for publication. These investigations are described briefly.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>