A morphometric comparison of the Namib and southwest Kalahari dunefields using ASTER GDEM data
NASA Astrophysics Data System (ADS)
White, Kevin; Bullard, Joanna; Livingstone, Ian; Moran, Lisa
2015-12-01
The increased availability of digital elevation models and satellite image data enable testing of morphometric relationships between sand dune variables (dune height, spacing and equivalent sand thickness), which were originally established using limited field survey data. These long-established geomorphological hypotheses can now be tested against very much larger samples than were possible when available data were limited to what could be collected by field surveys alone. This project uses ASTER global digital elevation model (GDEM) data to compare morphometric relationships between sand dune variables in the southwest Kalahari dunefield to those of the Namib sand sea, to test whether the relationships found in an active sand sea (Namib) also hold for the fixed dune system of the nearby southwest Kalahari. The data show significant morphometric differences between the simple linear dunes of the Namib sand sea and the southwest Kalahari; the latter do not show the expected positive relationship between dune height and spacing. The southwest Kalahari dunes show a similar range of dune spacings, but they are less tall, on average, than the Namib sand sea dunes. There is a clear spatial pattern to these morphometric data; the tallest and most closely spaced dunes are towards the southeast of the Kalahari dunefield; and this is where the highest values of equivalent sand thickness result. We consider the possible reasons for the observed differences and highlight the need for more studies comparing sand seas and dunefields from different environmental settings.
Experimental evaluation of P-Y curves considering liquefaction development.
DOT National Transportation Integrated Search
2010-12-01
This report presents details and findings of a test series conducted on a single pile embedded in homogeneous saturated Nevada sand, which was subjected to sequential dynamic shaking and lateral (inertial-equivalent) loading. This report documents th...
Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee
2014-06-15
The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region. Copyright © 2014 Elsevier Ltd. All rights reserved.
van der Kooij, Dick; Veenendaal, Harm R; van der Mark, Ed J; Dignum, Marco
2017-11-15
Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC 14 , d ng ATP L -1 ) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC 14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 μg acetate-C equivalents mg -1 C and BPC 14 /TOC = 16.3 ± 2.2 d ng ATP mg -1 C, corresponding with 1.2 ± 0.19 ng ATP mg -1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC 14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Test simulation of neutron damage to electronic components using accelerator facilities
NASA Astrophysics Data System (ADS)
King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.
2015-12-01
The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.
Optimization the composition of sand-lime products modified of diabase aggregate
NASA Astrophysics Data System (ADS)
Komisarczyk, K.; Stępień, A.
2017-10-01
The problem of optimizing the composition of building materials is currently of great importance due to the increasing competitiveness and technological development in the construction industry. This phenomenon also applies to catalog sand-lime. The respective arrangement of individual components or their equivalents, and linking them with the main parameters of the composition of the mixture, i.e. The lime/sand/water should lead to the intended purpose. The introduction of sand-lime diabase aggregate is concluded with a positive effect of final products. The paper presents the results of optimization with the addition of diabase aggregate. The constant value was the amount of water, variable - the mass of the dry ingredients. The program of experimental studies was taken for 6 series of silicates made in industrial conditions. Final samples were tested for mechanical and physico-chemical expanding the analysis of the mercury intrusion porosimetry, SEM and XRD. The results show that, depending on the aggregate’s contribution, exhibit differences. The sample in an amount of 10% diabase aggregate the compressive strength was higher than in the case of reference sample, while modified samples absorbed less water.
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
Muraki, T; Kujime, K; Kaneko, T; Su, M; Ueba, Y
1991-08-01
This study was undertaken to investigate how 8 elderly women with ischemic heart disease would respond to a unilateral sanding activity. Three ventilatory measures-expiratory tidal volume, respiratory rate, and expiratory volume--and four cardiometabolic measures--metabolic equivalent, systolic blood pressure, heart rate, and pressure rate product--were continuously recorded during the sanding activity. The two independent variables were angle of the sanding board and sanding velocity. The activity was graded to yield five conditions: (a) sitting at rest; (b) 0 degrees at 15 cycles per min (cpm); (c) 0 degrees at 30 cpm; (d) 15 degrees at 15 cpm; and (e) 15 degrees at 30 cpm. The findings indicated that increasing the angle of the board while holding the velocity constant did not always increase the mean values of the ventilatory and cardiometabolic measures. However, increasing the velocity while holding the angle constant always increased the mean values of the dependent variables. The data also indicated that the metabolic equivalent reached during the sanding activity was no greater than 2, which corresponds to a light activity, such as playing a musical instrument. Replication of the study with a larger sample size may further elucidate the behavior of these two functions during a graded sanding activity. In the present study, a unilateral sanding activity by elderly patients with cardiac impairment was shown to provide valuable data on ventilatory and cardiometabolic functions. The study also demonstrated that a unilateral sanding activity can be safely used as a graded activity in occupational therapy for the cardiac rehabilitation of elderly women.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.
Modeling fine-scale geological heterogeneity--examples of sand lenses in tills.
Kessler, Timo Christian; Comunian, Alessandro; Oriani, Fabio; Renard, Philippe; Nilsson, Bertel; Klint, Knud Erik; Bjerg, Poul Løgstrup
2013-01-01
Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam
Wagh, Arun S.; Paul, Jr., James W.
2007-01-09
A dry mix particulate composition of a calcined oxide of Mg and/or Ca, an acid phosphate, and fly ash or equivalent, wherein the calcined oxide is present in the range of from about 17% to about 40% by weight and the acid phosphate is present in the range of from about 29% to about 52% by weight and the fly ash or equivalent is present in the range of from about 24% to about 39% by weight when sand is added to the dry mix, it is present in the range of from about 39% to about 61% by weight of the combined dry mix and sand. A method of forming a structural member is also disclosed wherein an aqueous slurry of about 8 12 pounds of water is added to dry mix and sand.
NASA Technical Reports Server (NTRS)
Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy
1999-01-01
The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.
Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands.
Shepherd, Benjamin O; Erler, Dirk V; Tait, Douglas R; van Zwieten, Lukas; Kimber, Stephen; Eyre, Bradley D
2015-08-01
The remediation of four estrogenic endocrine-disrupting compounds (EDCs), estrone (E1), estradiol (E2), ethinylestradiol (EE2) and estriol (E3), was measured in saturated and unsaturated carbonate sand-filled columns dosed with wastewater from a sewage treatment plant. The estrogen equivalency (EEQ) of inlet wastewater was 1.2 ng L(-1) and was remediated to an EEQ of 0.5 ng L(-1) through the unsaturated carbonate sand-filled columns. The high surface area of carbonate sand and associated high microbial activity may have assisted the degradation of these estrogens. The fully saturated sand columns showed an increase in total estrogenic potency with an EEQ of 2.4 ng L(-1), which was double that of the inlet wastewater. There was a significant difference (P < 0.05) in total estrogenic potency between aerobic and anaerobic columns. The breakdown of conjugated estrogens to estrogenic EDCs formed under long residence time and reducing conditions may have been responsible for the increase in the fully saturated columns. This may also be explained by the desorption of previously sorbed estrogenic EDCs. The effect of additional filter materials, such as basalt sediment and coconut fibre, on estrogenic EDC reduction was also tested. None of these amendments provided improvements in estrogen remediation relative to the unamended unsaturated carbonate sand columns. Aerobic carbonate sand filters have good potential to be used as on-site wastewater treatment systems for the reduction of estrogenic EDCs. However, the use of fully saturated sand filters, which are used to promote denitrification, and the loss of nitrogen as N2 were shown to cause an increase in EEQ. The potential for the accumulation of estrogenic EDCs under anaerobic conditions needs to be considered when designing on-site sand filtration systems required to reduce nitrogen. Furthermore, the accumulation of estrogens under anaerobic conditions such as under soil absorption systems or leachate fields has the potential to contaminate groundwater especially when the water table levels fluctuate.
Settling equivalence of detrital minerals and grain-size dependence of sediment composition
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni
2008-08-01
This study discusses the laws which govern sediment deposition, and consequently determine size-dependent compositional variability. A theoretical approach is substantiated by robust datasets on major Alpine, Himalayan, and African sedimentary systems. Integrated (bulk-petrography, heavy-mineral, X-ray powder diffraction) multiple-window analyses at 0.25ϕ to 0.50ϕ sieve interval of eighty-five fluvial, beach, and eolian-dune samples, ranging from very fine silt to coarse sand, document homologous intrasample compositional trends, revealed by systematic concentration of denser grains in finer-grained fractions (“size-density sorting”). These trends are explained by the settling-equivalence principle, stating that detrital minerals are deposited together if their settling velocity is the same. Settling of silt is chiefly resisted by fluid viscosity, and Stokes' law predicts that size differences between detrital minerals in ϕ units (“size shifts”) are half the difference between the logarithms of their submerged densities. Settling of pebbles is chiefly resisted by turbulence effects, and the Impact law predicts double size shifts than Stokes' law. Settling of sand is resisted by both viscosity and turbulence, the settling-equivalence formula is complex, and size shifts increase - with increasing settling velocity and grain size - from those predicted by Stokes' law to those predicted by the Impact law. In wind-laid sands, size shifts match those predicted by the Impact law; size-density sorting is thus greater than in water-laid fine sands. New analytical, graphical, and statistical techniques for rigorous settling-equivalence analysis of terrigenous sediments are illustrated. Deviations associated with non-spherical shape, density anomalies, inheritance from source rocks, or mixing of detrital species with contrasting provenance and different size distribution are also tentatively assessed. Such integrated theoretical and experimental approach allows us to mathematically predict intrasample compositional variability of water-laid and wind-laid sediments, once the density of detrital components is known.
Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand
NASA Astrophysics Data System (ADS)
Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.
2017-09-01
Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, M.H.; Hall, B.R.
1989-03-01
Thirty-five turbidite sandstone bodies from the Moco T and Webster reservoir zones were delineated for enhanced oil recovery projects in Mobil's MOCO FEE property, south Midway-Sunset field. The recognition of these sand bodies is based on mappable geometries determined from wireline log correlations, log character, core facies, reservoir characteristics, and comparison to nearby age-equivalent outcrops. These turbidite sands are composed of unconsolidated arkosic late Miocene sandstones (Stevens equivalent, Monterey Formation). They were deposited normal to paleoslope and trend southwest-northeast in an intraslope basin. Reservoir quality in the sandstone is very good, with average porosities of 33% and permeabilities of 1more » darcy.« less
Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.
Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank
2016-02-01
Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Richmond, Jonathan Q.; Reid, Duncan T.; Ashton, Kyle G.; Zamudio, Kelly R.
2009-01-01
Populations rarely show immediate genetic responses to habitat fragmentation, even in taxa that possess suites of traits known to increase their vulnerability to extinction. Thus conservation geneticists must consider the time scale over which contemporary evolutionary processes operate to accurately portray the effects of habitat isolation. Here, we examine the genetic impacts of fragmentation on the Florida sand skink Plestiodon reynoldsi, a sand swimming lizard that is highly adapted to the upland scrub habitat of central Florida. We studied fragments located on the southern Lake Wales Ridge, where human activity in the latter half of the 20th century has modified the natural patchiness of the landscape. Based on a relaxed molecular clock method, we estimate that sand skinks have persisted in this region for approximately 1.5 million years and that the time frame of human disturbance is equivalent to fewer than 30 skink generations. Using genotypes from eight microsatellite loci, we screened for molecular signatures of this disturbance by assessing congruence between population structure, as inferred from spatially-informed Bayesian assignment tests, and the current geography of scrub fragments. We also tested for potential intrapopulation genetic effects of inbreeding in isolated populations by comparing the average pairwise relatedness of individuals within fragments of different areas and isolation. Our results indicate that although some patches show a higher degree of relatedness than expected under random mating, the genetic effects of recent isolation are not evident in this part of the species’ range. We argue that this result is an artefact of a time-lag in the response to disturbance, and that species-typical demographic features may explain the genetic inertia observed in these populations.
Middle and upper Miocene natural gas sands in onshore and offshore Alabama
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, R.M.; Mancini, E.A.; Bearden, B.L.
1988-09-01
Thirty Miocene natural gas fields have been established in onshore and offshore Alabama since the discovery of Miocene gas in this area in 1979. These fields have produced over 16 bcf of natural gas from the middle Miocene Amos sand (24 fields) and upper Miocene Luce (3 fields), Escambia (1 field), and Meyer (3 fields) sands. Production from the Amos transgressive sands represents over 92% of the cumulative shallow Miocene natural gas produced in onshore and offshore Alabama. In addition, over 127 bcf of natural gas has been produced from upper Miocene sands in the Chandeleur area. The productive Miocenemore » section in onshore and coastal Alabama is interpreted to present transgressive marine shelf and regressive shoreface sands. The middle Miocene Amos sand bars are the most productive reservoirs of natural gas in onshore and coastal Alabama, principally due to the porous and permeable nature of these transgressive sands and their stratigraphic relationship to the underlying basinal clays in this area. In offshore Alabama the upper Miocene sands become thicker and are generally more porous and permeable than their onshore equivalents. Because of their deeper burial depth in offshore Alabama, these upper Miocene sands are associated with marine clays that are thermally more mature. The combination of reservoir grade lithologies associated with moderately mature petroleum source rocks enhances the natural gas potential of the upper Miocene sands in offshore Alabama.« less
Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers
Heaney, Christopher D.; Sams, Elizabeth; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Wing, Steve; Marshall, Stephen; Love, David C.; Serre, Marc; Noble, Rachel; Wade, Timothy J.
2011-01-01
Background Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods In 2007, visitors at two recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results We analyzed 144 wet sand samples and completed 4,999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among non-swimmers with sand exposure. Conclusions We observed a positive relationship between sand contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand. PMID:22157306
NASA Astrophysics Data System (ADS)
Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui
This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.
Spectroradiometric calibration of the thematic mapper and multispectral scanner system
NASA Technical Reports Server (NTRS)
Slater, P. N. (Principal Investigator); Palmer, J. M.
1983-01-01
The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.
The effect of sludge water treatment plant residuals on the properties of compressed brick
NASA Astrophysics Data System (ADS)
Shamsudin, Shamrul-Mar; Shahidan, S.; Azmi, M. A. M.; Ghaffar, S. A.; Ghani, M. B. Abdul; Saiful Bahari, N. A. A.; Zuki, S. S. M.
2017-11-01
The focus of this study is on the production of compressed bricks which contains sludge water treatment plant (SWTP) residuals obtained from SAJ. The main objective of this study is to utilise and incorporate discarded material (SWTP) in the form of residual solution to produce compressed bricks. This serves as one of the recycling efforts to conserve the environment. This study determined the optimum mix based on a mix ratio of 1:2:4 (cement: sand: soil) in the production of compressed bricks where 5 different mixes were investigated i. e. 0%, 5%, 10%, 20%, and 30% of water treatment plant residue solution. The production of the compressed bricks is in accordance with the Malaysian Standard MS 7.6: 1972 and British Standard BS 3921: 1985 - Compressive Strength & Water Absorption. After being moulded and air dried, the cured bricks were subjected to compression tests and water absorption tests. Based on the tests conducted, it was found that 20% of water treatment plant residue solution which is equivalent to 50% of soil content replacement with a mix composition of [10: cement] [20: sand] [20: soil] [20: water treatment plant residue solution] is the optimum mix. It was also observed that the bricks containing SWTP residuals were lighter in weight compared to the control specimens
Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article
NASA Technical Reports Server (NTRS)
Vassilakos, Gregory J.; Hardy, Robin C.
2012-01-01
Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.
The effect of the Baton Rouge fault on flow in the Abita aquifer of southeastern Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, T.R.
1993-03-01
The ground-water resources of southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water supply source for Jefferson Parish, Louisiana. The study area, in southeastern Louisiana, is underlain by eight major aquifers and is crossed by a fault zone, referred to as the Baton Rouge fault. The fault restricts the flow of water in the aquifers of intermediate depth. Data from a test well drilling program and geophysical logs of a nearby oil well indicated that a significant freshwater aquifer that provides water to a nearbymore » municipality was actually the Abita aquifer and not the Covington aquifer, as was previously thought. The Abita aquifer, a shallower aquifer with a lower hydraulic conductivity, had been displaced to a position equivalent to that of the Covington aquifer by the Baton Rouge fault. An additional final test well drilled south of the fault penetrated the leading edge of a wedge-shaped saltwater interface. Analysis of lithologic and geophysical logs indicated that the Abita aquifer has a well-sorted, clean sand at the base of the aquifer and substantial amounts of clay in the top two-thirds of the aquifer. Geophysical logs of oil test wells south of the fault zone indicated that the sand thickens substantially to the south. The thicker sand south of a public supply well that pumps water from the Abita aquifer and the higher hydraulic conductivity of the lower part of the aquifer where the saline water was detected indicate that a much larger percentage of recharge to the public supply well may come from the south than was originally thought.« less
Mustain, N.; Griggs, G.; Barnard, P.L.
2007-01-01
The beaches of the Santa Barbara Littoral Cell, which are narrow as a result of either natural and/or anthropogenic factors, may benefit from nourishment. Sand compatibility is fundamental to beach nourishment success and grain size is the parameter often used to evaluate equivalence. Only after understanding which sand sizes naturally compose beaches in a specific cell, especially the smallest size that remains on the beach, can the potential compatibility of source areas, such as offshore borrow sites, be accurately assessed. This study examines sediments on the beach and in the nearshore (5-20m depth) for the entire Santa Barbara Littoral Cell east of Point Conception. A digital bed sediment camera, the Eyeball??, and spatial autocorrelation technique were used to determine sediment grain size. Here we report on whether nearshore sediments are comparable and compatible with beach sands of the Santa Barbara Littoral Cell. ?? 2007 ASCE.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were met with the RS-18 data and additional testing data from subsequent LO2/methane test programs in 2009 which included the first simulated-altitude pyrotechnic ignition demonstration of LO2/methane.
Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
Constitutive Soil Properties for Mason Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.
2011-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.
Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min
2017-04-01
Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.
Evaluation of the effect on aggregate properties of samples extracted using the ignition furnace.
DOT National Transportation Integrated Search
2000-04-01
The Superpave mix design system includes four consensus aggregate properties to ensure aggregate quality: coarse aggregate angularity, flat and elongated particles, fine aggregate angularity, and sand equivalent. In addition to determining these cons...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaplin, J.R.
1989-08-01
Poor well control and the absence of surface stratigraphic control made previous interpretations of the stratigraphic relations of sandstone-producing reservoirs tenuous. Recent extensive analyses of surface outcrops and well and core data support the contention that the major sandstone-producing reservoirs can be physically correlated with formations in the outcrop section. Sandstone bodies within the upper Council Grove Group include Neva sand and Blackwell sand (Neva Limestone), Hotson-Kisner sand (Eskridge Shale), and the Whitney-Hodges sand. The Whitney-Hodges sand correlates, in part, with the Speiser Shale (Garrison Formation) of the outcrop section. However, previous usage suggested tentative correlations with sandstone bodies stratigraphicallymore » lower in the section. These sands were probably deposited in channels that were, in part, fluvial, tidal, or estuarine. Production from the Chase Group occurs locally within channelform sandstone bodies referred to as the Hoy-Matfield sand. These sands appear to be equivalent, occupying essentially the position of the Kinney Limestone Member (Matfield Shale) of the outcrop section. Detailed core-hole data at and in the vicinity of Kaw Dam, southeastern Kay County, and outcrops along the shoreline of Kaw Lake at Kaw City, Kay County, clearly demonstrate the facies distribution of the Hoy sand. Core-hole data has also delineated additional potential sandstone reservoirs within and near or at the top of the Fort Riley Limestone Member (Barneston Limestone). The Wolfe sand, a producing sandstone locally, occupies a stratigraphic position within the Doyle Shale.« less
40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced...(including softening) Direct filtration Slow sand or diatomaceous earth filtration Alternative filtration... survey or an equivalent source water assessment that after a system completed the monitoring conducted...
40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced...(including softening) Direct filtration Slow sand or diatomaceous earth filtration Alternative filtration... survey or an equivalent source water assessment that after a system completed the monitoring conducted...
40 CFR 141.711 - Filtered system additional Cryptosporidium treatment requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced...(including softening) Direct filtration Slow sand or diatomaceous earth filtration Alternative filtration... survey or an equivalent source water assessment that after a system completed the monitoring conducted...
Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J
2014-11-01
Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Copyright © 2014 Elsevier B.V. All rights reserved.
The "Clinton" sands in Canton, Dover, Massillon, and Navarre quadrangles, Ohio
Pepper, James Franklin; De Witt, Wallace; Everhart, Gail M.
1953-01-01
The Canton, Dover, Massillon, and Navarre quadrangles cover about 880 square miles in eastern Ohio. Canton is the largest city in the mapped area. In these four quadrangles, the well drillers generally recognize three "Clinton" sands - in descending order, the "stray Clinton", the "red Clinton", and the "white Clinton". The Clinton sands of Ohio are of early Silurian age and probably correlate with the middle and upper part of the Albion sandstone in the Niagara gorge section in western New York.The study of drillers' logs and examination of well samples show that of the three so-called Clinton sands, the red is most readily recognized. The "Packer shell", a probable equivalent of the Clinton formation of New York, and the Queenston shale - the drillers' "red Medina" - are also good units for short distance correlations.Each of the Clinton sands consists of a thin layer that contains long narrow lenses of thicker sand. Although the pattern of the trend of the lenses varies for each of the Clinton sands, the trend generally is westward across the mapped area. It is thought that these lenses represent deposition in channels, probably offshore from a large delta.Production of gas and oil from the so-called Clinton apparently is closely related to the sorting, porosity, and permeability of the sand. Stratigraphic traps contain the oil or gas, and structure appears to be relatively unimportant in localizing the accumulation of the petroleum.East of the mapped area, the Clinton sands have not produced oil or gas in commercial quantities. Several parts of the mapped area may hold additional amounts of gas.
Improved Measurement of Ejection Velocities From Craters Formed in Sand
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.
2014-01-01
A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.
An Embryonic Field of Study: The Aquatic Fate and Toxicity of Diluted Bitumen.
Alsaadi, Ftoon; Hodson, Peter V; Langlois, Valerie S
2018-01-01
Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil-gas condensates and other proprietary compounds. The proportion of diluent and the chemical composition of dilbit vary to meet seasonal transport requirements. While the toxic effects of a variety of crude and refined oils are well-studied, the toxicity of dilbit to aquatic species is less well known. This focused review summarizes dilbit production, chemistry, and the few data on toxicity to aquatic species. These data suggest that un-weathered dilbit would cause effects on fish equivalent to those of conventional oils, but its toxicity may be lower, depending on interactions among test conditions, the behavior of dilbit added to water and the species tested.
Characterization and Evaluation of Incorporation the Casting Sand in Mortar
NASA Astrophysics Data System (ADS)
Zanelato, E. B.; Azevedo, A. R. G.; Alexandre, J.; Xavier, C. G.; Monteiro, S. N.; Mendonça, T. A. O.
The process of casting metals and alloys occurs through the fusion of this metal and its subsequent casting into a mold with the dimensions and geometry close to the final piece. Most foundries use sand casting molds for making you. This work aims to characterize and evaluate the foundry sand to allow its use in segments of Civil Engineering, creating a viable destination for a residue is that discarded. The following characterization tests were performer: particle size, chemical analysis, X-ray Diffraction and Density Real grain. For the execution of the test specimens was used to 1:3 cement and sand, and the incorporation of 10% and 20% of the total mass replacing the sand, and the trace reference. The results show that best results in compression and bending tests were obtained by replacing 10 % of common sand for sand casting.
Analysis of Cameron Parish geopressured aquifer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, C.O. Jr.
1978-09-01
The Sweet Lake geopressured-geothermal prospect is located in northern Cameron Parish, Louisiana in T.12 S., R. 7 W. and T. 12 S., R. 8 W. approximately 10 to 15 miles south of Lake Charles. The region is characterized by Cenozoic sand and clay deposits of geosynclinal thickness and differentially uplifted salt structures. The primary geopressured-geothermal aquifer is the Miogyp sand of the Camerina zone (Upper Frio formation of Oligocene-Miocene age). The main prospect is located in a basin on the north flank of the Hackberry-Big Lake-Sweet Lake salt ridge. Interpretation of 27 miles of seismic lines and 17 deep wellmore » logs localizes the prospect in a basin with northwesterly dip in a graben between east--west faults converging eastward. Aquifer depth ranges from 14,000 to 18,000 feet. Net sand thickness exceeds 400 feet with 22% porosity. Temperatures range from 280/sup 0/F. (corrected) at 14,000 feet to 350/sup 0/F. at 18,000 feet. Geopressures occur below 9,000 feet with mud weight equivalents in the sand from 12 to 13 pounds per gallon. Net sand volume of one cubic mile is estimated in the area mapped.« less
22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL ...
22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL AND TEST LAB FOR UNIT NO. 2 GREY IRON DISAMATIC. SAND CASTING TECHNICIAN, ROY BATES, TESTS THE WEIGHT OF THE SAND, DRYS IT, AND WEIGHT IT AGAINST STANDARDS TO CALCULATE THE CORRECT MOISTURE NEEDED FOR DIFFERENT MOLDS. THE SAND MIX VARY WITH THE SIZE AND COMPOSITION OF THE CASTING. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand
NASA Astrophysics Data System (ADS)
Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul
2018-03-01
The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.
The equivalent depth of burst for impact cratering
NASA Technical Reports Server (NTRS)
Holsapple, K. A.
1980-01-01
The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.
NASA Astrophysics Data System (ADS)
Agus Nugroho, Soewignjo; Ika Putra, Agus; Yusa, Muhamad
2018-03-01
In recent years large earthquakes often occur on the island of Sumatra. There is a phenomenon of the damage occurred during the earthquake, one of the effects is a phenomenon of loss of soil strength due to vibration called liquefaction. Some cases of liquefaction occur in some areas in Aceh, Nias Island, Padang and Pariaman. Pekanbaru is located close to the fault area that causes the occurrence of earthquake wave propagation. Pekanbaru are also at risk for geotechnical problems because of earthquake such as liquefaction. Evaluation of liquefaction potential could using by in-situ test and by laboratory test. The laboratory test to evaluation liquefaction potential among which method of experiment shaking table. In this study, liquefaction phenomenon was conducted by creating a physical model of a laboratory scale using a one-way vibration machine, with a review of how big the influence of sand gradation, sand shaped and grain-size, and surface water level in the sand against liquefaction potential. Evaluate of liquefaction potential based on the surface reading of the soil movement, elapsed time for final settlement and an excess pore water dissipation (EPD) during testing. Based on the results of performed test, indicated that fine sand on fully saturated conditions have the potential of maximum settlement for 20.67% and maximum ascend of pore water for 46.67%. This result mean that poorly graded fine sand on fully saturated conditions has more liquefaction potential than medium sand, coarse sand, and well graded sand
NASA Astrophysics Data System (ADS)
Tudisco, E.; Hall, S. A.; Charalampidou, E. M.; Kardjilov, N.; Hilger, A.; Sone, H.
Recent studies have demonstrated that the combination of x-ray tomography during triaxial tests (;in-situ; tests) and 3D- volumetric Digital Image Correlation (3D-DIC) can provide important insight into the mechanical behaviour and deformation processes of granular materials such as sand. The application of these tools to investigate the mechanisms of failure in rocks is also of obvious interest. However, the relevant applied confining pressures for triaxial testing on rocks are higher than those on sands and therefore stronger pressure containment vessels, i.e., made of thick metal walls, are required. This makes in-situ x-ray imaging of rock deformation during triaxial tests a challenge. One possible solution to overcome this problem is to use neutrons, which should better penetrate the metal-walls of the pressure vessels. In this perspective, this work assesses the capability of neutron tomography with 3D-DIC to measure deformation fields in rock samples. Results from pre- and post-deformation neutron tomography of a Bentheim sandstone sample deformed ex-situ at 40 MPa show that clear images of the internal structure can be achieved and utilised for 3D-DIC analysis to reveal the details of the 3D strain field. From these results the character of the localised deformation in the study sample can thus be described. Furthermore, comparison with analyses based on equivalent x-ray tomography imaging of the same sample confirms the effectiveness of the method in relation to the more established x-ray based approach.
Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z
2007-06-01
This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.
Beach profile modification and sediment transport by ice: an overlooked process on Lake Michigan
Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.; Weber, W.S.; Hayden, E.C.
1993-01-01
Coastal lake ice includes a belt of mobile crash and slush ice and a stable nearshore-ice complex (NIC). Sediment concentrations indicate that the NIC and the belt of brash and slush contains 180 to 280 t (113 to 175m3) of sand per kilometer of coast. This static sediment load is roughly equivalent to the average amount of sand eroded from the bluffs and to the amount accumulating in the deep lake basin each year. Sediment is being rafted alongshore in the mobile brash and slush at rates of 10 to 30 cm/sec. -from Authors
NASA Astrophysics Data System (ADS)
Nirmala, D. B.; Raviraj, S.
2016-06-01
This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.
Effects of substrate mineralogy on the biodegradability of fuel components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apitz, S.E.; Meyers-Schulte, K.J.
1996-11-01
Experiments were carried out to determine the effects of mineralogy on the biodegradability of components of a whole fuel by a soil microbial consortium. Samples of quartz sand (Fischer Sea Sand) and illite clay (API 35) were spiked with marine diesel fuel, aged, slurried, and inoculated, and concentrations of fuel components were monitored over time. To help distinguish biotic from abiotic processes, identical samples were poisoned with mercuric chloride and were run in parallel. While there was a chromatographic and biomarker evidence of n-alkane biodegradation in the sand samples, illite samples showed no evidence of biogenic loss of aliphatic components.more » Polycyclic aromatic hydrocarbons, on the other hand, were lost equivalently on both minerals and in both cases were lost to a much greater extent than were total petroleum hydrocarbons (TPHs). These results suggest that under experimental conditions, illite inhibited the bioavailability of some TPH components to the soil microbial consortium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilodeau, W.L.; Keith, S.B.
1986-06-01
Thick sequences of Lower Jurassic rhyolitic and andesitic volcanic rocks in several mountain ranges of southern Arizona contain interbedded quartzarenites. Locally up to 250 m thick, these sandstone lenses, composed of well-sorted and well-rounded quartz grains, commonly contain large-scale cross-stratification and are considered to be eolian sand deposits. The eolian sands were blown up against the continental side of the Early Jurassic volcanic arc that trended northwest-southeast across the southwestern margin of the North American continent and/or plate at that time. Paleocurrent data suggest southerly eolian transport of the sands from the Colorado Plateau area. Correlation of these sandstones withmore » the Lower Jurassic Navaho and Aztec Sandstones is indicated by the paleocurrent data as well as radiometric dating of the interbedded volcanics. Eolian sand transport southward across central Arizona in the Early Jurassic indicates that the Mogollon highlands either did not then exist, or were merely low, discontinuous inselbergs on a broad back-arc ramp, more appropriately called the Mogollon slope.« less
Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Vermilion Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieland, D.R.; Meriwether, J.
1977-11-16
Two sand intervals, Sand No. 3 and Sand No. 1, were independently tested during our program. Sand No. 3 was the deepeer zone and was tested first. A gamma ray--neutron log of these zones, and the intervals perforated, are shown. The gamma ray log run in 1968 showed Sand No. 1 to be a fairly uniform section with few shale breaks and our original plans were to perforate the entire interval. After obtaining the more recent GR log big shale breaks were shown to exist throughout the zone, so a smaller interval was selected. A net sand thickness of 48more » ft. was used for Sand No. 3 and 30 ft. for Sand No. 1. There was no data available to indicate whether these zones became thicker or thinner away from the wellbore; therefore, these values were used as net thickness in the reservoir calculations. The procedure used to perforate the two sands were different. Both were perforated with 0.33 inch jets at a density of 4 shots per foot; however, Sand No. 3 was perforated in two runs using a stand-off gun, whereas Sand No. 1 was perforated in one run using a centralized gun with the jet density being 4 shots per foot but oriented alternately at 180 degrees.« less
White Sands Missile Range Overview & Introduction: Test Capabilities Briefing
2011-11-07
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Test and Evaluation Command (ATEC),White Sands Missile Range,White Sands Missile Range,NM,88002...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...solar radiation, icing, salt fog, etc. • Instrumented for system performance / diagnostics Climatics testing capabilities • Fixed and mobile test
Selected hydrogeologic and water-quality data from Jones Beach Island, Long Island, New York
Scorca, M.P.; Reilly, T.E.; Franke, O.L.
1995-01-01
A data-collection site was instrumented on Jones Beach Island, a barrier island south of Long Island, N.Y., to study local freshwater/ saltwater relations in the shallow ground-water system. A geologic test boring revealed about 88 feet of well-sorted glacial outwash sand above about 15 feet of Gardiners Clay, which directly overlies silty sand of the Magothy Formation. Tidal effects on water levels in Great South Bay, the upper glacial aquifer, and the Magothy aquifer were observed and quantified with a tidal gage in the bay and analog water-level recorders in the wells.Chloride concentrations in the upper Magothy aquifer were higher than expected--about 270 mg/L (milligrams per liter), and those in the upper glacial aquifer were 17,000 to 19,000 mg/L, about the same as in Great South Bay. Estimates of pressure and freshwater equivalent heads indicate that, at the data-collection site, freshwater is discharging upward from the Magothy aquifer into the salty upper glacial aquifer, but dilution by this freshwater is undetectable. The reason for the elevated chloride concentration in the Magothy aquifer cannot be determined from available hydrogeologic information.
Risk factors for faecal sand excretion in Icelandic horses.
Husted, L; Andersen, M S; Borggaard, O K; Houe, H; Olsen, S N
2005-07-01
Sandy soil is often mentioned as a risk factor in the development of sand-related gastrointestinal disease (SGID) in the horse. There are other variables, but few studies confirm any of these. To investigate soil type, pasture quality, feeding practice in the paddock, age, sex and body condition score as risk factors for sand intake in the horse. Faeces were collected from 211 Icelandic horses on 19 different studs in Denmark together with soil samples and other potential risk factors. Sand content in faeces determined by a sand sedimentation test was interpreted as evidence of sand intake. Soil types were identified by soil analysis and significance of the data was tested using logistic analysis. Of horses included in the study, 56.4% showed sand in the faeces and 5.7% had more than 5 mm sand as quantified by the rectal sleeve sedimentation test. Soil type had no significant effect when tested as main effect, but there was interaction between soil type and pasture quality. Significant interactions were also found between paddock feeding practice and pasture quality. To evaluate the risk of sand intake it is important to consider 3 variables: soil type, pasture quality and feeding practice. Pasture quality was identified as a risk factor of both short and long grass in combination with sandy soil, while clay soil had the lowest risk in these combinations. Feeding practice in the paddock revealed feeding directly on the ground to be a risk factor when there was short (1-5 cm) or no grass. Also, no feeding outdoors increased the risk on pastures with short grass, while this had no effect in paddocks with no grass. More than 50% of all horses investigated in this study had sand in the faeces. The identification of risk factors is an important step towards prevention of SGID. Further research is necessary to determine why some horses exhibit more than 5 mm sand in the sedimentation test and whether this is correlated with geophagic behaviour.
Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing
NASA Technical Reports Server (NTRS)
Greene, Nathanael; Saulsberry, Regor; Thesken, John; Phoenix, Leigh
2006-01-01
This viewgraph presentation examines the White Sands Test Facility testing of Composite overwrapped pressure vessel (COPV). A COPV is typically a metallic liner overwrapped with a fiber epoxy matrix. There is a weight advantage over the traditional all metal design. The presentation shows pictures of the facilities at White Sands, and then examines some of the testing performed. The tests include fluids compatibility, and Kevlar COPV. Data for the Kevlar tests are given, and an analysis is reviewed. There is also a comparison between Carbon COPVs and the Kevlar COPVs.
NASA Astrophysics Data System (ADS)
Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng
2016-06-01
The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.
NASA Astrophysics Data System (ADS)
Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.
2018-04-01
The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.
Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.
2009-01-01
For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly <0.025 μg/L in winter and 0.030 μg/L in summer, except near oil sands upgrading facilities and tailings ponds in winter (0.031–0.083 μg/L) and downstream of new development in summer (0.063–0.135 μg/L). In the Athabasca and its tributaries, development within the past 2 years was related to elevated dissolved PAC concentrations that were likely toxic to fish embryos. In melted snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H.; Haas, J.
2001-01-01
One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.
Laboratory test on maximum and minimum void ratio of tropical sand matrix soils
NASA Astrophysics Data System (ADS)
Othman, B. A.; Marto, A.
2018-04-01
Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.
Boehm, A B; Griffith, J; McGee, C; Edge, T A; Solo-Gabriele, H M; Whitman, R; Cao, Y; Getrich, M; Jay, J A; Ferguson, D; Goodwin, K D; Lee, C M; Madison, M; Weisberg, S B
2009-11-01
The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique. Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts. The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types. Method standardization will improve the understanding of how sands affect surface water quality.
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
38. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST ...
37. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF TEST BAY AND EXHAUST PIT, LOOKING SOUTHWEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Norring, M; Manninen, E; de Passillé, A M; Rushen, J; Munksgaard, L; Saloniemi, H
2008-02-01
This experiment compared the effects of sand and straw bedding in free stalls on resting time, cleanliness, hock injuries, and hoof health of dairy cows and tested whether cow preferences for a bedding material depended on the familiarity with the material. A total of 52 dairy cows were kept either on straw bedded concrete stalls or sand stalls for at least 21 wk. The lying behavior was observed, and hock lesions, hoof health, and cleanliness of the cows and stalls were measured. A 5-d preference test between sand and straw stalls was conducted at the end of the experiment. The total daily duration of lying was longer for cows on straw bedding than on sand bedding (straw 749 +/- 16 vs. sand 678 +/- 19 min). During the preference test, cows that had been kept on straw bedding preferred lying in straw stalls [straw 218.7 (133.4 to 239.7) vs. sand 9.0 min (2.8 to 44.8)]; however, cows that had been kept on sand showed no preference [straw 101.3 (51.7 to 205.9) vs. sand 94.3 min (54.1 to 156.1, median and interquartile range)]. Although there were no differences in the dirtiness of stalls, the cows using straw stalls were dirtier than cows using sand stalls [straw 6.04 (5.39 to 6.28) vs. sand 4.19 (3.62 to 5.16)]. At the end of experiment the severity of hock lesions was lower for cows on sand than for cows on straw [sand 0.5 (0.0 to 1.0) vs. straw 1.0 (1.0 to 2.0)]. The improvement in overall hoof health over the observation period was greater for cows kept on sand compared with cows kept on straw [sand -2.00 (-3.75 to -0.25) vs. straw 0.00 (-2.00 to 2.00)]. Straw bedding increased the time that cows spend lying, and cows preferred straw stalls to sand stalls. However, previous experience with sand reduces avoidance of sand stalls. Sand stalls were advantageous for cow cleanliness and health; hock lesions and claw diseases healed more quickly for cows using sand stalls compared with straw.
White Sands, Carrizozo Lava Beds, NM
NASA Technical Reports Server (NTRS)
1973-01-01
A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.
ICAM Manufacturing Cost/Design Guide. Volume 3. Airframes. User’s Manual.
1983-01-01
COST-DRIVER EFFECT 17 -413H Investment Cast 17 - 4PH Investment Cast 2 2 - U) *oo 0±0.01 ±0.02 ±0.03 0±0.01 ±0.02 ±0.03 356iA356 Aluminum 356/A356...B +20% CAST B +50% 17 - 4PH CRES DORC BASE INVESTMENT D OR C WITH 10% B +20% CAST D OR C WITH 50% B +30% B +60% NOTE: X-Ray Grade A Is an Impractical...per QQ-A-601 (sand castings) - 357 per MIL-A-21180 (sand castings) a Steel - 17 - 4PH CRES per AMS-5342, 5343, and 5344 or * company equivalent
DOT National Transportation Integrated Search
2008-12-01
A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...
White Sands, Carrizozo Lava Beds, NM
1982-03-30
STS003-10-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA
A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope
NASA Astrophysics Data System (ADS)
Hsu, H.-H.
2012-04-01
The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.
Full scale load testing of sand-jacks.
DOT National Transportation Integrated Search
2006-06-01
A sand-jack is a sand filled container used as a component of cast-in-place bridge false-work. The sand filler facilitates the removal of the false-work by allowing slow and controlled lowering of the bracing that has become wedged beneath the new br...
Boehm, A.B.; Griffith, J.; McGee, C.; Edge, T.A.; Solo-Gabriele, H. M.; Whitman, R.; Cao, Y.; Getrich, M.; Jay, J.A.; Ferguson, D.; Goodwin, K.D.; Lee, C.M.; Madison, M.; Weisberg, S.B.
2009-01-01
Aims: The absence of standardized methods for quantifying faecal indicator bacteria (FIB) in sand hinders comparison of results across studies. The purpose of the study was to compare methods for extraction of faecal bacteria from sands and recommend a standardized extraction technique. Methods and Results: Twenty-two methods of extracting enterococci and Escherichia coli from sand were evaluated, including multiple permutations of hand shaking, mechanical shaking, blending, sonication, number of rinses, settling time, eluant-to-sand ratio, eluant composition, prefiltration and type of decantation. Tests were performed on sands from California, Florida and Lake Michigan. Most extraction parameters did not significantly affect bacterial enumeration. anova revealed significant effects of eluant composition and blending; with both sodium metaphosphate buffer and blending producing reduced counts. Conclusions: The simplest extraction method that produced the highest FIB recoveries consisted of 2 min of hand shaking in phosphate-buffered saline or deionized water, a 30-s settling time, one-rinse step and a 10 : 1 eluant volume to sand weight ratio. This result was consistent across the sand compositions tested in this study but could vary for other sand types. Significance and Impact of the Study: Method standardization will improve the understanding of how sands affect surface water quality. ?? 2009 The Society for Applied Microbiology.
Liverseed, David R.
2013-01-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674
[Environmental toxicity of waste foundry sand].
Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying
2013-03-01
The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed.
Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C
2013-03-01
Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.
Study on shear properties of coral sand under cyclic simple shear condition
NASA Astrophysics Data System (ADS)
Ji, Wendong; Zhang, Yuting; Jin, Yafei
2018-05-01
In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.
Critical state of sand matrix soils.
Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong
2014-01-01
The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.
Critical State of Sand Matrix Soils
Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong
2014-01-01
The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Batiste, Susan N.; Sture, Stein; Curreri, Peter A. (Technical Monitor)
2002-01-01
A comprehensive experimental investigation was conducted to investigate the effects of loading condition and confining pressure on strength properties and instability phenomena in sands. A uniform sub-rounded to rounded natural silica sand known as F-75 Ottawa sand was used in the investigation. The results of a series on Conventional Triaxial Compression (CTC) experiments tested under very low confining pressures (0.05 - 1.30) kPa tested in a Microgravity environment abroad the NASA Space Shuttle are presented in addition to the results similar specimens tested in terrestrial laboratory to investigate the effect of confining pressure on the constitutive behavior of sands. The behavior of the CTC experiments is compared with the results of Plane Strain (PS) experiments. Computed tomography and other digital imaging techniques were used to study the development and evolution of shear bands.
Brown, Henry; Dawson, Brian; Binnie, Martyn J; Pinnington, Hugh; Sim, Marc; Clemons, Tristan D; Peeling, Peter
2017-07-01
This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83-88% of HR maximum. Venous blood samples were collected pre-, post- and 24 h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24 h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p = .008) but not on sand (p = .611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p = .026). No differences in CRP were reported between surfaces (p > .05). The HR, RPE and DOMS scores were not significantly different between conditions (p > .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.
Seismic expression of Red Fork channels in Major and Kay Counties, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanoch, C.A.
1987-08-01
This paper investigates the application of regional seismic to exploration and development Red Fork sands of the Cherokee Group, in Major and Kay Counties, Oklahoma. A computer-aided exploration system (CAEX) was used to justify the subtle seismic expressions with the geological interpretation. Modeling shows that the low-velocity shales are the anomalous rock in the Cherokee package, which is most represented by siltstone and thin sands. Because the Red Fork channel sands were incised into or deposited with laterally time-equivalent siltstones, no strong reflection coefficient is associated with the top of the sands. The objective sands become a seismic anomaly onlymore » when they cut into and replace a low-velocity shale. This knowledge allows mapping the channel thickness by interpreting the shale thickness from seismic data. A group shoot line in Major County, Oklahoma, has been tied to the geologic control, and the channel thicknesses have been interpreted assuming a detectable vertical resolution of 10 ft. A personal computer-based geophysical work station is used to construct velocity logs representative of the geology to produce forward-modeled synthetic seismic sections, and to display, in color, the seismic trace attributes. These synthetic sections are used as tools to compare with and interpret the seismic line and to evaluate the interpretative value of lowest cost, lesser quality data versus reprocessing or new data acquisition.« less
Thin thermoluminescent dosimeter and method of making same
Simons, Gale G.; DeBey, Timothy M.
1987-01-01
An improved thermoluminescent ionizing radiation dosimeter of solid, extremely thin construction for more accurate low energy beta dosimetry is provided, along with a method of fabricating the dosimeter. In preferred forms, the dosimeter is a composite including a backing support (which may be tissue equivalent) and a self-sustaining body of solid thermoluminescent material such as LiF having a thickness of less than about 0.25 millimeters and a volume of at least about 0.0125 mm.sup.3. In preferred fabrication procedures, an initially thick (e.g., 0.89 millimeters) TLD body is wet sanded using 600 grit or less sandpaper to a thickness of less than about 0.25 millimeters, followed by adhesively attaching the sanded body to an appropriate backing. The sanding procedure permits routine production of extremely thin (about 0.05 millimeters) TLD bodies, and moreover serves to significantly reduce non-radiation-induced thermoluminescence. The composite dosimeters are rugged in use and can be subjected to annealing temperatures for increased accuracy.
Mechanical and Physical Properties of ASTM C33 Sand
2008-02-01
ERDC/GSL TR-08-2 7 Grain-size Distribution (1) (ASTM D 422) 1 test run on total sand sample Proctor Density Curves (2) (ASTM D 698 and D... Proctor (Figure 4). Because of the noncohesive nature of the SP material, a series of relative density tests measuring both minimum and maximum... density tests were conducted with moisture added to the sand. A summary of the minimum and maximum densities is given in Table 2. During Proctor
Good Laboratory Practices of Materials Testing at NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, James H.
2005-01-01
An approach to good laboratory practices of materials testing at NASA White Sands Test Facility is presented. The contents include: 1) Current approach; 2) Data analysis; and 3) Improvements sought by WSTF to enhance the diagnostic capability of existing methods.
Design and initial testing of a piezoelectric sensor to quantify aeolian sand transport
NASA Astrophysics Data System (ADS)
Raygosa-Barahona, Ruben; Ruiz-Martinez, Gabriel; Mariño-Tapia, Ismael; Heyser-Ojeda, Emilio
2016-09-01
This paper describes a sensor for measuring the mass flux of aeolian sand transport based on a low-cost piezo-electric transducer. The device is able to measure time series of aeolian sand transport. Maximum fluxes of 27 mg per second can be achieved. The design includes a sand trap, an electronic amplifier circuit and an embedded system for data collection. A field test was performed, where the basis for signal interpretation and the corresponding measurements of aeolian sand transport are presented. The sensor successfully measures fluxes driven by sea breezes of 10 ms-1, showing the importance of this process for dune-building in the region.
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
34. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND TOP OF TEST BAY, LOOKING NORTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE ...
33. 100,000 POUND STATIC TEST FACILITY: GENERAL VIEW OF BLOCKHOUSE AND UPPER LEVEL OF TEST BAY, LOOKING NORTH - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
NASA Astrophysics Data System (ADS)
Shao, Hao; Li, Yan; Li, Li
2011-06-01
Above sand waves on the seafloor, surface short waves, which are responsible for the radiance distribution in remote sensing imagery, are modulated gradually by the submarine topography. The relaxation rate μr characterizes the rate at which the short waves reach their saturation range after being disturbed. It is a key parameter in the weak hydrodynamic interaction theory and is also a most important parameter in the imaging mechanism used for mapping submarine bottom topography. In this study, a robust expression containing intensity and phase (advection effect) modulations of the perturbed action spectrum of short waves was deduced, by using the first-order weak hydrodynamic interaction theory. On the basis of the phase modulation, a method was developed to determine the relaxation rate in the Sun glitter imaging mechanism. The relaxation rates were estimated using in situ data measured on a cruise over the sand waves of the Taiwan Banks, a sea area between the East China Sea and the South China Sea, on 28-29 August 2006. Results showed that, under a wind speed of 5.0 m s-1, the relaxation rate of short waves was about 0.055 s-1 in response to current variations and about 0.025 s-1 equivalently in response to sea bottom topographic variations. The former value could be applied to interpret the amplitude of submarine topography by using satellite imagery, while the latter one (equivalent relaxation rate μ'r) could help to more accurately calibrate the spatial position of the retrieved sea bottom topography.
Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline
Zabawa, C.F.; Kerhin, R.T.; Bayley, S.
1981-01-01
A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.
Penetration tests to study the mechanical tribological properties of chisel type knife
NASA Astrophysics Data System (ADS)
Vlăduţoiu, L.; Chişiu, G.; Andrei, T.; Predescu, A.; Muraru, C.; Vlăduţ, V.
2017-02-01
The goal of this study was to analyze the behaviour of chisel knife type penetration in a certain type of sand. A series of penetration tests were carried out with chisel knife type, the answer to penetration depending mainly on nature, shape, size of knife and operating parameters such as speed, depth and working conditions. Tests were conducted in work conditions with wet sand and dry sand and determined force of resistance to penetration of the chisel knife type to a certain depth.
Supercritical-Fluid Extraction of Oil From Tar Sands
NASA Technical Reports Server (NTRS)
Compton, L. E.
1982-01-01
New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.
Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Dan
The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened formore » direct hydrocarbon indicators for gas hydrate saturated sands.« less
Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure
NASA Astrophysics Data System (ADS)
Talib, Z. A.
2018-04-01
The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, E.W.
Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less
White Sands, Carrizozo Lava Beds, NM
1973-06-22
SL2-04-288 (22 June 1973) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast New Mexico (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Photo credit: NASA
Behavior of plastic sand confinement grids
DOT National Transportation Integrated Search
1986-01-01
The concept of improving the load carrying ability of unbound aggregates, particularly sand, by lateral confinement has been investigated for some time. Extensive full-scale testing of the trafficability of confined beach sand pavement layers has bee...
Mika, K B; Imamura, G; Chang, C; Conway, V; Fernandez, G; Griffith, J F; Kampalath, R A; Lee, C M; Lin, C-C; Moreno, R; Thompson, S; Whitman, R L; Jay, J A
2009-07-01
Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0.23 and -1.02 per day, and for enterococci between -0.5 and -1.0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent.
New Titan Saltation Threshold Experiments: Investigating Current and Past Climates
NASA Astrophysics Data System (ADS)
Bridges, N.; Burr, D. M.; Marshall, J.; Smith, J. K.; Emery, J. P.; Horst, S. M.; Nield, E.; Yu, X.
2015-12-01
Titan exhibits aeolian sand dunes that cover ~20% of its surface, attesting to significant sediment transport by the wind. Recent experiments in the Titan Wind Tunnel (TWT) at NASA Ames Research Center [1,2] found that the threshold friction speed needed to detach Titanian "sand" is about 50% higher than previous estimates based on theory alone [3], a result that might be explained by the low ratio of particle to fluid density on the body [1]. Following the successful completion of the initial Titan threshold tests, we are conducting new experiments that expand the pressure range above and below current Titan values. The basic experimental techniques are described in [1], with minor updates to the instrumentation as described in [2]. To reproduce the kinematic viscosity and particle friction Reynolds number equivalent to that expected for Titan's nitrogen atmosphere at 1.4 bars and 94 K requires that TWT be pressurized to 12.5 bars for air at 293K. In addition to running experiments at this pressure to reproduce previous results [1] and investigate low density (high density ratio) materials, TWT pressures of 3 and 8 bars are in the experimental matrix to understand threshold under past Titan conditions when the atmospheric pressure may have been lower [4]. Higher pressures, at 15 and 20 bars in TWT, are also being run to understand the putative effects of low density ratio conditions. Our experimental matrix for this follow-on work uses some of the same materials as previously used, including walnut shells, basalt, quartz, glass spheres, and various low density materials to better simulate the gravity-equivalent weight of Titan sand. For these experiments, the TWT is now equipped with a new high pressure Tavis transducer with sufficient sensitivity to measure freestream speeds of less than 0.5 m s-1 at 12.5 bars. New techniques include video documentation of the experiments. We are also investigating methods of measuring humidity of the wind tunnel environment and electrostatic forces to assess their effect on threshold. [1] Burr, D.M. et al. [2015], Nature, 517, 60-67. [2] Burr, D.M. et al. [2015], Aeolian Res., in press [3] Iversen, J.D. and B.R. White (1982), Sedimentology, 29, 111-119. [4] Charnay, B. et al. [2014], Icarus, 241, 269-279.
NASA Johnson Space Center: White Sands Test Facility
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Kowalski, Robert R.
2011-01-01
This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,
A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation
NASA Astrophysics Data System (ADS)
Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.
2017-02-01
Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.
An experimental study on dynamic response for MICP strengthening liquefiable sands
NASA Astrophysics Data System (ADS)
Han, Zhiguang; Cheng, Xiaohui; Ma, Qiang
2016-12-01
The technology of bio-grouting is a new technique for soft ground improvement. Many researchers have carried out a large number of experiments and study on this topic. However, few studies have been carried out on the dynamic response of solidified sand samples, such reducing liquefaction in sand. To study this characteristic of microbial-strengthened liquefiable sandy foundation, a microorganism formula and grouting scheme is applied. After grouting, the solidified samples are tested via dynamic triaxial testing to examine the cyclic performance of solidified sand samples. The results indicate that the solidified sand samples with various strengths can be obtained to meet different engineering requirements, the use of bacteria solution and nutritive salt is reduced, and solidified time is shortened to 1-2 days. Most importantly, in the study of the dynamic response, it is found that the MICP grouting scheme is effective in improving liquefiable sand characteristic, such as liquefaction resistance.
40. 500,000 POUND STATIC TEST FACILITY: DISTANT VIEW WITH BLOCKHOUSE ...
40. 500,000 POUND STATIC TEST FACILITY: DISTANT VIEW WITH BLOCKHOUSE IN FOREGROUND, LOOKING SOUTHEAST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Testing and evaluation of recovered traction sanding material.
DOT National Transportation Integrated Search
2013-04-01
The Montana Department of Transportation (MDT) is searching for a solution to the accumulation of traction sand that is applied to Montana highways every winter. An analysis of reuse and recycle options for salvaged traction sand was conducted using ...
Prediction of Liquefaction Potential of Dredge Fill Sand by DCP and Dynamic Probing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Md. Jahangir; Azad, Abul Kalam; Rahman, Ziaur
2008-07-08
From many research it is proved that liquefaction potential of sand is function of mainly relative density and confining pressure. During routine site investigations, high-quality sampling and laboratory testing of sands are not feasible because of inevitable sample disturbance effects and budgetary constraints. On the other hand quality control of sand fill can be done by determining in situ density of sand in layer by layer which is expensive and time consuming. In this paper TRL DCP (Transportation Research Laboratory Dynamic Cone Penetration) and DPL (Dynamic Probing Light) are calibrated to predict the relative density of sand deposit. For thismore » purpose sand of known relative density is prepared in a calibration chamber which is a mild steel cylinder with diameter 0.5 m and height 1.0 m. Relative density of sand is varied by controlling height of fall and diameter of hole of sand discharge bowl. After filling, every time DPL and DCP tests are performed and for every blow the penetration of cone is recorded. N10 is then calculated from penetration records. Thus a database is compiled where N10 and relative densities are known. A correlation is made between N{sub 10} and relative density for two types of sand. A good correlation of N{sub 10} and relative density is found.« less
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
NASA Astrophysics Data System (ADS)
Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent
2017-12-01
A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).
The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space
NASA Astrophysics Data System (ADS)
Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.
2018-02-01
Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
Carbon turnover in an agricultural sub-soil
NASA Astrophysics Data System (ADS)
Collins, Chris
2010-05-01
Maize was added to a grassland subsoil (10 - 50 cm) and the fate of the carbon from the plant material followed for 520 days with nine sampling points over an exponential time series. The carbon and delta 13C signature in five soil fractions: POM (particulate organic matter), fine sand, coarse silt, fine silt and clay were monitored. Over the course of the experiment there was a 57% decline in the total C of the soil principally from the particulate organic matter which contained the added maize equivalent to a half life of 533 days. A single exponential was the best fit to the data indicating that the slower turnover pools proposed in models such as Roth C were not observed in the time course of this experiment. Carbon rapidly entered the fine sand and coarse silt fractions, it then passed into the clay fraction. The fine silt fraction was not significantly changed. The maize carbon showed a delay to this pattern, but there was accumulation of maize carbon in the fine sand and fine silt fractions. The largest increases in % carbon as a consequence of the introduction of the maize carbon were of the following order clay > fine sand > coarse silt >fine silt. The results suggest that all these fractions are actively being turnover in this soil and that carbon is most protected in the fine sand and silt fractions, not clay as has been observed by other workers. The results are also discussed in the wider contexts of representative pools for modeling.
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
Microbial strengthening of loose sand.
Banagan, B L; Wertheim, B M; Roth, M J S; Caslake, L F
2010-08-01
To test whether the addition of Flavobacterium johnsoniae could increase the strength of saturated Ottawa 30 sand. A box model was built that simulates groundwater-like flow through a main sand compartment. Strength tests were performed at seven locations and at two depths, 10.8 and 20.3 cm below the top of the tank, using a vane shear device before and after the addition of bacteria. After the addition of Fl. johnsoniae, sand samples were obtained from multiple sampling ports on the vertical sides of the box model. The presence of a bacterial biofilm was confirmed by staining these sand samples with SYTO-9 and Alexa Fluor 633 and viewing with a confocal microscope. The average shear strength increases after the addition of Fl. johnsoniae were 15.2-87.5%, depending on the experimental conditions. Flavobacterium johnsoniae caused a statistically significant increase in the strength of saturated Ottawa 30 sand. Biofilm-forming bacteria can increase the shear strength of saturated sand. The addition of biofilm-forming bacteria to a building site may be an alternate method to mitigate the effects of liquefaction.
Liquefaction sites, Imperial Valley, California.
Youd, T.L.; Bennett, M.J.
1983-01-01
Sands that did and did not liquefy at two sites during the 1979 Imperial Valley, Calif., earthquake (ML = 6.6) are identified and their properties evaluated. SPT tests were used to evaluate liquefaction susceptibility. Loose fine sands in an abandoned channel liquefied and produced sand boils, ground fissures, and a lateral spread at the Heber Road sites. Evidence of liquefaction was not observed over moderately dense over-bank sand east of the channel nor over dense point-bar sand to the west. -from ASCE Publications Information
Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.
2009-01-01
Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.
Sand effects on thermal barrier coatings for gas turbine engines
NASA Astrophysics Data System (ADS)
Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin
Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.
NASA Astrophysics Data System (ADS)
Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.
2012-09-01
Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat ( Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly ( p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.
Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Daniel; Haneberg, William C.
Principal component analysis of spectral decomposition results combined with amplitude and frequency seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling LWD data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio Pleistocene sandy channel deposits in the deepwater eastern Gulf ofmore » Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.« less
51. 500,000 POUND STATIC TEST FACILITY: CLOSEUP VIEW FROM EAST ...
51. 500,000 POUND STATIC TEST FACILITY: CLOSE-UP VIEW FROM EAST SHOWING MOVABLE OBSERVATION MIRRORS WITH TRACKS - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
NASA Astrophysics Data System (ADS)
Aloui, Tahar; Ounis, Anouar; Dasgupta, Prabir; Lourimi, Wijden; Chaabani, Fredj
2018-07-01
The lithofacies analysis of the Sidi Aïch Formation and equivalents in Tunisia and adjacent parts of Algeria was carried out using probabilistic and quantitative approach as Discrete Time Markov Chain (DTMC) and entropy functions coupled with detailed sedimentary analyses with a view to decipher the Late Barremian depositional history. The Late Barremian successions exhibit asymmetric, fining-upward and retrograding to aggrading cycles in both outcrop and borehole data. Complete cycles typically start with intraformational conglomerates or trough and planar cross-stratified coarse sands, overlain by fine-grained sands, which are succeeded, in turn, by laminated sands, silts, clays and carbonates, and ends with paleosoils. Such ideal succession of lithofacies is observed at Zemlet el Baidha Hill in Tunisia and OuM.1 borehole in northeast Algeria marked by high values of entropy. The entropy analysis indicates deposition in a neritic environment with interplay of fluvial (and rarely alluvial) processes. The facies associations observed at Zemlet el Baidha Hill document evidences of wave and tide dominated coast with complex-gradient of environments that graded from neritic (upper to lower shoreface) to coastal settings (lagoons, embayments, restricted bays, mires, swamps etc.). The architecture of lithofacies appears to have been controlled by autocyclic processes (effects of local tectonics, basin bathymetry, lateral redistribution of deposits by longshore waves and tide currents) and allocyclic processes (global decrease of relative sea-level and sediments supply). Due to large salinity variations, wave action, ephemeral and local aspects of these marginal environments, the ichnodiversity was often limited in time and space, and inhibited the development of fossils during the onset of deposition of Sidi Aïch Formation and its equivalents.
Microtox(TM) characterization of foundry sand residuals
Bastian, K.C.; Alleman, J.E.
1998-01-01
Although foundry residuals, consisting mostly of waste Sands, represent a potentially attractive, high-volume resource for beneficial reuse applications (e.g. highway embankment construction), prospective end users are understandably concerned about unforeseen liabilities stemming from the use of these residuals. This paper, therefore, focuses on the innovative use of a microbial bioassay as a means of developing a characterization of environmental suitability extending beyond the analytical coverage already provided by mandated chemical-specific tests (i.e., TCLP, etc.). Microtox(TM) bioassays were conducted on leachates derived from residuals obtained at a wide range of facilities, including: 11 gray and ductile iron foundries plus one each steel and aluminum foundries. In addition, virgin sand samples were used to establish a relative 'natural' benchmark against which the waste foundry sands could then be compared in terms of their apparent quality. These bioassay tests were able to effectively 'fingerprint' those residuals whose bioassay behavior was comparable to that of virgin materials. In fact, the majority of gray and ductile iron foundry residuals tested during this reported study elicited Microtox(TM) response levels which fell within or below the virgin sand response range, consequently providing another quantifiable layer of Support for this industry's claim that their sands are 'cleaner than dirt.' However, negative Microtox(TM) responses beyond that of the virgin sands were observed with a number of foundry samples (i.e. four of the 11 gray or ductile iron sands plus both non-iron sands). Therefore, the latter results would suggest that these latter residuals be excluded from beneficial reuse for the immediate future, at least until the cause and nature of this negative response has been further identified.
Laboratory studies of dune sand for the use of construction industry in Sri Lanka
NASA Astrophysics Data System (ADS)
de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka
2015-04-01
With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing percentage is 50%. The best water cement ratio for mix proportion is 0.45. It was observed that the available amount of dune sand can be extracted to meet the demand for sand in construction industry. However, the extraction of dune sand from the areas close to the sea will cause several social, environmental and legal problems. Therefore sand mining from dunes must be commenced after making a detailed Environmental Impact Assessment.
Su, Peixi; Zhao, Aifen; Du, Mingwu
2004-09-01
During 2001-2002, the effects of different cultivation modes including winter irrigation and zero tillage, crop-grass intercropping, and early spring film mulching on sand entrainment, wind velocity gradient and soil moisture conservation were studied in the middle reaches of the Heihe River in the Hexi Corridor region. The results showed that all these modes could reduce soil wind erosion and halt sand entrainment to different degrees. Compared with the bare fields exposed by spring plowing, early spring film mulching could increase soil moisture storage by 35.6%. At present, spring plowing and sowing was a main factor responsible to the occurrence of sand storms and the increase in suspended dust content. Farmlands in the upper and middle reaches of the Heihe River generally produced a dust transport up to 4.8-6.0 million tons per year, which was higher than that of sandy desert in the same region. In the Hexi Corridor region, the suspended dust amount produced from 1 hm2 farmland was equivalent to that of 1.5 hm2 desert.
Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA
Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.
2016-01-01
To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.
Observations of transport of bacterial-like microspheres through beach sand
NASA Astrophysics Data System (ADS)
Gast, Rebecca J.; Elgar, Steve; Raubenheimer, Britt
2015-04-01
Often, there is an order of magnitude more fecal indicator bacteria (enterococci) in beach sand than in nearby water. Consequently, sand is considered a reservoir for these bacteria, potentially contributing to poor water quality, and raising questions regarding the human health risks associated with sand exposure. An integral aspect of the distribution and persistence of sand-associated enterococci is the transport of bacteria introduced into the beach environment. Here, plastic microspheres are used as a proxy to examine the wave-induced movement of bacterial-like particles through sand on an ocean beach. Laboratory tests suggest microspheres and bacteria move similarly through sand columns, and have qualitatively similar short-term adsorption-to-sand behavior. Microspheres buried ~0.05 m below the sand surface on an ocean beach moved rapidly [O(10-3) m/s] away from their initial location, both vertically into the ground water below the sand and horizontally seaward within the sediment matrix in response to waves running up the beach face and percolating through the sand.
Li, Zhihui; Chen, Lincoln; Li, Mingqiang; Cohen, Jessica
2018-05-01
While there is evidence that sand and dust storms can have adverse health effects, the effects of such storms on children's cognitive function has not been explored. We examined whether prenatal exposure to sand and dust storms affects children's cognitive function and, if so, whether harmful effects of sand and dust storms vary by the trimester of exposure. This study used nationally representative data from the China Family Panel Studies between 2010 and 2014 and data on sand and dust storms from the national Sand and Dust Weather Almanac. We selected four indicators of children's cognitive function: mathematics test scores, word-recognition test scores, the age the child began speaking in whole sentences, and the age the child began counting from one to ten. Since the annual incidence of sand and dust storms is highly variable and is largely unpredictable, we used a region-and-year fixed-effect model to compare the cognitive function of children born in the same region and year but with varying amounts of prenatal exposure to sand and dust storms. We also investigated whether the effect of sand and dust storms varied by the specific month of prenatal exposure. We included 1236 observations for the analysis of mathematics and word-recognition test scores, 2693 observations in the analysis of the age the child began speaking in whole sentences, and 1951 observations for the analysis of the age the child began counting from one to ten. Every 10 additional days of prenatal exposure to sand and dust storms was associated with a 0·20 SD (95% CI 0·06 to 0·35, p=0·009) reduction in word test scores, 0·04 (-0·00 to 0·09, p=0·089) additional months to begin speaking in sentences, and 0·14 (0·03 to 0·25, p=0·021) additional months to begin counting, but was not significantly associated with mathematics test scores (reduction of 0·02 SD, -0·19 to 0·15). 10 additional days of prenatal exposure to sand and dust storms in the seventh gestational month was associated with a 0·18 SD (0·10 to 0·25) reduction in mathematics test scores, a 0·34 SD (0·18 to 0·50) reduction in word test scores, an additional 0·33 months (0·07 to 0·59) to begin speaking in sentences, and an additional 0·20 months (0·04 to 0·35) to begin counting. Our results suggest that protecting pregnant women from the effects of sand and dust storms in the critical periods of fetal brain development could generate benefits for the cognitive function of the next generation. None. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Mansouri, Amir
The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in gas-sand, water-sand and viscous liquid-sand flows with high accuracy. Furthermore, in order to gain a better understanding of the erosion mechanism, a comprehensive experimental study was conducted to investigate the important factors influencing the erosion rate in gas-sand and slurry flows. The wear pattern and total erosion ratio were measured in a direct impingement jet geometry (for both dry impact and submerged impingement jets). The effects of fluid viscosity, abrasive particle size, particle impact speed, jet inclination angle, standoff distance, sand concentration, and exposure time were investigated. Also, the eroded samples were studied with Scanning Electron Microscopy (SEM) to understand the erosion micro-structure. Also, the sand particle impact speed and angle were measured using a Particle Image Velocimetry (PIV) system. The measurements were conducted in two types of erosion testers (gas-solid and liquid-solid impinging jets). The Particle Tracking Velocimetry (PTV) technique was utilized which is capable of tracking individual small particles. Moreover, CFD modeling was performed to predict the particle impact data. Very good agreement between the CFD results and PTV measurements was observed.
Experimental investigation on high performance RC column with manufactured sand and silica fume
NASA Astrophysics Data System (ADS)
Shanmuga Priya, T.
2017-11-01
In recent years, the use High Performance Concrete (HPC) has increased in construction industry. The ingredients of HPC depend on the availability and characteristics of suitable alternative materials. Those alternative materials are silica fume and manufactured sand, a by products from ferro silicon and quarry industries respectively. HPC made with silica fume as partial replacement of cement and manufactured sand as replacement of natural sand is considered as sustainable high performance concrete. In this present study the concrete was designed to get target strength of 60 MPa as per guide lines given by ACI 211- 4R (2008). The laboratory study was carried out experimentally to analyse the axial behavior of reinforced cement HPC column of size 100×100×1000mm and square in cross section. 10% of silica fume was preferred over ordinary portland cement. The natural sand was replaced by 0, 20, 40, 60, 80 and 100% with Manufactured Sand (M-Sand). In this investigation, totally 6 column specimens were cast for mixes M1 to M6 and were tested in 1000kN loading frame at 28 days. From this, Load-Mid height deflection curves were drawn and compared. Maximum ultimate load carrying capacity and the least deflection is obtained for the mix prepared by partial replacement of cement with 10% silica fume & natural sand by 100% M-Sand. The fine, amorphous and pozzalonic nature of silica fume and fine mineral particles in M- Sand increased the stiffness of HPC column. The test results revealed that HPC can be produced by using M-Sand with silica fume.
NASA Astrophysics Data System (ADS)
Kazemiroodsari, Hadi
Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.
Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center
2012-02-27
boulders, concrete, steel 30.5 m 100 ft Corrosion Facility 27 Various corrosive environments NA NA Abrasive Mud Course 28 Sand loam 73 x 290 m 240 x...950 ft Fording Basin 30 Concrete 82 m 270 ft Underwater Fording Facility 31 Concrete 96 m 315 ft Amphibian Ramp 31 Bituminous concrete 6 x 15 m...Courses Fording Basin 97 Concrete (L x W) 67 x 25 m 220 x 82 ft Kofa Dust Course 98 Sand, Dust 3.2 km 2.0 mi Cibola Dust Course 99 Sand, Dust 6.3 km 3.9
Techniques employed by the NASA White Sands Test Facility to ensure oxygen system component safety
NASA Technical Reports Server (NTRS)
Stradling, J. S.; Pippen, D. L.; Frye, G. W.
1983-01-01
Methods of ascertaining the safety and suitability of a variety of oxygen system components are discussed. Additionally, qualification and batch control requirements for soft goods in oxygen systems are presented. Current oxygen system component qualification test activities in progress at White Sands Test Facility are described.
Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Results from the Alaminos Canyon 21 Site
NASA Astrophysics Data System (ADS)
Godfriaux, P. D.; Shedd, W.; Frye, M.; Collett, T. S.; Lee, M. W.; Boswell, R. M.; Cook, A.; Mrozewski, S.; Guerin, G.; McConnell, D.; Dufrene, R.; Jones, E.
2009-12-01
The Gulf of Mexico Gas Hydrate Joint Industry Project Leg II drilling program visited three sites in the Gulf of Mexico during a 21 day drilling program in April and May, 2009. Using both petroleum systems and seismic stratigraphic approaches, the exploration focus for Leg II was to identify sites with the potential for gas hydrate-saturated sand reservoirs. Two holes were drilled at the AC 21 site in the Diana Basin located in the western Gulf of Mexico. The data acquired consist of a comprehensive suite of high resolution LWD logs including gamma ray, density, porosity, sonic, and resistivity tools. No physical samples were taken in the field. The primary objective of each well was to determine the presence or absence of gas hydrate from the log data at the predetermined primary targets in a Pleistocene basin floor turbidite complex approximately 500 ft below seafloor. At the AC 21-A location, two high net to gross target sands were encountered that measured 15 ft and 60 ft, respectively. The AC 21-A well was drilled through the interpreted base of gas hydrate stability to a depth approximately 1500 ft below sea floor. The AC 21-B well encountered a single high net to gross target sand measuring over 120 ft thick. At both AC 21 well locations, all target sand intervals had elevated formation resistivity measurements relative to clearly wet, stratigraphically equivalent sands encountered in the region, interpreted to indicate low to moderate levels of gas hydrate saturation. The likely discovery of thick gas hydrate-filled sands at the AC 21 site validates the exploration approach, and strongly indicates that gas hydrate can be found in reservoir quality sands. The LWD acquired data provided unprecedented information on the nature of the sediments and the occurrence of gas hydrate in the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Vandermoere, Stany; De Neve, Stefaan
2016-04-01
Flanders (Belgium) is confronted with reactive phosphorus concentrations in streams and lakes which are three to four times higher than the 0.1 ppm P limit set by the Water Framework Directive. Much of the excessive P input in surface waters is derived from agriculture. Direct P input from artificially drained fields (short-circuiting the buffering capacity of the subsoil) is suspected to be one of the major sources. We aim to develop simple and cheap filters that can be directly installed in the field to reduce P concentration from the drain water. Here we report on the performance of such filters tested at lab scale. As starting materials for the P filter, iron coated sand and acid pre-treated glauconite were used. These materials, both rich in Fe, were mixed in ratios of 75/25, 65/35, 50/50 and 0/100 (iron coated sand/glauconite ratio based on weight basis) and filled in plastic tubes. A screening experiment using the constant head method with a 0.01 M CaCl2 solution containing 1 ppm P showed that all four types of mixtures reduced the P concentration in the outflowing water to almost zero, and that the 75/25, 65/35 and 0/100 mixtures had a sufficiently large hydraulic conductivity of 0.9 to 6.0 cm/min, while the hydraulic conductivity of the 50/50 mixture was too low (< 0.4 cm/min). In a second experiment the iron coated sand and acid pre-treated glauconite were mixed in ratios of 75/25, 65/35 and 0/100 and filled in the same plastic tubes as in the first experiment. Subsequently a 0.01 M CaCl2 solution containing 1 ppm P was passed through the filters over several days, in amounts equivalent to half of the yearly water volume passing through the drains. This experiment firstly showed that in all cases the hydraulic conductivity fluctuated strongly: it decreased from 4.0-6.0 cm/min to 2.0-1.5 cm/min for the 75/25 filter, and to values < 0.4 cm/min for the 65/35 filter, whereas it increased from 0.8 to 1.4 cm/min for the 0/100 filter. Secondly, we observed a decrease in the P removal efficiency with time on each day for all filters: from 90% removal to 80% removal for the 75/25 and 65/35 filters, while for the 0/100 filter the P removal almost reduced to 0%. Based on these results the 75/25 (iron coated sand/glauconite) filter will be tested at field level, and additional research will be directed towards prediction of the evolution of hydraulic conductivity of the filter materials.
2009-06-24
STS003-010-613 (22-30 March 1982) --- A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground. Space shuttle Columbia (STS-3), this mission, landed at the White Sands alternate landing site because of bad weather at Edwards AFB, CA. Photo credit: NASA
Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete
NASA Astrophysics Data System (ADS)
Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.
2017-11-01
Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.
Snyder, G.L.
1995-01-01
Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.
Undrained behavior and shear strength of clean sand containing low-plastic fines
NASA Astrophysics Data System (ADS)
To-Anh Phan, Vu; Hsiao, Darn-Horng
2018-04-01
This study presents experimental tests to understand the undrained behavior of sand containing various fines contents. The specimens were prepared by the wet tamping method. The consolidated undrained triaxial shear tests were carried out by sands mixed with amounts of fines in ranging from 0 to 60%. The results showed that the deviator stress quickly reaches the peak value with an axial strain in a range of 0.5 to 2%, and then, the value drops significantly with further increases in the axial strain, the pore water pressure of all the sand-fines mixtures rapidly increases as the axial strain reaches a value in a range from 1 to 2% and then slowly increases and reaches a stable state when strain is greater than 8%. Peak deviator stress gradually decreases with an increasing fines content from 0 to 40%, thereafter, the peak deviator significantly increases with further increases in the fines content up to 60%, irrespective of confining pressure values using in these tests. Finally, the effective internal friction angles are remarkably greater than the total friction angles for various sand-fines mixtures.
Zelt, Ronald B.; Hobza, Christopher M.; Burton, Bethany L.; Schaepe, Nathaniel J.; Piatak, Nadine
2017-11-16
Sediment management is a challenge faced by reservoir managers who have several potential options, including dredging, for mitigation of storage capacity lost to sedimentation. As sediment is removed from reservoir storage, potential use of the sediment for socioeconomic or ecological benefit could potentially defray some costs of its removal. Rivers that transport a sandy sediment load will deposit the sand load along a reservoir-headwaters reach where the current of the river slackens progressively as its bed approaches and then descends below the reservoir water level. Given a rare combination of factors, a reservoir deposit of alluvial sand has potential to be suitable for use as proppant for hydraulic fracturing in unconventional oil and gas development. In 2015, the U.S. Geological Survey began a program of researching potential sources of proppant sand from reservoirs, with an initial focus on the Missouri River subbasins that receive sand loads from the Nebraska Sand Hills. This report documents the methods and results of assessments of the suitability of river delta sediment as proppant for a pilot study area in the delta headwaters of Lewis and Clark Lake, Nebraska and South Dakota. Results from surface-geophysical surveys of electrical resistivity guided borings to collect 3.7-meter long cores at 25 sites on delta sandbars using the direct-push method to recover duplicate, 3.8-centimeter-diameter cores in April 2015. In addition, the U.S. Geological Survey collected samples of upstream sand sources in the lower Niobrara River valley.At the laboratory, samples were dried, weighed, washed, dried, and weighed again. Exploratory analysis of natural sand for determining its suitability as a proppant involved application of a modified subset of the standard protocols known as American Petroleum Institute (API) Recommended Practice (RP) 19C. The RP19C methods were not intended for exploration-stage evaluation of raw materials. Results for the washed samples are not directly applicable to evaluations of suitability for use as fracture sand because, except for particle-size distribution, the API-recommended practices for assessing proppant properties (sphericity, roundness, bulk density, and crush resistance) require testing of specific proppant size classes. An optical imaging particle-size analyzer was used to make measurements of particle-size distribution and particle shape. Measured samples were sieved to separate the dominant-size fraction, and the separated subsample was further tested for roundness, sphericity, bulk density, and crush resistance.For the bulk washed samples collected from the Missouri River delta, the geometric mean size averaged 0.27 millimeters (mm), 80 percent of the samples were predominantly sand in the API 40/70 size class, and 17 percent were predominantly sand in the API 70/140 size class. Distributions of geometric mean size among the four sandbar complexes were similar, but samples collected from sandbar complex B were slightly coarser sand than those from the other three complexes. The average geometric mean sizes among the four sandbar complexes ranged only from 0.26 to 0.30 mm. For 22 main-stem sampling locations along the lower Niobrara River, geometric mean size averaged 0.26 mm, an average of 61 percent was sand in the API 40/70 size class, and 28 percent was sand in the API 70/140 size class. Average composition for lower Niobrara River samples was 48 percent medium sand, 37 percent fine sand, and about 7 percent each very fine sand and coarse sand fractions. On average, samples were moderately well sorted.Particle shape and strength were assessed for the dominant-size class of each sample. For proppant strength, crush resistance was tested at a predetermined level of stress (34.5 megapascals [MPa], or 5,000 pounds-force per square inch). To meet the API minimum requirement for proppant, after the crush test not more than 10 percent of the tested sample should be finer than the precrush dominant-size class. For particle shape, all samples surpassed the recommended minimum criteria for sphericity and roundness, with most samples being well-rounded. For proppant strength, of 57 crush-resistance tested Missouri River delta samples of 40/70-sized sand, 23 (40 percent) were interpreted as meeting the minimum criterion at 34.5 MPa, or 5,000 pounds-force per square inch. Of 12 tested samples of 70/140-sized sand, 9 (75 percent) of the Missouri River delta samples had less than 10 percent fines by volume following crush testing, achieving the minimum criterion at 34.5 MPa. Crush resistance for delta samples was strongest at sandbar complex A, where 67 percent of tested samples met the 10-percent fines criterion at the 34.5-MPa threshold. This frequency was higher than was indicated by samples from sandbar complexes B, C, and D that had rates of 50, 46, and 42 percent, respectively. The group of sandbar complex A samples also contained the largest percentages of samples dominated by the API 70/140 size class, which overall had a higher percentage of samples meeting the minimum criterion compared to samples dominated by coarser size classes; however, samples from sandbar complex A that had the API 40/70 size class tested also had a higher rate for meeting the minimum criterion (57 percent) than did samples from sandbar complexes B, C, and D (50, 43, and 40 percent, respectively). For samples collected along the lower Niobrara River, of the 25 tested samples of 40/70-sized sand, 9 samples passed the API minimum criterion at 34.5 MPa, but only 3 samples passed the more-stringent criterion of 8 percent postcrush fines. All four tested samples of 70/140 sand passed the minimum criterion at 34.5 MPa, with postcrush fines percentage of at most 4.1 percent.For two reaches of the lower Niobrara River, where hydraulic sorting was energized artificially by the hydraulic head drop at and immediately downstream from Spencer Dam, suitability of channel deposits for potential use as fracture sand was confirmed by test results. All reach A washed samples were well-rounded and had sphericity scores above 0.65, and samples for 80 percent of sampled locations met the crush-resistance criterion at the 34.5-MPa stress level. A conservative lower-bound estimate of sand volume in the reach A deposits was about 86,000 cubic meters. All reach B samples were well-rounded but sphericity averaged 0.63, a little less than the average for upstream reaches A and SP. All four samples tested passed the crush-resistance test at 34.5 MPa. Of three reach B sandbars, two had no more than 3 percent fines after the crush test, surpassing more stringent criteria for crush resistance that accept a maximum of 6 percent fines following the crush test for the API 70/140 size class.Relative to the crush-resistance test results for the API 40/70 size fraction of two samples of mine output from Loup River settling-basin dredge spoils near Genoa, Nebr., four of five reach A sample locations compared favorably. The four samples had increases in fines composition of 1.6–5.9 percentage points, whereas fines in the two mine-output samples increased by an average 6.8 percentage points.
Hydrogeology of glacial deposits in a preglacial bedrock valley, Waukesha County, Wisconsin
Batten, W.G.; Conlon, T.D.
1993-01-01
Results of a 6.5-hour aquifer test indicate that the silty sand and gravel deposits have an average transmissivity of about 140 feet squared per day and an average storage coefficient of about 1.2x10"3 at one location. The horizontal hydraulic conductivity of these deposits averages about 4 feet per day. Analysis of drawdown indicates that these deposits are part of a leaky confined-aquifer system and that some water is derived from storage in an overlying clay layer. The transmissivity value determined from this aquifer test and a lack of clean sand and gravel encountered in other test holes indicate that glacial deposits at these sites may not yield enough water for a large municipal water supply. Sand and gravel deposits, capable of development as a municipal supply, may be present in the southern part of the study area. However, additional test holes are needed to determine whether adequate sand and gravel deposits underlie this area.
Biodegradation of propylene glycol and associated hydrodynamic effects in sand.
Bielefeldt, Angela R; Illangasekare, Tissa; Uttecht, Megan; LaPlante, Rosanna
2002-04-01
At airports around the world, propylene glycol (PG) based fluids are used to de-ice aircraft for safe operation. PG removal was investigated in 15-cm deep saturated sand columns. Greater than 99% PG biodegradation was achieved for all flow rates and loading conditions tested, which decreased the hydraulic conductivity of the sand by 1-3 orders of magnitude until a steady-state minimum was reached. Under constant loading at 120 mg PG/d for 15-30 d, the hydraulic conductivity (K) decreased by 2-2.5 orders of magnitude when the average linear velocity of the water was 4.9-1.4 cm/h. Variable PG loading in recirculation tests resulted in slower conductivity declines and lower final steady-state conductivity than constant PG feeding. After significant sand plugging, endogenous periods of time without PG resulted in significant but partial recovery of the original conductivity. Biomass growth also increased the dispersivity of the sand.
Miranda, Débora Elienai de Oliveira; Sales, Kamila Gaudêncio da Silva; Faustino, Maria Aparecida da Gloria; Alves, Leucio Câmara; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Carvalho, Gílcia Aparecida
2015-06-01
Cutaneous leishmaniasis caused by Leishmania braziliensis is endemic in Brazil, where Lutzomyia whitmani is the most important vector involved in the transmission to humans, particularly in the peridomestic environment. Herein, we assessed the ecology of sand flies, including Lu. whitmani, in a low-density residential rural area with mixed forest/agricultural exploitation in north-eastern Brazil, where cutaneous leishmaniasis is endemic. Particularly, we hypothesized that sand fly abundance was correlated with climatic variables. Sand fly collections were carried out monthly from August 2013 to August 2014, using seven CDC light traps, for three consecutive nights, in three kinds of environments: indoor, peridomicile and forest. Collected sand flies were identified based on morphology and females of Lu. whitmani (n=169), Lu. amazonensis (n=134) and Lu. complexa (n=21) were selected and tested by PCR for Leishmania (Viannia) spp. In total, 5167 sand flies belonging to 19 species were identified, being that Lu. choti (43.2%) was the most frequent species, followed by Lu. amazonensis (16.6%), Lu. whitmani (15.8%), Lu. sordellii (10.7%) and Lu. quinquefer (5.8%), which together represented over 90% of the collected sand flies. All females tested by PCR were negative. The number of sand flies collected daily was positively correlated with temperature and negatively correlated with rainfall and relative humidity. Furthermore, there was a positive correlation between daily number of sand flies and daily average saturation deficit. This study points out that the number of sand flies captured daily is correlated to climatic variables, including saturation deficit, which may represent a useful parameter for monitoring sand fly populations in leishmaniasis-endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Cook, N B; Bennett, T B; Nordlund, K V
2004-09-01
Differences in behavior of nonlame cows, slightly lame cows, and moderately lame cows in 6 free stall barns with sand bedding (SAND) vs. 6 free stall barns with rubber-crumb geotextile mattress surfaces (MAT) were documented in Wisconsin dairy herds. All lactating cows in the 12 herds were observed and given a locomotion score based on a 4-point scale: 1 = nonlame, 2 = slightly lame, 3 = moderately lame, and 4 = severely lame. Herd least square means +/-SE for prevalence of clinical lameness (locomotion scores = 3 and 4) were 11.1 vs. 24.0 +/- 1.7% for herds using SAND vs. MAT surfaces, respectively. Subsets of 10 cows per herd with locomotion scores of 1 to 3 were observed via video cameras for 24-h periods. Cows in MAT herds spent more time standing in free stalls per day than cows in SAND herds. Differences in standing times were 0.73 h/d for cows that were not lame, 2.32 h/d for cows that were slightly lame, and 4.31 h/d for cows that were moderately lame in MAT herds compared with equivalent cows in SAND herds. In MAT herds, the increase in time spent standing in the stall in moderately lame cows was associated with a significant reduction in stall use sessions per day, which impacted daily lying time. Although cause and effect are not clear, these findings have implications for housing, comfort, and care of cows in dairy herds with different types of free stall surfaces.
Geotechnical properties of cemented sands in steep slopes
Collins, B.D.; Sitar, N.
2009-01-01
An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.
An intermittency model for predicting roughness induced transition
NASA Astrophysics Data System (ADS)
Ge, Xuan; Durbin, Paul
2014-11-01
An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.
Study on strength characteristics of concrete using M-Sand and coconut fibers
NASA Astrophysics Data System (ADS)
Neeraja, D.; Wani, Amir Iqbal; Kamili, Zainulabideen; Agarwal, Krishnakant
2017-11-01
In the current world, concrete has become a very important part of the construction industry and the materials which are used in making concrete have evolved due to better quality of cement and better grade of coarse aggregates. The sand is an important part of concrete. It is mainly procured from natural sources. Thus the grade of sand is not under our control. The methods of removing sand from river beds are causing various environmental issues and river sand is depleting at a faster rate than it is replaced by natural methods. Hence, various replacements for the river sand are being done, one of which is manufactured-sand. It is obtained from various granite quarries. Manufactured-sand or M-sand is slowly replacing the fine aggregate in the concrete as the sand is well graded and gives higher strength of concrete. There are various fibers used for reinforcing concrete which consist mainly of artificial or steel fibers. Some of these fibers are quite costly and sometimes difficult to obtain. So there are many natural fibers which can be used in place of these fibers, one of which is coconut fiber, extracted from the shell of a coconut. Coconut fibers are used in various industries like rope making, coir mattresses etc. Since these fibers are one of the strongest fibers among naturally occuring fibers, they can be used in the concrete mix to increase the resistance in concrete. They are also light weight and easily available and thus can be used in reinforcement of concrete. The studies up till now have tested the use of coconut fibers in normal concrete involving river sand but in this study a particular ratio of M-sand and river sand is used to get the maximum possible strength. Hence, in this project an attempt was made to use M-sand and coconut fiber in concrete. Based on the test results, it can be concluded that combination of M-sand and coconut fibers gave favorable results in strength criteria.
National Metal Casting Research Institute final report. Volume 1, Sand reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondra, L.F.; Burningham, J.S.
1995-08-01
A mobile thermal foundry sand reclamation unit was designed and constructed. This unit consisted of thermal and mechanical sand reclamation equipment installed on the bed of a 50 foot low-boy trailer. It was transported to a number of Midwest foundries for on-site demonstration of the sand reclamation process. This allowed participating foundries to have their own refuse sand (10-100 tons) processed and then reused in production for evaluation. The purpose for building the unit was to demonstrate to foundries through ``hands on`` experience that refuse sands can be reclaimed and successfully reused particularly in regard to product quality. Most ofmore » the participating foundries indicated a high level of satisfaction with the reclaimed sand. Laboratory testing of samples of the used sand, before and after processing by the demonstration unit, verified the usability of the reclaimed sand. One of the foundries participating was a brass foundry, the sand from this foundry contained lead and is classified as a hazardous material. After reclamation the sand was no longer hazardous and could also be reused in the foundry.« less
Test wells TW1 and TW2, and TW3, White Sands Missile Range, Otero County, New Mexico
Myers, R.G.; Pinckley, K.M.
1987-01-01
Three test wells, TW1, TW2, and TW3, were drilled at White Sands Missile Range in south-central New Mexico in July, August, and October 1983 as part of a joint military training program sponsored by the U.S. Navy and U.S. Army in July, August, and October 1983. The test wells were drilled as exploratory and monitoring wells for the toxic waste storage facility at White Sands Missile Range. Information obtained from these wells includes lithologic logs for all wells and borehole-geophysical logs for the cased wells. (Author 's abstract)
FIELD TEST OF NONFUEL HYDROCARBON BIOVENTING IN CLAYEY-SAND SOIL
A pilot-scale bioventing test was conducted at the Greenwood Chemical Superfund Site in Virginia. The characteristics of the site included clayey-sand soils and nonfuel organic contamination such as acetone, toluene, and naphthalene in the vadose zone. Based on the results of an...
NASA Astrophysics Data System (ADS)
Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.
2001-01-01
The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.
Solid sand particle addition can enhance the production of resting cysts in dinoflagellates
NASA Astrophysics Data System (ADS)
Yang, Aoao; Hu, Zhangxi; Tang, Yingzhong
2018-03-01
Resting cysts are an important part of the life cycle for many harmful algal bloom-forming dinoflagellates, and play vital roles in the recurrence and geographical spread of harmful algal blooms. Numerous factors have been suggested to regulate the formation of resting cysts, although only a few have been proven to be significant. Cyst formation can be induced by adverse environmental conditions such as drastic changes in temperature, light, salinity, and nutrient levels, and by biological interactions. In this study, we evaluated the ability of an artificial factor (fine sand particles) to enhance the formation of resting cysts. Fine sand particles were added to cultures of dinoflagellates that are known to produce cysts. The addition of fine sand particles significantly increased both the production rate and final yield of cysts in cultures of Scrippsiella trochoidea, Biecheleria brevisulcata, and Levanderina fissa (= Gymnodinium fissum, Gyrodinium instriatum, Gyrodinium uncatenum). The largest increase in the final yield (107-fold) of cysts as a result of sand addition was in S. trochoidea. However, addition of fine sand particles did not induce cyst formation, or barely affected cyst formation, in Akashiwo sanguinea, Cochlodinium polykrikoides and Pheopolykrikos hartmannii, which are also known to be cyst-producing species. We speculated that addition of sand significantly increased the chances of cell collision, which triggered cyst formation. However, further research is required to test this idea. Importantly, our findings indicate that the addition of fine sand particles is a useful method to obtain a large quantity of cysts in a short time for laboratory studies or tests; for example, if a cyst viability test is being used to assess the effectiveness of ships' ballast water treatment.
A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure
NASA Astrophysics Data System (ADS)
Snelling, Dean Andrew, Jr.
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 - T6 castings resulting from two different commercially available Binder Jetting media and traditional "no-bake" silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375°C was established for the ceramic insert (78% cordierite). Upon printing and sintering the iii ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs.
Sugarcane Genotype Selection on Muck and Sand Soils in Florida — a Case for Dedicated Environments
USDA-ARS?s Scientific Manuscript database
Traditionally, the cooperative sugarcane (Saccharum spp.) breeding program located at Canal Point has selected genotypes exclusively on muck soils in the early to middle stages of the program. Only about 0.20% of genotypes are ever tested on sand, resulting in the possibility that many sand-adapted ...
Use of bauxite as packing material in steam injection wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoglio, J.; Joubert, G.; Gallardo, B.
1995-12-31
Cyclic steam injection, also known as steam soak, has proven to be the most efficient method for producing heavy crude oil and bitumen from unconsolidated sands. The application of steam injection may, however, generate sand production, causing, among other things, a decrease in production. The gravel pack technique is the most efficient way to prevent fines production from cold producing wells. But, once they are steam stimulated, a dissolution of quartz containing gravel material takes place reducing greatly the packing permeability and eventually sand production. Different types of packing material have been used to avoid sand production after cyclic steammore » injection, such as gravel, ceramics, bauxite, coated resin, and American sand. This paper presents the results of field test, using sinterized bauxite as a packing material, carried out in Venezuela`s heavy oil operations as a part of a comprehensive program aimed at increasing the packing durability and reducing sand production. This paper also verify the results of laboratory tests in which Bauxite was found to be less soluble than other packing material when steam injected.« less
Core logs from five holes near Kramer, in the Mojave Desert, California
Benda, William K.; Erd, Richard C.; Smith, Ward C.
1958-01-01
In 1957, five test holes were drilled near Kramer, California, in =he western Mojave Desert. The drill sites are in topographic basins where gravimetric and geologic surveys indicated the presence, beneath alluvium, of a thick section of Quaternary and Tertiary sedimentary and volcanic rocks. Two holes which were deeper tests at sites drilled in 1954 cored only silts, sands and gravels: Four Corners test hole No. 1 was drilled in sec. 20, T. I0 N., R. 6 W., to a depth of 3,500 feet. Four Corners No. 2, in sec. 5, T. I0 N., R. 8 W., was drilled to 2,328 feet. Three holes which were drilled at new sites north of the intersection of U. S. Highways 395 and 466, locally known as Four Corners, encountered colemanite-bearing sediments. The locations and total depths of these holes are as follows: Four Corners No. 3, sec. T. 11 N., R. 6 W., depth 2,568 feet; Four Corners No. 4, near northern edge of sec. 30, T. ll N., R. 6 W., depth 3,500 feet; Four Corners No. 5, near southern edge of sec. 30, depth 1,604 feet. The sections of rocks encountered in these three holes are similar. In each, the colemanite is in fine-grained sediments that lie below sands and gravels, which are about 600 to 800 feet thick, and are underlain by sandstones and conglomerates. Colemanite is most abundant in the cores from Four Corners to hole No. 5, particularly in the 76 feet of core recovered between depths of 1,051 and 1,131 feet. Chemical analysis shows that in this section of core the average content of B203 is above 14 percent. In addition to colemanite, the cores contain sulfides of arsenic, an unusual iron sulfide, and zeolites. This mineralogy of the colemanite-bearing sediments north of Four Corners, together with the general lake bed lithology and the occurrence as a tilted section of beds below sands and gravels, supports correlation with the upper or marginal parts of the borate-bearin8 sediments at the Kramer borate mining district, which have similar features. There is, however, no evidence that any beds are exactly equivalent in age.
The Reliability and Validity of the Concepts About Print and Record of Oral Language.
ERIC Educational Resources Information Center
Day, H. D.; Day, Kaaren C.
The Concepts about Print (Sand) and Record of Oral Language (ROL) tests were administered three times to 29 male and 27 female kindergarten children as part of a study to determine the reliability and concurrent validity of the tests. The Sand and Metropolitan Readiness Test (MRT) were administered to the returning participants (27 males and 24…
106-17 Telemetry Standards Front Matter
2017-07-01
IS UNLIMITED ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE REDSTONE TEST CENTER WHITE SANDS MISSILE RANGE YUMA PROVING GROUND...Council US Army White Sands Missile Range, New Mexico 88002-5110 This page intentionally left blank. Telemetry Standards, IRIG Standard 106-17...TM receiver commands for interoperability. f. Task TG-141: Update IRIG 106 with Standards for Data Quality Metrics (DQM) and Data Quality
NASA Astrophysics Data System (ADS)
Dang, Xugang; Chen, Hui; Shan, Zhihua
2017-07-01
One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.
Hydrogeologic Framework of the New Jersey Coastal Plain
Zapecza, Otto S.
1989-01-01
This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.
Geophysical Assessment of Groundwater Potential: A Case Study from Mian Channu Area, Pakistan.
Hasan, Muhammad; Shang, Yanjun; Akhter, Gulraiz; Jin, Weijun
2017-11-17
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five-layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology. © 2017, National Ground Water Association.
NASA Technical Reports Server (NTRS)
1994-01-01
This is an overview of the White Sands Test Facility's role in ensuring the safety and reliability of materials and hardware slated for launch aboard the Space Shuttle. Engine firings, orbital flights debris impact tests, and propulsion tests are featured as well as illustrating how they provide flight safety testing for the Johnson Space Center, other NASA centers, and various government agencies. It also contains a historical perspective and highlights of major programs that have been participated in as part of NASA.
Seismotectonic implications of sand blows in the southern Mississippi Embayment
Cox, R.T.; Hill, A.A.; Larsen, D.; Holzer, T.; Forman, S.L.; Noce, T.; Gardner, C.; Morat, J.
2007-01-01
We explore seismically-induced sand blows from the southern Mississippi Embayment and their implications in resolving the question of near or distal epicentral source region. This was accomplished using aerial photography, field excavations, and cone penetration tests. Our analysis shows that three sand blow fields exhibit a distinct chronology of strong ground motion for the southern embayment: (1) The Ashley County, Arkansas sand blow field, near the Arkansas/Louisiana state border, experienced four Holocene sand venting episodes; (2) to the north, the Desha County field experienced at least three episodes of liquefaction; and (3) the Lincoln-Jefferson Counties field experienced at least one episode. Cone penetration tests (CPT) conducted in and between the sand blow fields suggest that the fields may not be distal liquefaction associated with New Madrid seismic zone earthquakes but rather are likely associated with strong earthquakes on local faults. This conclusion is consistent with the differences in timing of the southern embayment sand venting episodes and those in the New Madrid seismic zone. These results suggest that active tectonism and strong seismicity in intraplate North America may not be localized at isolated weak spots, but rather widespread on fault systems that are favorably oriented for slip in the contemporary stress field. ?? 2006 Elsevier B.V. All rights reserved.
2017-12-08
Workers sign the banner marking the successful delivery of a liquid oxygen test tank, called Tardis, in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
USDA-ARS?s Scientific Manuscript database
To prevent the 7-11 million metric tons of waste foundry sand (WFS) produced annually in the U.S. from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by ...
The Sand Yacht Challenge...Inspires Lots of Science
ERIC Educational Resources Information Center
James, Robin
2018-01-01
In this article, Robin James describes the Sand Yacht Challenge. The race took place on sand between small, wind-powered land yachts made by groups of children from four local schools. The project provided a term of collaborative opportunities at the designing and testing stage, followed by a competition when the students raced them. It was…
Pre-treatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in aboveground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, o...
Investigation of guided waves propagation in pipe buried in sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand usingmore » a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.« less
Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, Manuel I
2014-08-13
Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.
General scaling relations for locomotion in granular media
NASA Astrophysics Data System (ADS)
Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken
2017-05-01
Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.
Influence of pore structure on compressive strength of cement mortar.
Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.
Influence of Pore Structure on Compressive Strength of Cement Mortar
Zhao, Haitao; Xiao, Qi; Huang, Donghui
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414
Hydraulic conductivity (
Weather resistance of CaSO4 ṡ 1/2H2O-based sand-fixation material
NASA Astrophysics Data System (ADS)
Liu, Xin; Tie, Shengnian
2017-07-01
Searching for an economical and effective sand-fixing material and technology is of great importance in Northwest China. This paper described the use of a semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based composite as a sand-fixing material. Its morphology and composition were characterized by SEM, and its water resistance, freezing-thawing resistance and wind erosion resistance were tested in the field. The results indicated that semihydrated gypsum-(CaSO4 ṡ 1/2H2O-)based sand-fixing composite has good water resistance and water-holding capacity. Its strength is maintained at 1.42 MPa after 50 freezing and thawing cycles, and its wind erosion increases with increasing wind speed and slope. Its compressive strength starts to decrease after nine months of field tests with no change in appearance, but it still satisfies the requirements of fixation technology. This sand-fixing material should have wide application owing to its good weather resistance.
Li, Dongliang; Liu, Xinrong; Liu, Xianshan
2015-07-02
Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.
Harrison, R.W.; Litwin, R.J.
1997-01-01
Basal Cretaceous deposits in the northernmost part of the Mississippi Embayment in southeastern Missouri and southern Illinois have been correlated previously with the Tuscaloosa Formation of Alabama. New palynological data indicate that these clastic deposits comprise non-marine and marine sections of middle to late Campanian age. They consist of a lower non-marine deposit, the herein newly proposed Post Creek Formation, and an upper marine deposit that we correlate in part with the Coffee Sand of Tennessee. These Campanian deposits overlie a diachronous Mesozoic paleosol, Little Bear Formation, and are progressively overlain by the McNairy Sand of early to middle Maastrichtian age, the Owl Creek Formation of middle to late Maastrichtian age, and the Porters Creek Clay of late Paleocene age. Outcrops and subsurface occurrences of the Post Creek Formation are widespread around the northern margin of the Mississippi Embayment. In contrast, the Coffee Sand is more restricted in distribution, and is present in southeast Missouri only as an outlier. Extensive occurrences of the Coffee Sand are found in Tennessee and further south in the embayment. This study shows that (1) the basal Cretaceous deposits in the northern Mississippi Embayment are not equivalent to the Tuscaloosa Formation, but are entirely separate stratigraphic units, (2) the shallow Cretaceous Interior Seaway occupied the northernmost part of the present Mississippi Embayment by the late Campanian, and (3) a large part of the northern embayment may have experienced an episode of uplift and erosion during the latest Campanian or earliest Maastrichtian, prior to deposition of McNairy Sand. ?? 1997 Academic Press Limited.
Stratigraphy of the Neogene Sahabi units in the Sirt Basin, northeast Libya
NASA Astrophysics Data System (ADS)
El-Shawaihdi, M. H.; Mozley, P. S.; Boaz, N. T.; Salloum, F.; Pavlakis, P.; Muftah, A.; Triantaphyllou, M.
2016-06-01
A revision of the nomenclature of lithostratigraphic units of Neogene strata at As Sahabi, northeast Libya, is presented, based on new fieldwork conducted during 2006-2008. The Sahabi units are correlated across the Ajdabya Sheet (NH 34-6) in northeastern Libya. Major conclusions are: (1) Miocene (Langhian through Messinian) strata are predominantly carbonate and should be referred to as formation "M"; (2) A local unconformity of Miocene (early Messinian) age overlies strata of the formation "M"; (3) This unconformity is overlain by Messinian gypsiferous sand and mud (formerly formation "P" and partially member "T"), which are designated as the "lower member" (gypsiferous) of the Sahabi Formation; (4) The "lower member" is overlain by sand and mud of late Messinian age (formerly partially member "T" and members "U1", "UD", and "U2") in a generally fining-upwards sequence, and are designated as the "upper member" (non-gypsiferous) of the Sahabi Formation; (5) The latest Miocene sand and mud of the "upper member" are capped by an unconformity that is correlated with the regression and desiccation of the Mediterranean Sea during the Messinian Salinity Crisis and with Eosahabi Channel cutting; (6) The unconformity is overlain by Pliocene medium, coarse, and pebbly sands, which are referred to as the Qarat Weddah Formation (formerly Garet Uedda Formation); (7) The Pliocene sands of Qarat Weddah Formation are overlain by carbonate soil (calcrete) of Late Pliocene age, which is referred to as formation "Z" (formerly member "Z"). The major outcome of this study is a revised stratigraphic description and nomenclature of the Sahabi units that helps to provide a formal and unified context for understanding paleontological discoveries in northeastern Libya, which will serve to facilitate a broader correlation of the Sahabi units with their equivalents elsewhere in Africa and in Europe and Asia.
Hydraulic resistance of submerged flexible vegetation
NASA Astrophysics Data System (ADS)
Stephan, Ursula; Gutknecht, Dieter
2002-12-01
The main research objective consisted in analysing the influence of roughness caused by aquatic vegetation (av), in particular submerged macrophytes, on the overall flow field. These plants are highly flexible and behave differently depending on the flow situation. They also react substantially to the flow field and thus, the roughness becomes variable and dynamic. Conventional flow formulas, such as the Manning or the Strickler formula, are one-dimensional and based on integral flow parameters. They are not suitable for quantifying the roughness of av, because the flow is complex and more dimensional due to the variable behaviour of the plants. Therefore, the present investigation concentrates on the definition of a characteristic hydraulic roughness parameter to quantify the resistance of av. Within this investigation laboratory experiments were carried out with three different types of av, chosen with respect to varying plant structures as well as stem lengths. Velocity measurements above these plants were conducted to determine the relationship between the hydraulic roughness and the deflected plant height. The deflected plant height is used as the geometric roughness parameter, whereas the equivalent sand roughness based on the universal logarithmic law modified by Nikuradse was used as hydraulic roughness parameter. The influence of relative submergence on the hydraulic roughness was also analysed. The analysis of the velocity measurements illustrates that equivalent sand roughness and zero plane displacement of the logarithmic law are correlated to the deflected plant height and are equally to this height.
2017-12-08
A liquid oxygen test tank was completed in the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida. A banner signing event marked the successful delivery of the tank called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground
NASA Astrophysics Data System (ADS)
Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng
2010-03-01
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.
The influence of ice on southern Lake Michigan coastal erosion
Barnes, P.W.; Kempema, E.W.; Reimnitz, E.; McCormick, M.
1994-01-01
Coastal ice does not protect the coast but enhances erosion by displacing severe winter wave energy from the beach to the shoreface and by entraining and transporting sediment alongshore and offshore. Three aspects of winter ice in Lake Michigan were studied over a 3-year period and found to have an important influence on coastal sediment dynamics and the coastal sediment budget: (1) the influence of coastal ice on shoreface morphology, (2) the transport of littoral sediments by ice, and (3) the formation of anchor and underwater ice as a frequent and important event entraining and transporting sediment. The nearshore ice complex contains a sediment load (0.2 - 1.2 t/m of coast) that is roughly equivalent to the average amount of sand eroded from the coastal bluffs and to the amount of sand ice- rafted offshore to the deep lake basin each year. -from Authors
Cathryn H. Greenberg; Daniel G. Neary; Larry D. Harris
1994-01-01
We tested whether the herpetofuunal response to clearcutting followed by site preparation was similar to high-intensity wildfire foIlowed by salvage logging in sand- pine scrub. Herpetofaunal communities were compared in three replicated 5- to 7-yearpost-disturbance treatments and mature sand-pine forest. The three disturbance treatments were (1) high-intensity...
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Non-robust numerical simulations of analogue extension experiments
NASA Astrophysics Data System (ADS)
Naliboff, John; Buiter, Susanne
2016-04-01
Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.
NASA Astrophysics Data System (ADS)
McHarge, J. L.; Hajek, E. A.; Heller, P. L.
2007-12-01
Allogenic processes are considered a prime control on the stratigraphic distribution of channel bodies, however, recent studies have indicated that autogenic stratigraphic organization may occur within fluvial systems on basin- filling time scales (105-106 years). Groupings or clusters of closely-spaced channel bodies can be produced by several different mechanisms, including both allogenic and autogenic processes. Commonly, sand- dominated intervals in stratigraphic successions are interpreted as incised-valley fills produced by base-level changes. In contrast, long-timescale organization of river avulsion can generate similar stratigraphic patterns. For example, sand-dominated intervals in the fluvial Lance Formation (Maastrichtian; Bighorn Basin, WY) have been interpreted as incised-valley fills formed during sea-level lowstand. However, closely-spaced sand bodies in the Ferris Formation (Lance equivalent; Hanna Basin, WY) are interpreted as aggradational in origin, and have been compared to autogenic avulsion stratigraphy produced in experimental basins. We evaluate the Lance Formation in the southern Bighorn Basin in an effort to determine whether these sand-dominated intervals are truly incised- valley fills resulting from sea-level changes, or if they were generated by autogenic processes. The Lance Formation crops out in the western and southern margins of the basin, exposing relatively proximal and distal portions of the system. By comparing alluvial architecture between exposures, we evaluate similarities and differences from upstream to downstream and look for evidence of intrinsic and extrinsic controls on deposition. In both localities, the Lance Formation comprises multi-story sheet sandstones and smaller, single-story sandstones. Observed changes from upstream to downstream in the system include: 1) increasing paleoflow depths (from ~30-60 cm to ~70-120 cm); 2) decreasing preservation of fine-grained material within channel bodies; 3) increasing proportion of amalgamated, multi-story sand bodies; and 4) increasing lateral continuity of multi-story sand bodies. These results indicate that upstream, channel-body spacing is dominantly controlled by aggradational processes and may be the result of autogenic avulsion clustering, whereas downstream, evidence of incision and amalgamation indicate that base-level may have limited and controlled sand-body architecture.
Corrosion Resistance of a Sand Particle-Modified Enamel Coating Applied to Smooth Steel Bars
Tang, Fujian; Chen, Genda; Brow, Richard K.; Koenigstein, Michael L.
2014-01-01
The protective performance of a sand particle-modified enamel coating on reinforcing steel bars was evaluated in 3.5 wt% NaCl solution by electrochemical impedance spectroscopy (EIS). Seven percentages of sand particles by weight were investigated: 0%, 5%, 10%, 20%, 30%, 50% and 70%. The phase composition of the enamel coating and sand particles were determined with the X-ray diffraction (XRD) technique. The surface and cross-sectional morphologies of the sand particle-modified enamel coating were characterized using scanning electron microscopy (SEM). XRD tests revealed three phases of sand particles: SiO2, CaCO3 and MgCO3. SEM images demonstrated that the enamel coating wetted well with the sand particles. However, a weak enamel coating zone was formed around the sand particles due to concentrated air bubbles, leading to micro-cracks as hydrogen gas pressure builds up and exceeds the tensile strength of the weak zone. As a result, the addition of sand particles into the enamel coating reduced both the coating and corrosion resistances. PMID:28788203
Two-fold sustainability – Adobe with sawdust as partial sand replacement
NASA Astrophysics Data System (ADS)
Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen
2018-04-01
Adobe is a material that is economic, environment friendly, and provides better indoor air quality. The material required for the preparation of adobe include clay, sand, and sometimes straw or other organic materials. These materials do not require industrial processing or transportation, however, sand mining has been recently posing a threat to the environment. Therefore, to enhance the existing sustainability of adobe, sand can be partially or fully replaced by other waste materials. This approach will not only solve the problem of excessive sand mining, it will also address the issue of waste management. Sawdust is one such waste material that can be used to partially replace sand in Adobe. This paper presents the results of compressive and flexural test carried out on Adobe samples with partial sand replacement by sawdust. The results show that about 4% sand replacement by volume produces higher compressive strength, whereas the flexural strength reduces with the use of sawdust. However, since flexural strength is not a critical property for adobe, it is concluded that replacing sand with sawdust by about 4% of volume will be beneficial.
Connecting onshore and offshore near-surface geology: Delaware's sand inventory project
Ramsey, K.W.; Jordan, R.R.; Talley, J.H.
1999-01-01
Beginning in 1988, the Delaware Geological Survey began a program to inventory on-land sand resources suitable for beach nourishment. The inventory included an assessment of the native beach textures using existing data and developing parameters of what would be considered suitable sand textures for Delaware's Atlantic beaches. An assessment of the economics of on-land sand resources was also conducted, and it was determined that the cost of the sand was competitive with offshore dredging costs. In addition, the sand resources were put into a geologic context for purposes of predicting which depositional environments and lithostratigraphic units were most likely to produce suitable sand resources. The results of the work identified several suitable on-land sand resource areas in the Omar and Beaverdam formations that were deposited in barrier-tidal delta and fluvial-estuarine environments, respectively. The identified on-land resources areas have not been utilized due to difficulties of truck transport and development pressures in the resource areas. The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from Cape Henlopen to Fenwick. This cross section identified the geologic units and potential sand resource bodies as found immediately along the coast. These units and resources are currently being extended offshore and tied to known and potential sand resources as part of the continuing cooperative effort between the Delaware Geological Survey and the Minerals Management Service's INTERMAR office as sand resources are identified in federal waters off Delaware. Offshore sand resources are found in the Pliocene Beaverdam Formation offshore where overlying Quaternary units have been stripped, in the tidal delta complexes of several Quaternary units likely equivalent to the onshore Omar Formation, and in late Pleistocene- and Holocene-age shoal complexes. Onshore lithostratigraphic units can be traced offshore and show another reason for continued geologic mapping both onshore and offshore.The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from cape Henlopen to Fenwick.
Europa Propulsion Valve Seat Material Testing
NASA Technical Reports Server (NTRS)
Addona, Brad M.
2017-01-01
The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.
Sand fairway mapping as a tool for tectonic restoration in orogenic belts
NASA Astrophysics Data System (ADS)
Butler, Rob
2016-04-01
The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.
Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George
2015-05-01
The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.
Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport
NASA Astrophysics Data System (ADS)
Weaver, C. M.; Wiggs, G.
2007-12-01
Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.
Optimization of permeability for quality improvement by using factorial design
NASA Astrophysics Data System (ADS)
Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad
2017-05-01
Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.
Moradi, Mohammad; Rassi, Yavar; Abai, Mohammad Reza; Zahraei Ramazani, Alireza; Mohebali, Mehdi; Rafizadeh, Sayena
2018-06-01
Cutaneous leishmaniasis (CL) is endemic and a major health problem in 17 provinces out of 31 in Iran. This study aimed to determine vectors and reservoirs of the disease using molecular techniques in the borderline of Iran and Iraq. Sand flies and rodents were sampled using sticky paper traps and metal wire live traps, respectively, in the selected villages. About 10% of archived confirmed human positive slides was randomly checked for Leishmania by PCR-RFLP assay. The female sand flies were dissected in alcohol 96% in a sterile condition, the head and two segments of the abdomen end permanently mounted for identification and the remaining of body used for DNA extraction. The direct parasitological tests were carried out on the stained slides of rodents for Leishmania as well as PCR-RFLP assay used for molecular detection of parasite. A total of 2050 sand flies were identified comprising of Phlebotomus papatasi , Sergentomyia sintoni , Se . clydei , Se . mervynae , Se . theodori, Se . dentate and Se . iranica . The Ph . papatasi was ranked as a prevailing sand fly species. Molecular tests on female sand flies revealed infection of Ph . papatasi to Leishmania major . Direct parasitology and molecular tests confirmed of 20% infection to L . major among the sole rodents species " Tatera indica ". Due to wide dispersion of rodents colonies in the area and long favorite climate condition for sand flies, the CL foci will be provided the health risk for the religious tourists.
Dennehy, Kevin F.; McMahon, Peter B.
1989-01-01
Four unsaturated-zone monitoring sites and a meteorologic station were installed at the low-level radioactive-waste burial site near Barnwell, S.C., to investigate the geohydrologic and climatologic factors affecting water movement in the unsaturated zone. The study site is located in the Atlantic Coastal Plain. The unsaturated zone consists of a few centimeters to more than 1 meter of surface sand, underlain by up to 15 meters of clayey sand. Two monitoring sites were installed in experimental trenches, and two were installed in radioactive-waste trenches. Two different trench designs were evaluated at the monitoring sites. A meteorologic station was used to measure precipitation and to calculate actual evapotranspiration using the Bowen ratio method. Soil-moisture tensiometers, soil-moisture conductance probes, and temperature sensors were used to monitor soil-water movement in and adjacent to the trenches. Tracer tests using sodium chloride were conducted at each monitoring site. Hydrologic properties of unsaturated-zone materials were also determined. Data collection at the monitoring sites began in January 1982 and continued until early May 1984. Tensiometer data show that the unsaturated materials had their highest percent saturations in winter and spring. Saturations in the backfill sand varied from 20 to 100 percent, and in the adjacent undisturbed and overlying compacted clayey sand, from about 75 to 100 percent. The same pattern generally was observed at all four monitoring sites. The tracer-test data indicate that water movement occurred mainly during the recharge period, winter and spring. The tracer-test results enabled computation of rates of unsaturated flow in the compacted clayey-sand cap, the compacted clayey-sand barrier, and the backfill sand. A micro-scale hydrologic budget was determined for an undisturbed part of the site from July 1983 through June 1984.Total precipitation was 144 centimeters, and actual evapotranspiration was 101 centimeters. Additionally, because tensiometer data indicate negligible water-storage changes in the unsaturated zone, it is estimated that approximately 43 centimeters of recharge reached the water table. During 1984, the rise and fall of ponded water in an experimental trench was continuously monitored with a digital recorder. This water-level record was used to compute the rate of leakage of ponded water from that trench--1 x 10 -5 centimeter per second. A cross-sectional finite-element model of variably saturated flow was used to test the conceptual model of water movement in the unsaturated zone and to illustrate the effect of trench design on water movement into the experimental trenches. Monitoring and model results show that precipitation on trenches infiltrated the trench cap and moved vertically into the trench backfill material. Precipitation on the undisturbed material adjacent to the trenches moved vertically through the surface sand and continued either downward into undisturbed clayey sand or laterally along the sand/clayey-sand interface into the backfill sand, depending on trench design. The trench construction practice of placing a compacted clayey-sand barrier around the trench greatly inhibits soil water from entering the trench.
Topping, D.J.; Rubin, D.M.; Melis, T.S.
2007-01-01
Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.
Langer, William H.; Van Gosen, Bradley S.; Arbogast, Belinda; Lindsey, David A.
2011-01-01
In April 2005, the U.S. Geological Survey (USGS) conducted field studies on the Wind River Indian Reservation, Wyoming, to inventory and evaluate sand and gravel deposits underlying river terraces on tribal lands along the Wind River. This report contains the results for 12 sites of sand and gravel deposits evaluated for their potential use as aggregate in Portland cement concrete, asphalt, and base course. The report provides the results of: * The USGS geologic studies and engineering tests. * A conclusion and recommendation for the best use of sand and gravel materials. * Calculations of available sand and gravel materials. * A scenic quality landscape inventory and evaluation.
Axisymmetric Strain Path Tests on Nellis Baseline Sand
1986-09-01
tested to determine their grain-size distributions, specific gravities , and Atterberg limits. The results of these tests are su-Arized in Table 2.1...plastic limits, plasticity index, and specific gravity . All four batches of NB sand were classified by the Unified Soil Classi- fication System...those contaminated by oil due to membrane leakage. Based on these data and a specific gravity of 2.62, values of dry density, void ratio, degree of
Properties of concrete containing foamed concrete block waste as fine aggregate replacement
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.
2017-11-01
Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.
Laarhoven, Bob; Elissen, H J H; Temmink, H; Buisman, C J N
2016-01-01
An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.
Laarhoven, Bob; Elissen, H. J. H.; Temmink, H.; Buisman, C. J. N.
2016-01-01
An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates. PMID:26937632
Guided wave attenuation in coated pipes buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.
2016-02-01
Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.
Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia
Brown, Donald L.; Silvey, William Dudley
1977-01-01
Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Background Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Methodology/Principal Findings Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected. Conclusion The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833
Investigation of guided wave propagation and attenuation in pipe buried in sand
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2015-07-01
Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.
Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.
Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin
2017-06-27
Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.
69. Photograph of line drawing. ISOMETRIC VIEW OF 500,000 POUND ...
69. Photograph of line drawing. ISOMETRIC VIEW OF 500,000 POUND STATIC TEST FACILITY, NO DATE - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
70. Photograph of line drawing. TOPOGRAPHIC SITE PLAN OF 500,000 ...
70. Photograph of line drawing. TOPOGRAPHIC SITE PLAN OF 500,000 POUND STATIC TEST FACILITY, APRIL 1947 - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
72. Photograph of line drawing. SOUTH ELEVATION OF MOTOR CARRIAGE, ...
72. Photograph of line drawing. SOUTH ELEVATION OF MOTOR CARRIAGE, 500,000 POUND STATIC TEST FACILITY, NO DATE - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
NASA Astrophysics Data System (ADS)
Steffy, D. A.; Nichols, A.; Hobbs, K.
2017-12-01
Oil spill material released by the 2010 Deepwater Horizon accident contaminated a majority of the 60 miles of Alabama coastline. In response to the oil spill, BP sprayed a dispersant, Corexit 9500A, as an initial remediation effort. An unforeseen impact of the saltwater-dispersant mixture includes the mobilization of oil-spilled material into the underlying beach sand. This study investigated the effect of the dispersant to promote gravitational drainage by measuring the physical characteristics of the sand, saltwater, crude oil, and the dispersant solution. The saltwater-dispersant mixture promoted the downward movement of oil mass 20 times greater extent than just saltwater. These tests are meant to simulate spill material on the beach being exposed to a low-energy, 1-meter mixed tide occurring along the Alabama coastline. A separate test simulated oilwet sand exposed to saltwater and a saltwater-dispersant mixture. The oil-wet sand impeded the vertical movement of saltwater, but allowed a saltwater-dispersant solution to mobilize the oil to migrate downward. The mobilization of oil in this three phase system of saltwater, oil, and air is controlled by: the pressure-saturation profile of the sand; interfacial tension with saltwater; and its surface tension with air.
Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug
2010-06-01
Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content. Copyright 2009. Published by Elsevier Ltd.
Construction of a test embankment using a sand-tire shred mixture as fill material.
Yoon, Sungmin; Prezzi, Monica; Siddiki, Nayyar Zia; Kim, Bumjoo
2006-01-01
Use of tire shreds in construction projects, such as highway embankments, is becoming an accepted way of beneficially recycling scrap tires. However, in the last decade there was a decline in the use of pure tire shreds as fill materials in embankment construction, as they are susceptible to fire hazards due to the development of exothermic reactions. Tire shred-sand mixtures, on the other hand, were found to be effective in inhibiting exothermic reactions. When compared with pure tire shreds, tire shred-sand mixtures are less compressible and have higher shear strength. However, the literature contains limited information on the use of tire shred-soil mixtures as a fill material. The objectives of this paper are to discuss and evaluate the feasibility of using tire shred-sand mixtures as a fill material in embankment construction. A test embankment constructed using a 50/50 mixture, by volume, of tire shreds and sand was instrumented and monitored to: (a) determine total and differential settlements; (b) evaluate the environmental impact of the embankment construction on the groundwater quality due to leaching of fill material; and (c) study the temperature variation inside the embankment. The findings in this research indicate that mixtures of tire shreds and sand are viable materials for embankment construction.
NASA Astrophysics Data System (ADS)
Wu, W.; Zhu, J. B.; Zhao, J.
2013-02-01
The purpose of this study is to further investigate the seismic response of a set of parallel rock fractures filled with viscoelastic materials, following the work by Zhu et al. Dry quartz sands are used to represent the viscoelastic materials. The split Hopkinson rock bar (SHRB) technique is modified to simulate 1-D P-wave propagation across the sand-filled parallel fractures. At first, the displacement and stress discontinuity model (DSDM) describes the seismic response of a sand-filled single fracture. The modified recursive method (MRM) then predicts the seismic response of the sand-filled parallel fractures. The SHRB tests verify the theoretical predictions by DSDM for the sand-filled single fracture and by MRM for the sand-filled parallel fractures. The filling sands cause stress discontinuity across the fractures and promote displacement discontinuity. The wave transmission coefficient for the sand-filled parallel fractures depends on wave superposition between the fractures, which is similar to the effect of fracture spacing on the wave transmission coefficient for the non-filled parallel fractures.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Srijit; Sengupta, Aniruddha; Reddy, G. R.
2015-12-01
The performance of a well-designed layer of sand, and composites like layer of sand mixed with shredded rubber tire (RSM) as low cost base isolators, is studied in shake table tests in the laboratory. The building foundation is modeled by a 200 mm by 200 mm and 40 mm thick rigid plexi-glass block. The block is placed in the middle of a 1m by 1m tank filled with sand. The selected base isolator is placed between the block and the sand foundation. Accelerometers are placed on top of the footing and foundation sand layer. The displacement of the footing is also measured by LVDT. The whole setup is mounted on a shake table and subjected to sinusoidal motions with varying amplitude and frequency. Sand is found to be effective only at very high amplitude (> 0.65 g) of motions. The performance of a composite consisting of sand and 50% shredded rubber tire placed under the footing is found to be most promising as a low-cost effective base isolator.
Wiele, S.M.
1998-01-01
A release from Glen Canyon Dam during March-April 1996 was designed to test the effectiveness with which the riparian environment could be renewed with discharges greatly in excess of the normal powerplant-restricted maximum. Of primary concern was the rebuilding of sand deposits along the channel sides that are important to the flora and fauna along the river corridor and that provide the only camp sites for riverside visitors to the Grand Canyon National Park. Analysis of the depositional processes with a model of flow, sand transport, and bed evolution shows that the sand deposits formed along the channel sides early during the high flow were affected only slightly by the decline in suspended-sand concentrations over the course of the controlled flood. Modeling results suggest that the removal of a large sand deposit over several hours was not a response to declining suspended-sand concentrations. Comparisons of the controlled-flood deposits with deposits formed during a flood in January 1993 on the Little Colorado River that contributed sufficient sand to raise the suspended-sand concentrations to predam levels in the main stem show that the depositional pattern as well as the magnitude is strongly influenced by the suspended-sand concentrations.
Wasserberg, G; Kirsch, P; Rowton, E D
2014-06-01
A 3-chamber in-line olfactometer designed for use with sand flies is described and tested as a high-throughput method to screen honeys for attractiveness to Phlebotomus papatasi (four geographic isolates), P. duboscqi (two geographic isolates), and Lutzomyia longipalpis maintained in colonies at the Walter Reed Army Institute of Research. A diversity of unifloral honey odors were evaluated as a proxy for the natural floral odors that sand flies may use in orientation to floral sugar sources in the field. In the 3-chamber in-line olfactometer, the choice modules come directly off both sides of the release area instead of angling away as in the Y-tube olfactometer. Of the 25 honeys tested, five had a significant attraction for one or more of the sand fly isolates tested. This olfactometer and high-throughput method has utility for evaluating a diversity of natural materials with unknown complex odor blends that can then be down-selected for further evaluation in wind tunnels and/or field scenarios. © 2014 The Society for Vector Ecology.
Poppe, Lawrence J.; Popenoe, Peter; Poag, C. Wylie; Swift, B. Ann
1995-01-01
A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. These marine strata, which are equivalent to the Tippecanoe sequence in Florida, underlie the post-rift unconformity and represent part of a disjunct fragment of Gondwana that was sutured to the North American craton during the late Palaeozoic Alleghanian orogeny. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic (Bajocian and younger) sandstones and shales and marginal marine Lower Cretaceous sandstones, calcareous shales and carbonates, which contain scattered beds of coal and evaporite. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The abundance of carbonates and evaporites in this interval, which reflects marine influences within the embayment, increases upwards, eastwards and southwards. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are primarily semiconsolidated marine carbonates. Palaeocene to middle Eocene strata are commonly cherty; middle Miocene to Pliocene strata are massive and locally phosphatic and glauconitic; Quaternary sediments are dominated by unconsolidated carbonate sands. The effects of eustatic changes and shifts in the palaeocirculation are recorded in the Upper Cretaceous and Tertiary strata.
The potential use of silica sand as nanomaterials for mortar
NASA Astrophysics Data System (ADS)
Setiati, N. Retno
2017-11-01
The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.
The growth-defense trade-off and habitat specialization by plants in Amazonian forests.
Fine, Paul V A; Miller, Zachariah J; Mesones, Italo; Irazuzta, Sebastian; Appel, Heidi M; Stevens, M Henry H; Sääksjärvi, Ilari; Schultz, Jack C; Coley, Phyllis D
2006-07-01
Tropical forests include a diversity of habitats, which has led to specialization in plants. Near Iquitos, in the Peruvian Amazon, nutrient-rich clay forests surround nutrient-poor white-sand forests, each harboring a unique composition of habitat specialist trees. We tested the hypothesis that the combination of impoverished soils and herbivory creates strong natural selection for plant defenses in white-sand forest, while rapid growth is favored in clay forests. Recently, we reported evidence from a reciprocal-transplant experiment that manipulated the presence of herbivores and involved 20 species from six genera, including phylogenetically independent pairs of closely related white-sand and clay specialists. When protected from herbivores, clay specialists exhibited faster growth rates than white-sand specialists in both habitats. But, when unprotected, white-sand specialists outperformed clay specialists in white-sand habitat, and clay specialists outperformed white-sand specialists in clay habitat. Here we test further the hypothesis that the growth defense trade-off contributes to habitat specialization by comparing patterns of growth, herbivory, and defensive traits in these same six genera of white-sand and clay specialists. While the probability of herbivore attack did not differ between the two habitats, an artificial defoliation experiment showed that the impact of herbivory on plant mortality was significantly greater in white-sand forests. We quantified the amount of terpenes, phenolics, leaf toughness, and available foliar protein for the plants in the experiment. Different genera invested in different defensive strategies, and we found strong evidence for phylogenetic constraint in defense type. Overall, however, we found significantly higher total defense investment for white-sand specialists, relative to their clay specialist congeners. Furthermore, herbivore resistance consistently exhibited a significant trade-off against growth rate in each of the six phylogenetically independent species-pairs. These results confirm theoretical predictions that a trade-off exists between growth rate and defense investment, causing white-sand and clay specialists to evolve divergent strategies. We propose that the growth-defense trade-off is universal and provides an important mechanism by which herbivores govern plant distribution patterns across resource gradients.
A Testing Service for Industry
NASA Technical Reports Server (NTRS)
1994-01-01
A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.
ERIC Educational Resources Information Center
Day, Kaaren C.; Day, H. D.
A study originally involving 56 children from four schools was undertaken to observe the development of children's oral language and concepts of print during the kindergarten year using the Record of Oral Language (ROL) and the Concepts about Print (Sand) tests. In addition, the Sand test was administered early in the first grade to the available…
2013-01-01
local oscillator to measure the phase of both the transmitted and received pulses and then matching them to the correct range ambiguity. 2.5 High...track closely spaced objects. White Sands Missile Range (WSMR) and Patrick Air Force Base (AFB) operate the phased -array AN/MPS-39 MOTRs. The...ABERDEEN TEST CENTER DUGWAY PROVING GROUND REAGAN TEST SITE YUMA PROVING GROUND WHITE SANDS MISSILE RANGE NAVAL AIR WARFARE CENTER AIRCRAFT
In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...
Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed
NASA Astrophysics Data System (ADS)
Baas, Jaco H.; Davies, Alan G.; Malarkey, Jonathan
2013-01-01
The majority of subaqueous sediment on Earth consists of mixtures of cohesive clay and cohesionless sand and silt, but the role of cohesion on the development and stability of sedimentary bedforms is poorly understood. The results of new laboratory flume experiments on bedform development in cohesive, mixed sand-mud beds are compared with the results of previous experiments in which cohesive forces in high concentration clay flows dominated bedform development. Even though both series of mixed sand-mud experiments were conducted at similar flow velocities, the textural and structural properties of the bedforms were sufficiently different to permit the designation of key criteria for identifying bedform generation under cohesive flows against bedform generation on cohesive substrates. These criteria are essential for improving bedform size predictions in sediment transport modelling in modern sedimentary environments and for the reconstruction of depositional processes in the geological record. The current ripples developing on the cohesive, mixed sand-mud beds, with bed mud fractions of up to 18%, were significantly smaller than equivalent bedforms in noncohesive sand. Moreover, the bedform height showed a stronger inversely proportional relationship with initial bed mud fraction than the bedform wavelength. This is in contrast with the bedforms developing under the cohesive clay flows, which tend to increase in size with increasing suspended clay concentration until the flow turbulence is fully suppressed. Selective removal of clay from the mixed beds, i.e., clay winnowing, was found to be an important process, with 82-100% clay entrained into suspension after 2 h of bedform development. This winnowing process led to the development of a sand-rich armouring layer. This armouring layer is inferred to have protected the underlying mixed sand-mud from prolonged erosion, and in conjunction with strong cohesive forces in the bed may have caused the smaller size of the bedforms. Winnowing was less efficient for the bedforms developing under the cohesive clay flows, where bedforms consisting of muddy sand were more characteristic. The winnowed sand was also found to heal irregularly scoured topography, thus reestablishing classic quasitriangular bedform shapes. In cohesive flows, the bedforms had more variable shapes, and the healing process was confined to lower transitional plug flows in which strong turbulence is only present close to the sediment bed. Furthermore, the bedforms on the cohesive beds tended to form angle-of-repose cross lamination, whereas low angle cross lamination was more common in bedforms under cohesive flows. In general terms, erosional bedforms prevail when cohesive forces in the bed dominate bedform dynamics, whereas depositional bedforms prevail when cohesive forces in the flow dominate bedform dynamics. Empirical relationships between the proportion of cohesive mud in the mixed sand-mud bed and the development rate and size of the bedforms are defined for future use in field and laboratory studies.
Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus
2007-05-01
Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.
2017-12-08
NASA Kennedy Space Center's Engineering Director Pat Simpkins, at left, talks with Michael E. Johnson, a project engineer; and Emilio Cruz, deputy division chief in the Laboratories, Development and Testing Division, inside the Prototype Development Laboratory. A banner signing event was held to mark the successful delivery of a liquid oxygen test tank, called Tardis. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
2008-09-01
2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of similar size were measured over a...Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the...effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
Doppler radar detection of vortex hazard indicators
NASA Technical Reports Server (NTRS)
Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.
1994-01-01
Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.
Interaction Effects of Simultaneous Torsional and Compressional Cyclic Loading of Sand.
1979-12-01
loading 3a AftrRACT (rwo si .v1W f9111 t "Ofslr -d IderufI ST *lack ""iha)ln experimental research program based on laboratory test studies and scaled...experimental research program based on laboratory test studies and scaled slope model tests was conducted with specimens of Monterey No. 0 sand. The principal...objective of the research was to study the effects of interactive coupling during combined compression (normal) and shear loading on the response of
Mechanical Properties of Misers Bluff Sand.
1986-09-01
in Chapter 4. 4 .7 Y~ e -~1 % CHAPTER 2 LABORATORY TESTS 2.1 CONVENTIONAL SOIL TESTS Samples of MB sand were split from the available supply of...air Va , and void ratio e (the ratio of void volume to solid volume). These composition data are listed in Table 2.1 for each test. 5 2.3 MECHANICAL...and diameter changes are made. The data can be plotted as principal stress difference versus axial strain, the slope of which is Young’s modulus E
Transport of Lactate-modified Nanoscale Iron Particles in Porous Media
NASA Astrophysics Data System (ADS)
Reddy, K. R.
2012-12-01
Nanoscale iron particles (NIP) have recently shown to be effective for dehalogenation of recalcitrant organic contaminants such as pentachlorphenol (PCP) and dinitrotoluene (DNT) in the environment. However, effective transport of NIP into the contaminated subsurface zones is crucial for the success of in-situ remediation. Previous studies showed that the transport of NIP in soils is very limited and surface-modification of NIP is required to achieve adequate transport. This paper investigates the transport of NIP and lactate-modified NIP (LMNIP) through four different porous media (sands with different particle size and distribution). A series of laboratory column experiments was conducted to quantify the transport of NIP and LMNIP at two different slurry concentrations of 1 g/L and 4 g/L under two different flow velcoities. NIP used in this study possessed magentic properties, thus a magnetic susceptibility sensor system was used to monitor the changes in magnetic susceptibility (MS) along the length of the column at different times during the experiments. At the end of testing, the distribution of total Fe in the sand column was measured. Results showed a linear correlation between the Fe concentration and MS and it was used to assess the transient transport of NIP and LMNIP in the sand columns. Results showed that LMNIP transported better than bare NIP and higher concentration of 4 g/L LMNIP exhibited unform and greater transport compared to other tested conditions. Transport of NIP increased in the order from fine Ottawa sand > medium field sand > coarse field sand > coarse Ottawa sand. Filtration theory and advective-dispersion equation with reaction were applied to capture the transport response of NIP and LMNIP in the sand columns.
NASA Astrophysics Data System (ADS)
Xu, K.; Miner, M. D.; Bentley, S. J.; Li, C.; Obelcz, J.; O'Connor, M. C.
2016-02-01
The shelf offshore Louisiana is characterized by a dominantly muddy seafloor with a paucity of restoration-quality sand proximal to shore. Discrete sand deposits associated with ancient rivers that incised the shelf during lower sea-level positions occur close to shore. These shelf channel sands have been targeted for coastal restoration projects resulting in significant cost savings over more distal deposits. Several recent projects targeted shelf paleo-fluvial deposits comprising relatively deep (10 m) channel sands underlying a muddy overburden. Because of contrasting characteristics of cohesive mud vs. non-cohesive sand and potential modern fluvial mud supply from the Mississippi and Atchafalaya Rivers, long term pit evolution is poorly understood relative to their more common sand-only counterparts. Alterations to seafloor topography from dredging shelf sediment resources can potentially affect oil and gas infrastructure or other resources of concern (i.e. historic shipwrecks) located proximal to dredge pits. Site-specific data required to make accurate predictions and empirical measurements to test and validate predictive models were only available for Peveto Channel offshore Holly Beach, Louisiana. Here we present new geophysical and geological data (bathymetry, sidescan, subbottom, and radionuclide of sediment cores) and physical oceanographic observations (hydrodynamics and sediment dynamics) collected at Raccoon Island (dredged in 2013) dredge pit in Louisiana. These field data collections along with pre-existing data provide a time-series to capture evolution at Raccoon Island post-excavation. Conceptual morphological models will be developed for dredge pit evolution and testing effectiveness of setback buffers protecting pipelines, habitats, and cultural resources. Our results will increase decision making ability regarding safety and protecting environmental and cultural resources, and better management of valuable sand resources.
Test sections containing natural and manufactured sands.
DOT National Transportation Integrated Search
1989-01-01
This report describes the materials, mix properties, and early pavement cross sections of two mixes placed on Route 50, Fairfax County, in August 1988. The difference in the two mixes was that one contained a natural and the other a manufactured sand...
About White Sands Missile Range
NASA Technical Reports Server (NTRS)
1991-01-01
Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.
67. Photograph of line drawing. PLANS AND SECTIONS OF 20,000 ...
67. Photograph of line drawing. PLANS AND SECTIONS OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY ('BLAST PIT'), DECEMBER 1945 - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
68. Photograph of line drawing. SECTIONS AND DETAILS OF 20,000 ...
68. Photograph of line drawing. SECTIONS AND DETAILS OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY ('BLAST PIT'), DECEMBER 1945 - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, B.R.; Link, M.H.
1988-01-01
The Webster reservoir at Midway-Sunset field, Kern County, California, is an unconsolidated sand reservoir of Miocene age (''Stevens equivalent,'' Monterey Formation). The Webster was discovered in 1910 but, due to poor heavy oil (14/sup 0/ API) economics, development for primary production and subsequent enhanced recovery were sporadic. Currently, the reservoir produces by cyclic steam stimulation in approximately 35 wells. Cumulative oil production for the Webster since 1910 is about 13 million bbl. The Webster is subdivided into two reservoirs - the Webster Intermediate and Webster Main. The Webster Intermediate directly overlies the Webster Main in one area but it ismore » separated by up to 300 ft of shale elsewhere. The combined thickness of both Webster reservoirs averages 250 ft and is located at a drilling depth of 1,100-1,800 ft. From evaluation of modern core data and sand distribution maps, the Webster sands are interpreted to have been deposited by turbidity currents that flowed from southwest to northeast in this area. Oil is trapped in the Webster reservoir where these turbidites were subsequently folded on a northwest-southeast-trending anticline. Detailed recorrelation on wireline logs, stratigraphic zonation, detailed reservoir description by zone, and sedimentary facies identification in modern cores has led to development of a geologic model for the Webster. This model indicates that the Webster Intermediate was deposited predominately by strongly channelized turbidity currents, resulting in channel-fill sands, and that the Webster Main was deposited by less restricted flows, resulting in more lobate deposits.« less
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
Effects of Uygur sand therapy on the mechanical properties of femurs in osteoarthritic rabbits.
Maitirouzi, Julaiti; Yanna, Li; Abulizi, Adinaer; Aihemaitiniyazi, Aizezi; Kuerban, Shataer; Shaojun, Huang
2017-01-01
To investigate the effects of Uygur sand therapy on the mechanical properties of the femur bone of osteoarthritic rabbits. Sixteen rabbits were injected with papain in the right posterior femoral articular cavity on the first, fourth and seventh day to establish the osteoarthritis (OA) rabbit model. Animals were divided into the experimental group and control group (8 rabbits each). The experimental group was treated with sand therapy, and the control group received no sand therapy treatment. Computed tomography (CT) scanning was used to collect the data of the femur before modeling, after modeling and 14 and 28 days after sand treatment. A 3D model of the femur was generated with the MIMIC software the bone layer was divided according to the different gray values and the change of the bone volume was analyzed. The body mesh is divided, and the material properties are given, then the three-point bending simulation is performed in Ansys. Additionally, the three-point bending test was performed on all the rabbits' femur to obtain the deflection and maximum stress values. And the effects of the sand treatment on the volume and mechanical properties of the bone were analyzed. Finally, the simulation results are compared with the experimental results, and the effects of sand treatment on the volume and mechanical properties of the bone are analyzed. (1) there is a tendency in the control group to convert the hard bone into dense bone and soft bone, while in the experimental group, the soft bone is converted into dense bone and hard bone obviously; (2) the morphological parameters of the experimental group are lower than those of the control group, whereas the maximum load, maximum normal stress, maximum shear stress of the experimental group are higher than those of the control group. (3) The mechanical test of three-point bending test was carried out using the three dimensional finite element model of rabbit femur. The sand therapy has positive effects on the volume distribution of bone layer and the mechanical properties of the femur of adult osteoarthritic rabbits.
The Role of Natural Hydrate on the Strength of Sands: Load-bearing or Cementing?
NASA Astrophysics Data System (ADS)
Priest, J. A.; Hayley, J. L.
2017-12-01
The strength of hydrate bearing sands is a key parameter for simulating the long-term performance of hydrate reservoirs during gas production and assessing reservoir and wellbore stability. Historically this parameter has been determined from testing synthesized hydrate sand samples, which has led to significant differences in measured strength that appears to reflect different formation methods adopted. At present, formation methods can be grouped into either those that form hydrate at grain contacts leading to a high strength `cemented' sand, or those where the hydrate forms a `load-bearing' structure in which the hydrate grains reside in the pore space resulting in more subtle changes in strength. Recovered natural hydrate-bearing cores typically exhibit this `load-bearing' behavior, although these cores have generally undergone significant changes in temperature and pressure during recovery, which may have altered the structure of the hydrate and sediment. Recent drilling expeditions using pressure coring, such as NGHP2 offshore India, have enabled intact hydrate bearing sediments to be recovered that have maintained hydrostatic stresses minimizing any changes in the hydrate structure within the core. Triaxial testing on these samples highlight enhanced strength even at zero effective stresses. This suggests that the hydrate forms a connected framework within the pore space apparently `cementing' the sand grains in place: we differentiate here between true cementation where hydrate is sintered onto the sand grains and typical observed behavior for cemented sands (cohesion, peak strength, post-peak strain softening). This inter-connected hydrate, and its ability to increase strength of the sands, appears to occur even at hydrate saturations as low as 30%, where typical `load-bearing' hydrates just start to increase strength. The results from pressure cores suggest that hydrate formation techniques that lead to `load-bearing' behavior may not capture the true interaction between the hydrate and sand and thus further research is needed to form synthesized hydrate bearing samples that more realistically mimic the observed strength behavior of natural hydrate bearing cores.
Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico
Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.
2008-01-01
n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses
NASA Astrophysics Data System (ADS)
Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.
2016-04-01
The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.
Trajectories of saltating sand particles behind a porous fence
NASA Astrophysics Data System (ADS)
Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo
2015-01-01
Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.
Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands
Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin
2017-01-01
Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages. PMID:28773069
Generation rate and particle size distribution of wood dust by handheld sanding operation.
Ojima, Jun
2016-11-29
The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m 3 /min ventilation rate.
Transport of fine sediment over a coarse, immobile riverbed
Grams, Paul E.; Wilcock, Peter R.
2014-01-01
Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.
Macedo-Silva, Virgínia P; Martins, Daniella R A; De Queiroz, Paula Vivianne Souza; Pinheiro, Marcos Paulo G; Freire, Caio C M; Queiroz, José W; Dupnik, Kathryn M; Pearson, Richard D; Wilson, Mary E; Jeronimo, Selma M B; Ximenes, Maria De Fátima F M
2014-01-01
Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source ofbloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil.
Macedo-Silva, Virgínia P.; Martins, Daniella R. A.; De Queiroz, Paula Vivianne Souza; Pinheiro, Marcos Paulo G.; Freire, Caio C. M.; Queiroz, José W.; Dupnik, Kathryn M.; Pearson, Richard D.; Wilson, Mary E.; Jeronimo, Selma M. B.; Ximenes, Maria De Fátima F.M.
2014-01-01
Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source of bloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil. PMID:24605474
Cheng, Jian-jun; Xin, Guo-Wei; Zhi, Ling-yan; Jiang, Fu-qiang
2017-01-01
Wind-shield walls decrease the velocity of wind-drift sand flow in transit. This results in sand accumulating in the wind-shadow zone of both windshield wall and track line, causing severe sand sediment hazard. This study reveals the characteristics of sand accumulation and the laws of wind-blown sand removal in the wind-shadow areas of three different types of windshield walls, utilizing three-dimensional numerical simulations and wind tunnel experiments and on-site sand sediment tests. The results revealed the formation of apparent vortex and acceleration zones on the leeward side of solid windshield walls. For uniform openings, the vortex area moved back and narrowed. When bottom-opening windshield walls were adopted, the track-supporting layer at the step became a conflux acceleration zone, forming a low velocity vortex zone near the track line. At high wind speeds, windshield walls with bottom-openings achieved improved sand dredging. Considering hydrodynamic mechanisms, the flow field structure on the leeward side of different types of windshield structures is a result of convergence and diffusion of fluids caused by an obstacle. This convergence and diffusion effect of air fluid is more apparent at high wind velocities, but not obvious at low wind velocities. PMID:28120915
Effect of unground oil palm ash as mixing ingredient towards properties of concrete
NASA Astrophysics Data System (ADS)
Sulaiman, M. A.; Muthusamy, K.; Mat Aris, S.; Rasid, M. H. Mohd; Paramasivam, R.; Othman, R.
2018-04-01
Malaysia being one of the world largest palm oil producers generates palm oil fuel ash (POFA), a by-product in increasing quantity. This material which usually disposed as solid waste causes pollution to the environment. Success in converting this waste material into benefitting product would reduce amount of waste disposed and contributes towards cleaner environment. This research explores the potential of unground oil palm ash being used as partial sand replacement in normal concrete production. Experimental work has been conducted to determine the workability, compressive strength and flexural strength of concrete when unground oil palm ash is added as partial sand replacement. A total of five mixes containing various percentage of oil palm ash, which are 0%, 5%, 10%, 15% and 20% have been prepared. All specimens were water cured until the testing date. The slump test, compressive strength test and flexural strength test was conducted. The findings show that mix produced using 10% of palm oil fuel ash exhibit higher compressive strength and flexural strength as compared to control specimen. Utilization of unground oil palm ash as partial sand replacement would be able to reduce dependency of construction industry on natural sand supply and also as one of the solution to reuse palm oil industry waste.
Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Pozo, Julia Mª Morán-del; Guerra-Romero, Manuel I
2014-01-01
Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW. PMID:28788164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, C.A.; Weijers, L.; Minner, W.A.
1996-07-01
This report describes the results from Chevron`s Pakenham Field effort at fracture stimulation engineering which incorporated, to the greatest extent possible, the results of actual measured field data. Measurement of the sand-shale closure stress contrast around the Wolfcamp A2 sand and the relatively high net fracturing pressures (compared to the closure stress contrast) that were observed during real-data (net pressure) fracture treatment analysis revealed that fractures obtained in most of the treatments were much shorter and less confined than originally expected: the fracture half-length was about 200 to 300 ft (instead of about 600 ft), which is consistent with estimatesmore » from post-fracture pressure build-up tests. Based on these measurements, Chevron`s fracturing practices in the Pakenham Field could be carefully reviewed to enhance fracture economics. Supported by the real-data fracture treatment analysis, several changes in completion, fracture treatment design and data-collection procedures were made, such as: (1) using cheaper 20/40 Ottawa sand instead of pre-cured 20/40 resin coated sand; (2) reducing the pad fluid size, as fluid leakoff from the fracture into the formation was relatively low; and, (3) utilizing stepdown tests and proppant slugs to minimize near-wellbore screen-out potential (in the Wolfcamp D sand).« less
63. Photograph of line drawing. SITE PLAN OF GANTRY CRANE ...
63. Photograph of line drawing. SITE PLAN OF GANTRY CRANE TRACKS AND 20,000 POUND MOTOR TEST AND LAUNCH FACILITY ('BLAST PIT'), OCTOBER 1946 - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Can pore-clogging by ash explain post-fire runoff?
Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.
2016-01-01
Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1973-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled the project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery of selected sites, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya and other areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
A study of morphology, provenance, and movement of desert sand seas in Africa, Asia, and Australia
NASA Technical Reports Server (NTRS)
Mckee, E. D. (Principal Investigator); Breed, C. S.
1974-01-01
The author has identified the following significant results. Recent acquisition of generally high quality color prints for most of the test sites has enabled this project to make significant advances in preparing mosaics of sand desert areas under study. Computer enhancement of imagery, where details of complex dune forms need to be determined, has been achieved with arrival of computer-compatible ERTS-1 tapes. Further, a comparator, recently received, gives precise visual measurements of width, length, and spacing of sand bodies and so improves comparison of patterns in various test sites. Considerable additional meteorological data recently received on sand-moving winds in China, Pakistan, Libya, and other study areas enabled much progress to be made in developing overlays for the dune mosaics. These data show direction, speed, and frequency of winds. Other new data for use in preparing overlays used with ERTS-1 image mosaics include ground truth on moisture control, geologic settings, and plant distribution. With the addition of visual observation data and prints from hand-held photography now being obtained by the Skylab 4 mission, much progress in interpreting the patterns of sand seas for 17 desert sites is anticipated.
Gonthier, Gerard
2012-01-01
An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.
Dobson, Deborah E; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J; Beverley, Stephen M; Sacks, David L
2010-11-11
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.
TESTING OF TMR SAND MANTIS FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D; William Daugherty, W
2007-06-12
Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conductedmore » to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.« less
Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.
Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S
2011-07-01
South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).
Ground-water hydrology of the Hollister and San Juan Valleys, San Benito County, California, 1913-68
Kilburn, Chabot
1973-01-01
The Hollister and San Juan Valleys are within the Gilroy-Hollister ground-water basin. That part of the ground-water basin underlying the valleys consists of three subbasins each of which contains two or more ground-water subunits. The subbasin and subunit boundaries are formed by known or postulated faults, folded sedimentary rocks, and igneous rocks. The principal water-bearing units are lenticular beds of sand and gavel interbedded with clay, silt, sand, and gravel, or their locally consolidated equivalents, which range from Pliocene to Holocene, in age. Ground water occurs mainly under artesian or semiartesian conditions but also under unconfined (water-table) conditions in areas adjacent to most surface streams and, locally, under perched or semiperched conditions. In 1968 the depth to water in wells ranged from approximately 20 feet above land surface to more than 200 feet below land surface. Water-level differences in wells across the boundaries of adjacent subunits ranged from about 1 to more than 100 feet.
Squassoni, Selma Denis; Machado, Nadine Cristina; Lapa, Mônica Silveira; Cordoni, Priscila Kessar; Bortolassi, Luciene Costa; de Oliveira, Juliana Nascimento; Tavares, Cecilia Melo Rosa; Fiss, Elie
2014-01-01
Objective To evaluate the influence of the altitude on the 6-minute walking test in patients with moderate to severe pulmonary disease. Methods Twenty-nine patients performed the 6-minute walk test at a pulmonary rehabilitation clinic in Santo André (above sea level), in São Paulo State, and at the Enseada Beach, in Guarujá (at sea level), also in São Paulo State. Of these 29 patients, 8 did the test both on hard sand and on asphalt to analyze if there were differences in performance during the tests. Data such as heart rate, oxygen saturation, test distance, and Borg scale were compared. Results We found no statistical difference in relation to oxygen saturation at rest before the beginning of the walking test in Santo André 94.67±2.26% and at sea level 95.56±2% (p=0.71). The minimum saturation measured during the test was 87.27±6.54% in Santo André and 89.10±5.41% in Guarujá (p=0.098). There were no differences in the performed distance between the different kinds of terrains; the distance on sand was 387.75±5.02m and on asphalt it was 375.00±6.54m (p=0.654). Regarding oxygen saturation during walking, the pulse oximetry on sand was 95.12±1.80% and on asphalt it was 96.87±1.64% (p=1.05). Conclusion Altitude did not affect the performance of the walking test in patients with moderate to severe pulmonary disease and the results were similar in both cases, on sand and on asphalt. PMID:25628195
Evaluation of Liquefaction Susceptibility of Clean Sands after Blast Densification
NASA Astrophysics Data System (ADS)
Vega Posada, Carlos Alberto
The effect of earthquakes on infrastructure facilities is an important topic of interest in geotechnical research. A key design issue for such facilities is whether or not liquefaction will occur during an earthquake. The consequences of this type of ground failure are usually severe, resulting in severe damage to a facility and in some cases the loss of human life. One approach to minimize the effect of liquefaction is to improve the ground condition by controlled blasting. The main limitations of the blast densification technique are that the design is mostly empirical and verification studies of densification have resulted in contradictory results in some case studies. In such cases, even though the ground surface settles almost immediately after blasting, common verification tests such as the cone penetration test (CPT), standard penetration test (SPT), and shear wave velocity test (Vs) suggest that the soil mass has not been improved at all. This raises concerns regarding the future performance of the soil and casts doubts on whether or not the improved deposit is still susceptible to liquefaction. In this work, a blast densification program was implemented at the Oakridge Landfill located in Dorchester County, SC, to gain information regarding the condition of a loose sand deposit during and after each blast event. In addition, an extensive laboratory testing program was conducted on reconstituted sand specimens to evaluate the mechanical behavior of saturated and gassy, medium dense sands during monotonic and cyclic loading. The results from the field and laboratory program indicate that gas released during blasting can remain trapped in the soil mass for several years, and this gas greatly affects the mechanical behavior of the sand. Gas greatly increases the liquefaction resistance of the soil. If the gas remains in the sand over the life of a project, then it will maintain this increased resistance to liquefaction, whether or not the penetration resistance increases with time. As part of this work, a methodology based on the critical state concepts was described to quantify the amount of densification needed at a certain project to make the soil more resistant to liquefaction and flow.
Ultrasonic isolation of buried pipes
NASA Astrophysics Data System (ADS)
Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter
2016-02-01
Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.
Pouliot, Rémy; Rochefort, Line; Graf, Martha D
2012-08-01
Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.
Flight test of MMW radar for brown-out helicopter landing
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Kolinko, Vladimir; Otto, Gregory P.; Lovberg, John A.
2012-06-01
Trex Enterprises and US Army RDECOM CERDEC Night Vision Electronic Sensors Directorate developed and tested helicopter radar to aid in brown-out landing situations. A brown-out occurs when sand and dust kicked up by the helicopter rotors impair the pilot's vision. Millimeter-wave (MMW) radiation penetrates sand and dust with little loss or scattering, and radar at this frequency can provide a pilot with an image of the intended landing zone. The Brown-out Situational Awareness System (BSAS) is a frequency-modulated, continuous-wave radar that measures range to the ground across a conical field-of-view and uses that range information to create an image for the pilot. The BSAS collected imagery from a helicopter in a blowing sand environment with obstacles including ditches, hills, posts, poles, wires, buildings and vehicles. The BSAS proved the capability to form images of the ground through heavy blowing sand and resolve images of some obstacles. The BSAS also attempted to differentiate flat ground from bumpy ground with limited success at some viewing angles. The BSAS test imagery includes some artifacts formed by high radar cross-section targets in the field-of-view or sidelobes. The paper discusses future improvements that could limit these artifacts.
Evaluating the Emergency Notification Systems of the NASA White Sands Test
NASA Technical Reports Server (NTRS)
Chavez, Alfred Paul
2004-01-01
The problem was that the NASA Fire and Emergency Services did not know if the current emergency notification systems on the NASA White Sands Test Facility were appropriate for alerting the employees of an emergency. The purpose of this Applied Research Project was to determine if the current emergency notification systems of the White Sands Test Facility are appropriate for alerting the employees of an emergency. This was a descriptive research project. The research questions were: 1) What are similar facilities using to alert the employees of an emergency?; 2) Are the current emergency notification systems suitable for the community hazards on the NASA White Sands Test Facility?; 3) What is the NASA Fire and Emergency Services currently using to measure the effectiveness of the emergency notification systems?; and 4) What are the current training methods used to train personnel to the emergency notification systems at the NASA White Sands Test Facility? The procedures involved were to research other established facilities, research published material from credible sources, survey the facility to determine the facility perception of the emergency notification systems, and evaluate the operating elements of the established emergency notification systems for the facility. The results were that the current systems are suitable for the type of hazards the facility may endure. The emergency notification systems are tested frequently to ensure effectiveness in the event of an emergency. Personnel are trained and participate in a yearly drill to make certain personnel are educated on the established systems. The recommendations based on the results were to operationally improve the existing systems by developing and implementing one system that can overall notify the facility of a hazard. Existing procedures and training should also be improved to ensure that all personnel are educated on what to do when the emergency notification systems are activated.
Papadopoulos, A; Koroneos, A; Christofides, G; Papadopoulou, L; Tzifas, I; Stoulos, S
2016-10-01
This study aims to evaluate the activity concentrations of 238 U, 226 Ra, 232 Th, 228 Th and 40 K along beaches close to the plutonic rocks of the Atticocycladic zone that ranged from 15 to 628, 12-2292, 16-10,143, 14-9953 and 191-1192 Bq/kg respectively. A sample from island of Mykonos contained the highest 232 Th content measured in sediments of Greece. The heavy magnetic fraction and the heavy non-magnetic fraction as well as the total heavy fraction, were correlated with the concentrations of the measured radionuclides in the bulk samples. The heavy fractions seem to control the activity concentrations of 238 U and 232 Th of all the samples, showing some local differences in the main 238 U and 232 Th mineral carrier. Similar correlations have been found between 238 U, 232 Th content and rare earth elements concentrations. The measured radionuclides in the beach sands were normalized to the respective values measured in the granitic rocks, which at least in most cases are their most probable parental rocks, so as to provide data upon their enrichment or depletion. Since the Greek beaches are among the most popular worldwide the annual effective dose equivalent received due to sand exposure has been estimated and found to vary between 0.002 and 0.379 mSv y -1 for tourists and from 0.018 to 3.164 mSv y -1 for local people working on the beach. The values corresponding to ordinary sand samples are orders of magnitude lower than the limit of 1 mSv y -1 , only in the case of heavy minerals-rich sands the dose could reach or exceed the recommended maximum limit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason
2015-10-01
Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.
Luepke Bynum, Gretchen
2007-01-01
Modern sediments from representative localities in Willapa Bay, Washington, comprise two principal heavy-mineral suites. One contains approximately equivalent amounts of hornblende, orthopyroxene, and clinopyroxene; this is derived from the Columbia River, which discharges into the Pacific Ocean a short distance south of the bay. The other suite, dominated by clinopyroxene, is restricted to sands of rivers flowing into the bay from the east. The heavy-mineral distributions within the bay suggest that sand discharged from the Columbia River, borne north by longshore transport and carried into the bay by tidal currents, accounts for nearly all of the sand within the interior of Willapa Bay today. Pleistocene deposits on the east side of the bay contain three heavy-mineral assemblages, two of which are identical to the modern assemblages described above. These assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits (100,000–200,000 BP. Amino acid racemization in Quaternary shell deposits at Willapa Bay, Washington. Geochimica et Cosmochimica Acta 43, 1505–1520). They are also consistent with those processes inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. Anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral suites suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay. The third heavy-mineral suite is enriched in epidote and occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in cross-bedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the northeast side of the bay suggests that input from this northerly source may have intermittently dominated Willapa Bay deposition in the past.
Parcperdue Geopressure -- Geothermal Project: Appendix E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweezy, L.R.
1981-10-05
The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and thatmore » the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, A.; Devenny, D.; Porcari, G.
The activities carried out and the results obtained from a 15 tons/hour oil sands extraction pilot plant operated in Fort McMurray in Northern Alberta are described. The process is the Rio Tinto TIL Holding S.A. (RTR)/Gulf Canada Lt. Oil Sands Extraction Process. It is a modified hot water extraction process. It is used to extract bitumen from Athabasca oil sands. The test ran from July to December 1981 through ambient conditions ranging from plus 38/sup 0/C to minus 30/sup 0/C (100/sup 0/F to -22/sup 0/F). The process, the on-site facilities, the test program, an analysis of plant performance, an appraisalmore » of the process economics, and an evaluation of its potential application are described.« less
NASA Astrophysics Data System (ADS)
Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.
2012-12-01
Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18% respectively. Pumping below the gas hydrate stability phase boundary occurred in two periods with the composition of the produced gases continually increasing in methane reaching an excess of 96%, along with carbon dioxide decreasing to <1% and nitrogen to ~3%. The isotopic composition of all the gases was monitored. Methane carbon and hydrogen isotopic compositions remained stable throughout the test, while the carbon dioxide carbon became isotopically heavier. Nitrogen isotopic composition remained stable or became slightly isotopically depleted at the later phase of the test. These results imply that the produced methane was not isotopically fractionated, whereas carbon dioxide was fractionated becoming isotopically heavier at the end of each production phase. In addition, water samples were analyzed during the production phase documenting an increase in salinity.
Effect of Dissolved NaC1 on Freezing Curves of Kaolinite, Montmorillonite, and Sand Pastes,
1999-01-01
test this procedure. Pastes of kaolinite clay, montmorillonite , and quartz sand were prepared by washing repeatedly with aque- ous solutions of 0.1...Cold Regions Research & Engineering Laboratory Effect of Dissolved NaCI on Freezing Curves of Kaolinite , Montmorillonite , and Sand Pastes S.A...of kaolinite pastes warmed from -66.6°C to 0°C 8 4. Unfrozen-water contents, as measured by pulsed NMR, of montmorillonite pastes cooled from 0
2010-01-01
forDiseaseControl andPrevention (CDC) light trap for efÞcacy in collecting phlebotomine sand ßies (Diptera: Psychodidae) in a small farming village in the...Prevention (CDC) light trap for ef?acy in collecting phlebotomine sand ?es (Diptera: Psychodidae) in a small farming village in the Nile River Valley 10 km...Testing was conducted in June, August, and September 2007, in Bahrif village, a farming com- munity of 500 people 10 km north of Aswan on the east
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
These appendices contain the following reports: (1) investigation of coupling failure from the Gladys McCall No. 1 well; (2) failure analysis - oil well casing coupling; (3) technical remedial requirements for 5-inch production tubing string; (4) reservoir limit test data for sand zone No. 9; (5) reservoir fluid study - sand zone No. 9; (6) engineering interpretation of exploration drawdown tests; and (7) reservoir analysis. (ACR)
Test wells T27 and T28, White Sands Missile Range, Dona Ana County, New Mexico
Myers, R.G.; Pinckley, K.M.
1985-01-01
Two test wells, T27 and T28, were drilled at White Sands Missile Range in south-central New Mexico as part of a joint military training program sponsored by the U.S. Army in February and March 1983. Test wells T27 and T28 were drilled as observation wells in the vicinity of the Liquid Propellant Storage Area. Information obtained from these wells includes lithologic logs, driller 's logs, and borehole-geophysical logs from the cased wells. (USGS)
Estimating the change of porosity in the saturated zone during air sparging.
Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih
2006-01-01
Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.
Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)
Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr
2017-01-01
Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377
Generation rate and particle size distribution of wood dust by handheld sanding operation
Ojima, Jun
2016-01-01
Objectives: The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Methods: Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Results: Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Conclusions: Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m3/min ventilation rate. PMID:27725491
Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim
2015-11-01
Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing
2017-08-22
The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.
DOT National Transportation Integrated Search
1984-03-01
During construction of Interstate I-10 between Baton Rouge and LaPlace, Louisiana, highly organic swamp deposits were excavated and replaced with hydraulically pumped river sand. Recently, excessive settlement was encountered at numerous cross-drain ...
22. V2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST ...
22. V-2 GANTRY, LAUNCH COMPLEX 33: GENERAL VIEW, LOOKING WEST AND UPWARD FROM APRON OF BLAST PIT, 20,000 POUND MOTOR TEST AND LAUNCH FACILITY - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
21. V2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH ...
21. V-2 GANTRY, LAUNCH COMPLEX 33: VIEW OF CRANE WITH BLAST PIT OF 20,000 POUND MOTOR TEST AND LAUNCH FACILITY, IN FOREGROUND, LOOKING WEST - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray
2017-01-01
Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.
ERIC Educational Resources Information Center
Hart, Sheryl
2015-01-01
For decades, the state of Arizona has used the General Educational Development (GED) Test to award the Arizona High School Equivalency (HSE) Diploma, as the GED Test was the only test available, recognized and accepted in the United States as the measure by which adults could demonstrate the educational attainment equivalent to high school…
Yang, Jing; Ye, Shu-jun; Wu, Ji-chun
2011-05-01
This paper studied on the influence of bioclogging on permeability of saturated porous media. Laboratory hydraulic tests were conducted in a two-dimensional C190 sand-filled cell (55 cm wide x 45 cm high x 1.28 cm thick) to investigate growth of the mixed microorganisms (KB-1) and influence of biofilm on permeability of saturated porous media under condition of rich nutrition. Biomass distributions in the water and on the sand in the cell were measured by protein analysis. The biofilm distribution on the sand was observed by confocal laser scanning microscopy. Permeability was measured by hydraulic tests. The biomass levels measured in water and on the sand increased with time, and were highest at the bottom of the cell. The biofilm on the sand at the bottom of the cell was thicker. The results of the hydraulic tests demonstrated that the permeability due to biofilm growth was estimated to be average 12% of the initial value. To investigate the spatial distribution of permeability in the two dimensional cell, three models (Taylor, Seki, and Clement) were used to calculate permeability of porous media with biofilm growth. The results of Taylor's model showed reduction in permeability of 2-5 orders magnitude. The Clement's model predicted 3%-98% of the initial value. Seki's model could not be applied in this study. Conclusively, biofilm growth could obviously decrease the permeability of two dimensional saturated porous media, however, the reduction was much less than that estimated in one dimensional condition. Additionally, under condition of two dimensional saturated porous media with rich nutrition, Seki's model could not be applied, Taylor's model predicted bigger reductions, and the results of Clement's model were closest to the result of hydraulic test.
Simulating Sand Behavior through Terrain Subdivision and Particle Refinement
NASA Astrophysics Data System (ADS)
Clothier, M.
2013-12-01
Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by their proximity to the interacting object or force with the sand. To illustrate an example, as a rover wheel moves forward and approaches a particular sand region, that region will continue to subdivide until individual sand particles are represented. Conversely, if the rover wheel moves away, previously subdivided sand regions will recombine. Thus, individual sand particles are available when an interacting force is present but stored away if there is not. As such, this technique allows for many particles to be represented without the computational complexity. We have also further generalized these subdivision regions in our sand framework into any volumetric area suitable for use in the simulation. This allows for more compact subdivision regions and has fine-tuned our framework so that more emphasis can be placed on regions of actively participating sand. We feel that this increases the framework's usefulness across scientific applications and can provide for other research opportunities within the earth and planetary sciences. Through continued collaboration with our academic partners, we continue to build upon our sand simulation framework and look for other opportunities to utilize this research.
Lateral fluid flow in a compacting sand-shale sequence: South Caspian basin.
Bredehoeft, J.D.; Djevanshir, R.D.; Belitz, K.R.
1988-01-01
The South Caspian basin contains both sands and shales that have pore-fluid pressures substantially in excess of hydrostatic fluid pressure. Pore-pressure data from the South Caspian basin demonstrate that large differences in excess hydraulic head exist between sand and shale. The data indicate that sands are acting as drains for overlying and underlying compacting shales and that fluid flows laterally through the sand on a regional scale from the basin interior northward to points of discharge. The major driving force for the fluid movement is shale compaction. We present a first- order mathematical analysis in an effort to test if the permeability of the sands required to support a regional flow system is reasonable. The results of the analysis suggest regional sand permeabilities ranging from 1 to 30 md; a range that seems reasonable. This result supports the thesis that lateral fluid flow is occurring on a regional scale within the South Caspian basin. If vertical conduits for flow exist within the basin, they are sufficiently impermeable and do not provide a major outlet for the regional flow system. The lateral fluid flow within the sands implies that the stratigraphic sequence is divided into horizontal units that are hydraulically isolated from one another, a conclusion that has important implications for oil and gas migration.-Authors
Geosynthetic Reinforcement of Sand-Mat Layer above Soft Ground
Park, Jong-Beom; Park, Hyun-Soo; Kim, Daehyeon
2013-01-01
In order to improve the bearing capacity of soft ground for the purpose of getting trafficability of construction vehicles, the reinforcement of geosynthetics for sand-mat layers on soft ground has often been used. As the strength of the geosynthetics increases, and the sand-mat system becomes stronger, the bearing capacity of sand-mat systems will be increased. The depths of geosynthetics, reinforced in sand-mat layers, were varied with respect to the width of footing. The tensile strengths of geosynthetics were also varied to evaluate the effect of reinforcement on the bearing capacity of soft ground. The dispersion angles, with varying sand-mat thicknesses, were also determined in consideration of the tensile strength of geosynthetics and the depths of reinforcement installations. The bearing capacity ratios, with the variation of footing width and reinforced embedment depth, were determined for the geosynthetics-only, reinforced soft ground, 1-layer sand-mat system and 2-layer sand-mat system against the non-reinforced soft ground. From the test results of various models, a principle that better explains the concept of geosynthetic reinforcement has been found. On the basis of this principle, a new bearing capacity equation for practical use in the design of geosynthetically reinforced soft ground has been proposed by modifying Yamanouchi’s equation. PMID:28788392
Groundwater Remediation and Alternate Energy at White Sands Test Facility
NASA Technical Reports Server (NTRS)
Fischer, Holger
2008-01-01
White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.
Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase
NASA Astrophysics Data System (ADS)
Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.
2014-12-01
Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).
Results of a test well in the Nanafalia Formation near Melvin, Choctaw County, Alabama
Davis, M.E.; Sparkes, A.K.; Peacock, B.S.
1983-01-01
Test drilling at Melvin, Choctaw County, Alabama, discloses that the Nanafalia Formation (Paleocene) contains freshwater in sand at a distance of 25 miles downdip from the outcrop area. A nearby fault on the north side of Gilberttown-Pickens fault zone does not appear to affect either the head or the water quality in sand of the Nanafalia. This presently undeveloped aquifer could be a source of water supply in this area. (USGS)
40 CFR Appendix 1 to Subpart A of... - Static Sheen Test
Code of Federal Regulations, 2010 CFR
2010-07-01
... drilling fluids, drill cuttings, produced sand, and well treatment, completion and workover fluids. “Free... drill cuttings or produced sand are introduced into ambient seawater in a container having an air-to... specified. 6. Quality Control Procedures None currently specified. 7. Sample Collection and Handling 7...
DOT National Transportation Integrated Search
1998-10-02
This report presents the results of slow, cyclic, lateral-loading centrifuge tests performed on models of pile-cap foundation systems and seat-type bridge abutements in dry Neveda sand of 75% relative density to study the lateral response of these sy...
Risk of Mycoplasma bovis transmission from contaminated sand bedding to naive dairy calves.
Wilson, D J; Justice-Allen, A; Goodell, G; Baldwin, T J; Skirpstunas, R T; Cavender, K B
2011-03-01
The objective of this study was to evaluate the possible transmission of Mycoplasma bovis from positive sand bedding to naïve dairy calves. Twelve preweaned Holstein bull calves were blocked in pairs and randomly assigned as unexposed controls (n=6) bedded with control sand, or exposed calves (n=6) bedded with sand previously positive for M. bovis at a dairy farm. Bedding sand was cultured weekly. Nasal and ear swabs and sera were collected weekly, tracheal swabs were collected monthly, and by the end of the 105-d study, all calves were euthanized (n=10) or died (n=2). Sera were tested for M. bovis-specific antibody. Mycoplasma spp. culture was performed on nasal and ear swabs; culture and a PCR differentiating multiple Mycoplasma spp. were performed on postmortem samples of lung, retropharyngeal lymph node, and trachea from each calf. A complete necropsy also was performed. During 6 wk, mycoplasma concentration in exposed group sand was between 200 and 32,000 cfu/g. All 166 tracheal swabs, nasal and ear swabs, and postmortem tests from all calves were negative for mycoplasma. All 94 sera were negative for M. bovis-specific antibody. No gross pathology suggestive of mycoplasma disease was detected. The probability of mycoplasma detection, if an exposed calf had become infected 4 wk after exposure, ranged between 97 and 99% depending on time of exposure for individual calves. There was no evidence that sand bedding contaminated with M. bovis might serve as a source of transmission to naïve dairy calves. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Falcão de Oliveira, Everton; Casaril, Aline Etelvina; Fernandes, Wagner Souza; Ravanelli, Michelle de Saboya; Medeiros, Márcio José de; Gamarra, Roberto Macedo; Paranhos Filho, Antônio Conceição; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi
2016-01-01
The monthly distribution and abundance of sand flies are influenced by both biotic and abiotic factors. The present study aimed to evaluate the seasonal distribution of sand flies and the relation between their abundance and environmental parameters, including vegetation and climate. This study was conducted over a 2-year period (April 2012 to March 2014). Monthly distribution was evaluated through the weekly deployment of CDC light traps in the peridomicile area of 5 residences in an urban area of the municipality of Corumbá in the State of Mato Grosso do Sul, Brazil. Meteorological data were obtained from the Mato Grosso do Sul Center for Weather, Climate, and Water Resources. The spectral indices were calculated based on spatial resolution images (GeoEye) and the percentage of vegetal coverage. Differences in the abundance of sand flies among the collection sites were assessed using the Kruskal-Wallis test, and the strength of correlations between environmental variables was determined by calculating Spearman's correlation coefficients. Lutzomyia cruzi, Lu. forattinii, and Evandromyia corumbaensis were the most frequently found species. Although no significant association was found among these sand fly species and the tested environmental variables (vegetation and climate), high population peaks were found during the rainy season, whereas low peaks were observed in the dry season. The monthly distribution of sand flies was primarily determined by Lu. cruzi, which accounted for 93.94% of the specimens collected each month throughout the experimental period. The fact that sand flies were detected year-round indicates a continuous risk of infection to humans, demonstrating the need for targeted management and education programs.
NASA Technical Reports Server (NTRS)
Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris;
2017-01-01
Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.
Next Generation Surfactants for Improved Chemical Flooding Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell
2012-05-31
The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers,more » and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.« less
Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching
2016-08-29
Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40-0.50) decreased the filling ability and led to an increased T 50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC.
NASA Astrophysics Data System (ADS)
Sisson, John D.; Shimeta, Jeff; Zimmer, Cheryl Ann; Traykovski, Peter
2002-03-01
Knowledge of spatial relationships among benthic biota and sedimentary features in shallow-water (<30 m) high-energy environments has been severely limited by sampling technology. We describe and report tests of a SCUBA-diving mapping method specifically for this region. Underwater acoustic location is used to achieve meter-scale resolution over kilometer-scale regions of the sea floor. A triad of acoustic transponders is bottom-mounted at known positions, 300-500 m apart. Transported by underwater personal vehicles, SCUBA-divers map the bed using hand-held acoustic receivers that record ranges to the transponders. The mean error of acoustic fixes was 2.4±1.2 m in a 0.5 km×1.0 km test area. Dense assemblages of epibenthic animals were mapped relative to sediment texture and bedforms off the exposed south coast of Martha's Vineyard Island, Massachusetts, USA. Surveys one month apart within a 0.6 km×0.6 km area (8-12 m depth) revealed 100-m-scale patches of the tube worm Spiophanes bombyx (⩽30,000 m -2) in fine sand and of the sand dollar Echinarachnius parma (⩽55 m -2) in coarse sand. Raised mud patches that, together with fine sand, occurred in two shore-perpendicular belts are likely exposed, ancient marsh deposits. Depth gradients of sand-ripple geometry indicated that ripples in deeper areas were not in equilibrium with wave conditions monitored during surveys; i.e., they were relict ripples. Thus, sand dollars in some areas may have had >1 month to rework surficial sands since their transformation by physical processes. Linear regressions of ripple characteristics against sand dollar or tube worm densities were not significant, although such relationships would be highly dependent on temporal scale. The survey method described here can be used at more frequent intervals to explore such interactions between epibenthic animals and sediment-transport dynamics.
Zhu, Yiyun; Cui, Hongzhi; Tang, Waiching
2016-01-01
Self-compacting lightweight concrete (SCLC) is a promising construction material for building applications, but most SCLCs today are made with river sand (RS). There is an increasing demand for environmental protection, as well as materials with a high strength/density ratio. The manufactured sand (MS) and lightweight sand (LS) as fine aggregates in cement-based composite materials have been receiving more attention among researchers. However, there is not much information about the effects of MS and LS on the properties of the fresh and hardened SCLCs. In this paper, the properties of fresh and hardened SCLC made with MS and LS were investigated by a series of experiments. SCLCs made with RS served as the control in this study. The test results show that increasing the sand ratio (from 0.40–0.50) decreased the filling ability and led to an increased T50 time, which is the time spent for the concrete to reach the 500 mm spread circle, for all of the fresh SCLCs. Although the passing ability of MS-SCLCs and LS-SCLCs is not as good as RS-SCLCs, their results are still within an acceptable range. The ratio of mechanical properties to density was found to increase with an increase of the sand ratio for all of the hardened SCLCs. MS-SCLCs presented the highest compressive strength among all of the SCLCs studied. Although the mean compressive strength of LS-SCLCs is lower than those of the other two SCLCs by 8%, their strength to density ratio is higher than others by 15%, and the ratio increases remarkably with the increase of the sand ratio. Permeability test results showed that the permeability coefficient of MS-SCLC is remarkably lower than that of LS-SCLC, but slightly higher than that of RS-SCLC. PMID:28773857
NASA Astrophysics Data System (ADS)
Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.
2014-12-01
In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.
Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq
2016-11-15
Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rejiba, F.; Sagnard, F.; Schamper, C.
2011-07-01
Time domain reflectometry (TDR) is a proven, nondestructive method for the measurement of the permittivity and electrical conductivity of soils, using electromagnetic (EM) waves. Standard interpretation of TDR data leads to the estimation of the soil's equivalent electromagnetic properties since the wavelengths associated with the source signal are considerably greater than the microstructure of the soil. The aforementioned approximation tends to hide an important issue: the influence of the microstructure and phase configuration in the generation of a polarized electric field, which is complicated because of the presence of numerous length scales. In this paper, the influence of the microstructural distribution of each phase on the TDR signal has been studied. We propose a two-step EM modeling technique at a microscale range (?): first, we define an equivalent grain including a thin shell of free water, and second, we solve Maxwell's equations over the discretized, statistically distributed triphasic porous medium. Modeling of the TDR probe with the soil sample was performed using a three-dimensional finite difference time domain scheme. The effectiveness of this hybrid homogenization approach is tested on unsaturated Nemours sand with narrow granulometric fractions. The comparisons made between numerical and experimental results are promising, despite significant assumptions concerning (1) the TDR probe head and the coaxial cable and (2) the assumed effective medium theory homogenization associated with the electromagnetic processes arising locally between the liquid and solid phases at the grain scale.
Hartzell, S.; Leeds, A.; Frankel, A.; Williams, R.A.; Odum, J.; Stephenson, W.; Silva, W.
2002-01-01
The Seattle fault poses a significant seismic hazard to the city of Seattle, Washington. A hybrid, low-frequency, high-frequency method is used to calculate broadband (0-20 Hz) ground-motion time histories for a M 6.5 earthquake on the Seattle fault. Low frequencies (1 Hz) are calculated by a stochastic method that uses a fractal subevent size distribution to give an ω-2 displacement spectrum. Time histories are calculated for a grid of stations and then corrected for the local site response using a classification scheme based on the surficial geology. Average shear-wave velocity profiles are developed for six surficial geologic units: artificial fill, modified land, Esperance sand, Lawton clay, till, and Tertiary sandstone. These profiles together with other soil parameters are used to compare linear, equivalent-linear, and nonlinear predictions of ground motion in the frequency band 0-15 Hz. Linear site-response corrections are found to yield unreasonably large ground motions. Equivalent-linear and nonlinear calculations give peak values similar to the 1994 Northridge, California, earthquake and those predicted by regression relationships. Ground-motion variance is estimated for (1) randomization of the velocity profiles, (2) variation in source parameters, and (3) choice of nonlinear model. Within the limits of the models tested, the results are found to be most sensitive to the nonlinear model and soil parameters, notably the over consolidation ratio.
Test of precoat filtration technology for treatment of swimming pool water.
Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup
2018-02-01
The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.
Testing ecological tradeoffs of a new tool for removing fine sediment in a spring-fed stream
Sepulveda, Adam; Sechrist, Juddson D.; Marczak, Laurie B
2014-01-01
Excessive fine sediment is a focus of stream restoration work because it can impair the structure and function of streams, but few methods exist for removing sediment in spring-fed streams. We tested a novel method of sediment removal with the potential to have minimal adverse effects on the biological community during the restoration process. The Sand Wand system, a dredgeless vacuum developed by Streamside Technologies, was used to experimentally remove fine sediment from Kackley Springs, a spring creek in southeastern Idaho. We assessed the effects of the Sand Wand on stream physical habitat and macroinvertebrate composition for up to 60 days after the treatment. We documented changes in multiple habitat variables, including stream depth, median particle size, and the frequency of embedded substrate in stream reaches that were treated with the Sand Wand. We also found that macroinvertebrate composition was altered even though common macroinvertebrate metrics changed little after the treatment. Our results suggest that the Sand Wand was effective at removing fine sediments in Kackley Springs and did minimal harm to macroinvertebrate function, but the Sand Wand was not ultimately effective in improving substrate composition to desired conditions. Additional restoration techniques are still needed to decrease the amount of fine sediment.
López, M; Baeza-Brotons, F; López, I; Tenza-Abril, A J; Aragonés, L
2018-05-19
Sand is the third most consumed material in the world, although it is a very scarce material. An exhaustive knowledge of sand and its behaviour against the waves is important for selecting the most suitable material to avoid shoreline erosion. To this end, a pattern of behaviour against accelerated wear test has been sought for 26 sand samples with different characteristics and origins (natural, dredged and quarried), with a focus on their mineralogy as well as a comparison of beach evolution carried out by other authors. Several techniques have been applied for characterization: granulometry, calcimetry, XRD and SEM. The results show that the different degrees of sand grain wear are not only due to their size and mineralogy, but also to the morphology of the particles. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete
NASA Astrophysics Data System (ADS)
Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.
2018-03-01
This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.
Topping, David J.; Rubin, David M.; Nelson, Jonathan M.; Kinzel, Paul J.; Corson, Ingrid C.
2000-01-01
The Colorado River in Marble and Grand Canyons displays evidence of annual supply limitation with respect to sand both prior to [Topping et al, this issue] and after the closure of Glen Canyon Dam in 1963. Systematic changes in bed elevation and systematic coupled changes in suspended‐sand concentration and grain size result from this supply limitation. During floods, sand supply limitation either causes or modifies a lag between the time of maximum discharge and the time of either maximum or minimum (depending on reach geometry) bed elevation. If, at a cross section where the bed aggrades with increasing flow, the maximum bed elevation is observed to lead the peak or the receding limb of a flood, then this observed response of the bed is due to sand supply limitation. Sand supply limitation also leads to the systematic evolution of sand grain size (both on the bed and in suspension) in the Colorado River. Sand input during a tributary flood travels down the Colorado River as an elongating sediment wave, with the finest sizes (because of their lower settling velocities) traveling the fastest. As the fine front of a sediment wave arrives at a given location, the bed fines and suspended‐sand concentrations increase in response to the enhanced upstream supply of finer sand. Then, as the front of the sediment wave passes that location, the bed is winnowed and suspended‐sand concentrations decrease in response to the depletion of the upstream supply of finer sand. The grain‐size effects of depletion of the upstream sand supply are most obvious during periods of higher dam releases (e.g., the 1996 flood experiment and the 1997 test flow). Because of substantial changes in the grain‐size distribution of the bed, stable relationships between the discharge of water and sand‐transport rates (i.e., stable sand rating curves) are precluded. Sand budgets in a supply‐limited river like the Colorado River can only be constructed through inclusion of the physical processes that couple changes in bed‐sediment grain size to changes in sand‐transport rates.
A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations
NASA Astrophysics Data System (ADS)
Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing
2017-09-01
A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.
The effects of time on the capacity of pipe piles in dense marine sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, F.C.; Jardine, R.J.; Brucy, F.
Investigations into pile behavior in dense marine sand have been performed by IFP and IC at Dunkirk, North France. In the most recent series of tests, strain-gauged, open-ended pipe piles, driven and statically load tested in 1989, were retested in 1994. Surprisingly large increases in shaft capacity were measured. The possible causes are evaluated in relation to previous case histories, laboratory soil tests, pile corrosion and new effective stress analyses developed using smaller, more intensively instrumented piles. The shaft capacities predicted by existing design methods are also assessed. 51 refs., 12 figs., 4 tabs.
Blast Induced Liquefaction of Soils: Laboratory and Field Tests
1988-06-25
characteristics are summarized below and given in Table A.23 in Appendix A.S. 1 . Grain Size Distribution and Grain Shape The physical properties of the sand were...in terms of soil type and void ratio for dynamic tests. -74- Table 4.1. Physical Properties of Monterey No. 0/30 Sand, Bonny Silt and a 50-50 Mixture...Results agree with the experimental observations of peak and long- term porewater pressure responses. The results of our study indicate the following. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, R.W.
The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within onemore » mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.« less
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.
2004-05-01
Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI results were obtained along the Sand Coulee and Onoway transects where the contrast between the bedrock and valley-fill was large and the surficial sediment was homogeneous. The effects of decreasing reliability with depth, 3-D anomalies, principles of equivalence and suppression, and surface inhomogeneity on the image quality are discussed.
NASA Astrophysics Data System (ADS)
Capaccioni, Bruno; Coltorti, Massimo; Todesco, Micol; Cremoni, Stefano; Di Giuseppe, Dario; Faccini, Barbara; Tessari, Umberto
2017-04-01
Sand volcanoes are remarkable geological features which form when shallow, water-saturated sand deposits are set in motion and reach the surface. This commonly occurs during earthquakes, as a result of liquefaction of waterlogged bodies, but some of these sand emissions are unrelated to seismic events. We present the case of a sand eruption triggered by a Cone Penetration Test (CPT) near Medolla (Italy), on the 10th of October 2014. A large amount of natural gas (CO2 and CH4)was erupted together with a mixture of water and sand, creating a sand volcano. The event was recorded and its evolution and final result were analyzed from several points of view. Our multidisciplinary approach involved morphological and sedimentological studies on the sand-volcano, chemical and isotopic analysis of discharged gases, repeated measurements of gas flux on the drill hole and of diffuse degassing in the surrounding area and numerical modelling of the aquifer feeding the discharge. Our results suggest that a geyser discharging a mixture of gas and water, capable of building a sand volcano, requires the presence of a shallow pressurized reservoir (1.2 MPa) where water coexists with a small amount of exsolved gas (a volume fraction of 0.05). The violent degassing occurred in Medolla confirms the role that a free gas phase may have in favoring the mobilization of liquid water and loose deposits, even in the absence of a seismic event.
LITTLE JOE II - LIFTOFF - WHITE SANDS MISSILE RANGE (WSMR), NM
1963-08-28
S63-15701 (28 August 1963) --- All seven motors of Little Joe II, ignited simultaneously at launch, with a total thrust of about 310,000 pounds. A maximum height of 24,000 feet was attained as Little Joe II traveled 47,000 feet north on the White Sands Test Range.
This study was designed to test two hypotheses: (1) that land dominated by mesquite (Prosopis glandulosa) is the most important area for active sand movement at the Jornada Experimental Range, located in the northern part of the Chihuahuan desert, and (2) that the most active san...
Roadside Soils: A Corridor for Invasion of Xeric Shrub by Nonindigenous Plants
Cathryn H. Greenberg; Stanley H. Crownover; Doria R. Gordon
1997-01-01
Invasion of ecosystems by nonindigenous species threatens native biodiversity by altering species compositi& and site chsracteristics, and by potentially impacting endangered species. We compared plant communities and soil charact&tics along clay, limerock, and unmodified sand roadsides, and in adjacent clearcuts in xeric Florida sand pine scrub to test our...
Clark, Allan K.; Robert R. Morris,
2015-01-01
The hydrostratigraphic units of the Edwards and Trinity aquifers have been mapped and described herein using a classification system developed by Choquette and Pray (1970), which is based on porosity types being fabric or not-fabric selective. The naming of hydrostratigraphic units is also based on preexisting names and topographic or historical features that occur in outcrop. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is VIII hydrostratigraphic unit. The mapped hydrostratigraphic units of the upper Trinity aquifer are, from top to bottom: the cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite and they are interval equivalent to the upper member of the Glen Rose Limestone. The middle Trinity aquifer (interval equivalent to the lower member of the Glen Rose Limestone) contains, from top to bottom: the Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, and Honey Creek hydrostratigraphic units. The lower part of the middle Trinity aquifer is formed by the Hensell, Cow Creek, and Hammett hydrostratigraphic units which are interval equivalent to the Hensell Sand Member, the Cow Creek Limestone, and the Hammett Shale Member, respectively, of the Pearsall Formation.
Recycled sand in lime-based mortars.
Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K
2014-12-01
The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren
2017-06-01
N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.
NASA Astrophysics Data System (ADS)
Steffy, D. A.; Nichols, A.
2016-02-01
A majority of Alabama's 60 miles of beaches were exposed to the crude oil released from the massive 2010 Deepwater Horizon Oil Spill. To help remediate the spill BP sprayed the dispersant, COREXIT 9500A, over the floating oil in the Gulf and at the subsurface damaged Macondo wellhead. This dispersant could have inadvertently promoted an oil-in-water emulsion to infiltrate deeper into the exposed beaches which are composed of Holocene age, fine-to-medium quartz sand. A series of short-column tests of packed sand in glass columns simulated the arrival of an oil-in-water emulsion at a beach. An emulsion formed by weathered oil penetrated deeper into the sand as compared to oil that has experience little weathering. The penetrations of these emulsions were enhanced when a 2% COREXIT 9500A in saltwater solution was allowed to flush through the sand column. Unfortunately, by adding a dispersant it probably promoted some oil-in-water components to be distributed deeper into coastal sand of Alabama.
Surficial and applied surficial geology of the Belchertown Quadrangle, Massachusetts
Caggiano, Joseph A.
1977-01-01
Till and stratified drift overlie maturely dissected topography in the Belchertown quadrangle, an area that straddles the New England Upland and Connecticut Valley Lowland in central Massachusetts. Lower Paleozoic, massive quartzo-feldspathic gneiss, quartzite and schist of the Pelham dome and Devonian granodiorite and quartz diorite of the Belchertown intrusive complex are in contact with Triassic arkosic fanglomerate and basalt along a lengthy normal fault separating the New England Upland from the Connecticut Valley Lowland. The orientation of striae, roches moutonnees, and streamline ridges indicate that the last Wisconsinian glacier advanced generally south 12? east. This glacier removed several meters of rock from the upland and an unknown larger quantity from the preglacial valley of the Connecticut River. Till is thin in the uplands, but several tens of feet of drift overlie bedrock in the lowland. Three lithic facies of sandy, clast-rich, non-compact, subarkosic till derived from the three major source rocks rest on bedrock or on highly weathered, compact, clast-poor, fissile probably older till. The mean for all upper till is 69.6% sand, 21.7% silt, and 8.8% clay; lower till consists of 48% sand, 23% silt and 29% clay. Mud-rich, compact, sparsely stony till in drumlins in and along the flank of the Connecticut Valley Lowland is composed of 51.5% sand, 28% silt, and 20.5% clay. Upper tills are facies equivalent deposits of the youngest Wisconsinian drift. Lower till is compact deeply weathered, jointed and stained suggesting it is correlative with other lower till in New England deposited by an earlier Wisconsinian glacier. Drumlin till may be a facies equivalent of a lower till or a mud-rich upper till derived from earlier glaciolacustrine deposits. Upper and lower till of the Belchertown quadrangle is texturally similar to other New England upper and lower tills to which they are equivalent. Both tills are interpreted as lodgment till derived from similar bedrock terrane by two different glaciers. The older glacier incorporated mud-rich saprolite producing a fine grained till, while the younger glacier eroded fresh bedrock or a thin regolith produced by mechanical weathering. During stagnation zone retreat of the last glacier, stratified drift was deposited by melt water in, on, alongside or down valley from stagnant ice. The absence of stratified drift along upland divides indicates that stagnation did not begin till large nunataks were emergent. Kame terraces, kame deltas, and ice channel fillings indicate that melt water flowed along stagnant ice and emptied into temporary proglacial lakes. As downwasting progressed, water was able to drain at lower elevation into expanding lakes, the last of which merged with northward-expanding proglacial Lake Hitchcock in the Connecticut Valley. Initial melt water drainage to the southeast was followed by drainage to the southwest to the ancestral Chicopee River. With the opening of the Narrows, Lake Hitchcock expanded northward and eastward to form the Amherst embayment into which melt water from the eastern uplands drained. Sand and gravel overlying varves in the Amherst embayment was deposited in late-glacial Lake Lawrence, which coalesced with equivalent Lake Hadley through cols between drumlins in the Connecticut Valley Lowland. Deglaciation of the Belchertown quadrangle probably occurred in a span of about 100 years in the interval 12,000 to 12,500 years B.P. Unconsolidated sediments of the Belchertown quadrangle are summarized as to their geologic and geotechnical properties for land use planning. Drift as it influences groundwater flow, yield, and quality and as a construction material is assessed. Some environmental degradation has occurred from the indiscriminant disposal of liquid and solid waste as well as injudicious use of road salt.
Detection of sand encroachment patterns in desert oases. The case of Erg Chebbi (Morocco).
Puy, Arnald; Herzog, Manuel; Escriche, Pedro; Marouche, Amou; Oubana, Yousef; Bubenzer, Olaf
2018-06-11
Desert oases are fragile agrarian areas, very vulnerable to sand encroachment by wind. Ensuring their conservation highly depends on our capacity to identify sand encroachment patterns, e.g. the origin of sand and its spatial distribution in the irrigated plots. Here we show how to tackle this issue using the case study of Erg Chebbi (Morocco), where two oases (Hassilabiad and Merzouga) are surrounded by dunes, Hamada and alluvial sediments from the Wadi Ziz. We combine field interviews with the study of wind dynamics, sediment sampling, Particle Size Distribution (PSD) tests and End-Member Modelling Analysis (EMMA). We observe that the most relevant contributor to sand encroachment is the Wadi Ziz (30%), followed by the Hamada (28%), an undetermined source of dust (25%), and the Erg dunes (16%). These genetically different sediments cluster unevenly in the oases, indicating the existence of areas with contrasting degrees of exposure to sedimentary sources. The results allow to define on solid grounds which sand source areas should be stabilized first in order to obtain the greatest reduction in sand encroachment. Our approach also provides policy-makers with better tools to identify which spots are specially vulnerable to accumulate a specific sediment, thus allowing for a more nuanced management of sand in oasis environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Justice-Allen, A; Trujillo, J; Corbett, R; Harding, R; Goodell, G; Wilson, D
2010-01-01
Mycoplasma spp., usually Mycoplasma bovis, are important bovine pathogens that can cause mastitis, metritis, pneumonia, and arthritis. The currently documented routes of transmission of Mycoplasma spp. are through contaminated milking equipment and by direct animal contact. The existence of environmental sources for Mycoplasma spp. and their role in transmission and clinical disease is poorly characterized. Mycoplasma spp. (confirmed as M. bovis in 2 of 4 samples tested using PCR) was found in recycled bedding sand originating from a dairy experiencing an outbreak of clinical mycoplasma mastitis. Mycoplasma spp. were subsequently found in bedding sand from 2 other dairies whose bulk-tank milk was mycoplasma-positive. The association between the occurrence of Mycoplasma spp. in recycled bedding sand and mycoplasma mastitis in cows was further investigated using a pile of recycled sand from dairy 1. Study objectives included the determination of factors associated with the concentration of Mycoplasma spp. in recycled bedding sand and the duration of survival of mycoplasmas in the sand. We also evaluated the efficacy of 2 disinfectants at 2 different concentrations each for the elimination of Mycoplasma spp. from contaminated sand. Mycoplasma spp. survived in the sand pile for 8 mo. The concentration of Mycoplasma spp. within the sand pile was directly related to temperature and precipitation. It was also positively associated with the growth of gram-negative microorganisms, suggesting the possibility of the formation of a biofilm. Ideal temperatures for replication of Mycoplasma spp. occurred between 15 and 20 degrees C. Moisture in the sand and movement of the sand pile also appeared to play a role in replication of mycoplasmas. We found that 0.5% sodium hypochlorite or 2% chlorhexidine were efficacious in eliminating Mycoplasma spp. from contaminated bedding sand. Recycled bedding sand could be an environmental source of Mycoplasma spp., including M. bovis, infections in dairy cows. Future studies should investigate the contribution of this environmental source to the epidemiology of mycoplasma infections in dairy cattle. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.
2017-11-01
The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.
Angkasekwinai, Nasikarn; Atkins, Erin H.; Johnson, Richard N.; Grieco, John P.; Ching, Wei Mei; Chao, Chien Chung
2014-01-01
Background Carrion' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis. Methods and Findings The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis. Conclusions The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector. PMID:25522230
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, T.
The Warden ASP project has progressed from the initial planning stage to construction of an injection plant. An ASP chemical system was designed based on laboratory evaluations that included interfacial tension, mobility requirements, rock-alkali interaction, fluid capabilities, and core tests. Field cores were obtained from the Permian No. 5 and No. 6 sands on the Warden lease in Sho-Vel-Tum oil field. A separate tank battery for the pilot pattern area was installed, and a field tracer test is currently being evaluated. Tracer test results to date indicate that there is no major fracturing in the No. 5 sand. There ismore » indication, however, of some channeling through high permeability sand. The field injection plant was designed, and construction is in progress. Several variations of injection plant design have been evaluated. Some plant design details, such as alkali storage, were found to be dependent on the availability of use equipment and project budget. The surfactant storage facility design was shown to be dependent on surfactant rheology.« less
Enander, Richard T; Gute, David M; Cohen, Howard J; Brown, Linfield C; Desmaris, Anne Marie C; Missaghian, Richard
2002-01-01
Surface preparation activities conducted during automotive refinishing present several potential human health and environmental risks. This study examines the chemical composition of vehicle sanding dust and the prevalence of methylene chloride use as a basis for evaluating potential chemical exposures in the work environment, fugitive environmental releases, and take-home toxics. This article reports on the findings of (1) a statewide technology and work practices survey of 353 licensed auto body shops and (2) laboratory analyses of sanding dust representing more than 200 vehicles, 10 commercial body filler compounds, and work shirts worn during vehicle sanding while using nonventilated equipment. Survey data revealed that the majority of shops (78%) do not use ventilated sanding equipment, that most workers (55%) take their work clothes and shoes home at the end of the workday, and that 17% of the respondents used a methylene chloride-based paint stripper as an adjunct to mechanical sanding. Laboratory results showed that Pb, As, Cr, Mn, and Ni were present in the sanding dust at every facility tested. Lead concentrations in sanding dust were found to be highest at facilities that performed complete vehicle refinishing (range 770 to 7300 ppm) and at a collision repair shop that used a high-lead content body filler compound (1800 ppm). Hexavalent chromium also was found in two vocational high school paint dust samples at concentrations of 54 and 710 ppm. When total lead and chromium concentrations reached 7300 and 2300 ppm, respectively, facility sanding dust samples failed the U.S. Environmental Protection Agency's Toxicity Characteristic Leaching Procedure for hazardous waste. Metals found in the sanding dust also were present on the work shirts of technicians-ranging from 0.06 (Cd) to 81 (Mg) microg/inch2 of cloth-who sanded on paint without ventilated equipment. Results suggest that sanding dust and methylene chloride paint strippers used in vehicle resurfacing operations pose a potential hazard to human health and the environment.
NASA Astrophysics Data System (ADS)
Rukmana, Y. Y.; Ridwan, M.
2018-01-01
This paper presents the results of soil investigation on the residual soil at Gayungan Surabaya. The methodology of the research consists of Drilling + Standard Penetration Test (ASTM D1586-99), sampling and laboratory test for index properties & mechanical of soil, then analyzed for Soil Bearing Capacity (Meyerhoff, 1976). Field test analysis data showed that Bore Hole.01(BH.01) and Bore Hole.03 (BH.03) were dominated by Sand / Sandy clay layer with Standart Penetration Test (SPT) values: 6-68, whereas in BH.02 was dominated by Clayey sand layer with Standard Penetration Test (SPT) values: 32-68. Based on Soil classification according to Unified Soil Classification System (USCS), the soil type at the research area consisted of ML (Silt with Low plasticity), CL ( Clay with low plasticity), MH (Silt with High plasticity), and SP (Sand with Poor gradation). Based on the borlog data and soil bearing capacity analysis of the research area is recommended: for The Deep foundation to reaches at least 16 meters depth with Qa = 1160.40-2032.80 kN / m2, and Shallow foundation reaches at least 1-2 meters deep with Qa = 718.25 kN / M2.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, engineers and technicians hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. From left, are Todd Steinrock, chief, Fabrication and Development Branch, Prototype Development Lab; David McLaughlin, electrical engineering technician; Phil Stroda, mechanical engineering technician; Perry Dickey, lead electrical engineering technician; and Harold McAmis, lead mechanical engineering technician. Engineers and technicians worked together to develop the tank and build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
Fendick, Robert B.
2007-01-01
The Amite aquifer and the '2,800-foot' sand of the Baton Rouge area (hereafter referred to as the '2,800-foot' sand) are principal sources of fresh ground water in southeastern Louisiana. Both the Amite aquifer and the '2,800-foot' sand are part of the Jasper equivalent aquifer system. The Amite aquifer is heavily pumped in the Bogalusa area, and the '2,800-foot' sand is one of the most heavily pumped aquifers in East Baton Rouge Parish. The Baton Rouge fault zone, which acts as a barrier to flow, trends approximately west-northwest from a point just south of The Rigolets through southern West Baton Rouge Parish, and is the approximate southern limit of freshwater in the aquifers. For the purposes of this report, freshwater is defined as water having less than 250 milligrams per liter (mg/L) of chloride, and most of the water withdrawals described in this report were assumed to be fresh. In 2005, about 18 million gallons per day (Mgal/d) was withdrawn from the Amite aquifer, primarily for public-supply use (8.4 Mgal/d) and industrial use (9.6 Mgal/d). During this same period, about 32 Mgal/d was withdrawn from the '2,800-foot' sand, primarily for public-supply use (13 Mgal/d) and industrial use (19 Mgal/d). Public-supply and industrial withdrawals from the Amite aquifer and the '2,800-foot' sand are listed in table 1. According to data from the Louisiana State Census Data Center, some of the largest population increases in the State during the period 1990 to 2000 occurred in St. Tammany (32.4 percent), Livingston (30.2 percent), and Tangipahoa (17.4 percent) Parishes. These population increases have been accompanied by increased withdrawals of ground water during the same period: 40 percent in St. Tammany Parish, 63 percent in Livingston Parish, and 35 percent in Tangipahoa Parish. An increase in population in these parishes is expected from population displacement due to damages from Hurricanes Katrina and Rita crossing the Louisiana coast in August and September of 2005. Additional information about ground-water flow and effects of increased withdrawals on water levels in the Amite aquifer and the '2,800-foot' sand is needed to assess ground-water-development potential and to protect this resource. To meet this need, the U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, began a study in 2005 to determine water levels, flow direction, and water-level trends for the Amite aquifer and '2,800-foot' sand. This report presents data and a map that describe the generalized potentiometric surface of the Amite aquifer and '2,800-foot' sand in southeastern Louisiana. Graphs of water levels in selected wells and a table of withdrawals from the Amite aquifer and '2,800-foot' sand show historical changes in water levels and water use. The generalized potentiometric-surface map illustrates the water levels and ground-water flow directions for June-August 2006. These data are on file at the USGS office in Baton Rouge, Louisiana.
Centrifuge Modeling of the Thermo-Mechanical Response of Energy Foundations
NASA Astrophysics Data System (ADS)
Goode, Joseph Collin, III
This thesis presents the results from a series of centrifuge tests performed to understand the profiles of thermo-mechanical axial strain, axial displacement, and axial stress in semi-floating and end-bearing energy foundations installed in dry Nevada sand and Bonny silt layers during different combinations of mechanical loading and foundation heating. In addition to the construction details for the centrifuge scale-model reinforced concrete energy foundations, the results from 1 g thermo-mechanical characterization tests performed on the foundations to evaluate their mechanical and thermal material properties are presented in this thesis. In general, the centrifuge-scale tests involve application of an axial load to the head of the foundation followed by circulation of a heat exchange fluid through embedded tubing to bring the foundation to a constant temperature. After this point, mechanical loads were applied to the foundation to characterize their thermo-mechanical response. Specifically, loading tests to failure were performed on the semi-floating foundation installed in different soil layers to characterize the impact of temperature on the load-settlement curve, and elastic loading tests were performed on the end-bearing foundation to characterize the impact of temperature on the mobilized side shear distributions. During application of mechanical loads and changes in foundation temperature, the axial strains are measured using embedded strain gages. The soil and foundation temperatures, foundation head movement, and soil surface deformations are also monitored to characterize the thermo-mechanical response of the system. The tests performed in this study were used to investigate different phenomena relevant to the thermo-mechanical response of energy foundations. First, the role of end-restraint boundary conditions in both sand and silt were investigated by comparing the strain distributions for the end-bearing and semi-floating foundations in each soil type. The tests on sand and silt permit evaluation of the soil-structure interaction in dry and unsaturated soils with different mechanisms of side shear resistance (i.e., primarily frictional and primarily cohesive, respectively). End-bearing foundations were observed to have higher magnitudes of thermal axial stress than semi-floating foundations, with a more uniform distribution in thermal axial strain in the sand. A general conclusion from these tests is that the unsaturated silt led to a more pronounced soil structure interaction effect than the dry sand. For example, temperature did not affect the ultimate capacity of the semi-floating foundation in dry sand, while it had a pronounced effect in unsaturated silt. Two approaches for controlling the foundation head restraint boundary condition were investigated for the end-bearing foundation in sand: load control conditions (free expansion) as well as stiffness control conditions (restrained expansion). As expected, greater expansion was observed in the case of free expansion, and greater thermal axial stresses were observed in the case of restrained expansion. The effects of temperature cycles were also investigated for the semi-floating foundation in Bonny silt, and less upward movement was observed during each cycle of heating, with a slight softening in behavior on each cycle. Overall, the results provide a suite of information which is suitable to define soil-structure interaction parameters under realistic stress states for deep foundations.
Dobson, Deborah E.; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J.; Beverley, Stephen M.; Sacks, David L.
2010-01-01
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania. PMID:21085609
NASA Astrophysics Data System (ADS)
Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.
2007-12-01
Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum 932 10-6 SI), we propose, a human activity influence less evident than in Bachas beach that could overlap the contribution of continent source. Quinta Playa sands show the maximum concentration of calcium and also high concentration of Fe and Mg, and relatively high values of magnetic susceptibility. Ca results from marine biogenic carbonates (mainly coral reefs). Barahona also show high concentrations in calcium that could be correlated with the presence of biogenous source around the beach.
Deep-water bedforms induced by refracting Internal Solitary Waves
NASA Astrophysics Data System (ADS)
Falcini, Federico; Droghei, Riccardo; Casalbore, Daniele; Martorelli, Eleonora; Mosetti, Renzo; Sannino, Gianmaria; Santoleri, Rosalia; Latino Chiocci, Francesco
2017-04-01
Subaqueous bedforms (or sand waves) are typically observed in those environments that are exposed to strong currents, characterized by a dominant unidirectional flow. However, sand-wave fields may be also observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs), induced by tides, can produce an effective, unidirectional boundary flow filed that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
Sand Volcano Following Earthquake
NASA Technical Reports Server (NTRS)
1989-01-01
Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)
33 CFR 159.19 - Testing equivalency.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Testing equivalency. 159.19 Section 159.19 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.19 Testing equivalency. (a) If a test...
Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand
NASA Astrophysics Data System (ADS)
Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode
2018-03-01
River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.
Truss topology optimization with simultaneous analysis and design
NASA Technical Reports Server (NTRS)
Sankaranarayanan, S.; Haftka, Raphael T.; Kapania, Rakesh K.
1992-01-01
Strategies for topology optimization of trusses for minimum weight subject to stress and displacement constraints by Simultaneous Analysis and Design (SAND) are considered. The ground structure approach is used. A penalty function formulation of SAND is compared with an augmented Lagrangian formulation. The efficiency of SAND in handling combinations of general constraints is tested. A strategy for obtaining an optimal topology by minimizing the compliance of the truss is compared with a direct weight minimization solution to satisfy stress and displacement constraints. It is shown that for some problems, starting from the ground structure and using SAND is better than starting from a minimum compliance topology design and optimizing only the cross sections for minimum weight under stress and displacement constraints. A member elimination strategy to save CPU time is discussed.
A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...
USDA-ARS?s Scientific Manuscript database
Traps used for mosquitoes can possibly used to capture phlebotomine sand flies as well, but little testing has been done. Traps powered by propane could be extremely useful because most produce their own carbon dioxide (CO2), which can increase the number of sand flies captured. Scientists at the US...
Cathryn H. Greenberg; Daniel G. Neary; Lawrence D. Harris; Steven P. Linda
1994-01-01
We hypothesized that clear-cutting mimics natural high-intensity disturbance by wildfire followed by salvage logging in sand pine scrub, and tested whether vegetation adapted to recovery from fire would respond similarly to another type of biomass removal. We measured plant community composition and structural characteristics in three replicated disturbance treatments...
Bees Algorithm for Construction of Multiple Test Forms in E-Testing
ERIC Educational Resources Information Center
Songmuang, Pokpong; Ueno, Maomi
2011-01-01
The purpose of this research is to automatically construct multiple equivalent test forms that have equivalent qualities indicated by test information functions based on item response theory. There has been a trade-off in previous studies between the computational costs and the equivalent qualities of test forms. To alleviate this problem, we…
40 CFR 1066.805 - Road-load power, test weight, and inertia weight class determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (a) Simulate a vehicle's test weight on the dynamometer using the appropriate equivalent test weight shown in Table 1 of this section. Equivalent test weights are established according to each vehicle's... weight class corresponding to each equivalent test weight; the inertia weight class allows for grouping...
Horowitz, A.J.; Smith, J.J.; Elrick, K.A.
2001-01-01
A prototype 14-L Teflon? churn splitter was evaluated for whole-water sample-splitting capabilities over a range of sediment concentratons and grain sizes as well as for potential chemical contamination from both organic and inorganic constituents. These evaluations represent a 'best-case' scenario because they were performed in the controlled environment of a laboratory, and used monomineralic silica sand slurries of known concentration made up in deionized water. Further, all splitting was performed by a single operator, and all the requisite concentration analyses were performed by a single laboratory. The prototype Teflon? churn splitter did not appear to supply significant concentrations of either organic or inorganic contaminants at current U.S. Geological Survey (USGS) National Water Quality Laboratory detection and reporting limits when test samples were prepared using current USGS protocols. As with the polyethylene equivalent of the prototype Teflon? churn, the maximum usable whole-water suspended sediment concentration for the prototype churn appears to lie between 1,000 and 10,000 milligrams per liter (mg/L). Further, the maximum grain-size limit appears to lie between 125- and 250-microns (m). Tests to determine the efficacy of the valve baffle indicate that it must be retained to facilitate representative whole-water subsampling.
Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations.
Belkacemi, Louiza; Selselet-Attou, Ghalem; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J
2010-11-01
This study deals with the effects of daily intermittent fasting for 15 h upon the development of diabetes in sand rats exposed to a hypercaloric diet. The same pattern of daily intermittent fasting was imposed on sand rats maintained on a purely vegetal diet (control animals). Over the last 30 days of the present experiments, non-fasting animals gained weight, whilst intermittently fasting sand rats lost weight. In this respect, there was no significant difference between control animals and either diabetic or non-diabetic sand rats exposed to the hypercaloric diet. The postprandial glycemia remained fairly stable in the control animals. During a 3-week transition period from a purely vegetal to a hypercaloric diet, the post-prandial glycemia increased by 5.95 ± 1.26 mM (n=6) in diabetic sand rats, as distinct from an increase of only 0.45 ± 0.56 mM (n=6) in the non-diabetic animals. During the intermittent fasting period, the postprandial glycemia decreased significantly in the diabetic animals, but not so in the non-diabetic sand rats. Before the switch in food intake, the peak glycemia at the 30th min of an intraperitoneal glucose tolerance test was already higher in the diabetic than non-diabetic rats. In both the non-diabetic and diabetic sand rats, intermittent fasting prevented the progressive deterioration of glucose tolerance otherwise observed in non-fasting animals. These findings reveal that, at least in sand rats, intermittent daily fasting prevents the progressive deterioration of glucose tolerance otherwise taking place when these animals are exposed to a hypercaloric diet.
Rodrigues, Ana Caroline Moura; Magalhães, Rafaela Damasceno; Romcy, Kalil Andrade Mubarac; Freitas, Jeferson Lucas Sousa; Melo, Ana Carolina Fonseca Lindoso; Rodon, Fernanda Cristina Macedo; Bevilaqua, Claudia Maria Leal; Melo, Luciana Magalhães
2017-04-30
Phlebotomine sand flies are blood-feeding insects of marked medical and veterinary significance. Investigations on the biology of these insects hold great importance for both ecological and epidemiological purposes. The present work describes a new approach for real-time PCR (qPCR) with SYBR Green ® , named WMG-qPCR, to identify phlebotomine blood meals. The novelty of the assay was to design primers based on the Whole Mitochondrial Genome (WMG) of the potential hosts (human, dog, cat, brown rat and chicken) aiming to amplify through qPCR the regions of mitochondrial DNA (mtDNA) which are less conserved among all species. Initially, the best method for mtDNA extraction to be applied in WMG-qPCR was determined. Afterwards, amplification specificities were accessed by cross-reaction assays with mtDNA samples from all animal species, besides phlebotomine DNA. Finally, the selected primers were also tested for their limit of DNA detection through standard curves constructed by serial dilution of blood DNA obtained for each target animal species. The WMG-qPCR was able to detect as low as 10pL of blood, equivalent to 26, 84, 130, and 320fg DNA of cat, human, dog and rat, respectively. The assay was also capable to amplify as low as 5pL of chicken blood (5pg DNA). In conclusion, WMG-qPCR seems to be a promising tool to identify phlebotomine blood meals, with high species-specificity and sensitivity. Furthermore, as no supplementary techniques are required, this new approach presents minimized costs and simplified technical-training requirements for execution. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Seevers, P. M.; Drew, J. V.
1973-01-01
Interpretations of high altitude photography of test sites in the Sandhills of Nebraska permitted identification of subirrigated range sites as well as complexes of choppy sands and sands range sites, units composing approximately 85% of the Sandhills rangeland. These range sites form the basic units necessary for the interpretation of range condition classes used in grazing management. Analysis of ERTS-1 imagery acquired during August, September and October, 1972 indicated potential for the identification of gross differences in forage density within given range sites identified on early season aerial photography.
Annual water-resources review White Sands Missile Range, New Mexico
Cruz, R.R.
1980-01-01
Ground-water data were collected in 1979 at White Sands Missile Range in south-central New Mexico. Total ground-water pumpage from the Post Headquarters well field, which produces more than 98% of the water used at White Sands Missile Range, was 1.4 million gallons more in 1979 than in 1978. The most significant seasonal water-level declines observed in 1979 were in supply well 22 (36.35 feet) and test well T-7 (15.98 feet). The chemical quality of water samples collected in 1979 was similar to that collected at comparable depths and periods in 1978. (USGS)
Small Particle Impact Damage on Different Glass Substrates
NASA Technical Reports Server (NTRS)
Waxman, R.; Guven, I.; Gray, P.
2017-01-01
Impact experiments using sand particles were performed on four distinct glass substrates. The sand particles were characterized using the X-Ray micro-CT technique; 3-D reconstruction of the particles was followed by further size and shape analyses. High-speed video footage from impact tests was used to calculate the incoming and rebound velocities of the individual sand impact events, as well as particle volume. Further, video analysis was used in conjunction with optical and scanning electron microscopy to relate the incoming velocity and shape of the particles to subsequent fractures, including both radial and lateral cracks. Analysis was performed using peridynamic simulations.
Dairy cow preference for different types of outdoor access.
Smid, Anne-Marieke C; Weary, Daniel M; Costa, Joao H C; von Keyserlingk, Marina A G
2018-02-01
Dairy cows display a partial preference for being outside, but little is known about what aspects of the outdoor environment are important to cows. The primary aim of this study was to test the preference of lactating dairy cattle for pasture versus an outdoor sand pack during the night. A secondary aim was to determine whether feeding and perching behavior changed when cows were provided outdoor access. A third objective was to investigate how the lying behavior of cows changed when given access to different outdoor areas. Ninety-six lactating pregnant cows were assigned to 8 groups of 12 animals each. After a baseline phase of 2 d in which cows were kept inside the freestall barn, cows were habituated to the outdoor areas by providing them access to each of the 2 options for 24 h. Cows were then given access, in random order by group, to either the pasture (pasture phase) or the sand pack (sand phase). As we tested the 2 outdoor options using space allowances consistent with what would be practical on commercial dairy farms, the space provided on pasture was larger (21,000 m 2 ) than that provided on the sand pack (144 m 2 ). Cows were tested at night (for 2 nights in each condition), from 2000 h until morning milking at approximately 0800 h, as preference to be outdoors is strongest at this time. During the next 3 nights cows were given access to both outside options simultaneously (choice phase). Feeding and perching behaviors were recorded when cows were indoors during the day and night periods. Lying behavior was automatically recorded by HOBO data loggers (Onset, Bourne, MA). Cows spent more time outside in the pasture phase (90.0 ± 5.9%) compared with the sand phase (44.4 ± 6.3%). When provided simultaneous access to both options, cows spent more time on pasture than on the sand pack (90.5 ± 2.6% vs. 0.8 ± 0.5%, respectively). Time spent feeding indoors during the day did not change regardless of what type of outdoor access was provided, but there was a decline in perching during the day when cows were provided access to either outdoor option at night. Lying time in the pasture phase was lower than in the baseline or sand phase. During the nighttime, lying time outside was not different between the sand (55.4 ± 7.9%) and pasture (52.0 ± 7.4%) phases. In summary, cows spent a considerable amount of time outside during the night when given the opportunity and showed a preference for a large pasture versus a small sand pack as an outdoor area. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Interactions between Soil Habitat and Geographic Range Location Affect Plant Fitness
Stanton-Geddes, John; Shaw, Ruth G.; Tiffin, Peter
2012-01-01
Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates. PMID:22615745
Poppe, L.J.; Manheim, F. T.; Popenoe, P.
1992-01-01
Phosphorite and phosphatic sediments are present in the Georges Bank Basin in marine, Late Cretaceous to Miocene strata equivalent to the Dawson Canyon Formation and Banquereau Formation of offshore Nova Scotia. The Late Cretaceous to Paleocene phosphorite occurs predominantely as sand- and gravel-sized pellets and as cement in conglomeratic aggregates. The Eocene and Miocene phosphate occurs mainly as fine-very fine sand-size spheroidal-avoidal pellets in unconsolidated clayey silts. The older phosphorites form intraformational conglomerates that are the result of a winnowed finer-grained matrix, leaving lag deposits of phosphorite. We present evidence that most of the Eocene and Miocene phosphate is primary and formed during marine trangressions. Our observations extend the geographic and temporal limits of the major phosphogenic system of the Western North Atlantic northward and through time. However, compared to the well-known phosphorite deposits along the southeastern margin of the U.S.A., these northern deposits are not of commercial scale due to a high terrigenous input and the lack of a mechanism capable of driving persistant upwelling. ?? 1992.
Sand and gravel mining: effects on ground water resources in Hancock county, Maine, USA
NASA Astrophysics Data System (ADS)
Peckenham, John M.; Thornton, Teresa; Whalen, Bill
2009-01-01
Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.
Rod pumping and proppant flowback at the Lost Hills Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, I.G.
1995-12-31
Proppant flowback from hydraulically fractured wells can lead to sand wear on the pump barrel and plunger and increased pulling costs on rod pumped wells. Two approaches for lengthening run times of the pumps were tried. One approach was to install pumps that will allow production of a sand laden fluid. Pressure actuated plunger (PAP) pumps were field tested and showed an average increase of 81.6% in run time. These split ring wiper pumps clean the barrel of sand prior to the passing of the plunger. The other approach was to keep the sand and from entering the pumps. Whenmore » down hole filters were utilized, run life of the pumps with the filters increases 135%. Well pulling cost savings of $11.91 per well-day and $9.24 per well-day are documented for the PAP pumps and filters, respectively. Application guidelines based on the sand loading rate and gross liquid production of the wells are presented, as well as some operational experiences.« less
Radiological responses of different types of Egyptian Mediterranean coastal sediments
NASA Astrophysics Data System (ADS)
El-Gamal, A.; Rashad, M.; Ghatass, Z.
2010-08-01
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO 3, total dissolved solids, Ca 2+, Mg 2+, CO 32-, HCO 3- and total Fe 2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.
Laboratory and field performance of a laser particle counter for measuring aeolian sand transport
NASA Astrophysics Data System (ADS)
Hugenholtz, Chris H.; Barchyn, Thomas E.
2011-03-01
This paper reports the results of laboratory and field tests that evaluate the performance of a new laser particle counter for measuring aeolian sand transport. The Wenglor® model YH03PCT8 ("Wenglor") consists of a laser (655 nm), photo sensor, and switching circuit. When a particle passes through the 0.6 mm diameter, 30 mm long laser beam, the sensor outputs a digital signal. Laboratory tests with medium sand and a vertical gravity flume show that the Wenglor count rate scales approximately linearly with mass flux up to the saturation point of the sensor, after which the count rate decreases despite increasing mass flux. Saturation depends on the diameter and concentration of particles in the airstream and may occur during extreme events in the field. Below saturation sensor performance is relatively consistent; the mean difference between average count rate response was between 50 and 100 counts. Field tests provide a complimentary frame of reference for evaluating the performance of the Wenglor under varying environmental conditions and to gauge its performance with respect to a collocated piezoelectric impact sensor (Sensit H11-B). During 136.5 h of deployment on an active sand dune the relative proportion of time sand transport recorded by two Wenglors was 0.09% and 0.79%, compared to 4.68% by the Sensit H11-B. The weak performance of the Wenglors is attributed to persistent lens contamination from adhesion of sand grains on the sensors after rainfall. However, during dry and windy conditions the Wenglor performance improved substantially; sensors measured a concentration of sand particles in the airstream more than seven times greater than that measured by the Sensit. Between the two Wenglors, the mean absolute count rate difference was 6.16 counts per second, with a standard deviation of 8.53 counts per second. For short-term measurement campaigns in dry conditions, therefore, the Wenglor is relatively consistent and can outperform the Sensit in detecting particles in the airstream. The Sensit, however, is more reliable in detecting particle transport during longer unattended deployments. Two additional field tests show that the sensor is well-suited to the measurement of snow drifting but could be ineffective in dusty settings because of lens contamination. Overall, the main advantages of the Wenglor include (1) insensitivity to particle momentum; (2) low measurement variability; (3) low cost ($210 USD); and perhaps most important of all, (4) a consistent design that will improve comparison of results between investigations. At present, no other particle detector used in aeolian research can claim all these characteristics.
NASA Astrophysics Data System (ADS)
Dror, I.; Stepka, Z.; Berkowitz, B.
2016-12-01
As a consequence of their growing use in a range of electronic and industrial applications, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently, little is known about their fate and potential environmental impact. We report here on the adsorption of TCEs on sand and soil in the presence of selected nanoparticles (NPs). TCEs were tested within three different mixtures containing (i) rare earth elements (REEs), (ii) Ge, Pd, Ru and Ir together with Mo, Sb, Sn and Ti, and (iii) In, Sc, Th, Y and Yb together with a variety of other metals. The NPs examined for their suspending properties were: Al2O3, SiO2, CeO2, ZnO, Ag, Au, carbon dots and montmorillonite. Each NP was examined with each TCE solution mixture separately and with added humic acid. A clear difference was observed between REEs (and In, Sc), and the other TCEs. All REEs (and In, Sc) completely adsorb on soil and sand. For sand and soil, the presence of most NPs, alone, does not increase TCE concentrations in solution. For sand, addition of humic acid, with or without NPs, yields approximately the same increase in TCE concentration in solution (>80%). For soil solutions, presence of both NPs and humic acid increases TCE concentrations up to 500% more than any other combination tested, yielding 20% of added TCE amount. The other TCEs tested (mixtures (ii) and (iii)) adsorb less strongly to soil and sand, and unlike the REEs no general trend can be identified. For Al2O3, SiO2, CeO2, ZnO, carbon dots and montmorillonite, the increased concentrations of TCEs in the presence of NPs and humic acid were similar. This indicates that the observed effect depends on the presence of NPs and their surface coating rather than on the type of NP. Ag and Au NPs, however, reduce adsorption of TCEs to sand even when humic acid is absent. For example, Ag NPs reduce adsorption of REEs by >90% and Au NPs by 10%. For REEs, increased solution concentrations are correlated directly to humic acid concentration, with and without NPs in suspension, while for other TCEs, humic acid concentration within the tested range has no effect. This work demonstrates that a combination of NPs and humic acid has the potential to serve as a vehicle for TCE transport in the soil-water environment.
Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong
2016-01-01
Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control. PMID:28773563
Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong
2016-06-02
Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panwar, Ranvir Singh, E-mail: ranvir.panwar@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu
Particulate reinforced aluminum metal matrix composite is in high demand in automobile industry where the operational conditions vary from low to high temperature. In order to understand the wear mode at elevated temperature, this study was planned. For this purpose we developed a metal matrix composite containing aluminum alloy (LM13) as matrix and zircon sand as particulate reinforcement by stir casting process. Different amounts of zircon sand (5, 10, 15 and 20 wt.%) were incorporated in the matrix to study the effect of reinforcement on the wear resistance. Dispersion of zircon sand particles in the matrix was confirmed by usingmore » optical microscopy. Sliding wear tests were done to study the durability of the composite with respect to the base alloy. The effects of load and temperature on wear behavior from room temperature to 300 Degree-Sign C were studied to understand the wear mechanism deeply. Surface morphology of the worn surfaces after the wear tests as well as wear debris was observed under scanning electron microscope. Mild to severe wear transition was noticed in tests at high temperature and high load. However, there is interesting change in wear behavior of the composite near the critical temperature of the composite. All the observed behavior has been explained with reference to the observed microstructure of the wear track and debris. - Highlights: Black-Right-Pointing-Pointer Good interfacial bonding between zircon sand particles and Al matrix was observed. Black-Right-Pointing-Pointer The effect of temperature on the wear behavior of LM13/Zr composites was studied. Black-Right-Pointing-Pointer Wear resistance of the composite was improved with addition of zircon sand. Black-Right-Pointing-Pointer Transition temperature from mild to severe wear also improved in composite. Black-Right-Pointing-Pointer SEM analysis of the tracks and debris was done to establish wear mechanism.« less
Assessment of Pollutant Removal Efficiency and Drainage Capacity in Stormwater Biofilters
NASA Astrophysics Data System (ADS)
Carroll, S. J.; Mills, H.; Reagan, A.; Triassi, M.; Bauer, S.; Matiasek, S. J.; Libby, R.; Meddings, C.
2016-12-01
Urban stormwater runoff contributes to flooding and impacts water quality with increased sediment and pollutant loads. Biofilters are vegetated filtration systems designed to mitigate stormwater by enhancing infiltration, sedimentation, contaminant sorption and uptake. Despite the rapid implementation of biofilters as stormwater management solutions, their performance is mainly evaluated in terms of flood reduction while their pollutant removal efficiency is rarely assessed. We investigated the effect of biofilter composition on drainage capacity and individual pollutant removal in test columns. Triplicate columns consisted of layers of pebbles, fine sand, filtration mix (test variable), mulch, lava rock and Santa Barbara sedges. The filtration mix was one of five combinations of coarse sand and local loam soil ranging from 100% sand to 100% soil. Consistent with differences in pore size distribution, hydraulic conductivity values were lowest in 100% soil biofilters (3.0 ± 0.6 mm/h) and highest in the 100% sand biofilters (22.7 ± 4.2 mm/h). A synthetic mixture of nutrients, metals, and salts in proportions representative of stormwater composition was applied to the test columns. Biofilters removed over 98% of dissolved copper, nickel, and zinc, and at least 67% of dissolved lead, even when applying synthetic runoff with metal concentrations three orders of magnitude larger than in actual stormwater. In addition, biofilters oxygenated, neutralized, and decreased the turbidity of stormwater. Ammonium was quantitatively removed from synthetic runoff (97-100%), while nitrate and phosphate were poorly retained (48-64%) or even leached from sand biofilters. This study demonstrated that, while decreasing drainage capacity, adding even a small proportion of native soil to the filtration media significantly increases pollutant removal of biofilters. With proper consideration of the filtration mixture, biofiltration systems can effectively remediate urban stormwater.
Annual water-resources review, White Sands Missile Range, 1976: a basic-data report
Cruz, R.R.
1977-01-01
Information is presented on the water resources of the White Sands Missile Range, N. Mex., that was collected during the period December 1975 to December 1976 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality and precipitation, and miscellaneous items of interest are summarized. Water-level observations were made in 63 borehole, supply, test, and observation wells on the Range. Water samples were collected and analyzed for chemical quality from 8 test wells. (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.
Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr
2016-01-01
Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Methodology/Principal Findings Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Conclusions/Significance Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species. PMID:26986566
Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr
2016-03-01
Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.
Predictability of dune activity in real dune fields under unidirectional wind regimes
NASA Astrophysics Data System (ADS)
Barchyn, Thomas E.; Hugenholtz, Chris H.
2015-02-01
We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Año Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.
Using the Rasch Model to Determine Equivalence of Forms In the Trilingual Lollipop Readiness Test
ERIC Educational Resources Information Center
Lang, W. Steve; Chew, Alex L.; Crownover, Carol; Wilkerson, Judy R.
2007-01-01
Determining the cross-cultural equivalence of multilingual tests is a challenge that is more complex than simple horizontal equating of test forms. This study examines the functioning of a trilingual test of preschool readiness to determine the equivalence. Different forms of the test have previously been examined using classical statistical…
NASA Astrophysics Data System (ADS)
Saud, Q. J.; Hasan, S. E.
2014-12-01
As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer sand, hydraulic conductivity, BTEX, gasoline, LNAPLs, isooctane
Numerical simulation of the SAGD process coupled with geomechanical behavior
NASA Astrophysics Data System (ADS)
Li, Pingke
Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production performance can be quantified. This research program involves the analyses of laboratory testing results obtained from literatures. However, no laboratory testing was conducted in the process of this research.
NASA Astrophysics Data System (ADS)
Kupiainen, Kaarle J.; Pirjola, Liisa
2011-08-01
In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.
Roggo, Clémence; Coronado, Edith; Moreno-Forero, Silvia K; Harshman, Keith; Weber, Johann; van der Meer, Jan Roelof
2013-10-01
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22,000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Micromechanical investigation of sand migration in gas hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Uchida, S.; Klar, A.; Cohen, E.
2017-12-01
Past field gas production tests from hydrate bearing sediments have indicated that sand migration is an important phenomenon that needs to be considered for successful long-term gas production. The authors previously developed the continuum based analytical thermo-hydro-mechanical sand migration model that can be applied to predict wellbore responses during gas production. However, the model parameters involved in the model still needs to be calibrated and studied thoroughly and it still remains a challenge to conduct well-defined laboratory experiments of sand migration, especially in hydrate-bearing sediments. Taking the advantage of capability of micromechanical modelling approach through discrete element method (DEM), this work presents a first step towards quantifying one of the model parameters that governs stresses reduction due to grain detachment. Grains represented by DEM particles are randomly removed from an isotropically loaded DEM specimen and statistical analyses reveal that linear proportionality exists between the normalized volume of detached solids and normalized reduced stresses. The DEM specimen with different porosities (different packing densities) are also considered and statistical analyses show that there is a clear transition between loose sand behavior and dense sand behavior, characterized by the relative density.
NASA Astrophysics Data System (ADS)
Kosnicki, Ely; Sefick, Stephen A.; Paller, Michael H.; Jerrell, Miller S.; Prusha, Blair A.; Sterrett, Sean C.; Tuberville, Tracey D.; Feminella, Jack W.
2016-10-01
A macroinvertebrate multimetric index is an effective tool for assessing the biological integrity of streams. However, data collected under a single protocol may not be available for an entire region. We sampled macroinvertebrates from the full extent of the Sand Hills ecoregion Level IV of the Southeastern Plains with a standard protocol during the summers of 2010-2012. We evaluated the performance of 94 metrics through a series of screening criteria and built 48 macroinvertebrate multimetric indexs with combinations of the best performing metrics, representing richness, habit, functional feeding guild, sensitivity, and community composition. A series of narrative-response tests for each macroinvertebrate multimetric index was used to find the best performing macroinvertebrate multimetric index which we called the Sand Hills macroinvertebrate multimetric index. The Sand Hills macroinvertebrate multimetric index consisted of the measures Biotic Index, % Shredder taxa, Clinger taxa2/total taxa, Plecoptera and Trichoptera richness, and Tanytarsini taxa2/Chironomidae taxa. Comparison of the Sand Hills macroinvertebrate multimetric index with existing assessment tools calculated with our data indicated that the Sand Hills macroinvertebrate multimetric index performs at a high level with regard to identifying degraded sites and in its response to stress gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, D.W.
Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Fort Union Formation (Paleocene) in the Powder River Basin of Wyoming. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Gas is believed to have accumulated in localized structural highs early in the burial history of lenticular sands. Structural relief is due to the compaction contrast between sand and stratigraphically-equivalent fine-grained sediments. A shallow Fort Union gas play was based on reports of shallow gas shows, the occurrencemore » of thick coals which could have served as sources for bacterial gas, and the presence of lenticular sandstones which may have promoted the development of compaction structures early in the burial process, to which bacterial gas migrated. Five geologic elements related to compactional trap development were used to rank prospects. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery of the Oedekoven Fort Union gas pool at a depth of 340 ft (104 m). The uncemented, very fine grained, well-sorted {open_quotes}Canyon sand{close_quotes} pay has extremely high intergranular porosity. Low drilling and completion costs associated with shallow, high-permeability reservoirs, an abundance of subsurface control with which to delineate prospects, and existing gas-gathering systems make Fort Union sandstones attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.« less
Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia
McFarland, E. Randolph
2017-06-07
The Piney Point aquifer in Virginia is newly described and delineated as being composed of six geologic units, in a study conducted by the U.S. Geological Survey in cooperation with the Virginia Department of Environmental Quality (VA DEQ). The eastward-dipping geologic units include, in stratigraphically ascending order, thesand of the Nanjemoy Formation Woodstock Member,interbedded limestone and sand of the Piney Point Formation,silty and clayey sand of the Gosport Formation equivalent sediments,silty sand of the Oligocene-age sediments,silty fine-grained sand of the Old Church Formation, andsilty sand of the Calvert Formation, Newport News unit and basal Plum Point Member.Identification of geologic units is based on typical sediment lithologies of geologic formations. Fine-grained sediments that compose confining units positioned immediately above and below the Piney Point aquifer are also described.The Piney Point aquifer is one of several confined aquifers within the Virginia Coastal Plain and includes a highly porous and solution-channeled indurated limestone within the Piney Point Formation from which withdrawals are made. The limestone is relatively continuous laterally across central parts of the Northern Neck, Middle Peninsula, and York-James Peninsula. Other geologic units are of variable extent. The configurations of most of the geologic units are further affected by newly identified faults that are aligned radially from the Chesapeake Bay impact crater and create constrictions or barriers to groundwater flow. Some geologic units are also truncated beneath the lower Rappahannock River by a resurge channel associated with the impact crater.Groundwater withdrawals from the Piney Point aquifer increased from approximately 1 million gallons per day (Mgal/d) during 1900 to 7.35 Mgal/d during 2004. As a result, a water-level cone of depression in James City and northern York Counties was estimated to be as low as 70 feet (ft) below the National Geodetic Vertical Datum of 1929 (NGVD 29) by 2005. Withdrawals decreased to 5.01 Mgal/d by 2009 as withdrawals were shifted toward other sources, and by 2015 water levels had recovered to approximately 50 ft below NGVD 29.The mean estimated transmissivity of the Piney Point aquifer in York and James City Counties is 16,300 feet squared per day (ft2/d), but farther north it is only 925 ft2/d. The mean well specific capacity in York and James City Counties is 11.4 gallons per minute per foot (gal/min/ft). Farther north in Virginia, mean specific capacity is only 2.26 gal/min/ft, and in Maryland it is 0.99 gal/min/ft. The northward decrease in specific capacity probably reflects the northward decrease in transmissivity, which results from poor development of the solution-channeled limestone.An aquifer test in northern York County induced vertical leakage to the solution-channeled limestone from overlying silty sand and a change in response of the aquifer to pumping from a single layer to two layers. Transmissivity of the limestone of approximately 19,800 ft2/d was distinguished from the silty sand of approximately 2,500 ft2/d.Most of the water in the Piney Point aquifer is slightly alkaline with moderate concentrations primarily of sodium and bicarbonate that are slightly undersaturated with respect to calcite. Iron concentrations are generally less than 0.3 milligrams per liter (mg/L). Mixing of freshwater with seawater has elevated chloride concentrations to the southeast to as much as 7,120 mg/L.Information on the Piney Point aquifer can benefit water-resource management in siting production wells, predicting likely well yield, and anticipating water-level response to withdrawals. Models that vertically discretize individual geologic units can potentially be used to evaluate groundwater flow in greater detail by representing lateral flow and vertical leakage among the geologic units.Because groundwater withdrawals are made primarily from the limestone and sand of the Piney Point Formation, the VA DEQ has considered regarding the limestone and sand singly as a regulated aquifer apart from the other geologic units. Under current policy in Virginia, if only the limestone and sand were regarded as a regulated aquifer, a greater amount of drawdown would be allowed than is allowed for the Piney Point aquifer consisting of six geologic units. Some production wells intercept multiple geologic units, and the units can undergo water-level decline and vertical leakage induced by pumping from the limestone and sand. Whether the other geologic units are to be regarded as regulated aquifers is an additional consideration for the VA DEQ.
Methane hydrate formation in partially water-saturated Ottawa sand
Waite, W.F.; Winters, W.J.; Mason, D.H.
2004-01-01
Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.
Annual water-resources review, White Sands Missile Range, New Mexico, 1983
Cruz, R.R.
1984-01-01
Ground-water data were collected at White Sands Missile Range in 1983. The total amount of water pumped from White Sands Missile Range supply wells in 1983 was 713,557,500 gallons. The Post Headquarters well field accounted for 686,499,200 gallons of the total. Seasonal water-level fluctuations in the supply wells ranged from a 3.00-foot rise in Stallion Range Well-2 (SRC-2) to a 51.00 foot decline in Post headquarters supply well 11 (SW-11). All of the test wells and observation wells up to 2 miles east of the Post Headquarters well field showed a decline for the period 1973-1983. Only one test well and one borehole west of the Post Headquarters well field showed a decline in water level; the other five showed a rise in water level for the period 1973-1983. (USGS)
Estimating equivalence with quantile regression
Cade, B.S.
2011-01-01
Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. ?? 2011 by the Ecological Society of America.
Leaching assessment of road materials containing primary lead and zinc slags.
Barna, R; Moszkowicz, P; Gervais, C
2004-01-01
Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.
Studies of the Biology of Phleboviruses in Sandflies.
1983-02-01
8217Ahiebotomus fever, sand fly fever, arbovirus, medical entomology, Phiebotomus, Lutzomyia, vector-borne diseases, insect cell cultures, _)_Laboratory...parenteral administration. Most of the viruses replicated in sand flies after intrathorazic inoculation; however, the insects were quite refractory to oral...cells was also established and tested for its ability to support the growth of a number of different arbaviruses. Most of the rhabdoviruses
Cathryn H. Greenberg; Lawrence D. Harris; Daniel G Neary
1995-01-01
We hypothesized that similar bird assemblages will occur in like-structured habitat that results from both clearcutting and high-intensity wildfire followed by salvage logging. To test this, we compared bird communities of sand pine scrub in mature forest and three disturbance treatments (1) high-intensity wildfire, salvage logged, and naturally regenerated, (2)...
Wall shear measurement in sand-water mixture flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yucel, O.; Grad, W.H.
1975-07-01
The wall shear stress was measured in clear-water and sand-water mixture flows with the use of a flush-mounting hot-film shear-sensor. Data were obtained with 2 shear-sensors and 2 different sands (d50 = 0.45 mm and d50 = 0.88 mm) with solids concentrations of up to Cmax = 1.6% by vol, and for flow Reynolds number of 10/sup 5/ < RD < 6 x 10/sup 5/. The measured sensor wall shear stresses were compared with the true wall shear stresses obtained with the energy head loss measurements conducted in a pipeline system. The results of the tests in the clear-water flowsmore » confirmed the relationship between the sensor power output, Ps, and the wall shear stress, tauo, given by tauo1/3 = APs + B, in which A and B are calibration coefficients. The tests with the low-concentration sand-water mixtures in a vertical pipe indicated that for the present range of experiments, sensor power outputs with the mixtures exceeded those for clear-water by an average of 5%. It is shown that the shear sensors are delicate but accurate instruments that can be used for the measurement of the wall shear stress. (13 refs.)« less
Lorenson, T.D.; Collett, T.S.; Hunter, R.B.
2011-01-01
Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.
Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3
NASA Technical Reports Server (NTRS)
Swartz, A. Ben; Wilson, D. B.
1999-01-01
The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.
NASA Technical Reports Server (NTRS)
Berlin, G. L.; Tarabzouni, M. A.; Munshi, Z. M. N.; Chavez, P. S., Jr.
1984-01-01
The primary objectives of the investigation are to determine fully the utility of Shuttle Imaging Radar-B (SIR-B) images for providing valuable surface indicators for ground-water prospecting in the Arabian shield and to identify and assess defining characteristics of sand sheets, sand streaks, and sand dunes in the fringe areas of An Nafud and Al Jafurah. Specific objectives include the determination of the incremental contribution of incidence angle to the total information that can be extracted from SIR-B standard and digitally-enhanced images in the AL Jafurah fringe area; the determination of the incremental contribution of digitally-registered multisensor images; and the development of a groundwater exploration plan for the Ha'il test area in the Arabian Shield.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, P.L.; Hayden, C.G.; Rogers, L.A.
1992-04-01
This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 mdmore » (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.« less
Martens, Kris M; Vonder Haar, Cole; Hutsell, Blake A; Hoane, Michael R
2012-10-10
Traumatic brain injury (TBI) results in a multitude of deficits following injury. Some of the most pervasive in humans are the changes that affect frontally-mediated cognitive functioning, such as decision making. The assessment of decision-making behavior in rodents has been extensively tested in the field of the experimental analysis of behavior. However, due to the narrow therapeutic window following TBI, time-intensive operant paradigms are rarely incorporated into the battery of tests traditionally used, the majority of which assess motor and sensory functioning. The cognitive measures that are used are frequently limited to memory and do not account for changes in decision-making behavior. The purpose of the present study was to develop a simplified discrimination task that can assess deficits in decision-making behavior in rodents. For the task, rats were required to dig in cocoa-scented sand (versus unscented sand) for a reinforcer. Rats were given 12 sessions per day until a criterion level of 80% accuracy for 3 days straight was reached. Once the criterion was achieved, cortical contusion injuries were induced (frontal, parietal, or sham). Following a recovery period, the rats were re-tested on cocoa versus unscented sand. Upon reaching criterion, a reversal discrimination was evaluated in which the reinforcer was placed in unscented sand. Finally, a novel scent discrimination (basil versus coffee with basil reinforced), and a reversal (coffee) were evaluated. The results indicated that the Dig task is a simple experimental preparation that can be used to assess deficits in decision-making behavior following TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essington, E.H.; Gilbert, R.O.; Wireman, D.L.
Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentrationmore » of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns.« less
Effect of Hydrophobicity on Splash Erosion by a Single Drop Impact: From Model Soil to Real Soil
NASA Astrophysics Data System (ADS)
Ahn, Sujung; Doerr, Stefan H.; Douglas, Peter; Bryant, Robert; Hamlett, Christopher A. E.; McHale, Glen; Newton, Michael I.; Shirtcliffe, Neil J.
2013-04-01
Splash erosion is soil loss caused by raindrop impacts and can be a dominating process in low precipitation events or on barely vegetated slopes. Water repellent soils have been reported to have greater splash loss by multiple drop impacts than wettable soils either due to effects of a water layer (Terry and Shakesby 1993) or a wet crust (Fox et al. 2007) generated by accumulation of water. In previous work, using homogeneous glass beads as model soil material, we found that the impact of a single water drop results in significantly different splash behaviour between hydrophobic and hydrophilic particles (Ahn et al. 2012). Natural soils are more variable in particle shape, surface texture and morphology than the model material used. The aim of the study presented here was to examine to what degree this difference in splash behaviour between hydrophobic and hydrophilic spherical glass particles applies to natural sandy soil material. Splash behaviour of beach sands was compared with that previously obtained for the model material (glass beads) using the same single drop impact test procedure (Ahn et al. 2012). The sand particles were in the same size range (350~400 µm diameter) and chemically modified with HCl and chlorotrimethylsilane in the same method applied to glass beads. A single water drop was released from 40 cm above the target and its impact was recorded using a high-speed video camera (976 fps). Overall, the amount of splash detachment was significantly lower (50~80%) for the beach sand than for glass beads in both hydrophobic and hydrophilic cases. However, the difference in the amount of splash detachment between hydrophobic and hydrophilic sand was 3 times larger than that of glass beads. Potential factors for lower net detachment and higher contrast, of sand compared to glass beads, might be (i) particle mobility and (ii) enhanced water repellency on rougher surfaces, respectively. Mobility experiments (angle of repose and flowability) showed that sand particles had significantly less mobility than glass beads (angle of repose: beads: 21.3 ± 0.7 °, sands: 37.3 ± 0.9 °, p < 0.001, dF = 17), and that sands took longer to flow through a funnel (beads: 1.88 ± 0.02 s, sands: 2.05 ± 0.13 s, p = 0.002, dF = 9). This lower mobility of sands may well be an important factor in the smaller amount of overall splash detachment for sands than beads. Secondly, the water repellency of hydophobized sands, measured by water contact angle (CA) and the Molarity of Ethanol Droplet test (MED), was greater than for identically hydrophobized glass beads (beads: CA 119.6 ± 5.1 °, MED 33%; sands: CA 137.0 ± 2.0 °, MED 36%). This is probably due to the enhancing effect of surface roughness on hydrophobicity. This amplified hydrophobicity can help to explain the enhanced contrast in splash behaviour between hydrophobic and hydrophilic sands. The results show that the enhanced splash detachment observed for hydrophobic model materials in our previous study occurs to an even greater degree in real sands. The findings also suggest that surface roughness and amplified hydrophobicity in real sands need to be considered when translating findings from model materials to real soils. Finally, the results of this study confirm that particle hydrophobicity leads to a greater susceptibility of sands to splash erosion in the initial stage of rain or irrigation events. References: Ahn S, et al. 2012. ESPL. DOI: 10.1002/esp.3364; Fox DM, et al. 2007. Hydro. Proc. 21: 2377-2384; Terry JP and Shakesby RA. 1993. ESPL 18: 519-25 Acknowledgement: This study has been funded by UK EPSRC (EP/H000747/1 and EP/H000704/1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, B.E.; Karkalits, O.C.
1978-09-01
The Edna Delcambre et al. No. 1 gas well, shut-in since June 1975, was made available for the project. Two geopressured sand-bed aquifers were tested: sand No. 3 at a depth of 12,900 feet and sand No. 1 at a depth of 12,600 feet. Each aquifer was subjected to flow tests which lasted approximately three weeks in each case. Water samples were obtained during flow testing of the two geopressured aquifers. The water contained 11.3 to 13.3% dissolved solids. Several radioactive species were measured. Radium-226 was found to be approximately 10 times more concentrated than the average amount observed inmore » surface waters. No appreciable amount of heavy metals was detected. Recombination studies at bottom-hole conditions indicate the solubility of natural gas per barrel of water to be about 24 SCF. The methane content was 93 to 95%, and the gas had a heating value in the range of 1020 to 1070 Btu/cu.ft. During the flow tests, the gas/water ratio at the well-head was observed to be 45 to 88 SCF/Bbl water produced. (MHR)« less
Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C.; Zhioua, Elyes
2016-01-01
The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL. PMID:26999176
Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C; Zhioua, Elyes
2016-03-16
The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL.
Experimental studies about the impact of traction sand on urban road dust composition.
Kupiainen, Kaarle; Tervahattu, Heikki; Räisänen, Mika
2003-06-01
Traffic causes enhanced PM(10) resuspension especially during spring in the US, Japan, Norway, Sweden and Finland, among other countries. The springtime PM(10) consists primarily of mineral matter from tyre-induced paved road surface wear and traction sand. In some countries, the majority of vehicles are equipped with studded tyres to enhance traction, which additionally increases road surface wear. Because the traction sand and the mineral matter from the pavement aggregate can have a similar mineralogical composition, it has been difficult to determine the source of the mineral fraction in the PM(10). In this study, homogenous traction sand and pavement aggregate with different mineralogical compositions were chosen to determine the sources of PM(10) particles by single particle analysis (SEM/EDX). This study was conducted in a test facility, which made it possible to rule out dust contributions from other sources. The ambient PM(10) concentrations were higher when traction sand was used, regardless of whether the tyres were studded or not. Surprisingly, the use of traction sand greatly increased the number of the particles originating from the pavement. It was concluded that sand must contribute to pavement wear. This phenomenon is called the sandpaper effect. An understanding of this is important to reduce harmful effects of springtime road dust in practical winter maintenance of urban roads
Droghei, R; Falcini, F; Casalbore, D; Martorelli, E; Mosetti, R; Sannino, G; Santoleri, R; Chiocci, F L
2016-11-03
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary "current" that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
2007 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona
Draut, Amy E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.
2009-01-01
Weather data constitute an integral part of ecosystem monitoring in the Colorado River corridor and are particularly valuable for understanding processes of landscape change that contribute to the stability of archeological sites. Data collected in 2007 are reported from nine weather stations in the Colorado River corridor through Grand Canyon, Ariz. The stations were deployed in February and March 2007 to measure wind speed and direction, rainfall, air temperature, relative humidity, and barometric pressure. Sand traps near each weather station collect windblown sand, from which daily aeolian sand-transport rates are calculated. The data reported here were collected as part of an ongoing study to test and evaluate methods for quantifying processes that affect the physical integrity of archeological sites along the river corridor; as such, these data can be used to identify rainfall events capable of causing gully incision and to predict likely transport pathways for aeolian sand, two landscape processes integral to the preservation of archeological sites. Weather data also have widespread applications to other studies of physical, cultural, and biological resources in Grand Canyon. Aeolian sand-transport data reported here, collected in the year before the March 2008 High-Flow Experiment (HFE) at Glen Canyon Dam, represent baseline data against which the effects of the 2008 HFE on windblown sand will be compared in future reports.
NASA Astrophysics Data System (ADS)
Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.
2016-11-01
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M
2016-05-01
In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yee, Eric
In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S). Aside from the expected strong influence of RC, increasing fines content is found to generally decrease volume change for fines fractions consisting of silts and clayey silts with moderate to low plasticity. With truly non-plastic fines (rock flour), cyclic volume change increases with FC. Some materials also exhibit an effect of as-compacted saturation in which moderate saturation levels associated with high matric suction cause volume change to decrease. A preliminary empirical model to capture these effects is presented. The balance of the dissertation is related to a case history of strongly nonlinear site response and seismic compression associated with a free-field downhole array installed near the Service Hall at the Kashiwazaki-Kariwa nuclear power plant, which recorded strong ground motions from the Mw 6.6 2007 Niigata-ken Chuetsu-oki earthquake. Site conditions at the array consist of about 70 m of medium-dense sands overlying clayey bedrock, with ground water located at 45 m. Ground shaking at the bedrock level had geometric mean peak accelerations of 0.55 g which is reduced to 0.4 g at the ground surface, indicating nonlinear site response. Ground settlements of approximately 15+/-5 cm occurred at the site. A site investigation was performed to develop relevant soil properties for ground response and seismic compression analysis, including shear wave velocities, shear strength, relative density, and modulus reduction and damping curves. (Abstract shortened by UMI.)
46 CFR 161.002-17 - Equivalents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...
46 CFR 161.002-17 - Equivalents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...
46 CFR 161.002-17 - Equivalents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...
46 CFR 161.002-17 - Equivalents.
Code of Federal Regulations, 2011 CFR
2011-10-01
... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...
46 CFR 161.002-17 - Equivalents.
Code of Federal Regulations, 2010 CFR
2010-10-01
... test that provides a level of safety equivalent to that established by specific provisions of this... require engineering evaluations and tests to demonstrate the equivalence of the substitute. [CGD 94-108...
Grade Equivalents: We Report Them, You Should Too.
ERIC Educational Resources Information Center
Ligon, Glynn; Battaile, Richard
In certain situations, grade equivalent scores are the most appropriate statistic available for reporting achievement test data. It is noted that testing practitioners have found that raw scores, normal curve equivalents, stanines, and standard scores are very useful. However, it is best to convert to either grade equivalents or percentiles before…
Myers, R.G.; Pinckley, K.M.
1984-01-01
Three test wells, T23, T29, and T30, were drilled in south-central New Mexico as part of a joint military training program sponsored by the U.S. Army in November 1982. Test well T23 was drilled as an exploratory and monitoring well in the proposed Soledad well field at the Fort Bliss Military Reservation. Test wells T29 and T30 were drilled at White Sands Missile Range. Test well T29 was drilled as an observation well in the vicinity of the outfall channel from the sewage treatment plant. Test well T30 was drilled as an observation well for a landfill south of the well site. Information obtained from these wells includes lithologic logs for all wells and borehole-geophysical logs from the cased wells for test wells T29 and T30. (USGS)
Mowat, Fionna; Bono, Michael; Lee, R J; Tamburello, Susan; Paustenbach, Dennis
2005-10-01
In this study, a historical phenolic (Bakelite) molding material, BMMA-5353, was tested to determine the airborne concentrations of asbestos fibers released during four different activities (sawing, sanding, drilling, and cleanup of dust generated from these activities). Each activity was performed for 30 min, often in triplicate. The primary objective for testing BMMA-5353 was to quantitatively determine the airborne concentration of asbestos fibers, if any, in the breathing zone of workers. Uses of this product typically did not include sawing or sanding, but it may have been drilled occasionally. For this reason, only small quantities were sawed, sanded, and drilled in this simulation study. Personal (n = 40), area (n = 80), and background/clearance (n = 88) air samples were collected during each activity and analyzed for total fiber concentrations using phase contrast microscopy (PCM) and, for asbestos fiber counts, transmission electron microscopy (TEM). The raw PCM-total fiber concentrations were adjusted based on TEM analyses that reported the fraction of asbestos fibers, to derive a PCM-asbestos concentration that would enable calculation of an 8-hour time-weighted average (TWA). The estimated 8-hour TWAs ranged from 0.006 to 0.08 fibers per cubic centimeter using a variety of worker exposure scenarios. Therefore, assuming an exposure scenario in which a worker uses power tools to cut and sand products molded from BMMA-5353 and similar products in the manner evaluated in this study, airborne asbestos concentrations should not exceed current or historical occupational exposure limits.
Wright, Adam; Sittig, Dean F
2008-12-01
In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:
Augmenting Sand Simulation Environments through Subdivision and Particle Refinement
NASA Astrophysics Data System (ADS)
Clothier, M.; Bailey, M.
2012-12-01
Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.
Annual water-resources review, White Sands Missile Range, New Mexico
Cruz, R.R.
1983-01-01
Ground-water data were collected in 1982 at White Sands Missile Range in south-central New Mexico. Depth-to-water measurements in the Post Headquarters supply wells continued to show seasonal declines. Test wells east of the Headquarters well field continue to show long-term declines as well as seasonal fluctuations. The total amount of water pumped from White Sands Missile Range supply wells was 66,226,600 gallons more in 1982 than in 1981. The difference in the specific-conductance values of the water samples collected from the Post Headquarters supply wells in the winter and summer increased in 1982. (USGS)
Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R
2011-02-01
In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (<1 mm diameter) decreased, and the percentage present in aggregated form (>2 mm diameter) increased; greatest aggregation occurred where a combination of residue mud and poultry manure were added. Stability of aggregates, as measured by wet sieving, was greatest where poultry manure was applied. Although total organic C and soluble organic C were greater in biosolids than poultry manure treatments, the reverse was the case for microbial biomass C and basal respiration. In the biosolids and poultry manure treatments, increasing residue mud additions tended to increase soluble C, microbial biomass C and basal respiration. Germination index of watercress was highest in control samples and reduced by additions of biosolids and poultry manure which was attributed to the high EC and possibly high extractable P and NH (4) (+) . The concurrent addition of residue mud and organic wastes can improve chemical, microbial and particularly physical properties of residue sand. Future research should include neutralisation of the mud (e.g. with gypsum) and subsequent leaching to remove salts originating from both the mud and organic wastes.
Reconnaissance for uranium and thorium in Alaska, 1954
Matzko, John J.; Bates, Robert G.
1957-01-01
During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.
A comparative appraisal of two equivalence tests for multiple standardized effects.
Shieh, Gwowen
2016-04-01
Equivalence testing is recommended as a better alternative to the traditional difference-based methods for demonstrating the comparability of two or more treatment effects. Although equivalent tests of two groups are widely discussed, the natural extensions for assessing equivalence between several groups have not been well examined. This article provides a detailed and schematic comparison of the ANOVA F and the studentized range tests for evaluating the comparability of several standardized effects. Power and sample size appraisals of the two grossly distinct approaches are conducted in terms of a constraint on the range of the standardized means when the standard deviation of the standardized means is fixed. Although neither method is uniformly more powerful, the studentized range test has a clear advantage in sample size requirements necessary to achieve a given power when the underlying effect configurations are close to the priori minimum difference for determining equivalence. For actual application of equivalence tests and advance planning of equivalence studies, both SAS and R computer codes are available as supplementary files to implement the calculations of critical values, p-values, power levels, and sample sizes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interface Modeling for Electro-Osmosis in Subgrade Structures
2004-12-01
aggregate and different clays ( kaolinite , montmorillonite , limestone and quartz sands) created to simulate below grade structures. A direct current 30...Quartz Sand 100 Sieve Ca Montmorillonite Na Montmorillonite Kaolinite The test setup used a 0.45 water to cement ratio concrete cylinder... Kaolinite cell Figure 4. Measured pH for Concrete and Na Montmorillonite cell 4 Scaling occurred at the interface between the anode
Toxoplasmosis in sand fox (Vulpes rueppelli).
Pas, An; Dubey, J P
2008-08-01
Fatal toxoplasmosis was diagnosed in a sand fox (Vulpes rueppelli) from United Arab Emirates. Toxoplasma gondii-like tachyzoites were found associated with necrosis in the intestine, spleen, liver, pancreas, lungs, mesenteric lymph nodes, and heart. Tachyzoites reacted positively with T. gondii-specific polyclonal antibodies. Antibodies to T. gondii were detected in 8 captive V. rueppelli assayed by the modified direct agglutination test in titers of 1:800 or higher.
The Canine Sand Maze: An Appetitive Spatial Memory Paradigm Sensitive to Age-Related Change in Dogs
ERIC Educational Resources Information Center
Salvin, Hannah E.; McGreevy, Paul D.; Sachdev, Perminder S.; Valenzuela, Michael J.
2011-01-01
Aged dogs exhibit a spectrum of cognitive abilities including a syndrome similar to Alzheimer's disease. A major impediment to research so far has been the lack of a quick and accurate test of visuospatial memory appropriate for community-based animals. We therefore report on the development and validation of the Canine Sand Maze. A 4.5-m-diameter…
Bray, Daniel P.; Carter, Vicky; Alves, Graziella B.; Brazil, Reginaldo P.; Bandi, Krishna K.; Hamilton, James G. C.
2014-01-01
Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases. PMID:24651528
Bray, Daniel P; Carter, Vicky; Alves, Graziella B; Brazil, Reginaldo P; Bandi, Krishna K; Hamilton, James G C
2014-03-01
Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.
Byappanahalli, M.N.; Whitman, R.L.; Shively, D.A.; Ting, W.T.E.; Tseng, C.C.; Nevers, M.B.
2006-01-01
We studied the shoreward and seasonal distribution of E. coli and enterococci in sand (at the water table) at two southern Lake Michigan beaches - Dunbar and West Beach (in Indiana). Deep, backshore sand (??? 20 m inland) was regularly sampled for 15 months during 2002-2003. E. coli counts were not significantly different in samples taken at 5-m intervals from 0-40 M inland (P = 0.25). Neither E. coli nor enterococci mean counts showed any correlation or differences between the two beaches studied. In laboratory experiments, E. coli readily grew in sand supplemented with lake plankton, suggesting that in situ E. coli growth may occur when temperature and natural organic sources are adequate. Of the 114 sand enterococci isolates tested, positive species identification was obtained for only 52 (46%), with E. faecium representing the most dominant species (92%). Genetic characterization by ribotyping revealed no distinct genotypic pattern (s) for E. coli, suggesting that the sand population was rather a mixture of numerous strains (genotypes). These findings indicate that E. coli and enterococci can occur and persist for extended periods in backshore sand at the groundwater table. Although this study was limited to two beaches of southern Lake Michigan, similar findings can be expected at other temperate freshwater beaches. The long-term persistence of these bacteria, perhaps independent of pollution events, complicates their use as indicator organisms. Further, backshore sand at the water table may act as a reservoir for these bacteria and potentially for human pathogens. ?? IWA Publishing 2006.
Test wells T21, T22, and T25, White Sands Missile Range, Dona Ana County, New Mexico
Myers, R.G.
1983-01-01
Three test wells, T21, T22, and T25, were drilled at White Sands Missile Range in south-central New Mexico as part of a joint military program sponsored by the U.S. Army in September 1982. T21 and T22 were drilled as observation wells for two old landfills. T25 was drilled as an exploratory hole to obtain lithologic and borehole-geophysical data in the vicinity of the proposed replacement well for Supply Well 15. Information obtained from these wells includes borehole-geophysical and driller's logs.
Economic and ecological outcomes of flexible biodiversity offset systems.
Habib, Thomas J; Farr, Daniel R; Schneider, Richard R; Boutin, Stan
2013-12-01
The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent-vegetation or conservation-priority targets. Networks that required offsetting equivalent vegetation cost 2-17 times more than priority-focused networks. This finding calls into question the prudence of equivalency-based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority-focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower-cost conservation of valued ecological features and may invite discussion on what land-use trade-offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de Biodiversidad Flexible Habib et al. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
McMillan, Mica Franklin
Soil water repellency (SWR) negatively affects turfgrass growth and quality and impedes uniform distribution of water, particularly in sand-based rootzones. Surfactants and soil amendments such as calcined clay are two approaches to improving soil hydrological properties affected by SWR. However, studying SWR in the field is difficult due to the extreme spatial variability in the soil profile. An objective of this dissertation was to assess two methods to impart SWR on sand and examine SWR amelioration strategies using these procedures under a plant environment and deficit irrigation. To determine effectiveness of artificial hydrophobicity, two methods produced severely hydrophobic substrates: stearic acid sand (HSS) and sand:peat (90:10 sand:peat v/v)(HSP). Greenhouse studies compared the effects of substrates HSS, HSP, 100% sand (SAND), sand:peat (90:10 v/v) (SP), sand:calcined clay (90:10 v/v) (CC) and naturally water repellent sand (NWRS) on bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] establishment and growth. Results indicate that HSS and HSP were not toxic to turfgrass but initially, hindered bermudagrass growth. At trials end, SWR had declined in both soils. A second greenhouse study assessed surfactant chemistry on substrates. After three dry downs, surfactants generally improved turfgrass quality in SAND and CC but had no significant effect in HSP and SP. Water drop penetration tests deemed CC and SAND wettable and HSP and SP nonwettable. Contact angle analysis found CC and SAND to be subcritically water repellent while HSP and SP were water repellent. Both HSP and HSS could be used to evaluate the influence of SWR on plant growth. However, both methods have disadvantages. CC remained wettable after several dry downs. In another greenhouse study, perennial ryegrass (Lolium perenne) seeds coated with 10% w/w alkyl-terminated block copolymer surfactant seed coating (SC) were evaluated as an amelioration strategy. Seed treated with surfactant yielded similar or greater percent coverage, shoot growth, root weight and increased volumetric water in the majority of substrates when compared to substrates sown with untreated seed. Coating seeds with surfactant may be used as a method to improve seed germination, establishment and enhance soil moisture, particularly under deficit irrigation.
Synthesis and characterization of mangan oxide coated sand from Capkala kaolin
NASA Astrophysics Data System (ADS)
Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya
2017-03-01
Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.
Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.
Xie, Shiwei; Yuan, Songhu; Liao, Peng; Tong, Man; Gan, Yiqun; Wang, Yanxin
2017-01-17
Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Moayedi, Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Panjsetooni, Alireza; Nazir, Ramli
2013-01-01
Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow. PMID:24459437
Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R
2005-01-01
Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.
Spaulding, S J; Robinson, K L
1984-04-01
Electromyographic information was obtained from seven right shoulder complex muscles in nine subjects (three normal, three paraplegic, and three quadriplegic) during the occupational therapy activity of bilateral sanding on an incline board, an activity that has been recommended as a treatment modality to strengthen the triceps brachii. Electromyography revealed that the anterior and middle portions of the deltoid were the muscles most responsible for the subjects' arm movements during both resisted and unresisted bilateral sanding . Triceps lateralis and medialis were also active during the up phase, but not as consistently as the deltoid. Pectoralis major and biceps brachii were not extensively active in most subjects. The small size and heterogeneity of the subject sample limits the generalizations of our findings. However, graded resisted bilateral sanding does appear to be an appropriate activity for strengthening the shoulder muscle group, especially the deltoid and triceps brachii, in the tested patient populations.
Göhler, Daniel; Stintz, Michael; Hillemann, Lars; Vorbau, Manuel
2010-01-01
Nanoparticles are used in industrial and domestic applications to control customized product properties. But there are several uncertainties concerning possible hazard to health safety and environment. Hence, it is necessary to search for methods to analyze the particle release from typical application processes. Based on a survey of commercial sanding machines, the relevant sanding process parameters were employed for the design of a miniature sanding test setup in a particle-free environment for the quantification of the nanoparticle release into air from surface coatings. The released particles were moved by a defined airflow to a fast mobility particle sizer and other aerosol measurement equipment to enable the determination of released particle numbers additionally to the particle size distribution. First, results revealed a strong impact of the coating material on the swarf mass and the number of released particles. PMID:20696941
Waite, William F.; Osegovic, J.P.; Winters, William J.; Max, M.D.; Mason, David H.
2008-01-01
An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the circulating water, and hydrate particles from the source chamber entrained in the circulating water can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing homogeneous hydrate formation throughout the sand pack are being developed.
Wind, sand, and Mars - The 1990 tests of the Mars balloon and SNAKE
NASA Astrophysics Data System (ADS)
Anderson, C. M.
1991-02-01
The observations of one member of the international team of Planetary Society members responsible for testing the Mars balloon and SNAKE are presented. The tests were held in the fall of 1990 in Indio, California, and concluded successfully. The test team was made up of scientists and technicians from CNES; observers from the Babakin Center; scientists from the Space Research Institute of the Soviet Academy of Sciences; engineers from the Jet Propulsion Laboratory; students from the University of Arizona, Utah State University, UCLA, and Caltech; and Planetary Society volunteers. The chosen sites of study in this desert area were selected to simulate as neary as possible Mars-like conditions and included smooth ancient lake beds, jagged frozen lava flows and gently rolling sand dunes.
[Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].
Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun
2016-01-01
In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.
Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface
Arazi, Hamid; Mohammadi, Mahdi
2014-01-01
The purpose of this study was to compare the effects of plyometric training on sand vs. land surface on muscular performance adaptations in men. Fourteen healthy men were randomly assigned to two training groups: a) Sand Depth Jump (SDJ; N = 7) and b) Land Depth Jump (LDJ; N = 7). Training was performed for 6 weeks and consisted of 5 × 20 repetitions of DJ training on 20-cm dry sand or 3-cm hard court surface twice weekly. Vertical Jump Test (VJT), Standing Long Jump Test (SLJT), 20-m and 40-m sprint, T-test (TT) and one repetition maximum leg press (1RMLP) were performed before and after training. Significant improvements in VJT [4 (ES = 0.63) vs. 5.4 (ES = 0.85) cm], SLJT [8.3 (ES = 0.3) vs. 12.7 (ES = 0.57) cm], and 1RMLP [23.5 (ES = 0.56) vs. 15.3 (ES = 0.49) kg] were seen for both the groups. Likewise, significant decreases were observed for both SDJ and LDJ groups in 20-m [0.3 (ES = 0.72) vs. 0.4 (ES = 1.98) s] and 40-m sprint times [0.2 (ES = 0.4) vs. 0.5 (ES = 0.71) s], and TT [0.5 (ES = 0.62) vs. 0.9 (ES = 0.57) s]. With regard to ES, it can be recommended that athletes used LDJ training for enhancing sprint and jump and SDJ training for improving agility and strength. PMID:25243078
Teixeira, Clarissa; Gomes, Regis; Collin, Nicolas; Reynoso, David; Jochim, Ryan; Oliveira, Fabiano; Seitz, Amy; Elnaiem, Dia-Eldin; Caldas, Arlene; de Souza, Ana Paula; Brodskyn, Cláudia I; de Oliveira, Camila Indiani; Mendonca, Ivete; Costa, Carlos H N; Volf, Petr; Barral, Aldina; Kamhawi, Shaden; Valenzuela, Jesus G
2010-03-23
Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.
Sand petrology and focused erosion in collision orogens: the Brahmaputra case
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; France-Lanord, Christian; Singh, Sunil K.; Foster, Gavin
2004-03-01
The high-relief and tectonically active Himalayan range, characterized by markedly varying climate but relatively homogeneous geology along strike, is a unique natural laboratory in which to investigate several of the factors controlling the composition of orogenic sediments. Coupling of surface and tectonic processes is most evident in the eastern Namche Barwa syntaxis, where the Tsangpo-Siang-Brahmaputra River, draining a large elevated area in south Tibet, plunges down the deepest gorge on Earth. Here composition of river sands changes drastically from lithic to quartzofeldspathic. After confluence with the Lohit River, draining the Transhimalayan-equivalent Mishmi arc batholiths, sediment composition remains remarkably constant across Assam, indicating subordinate contributions from Himalayan tributaries. Independent calculations based on petrographical, mineralogical, and geochemical data indicate that the syntaxis, representing only ∼4% of total basin area, contributes 35±6% to the total Brahmaputra sediment flux, and ∼20% of total detritus reaching the Bay of Bengal. Such huge anomalies in erosion patterns have major effects on composition of orogenic sediments, which are recorded as far as the Bengal Fan. In the Brahmaputra basin, in spite of very fast erosion and detrital evacuation, chemical weathering is not negligible. Sand-sized carbonate grains are dissolved partially in mountain reaches and completely in monsoon-drenched Assam plains, where clinopyroxenes are selectively altered. Plagioclase, instead, is preferentially weathered only in detritus from the Shillong Plateau, which is markedly enriched in microcline. Most difficult to assess is the effect of hydraulic sorting in Bangladesh, where quartz, garnet and epidote tend to be sequestered in the bedload and trapped on the coastal plain, whereas cleavable feldspars and amphiboles are concentrated in the suspended load and eventually deposited in the deep sea. High-resolution petrographic and dense-mineral studies of fluvial sands provide a basis for calculating sediment budgets, for tracing patterns of erosion in mountain belts, and for better understanding the complex dynamic feedback between surface processes and crustal-scale tectonics.
Bulle, Cécile; Samson, Réjean; Deschênes, Louise
2010-03-01
Field samples were collected around six pentachlorophenol (PCP)-treated wooden poles (in clay, organic soil, and sand) to evaluate the vertical migration of polychlorodibenzo-p-dioxins and furans (PCDD/Fs). Soils were characterized, PCDD/Fs, C(10)-C(50), and PCP were analyzed for seven composite samples located at a depth from 0 to 100 cm and at a distance from 0 to 50 cm from each pole. Concentrations of PCDD/Fs measured in organic soils were the highest (maximum 1.2E + 05 pg toxic equivalent TEQ/g soil), followed by clay (maximum 3.8E + 04 pg TEQ/g soil) and sand (maximum 1.8E + 04 pg TEQ/g soil). Model predictions, including the influence of wood treatment oil, were validated using measured concentration values in soils around poles. The model predicts a migration of PCDD/Fs due to the migration of oil, which differs depending on the type of soil: in clay, 90% of PCDD/Fs are predicted to remain in the first 29 cm, whereas in sand, 80 to 90% of the emitted PCDD/Fs are predicted to migrate deeper than 185 cm. For the organic soil, the predicted migration depth varies from 90 to 155 cm. This screening model allows evaluating the danger of microcontaminated sites around PCP-treated wooden poles: from a risk assessment perspective, in the case of organic soil and clay, no PCDD/F contamination is to be expected below the pole, but high levels of PCDD/Fs can be found in the first 2 m below the surface. For sand, however, significantly lower levels of PCDD/Fs were predicted in the surface soil, while the migration depth remains elevated, posing an inherent danger of aquifer contamination under the pole.
Adler, Gregory H; Becerra, María Teresa; Travi, Bruno L
2003-12-01
Lutzomyia evansi is the vector of Leishmania chagasi in northern Colombia. Differences in feeding success were revealed, when this phlebotomine sand fly was fed on five species of small mammal hosts from an endemic focus of visceral leishmaniasis. In each trial, 50 female sand flies were provided access to similar-sized depilated areas of the hind foot of each of 44 individual mammals and allowed to feed for 30 minutes. The number of engorged sand flies was counted at the end of each trial and compared among host species by analysis of variance and Tukey's multiple comparisons test. Sand flies fed least successfully on Sciurus granatensis, a common squirrel in the endemic area. It has not been found infected with L. chagasi. Intermediate numbers of sand flies engorged on Heteromys anomalus and Zygodontomys brevicauda, but these two mammals have not been found infected with L. chagasi and are not expected to be important in transmission. Sand flies fed most successfully on Didelphis marsupialis and Proechimys canicollis. These are the two most abundant mammals in the endemic area and frequently are infected. Results provided further evidence that these two species are the wild mammals with the greatest impact on transmission of L. chagasi in northern Colombia.
Effect of Fractal Dimension on the Strain Behavior of Particulate Media
NASA Astrophysics Data System (ADS)
Altun, Selim; Sezer, Alper; Goktepe, A. Burak
2016-12-01
In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.
An experimental study on pile spacing effects under lateral loading in sand.
Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan
2013-01-01
Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.
An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand
Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan
2013-01-01
Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900
Baum, Maurício; de Castro, Edilene Alcântara; Pinto, Mara Cristina; Goulart, Thais Marchi; Baura, Walter; Klisiowicz, Débora do Rocio; Vieira da Costa-Ribeiro, Magda Clara
2015-03-01
The feeding behavior of sand flies provides valuable information about the vector/host interactions and elucidates the epidemiological patterns of American cutaneous leishmaniasis (ACL) transmission. The aim of this study was to identify the blood meal sources of sand flies in endemic areas of leishmaniasis in Paraná State through polymerase chain reaction (PCR) amplification of a prepronociceptin (PNOC) gene fragment and its subsequent DNA sequencing. Moreover, molecular assays were conducted to evaluate the sensitivity and reproducibility of the PNOC gene amplification. Besides that, a time-course digestion test of the blood using sand flies that fed artificially on BALB/c mice was performed. Of 1263 female sand flies collected in the field, 93 (3.6%) specimens were engorged and 27 allowed efficient amplification of the PNOC gene. These flies had fed on equine (Equus caballus), porcine (Sus scrofa) and canine (Canis lupus familiaris) species. The results also showed that the identification of the blood meal sources of the sand flies using the molecular method was directly linked to the level of digestion of the blood (time-course) and not to the amount of blood that had been ingested or to the presence of inhibitors in the blood. Copyright © 2014 Elsevier B.V. All rights reserved.
1989-10-17
Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)
The influence of aluminum and carbon on the abrasion resistance of high manganese steels
NASA Astrophysics Data System (ADS)
Buckholz, Samuel August
Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.
Weber, Benjamin; Lee, Sau L; Delvadia, Renishkumar; Lionberger, Robert; Li, Bing V; Tsong, Yi; Hochhaus, Guenther
2015-03-01
Equivalence testing of aerodynamic particle size distribution (APSD) through multi-stage cascade impactors (CIs) is important for establishing bioequivalence of orally inhaled drug products. Recent work demonstrated that the median of the modified chi-square ratio statistic (MmCSRS) is a promising metric for APSD equivalence testing of test (T) and reference (R) products as it can be applied to a reduced number of CI sites that are more relevant for lung deposition. This metric is also less sensitive to the increased variability often observed for low-deposition sites. A method to establish critical values for the MmCSRS is described here. This method considers the variability of the R product by employing a reference variance scaling approach that allows definition of critical values as a function of the observed variability of the R product. A stepwise CI equivalence test is proposed that integrates the MmCSRS as a method for comparing the relative shapes of CI profiles and incorporates statistical tests for assessing equivalence of single actuation content and impactor sized mass. This stepwise CI equivalence test was applied to 55 published CI profile scenarios, which were classified as equivalent or inequivalent by members of the Product Quality Research Institute working group (PQRI WG). The results of the stepwise CI equivalence test using a 25% difference in MmCSRS as an acceptance criterion provided the best matching with those of the PQRI WG as decisions of both methods agreed in 75% of the 55 CI profile scenarios.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
The cross-cultural equivalence of participation instruments: a systematic review.
Stevelink, S A M; van Brakel, W H
2013-07-01
Concepts such as health-related quality of life, disability and participation may differ across cultures. Consequently, when assessing such a concept using a measure developed elsewhere, it is important to test its cultural equivalence. Previous research suggested a lack of cultural equivalence testing in several areas of measurement. This paper reviews the process of cross-cultural equivalence testing of instruments to measure participation in society. An existing cultural equivalence framework was adapted and used to assess participation instruments on five categories of equivalence: conceptual, item, semantic, measurement and operational equivalence. For each category, several aspects were rated, resulting in an overall category rating of 'minimal/none', 'partial' or 'extensive'. The best possible overall study rating was five 'extensive' ratings. Articles were included if the instruments focussed explicitly on measuring 'participation' and were theoretically grounded in the ICIDH(-2) or ICF. Cross-validation articles were only included if it concerned an adaptation of an instrument developed in a high or middle-income country to a low-income country or vice versa. Eight cross-cultural validation studies were included in which five participation instruments were tested (Impact on Participation and Autonomy, London Handicap Scale, Perceived Impact and Problem Profile, Craig Handicap Assessment Reporting Technique, Participation Scale). Of these eight studies, only three received at least two 'extensive' ratings for the different categories of equivalence. The majority of the cultural equivalence ratings given were 'partial' and 'minimal/none'. The majority of the 'none/minimal' ratings were given for item and measurement equivalence. The cross-cultural equivalence testing of the participation instruments included leaves much to be desired. A detailed checklist is proposed for designing a cross-validation study. Once a study has been conducted, the checklist can be used to ensure comprehensive reporting of the validation (equivalence) testing process and its results. • Participation instruments are often used in a different cultural setting than initial developed for. • The conceptualization of participation may vary across cultures. Therefore, cultural equivalence – the extent to which an instrument is equally suitable for use in two or more cultures – is an important concept to address. • This review showed that the process of cultural equivalence testing of the included participation instruments was often addressed insufficiently. • Clinicians should be aware that application of participations instruments in a different culture than initially developed for needs prior testing of cultural validity in the next context.
40 CFR 790.85 - Submission of equivalence data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sought. The exact type of identifying data required will be specified in the test rule, but may include... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Submission of equivalence data. 790.85... Test Rules § 790.85 Submission of equivalence data. If EPA requires in a test rule promulgated under...
40 CFR 790.85 - Submission of equivalence data.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sought. The exact type of identifying data required will be specified in the test rule, but may include... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Submission of equivalence data. 790.85... Test Rules § 790.85 Submission of equivalence data. If EPA requires in a test rule promulgated under...
Dubey, J P; Pas, An; Rajendran, C; Kwok, O C H; Ferreira, L R; Martins, J; Hebel, C; Hammer, S; Su, C
2010-09-20
The Sand cat (Felis margarita) is a small-sized felid found in sand and stone deserts ranging from the north of Africa to Asia, with the Arabian Peninsula as its centre of distribution. The Sand cat captive breeding program at the Breeding Centre for Endangered Arabian Wildlife (BCEAW), Sharjah, UAE, has experienced high newborn mortality rates, and congenital toxoplasmosis was recently recognized as one of the causes of this mortality. In the present study, one 18-month-old Sand cat (FM019) died of acute toxoplasmosis-associated hepatitis and pneumonitis acquired after birth; Toxoplasma gondii was demonstrated in histological sections which reacted with T. gondii polyclonal antibodies by immunohistochemistry (IHC). T. gondii DNA was found by PCR of extracted DNA from liver and lung tissues of this cat. Antibodies to T. gondii were found in serum examined in 1:1600 dilution in the modified agglutination test (MAT); its 2-year-old cage mate seroconverted (MAT titer 1:3200) at the same time. Another Sand cat (FM017) was euthanized because of ill health when 3 years old; its MAT titer was >1:3200, and T. gondii tissue cysts were found in brain, heart, ocular muscles and skeletal muscle, confirmed by IHC. Viable T. gondii was isolated by bioassays in mice inoculated with tissues of another chronically infected Sand cat (FM002); T. gondii was not found in histological sections of this cat. T. gondii antibodies were found in several species of animals tested, notably in 49 of 57 wild felids at BCEAW. A 7-year-old Sand cat (3657) from Al Wabra Wildlife Preservation (AWWP), Doha, State of Qatar died of acute visceral toxoplasmosis with demonstrable T. gondii tachyzoites by IHC, and T. gondii DNA by PCR, and a MAT titer of >3200. T. gondii antibodies were found in 21 of 27 of wild felids at AWWP. PCR-RFLP genotyping at 10 genetic loci revealed that these T. gondii isolates from Sand cat (FM002 and FM019) at BCEAW have an atypical genotype, which was previously reported in T. gondii isolates of dogs from Sri Lanka. The genotype from the cat from AWWP (3657) is a genetic Type II strain with a Type I allele at locus Apico. This is the first report of genetic characterization of T. gondii isolates from Middle East.
ERIC Educational Resources Information Center
Kerr, Jon
2015-01-01
In 2013, as new high school equivalency exams were being developed and implemented across the nation and states were deciding which test was best for their population, Washington state identified the need to adopt the most rigorous test so that preparation to take it would equip students with the skills to be able to move directly from adult…
Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.
2016-01-01
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities. PMID:27808239
Hampton, M.A.; Fletcher, C. H.; Barry, J.H.; Lemmo, S.J.; ,
2000-01-01
The Halekulani Sand Channel and the Makua Shelf off the south shore of Oahu contain at least 1.3 million m3 of sediment that is a possible resource for nourishing degraded sections of Waikiki Beach. A sidescan sonar survey indicates continuous sediment cover within the channel and on the shelf, and samples from the top and bottom of vibracores from the channel and shelf contain from 29% to 77% of grains between 0 to 2.5 phi (1 to 0.177 mm), the size range of four samples from Waikiki Beach. Compositional analyses indicate high variability, but the vibracore samples normally have relatively high Halimeda content compared to beach sand samples. Laboratory tests show a positive correlation of abrasion with Halimeda content, suggesting that the offshore sediment would abrade more than beach sediment under nearshore wave action. The common gray color of the offshore sediment can be aesthetically undesirable for sand on popular tourist beaches such as Waikiki; however, visual observation of native beach sand indicates that a significant component of gray color is endemic to many Hawaiian beaches. The gray color was removed in the laboratory by soaking in heated hydrogen peroxide. The geological properties of the offshore sediment indicate potential as a resource for beach nourishment, but industrial treatment might be necessary to remove excess fine and coarse grains, and possibly the gray color. Further, the abrasion potential might have to be considered in calculating beach sand losses over time.
Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content
NASA Astrophysics Data System (ADS)
Hyodo, M.
2016-12-01
This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.
Identification of phlebotomine sand fly blood meals by real-time PCR.
Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe
2015-04-16
Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black rats, up to 5 days after the blood meal. These assays represent promising tools for the identification of blood meal in field-collected female sand flies.
Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud
NASA Astrophysics Data System (ADS)
Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.
2017-12-01
Carbonate mud is a major sedimentary component of modern and ancient tropical carbonate environments, yet its enigmatic origin remains debated. Early views on the origin of carbonate mud considered the abrasion of carbonate sand during sediment transport as a possible mechanism. In recent decades, however, prevailing thought has generally settled on a binary explanation: 1) precipitation of aragonite needles within the water column, and 2) post-mortem dispersal of biological aragonite, in particular from algae, and perhaps aided by fish. To test these different hypotheses, we designed a model and a set of laboratory experiments to quantify the rates of mud production associated with sediment transport. We adapted a recent model of ooid abrasion rate to predict the rate of mud production by abrasion of carbonate sand as a function of grain size and sediment transport mode. This model predicts large mud production rates, ranging from 103 to 104 g CaCO3/m2/yr for typical grain sizes and transport conditions. These rate estimates are at least one order of magnitude more rapid than the 102 g CaCO3/m2/yr estimates for other mechanisms like algal biomineralization, indicating that abrasion could produce much larger mud fluxes per area as other mechanisms. We tested these estimates using wet abrasion mill experiments; these experiments generated mud through mechanical abrasion of both ooid and skeletal carbonate sand for grain sizes ranging from 250 µm to >1000 µm over a range of sediment transport modes. Experiments were run in artificial seawater, including a series of controls demonstrating that no mud was produced via homogenous nucleation and precipitation in the absence of sand. Our experimental rates match the model predictions well, although we observed small systematic differences in rates between abrasion ooid sand and skeletal carbonate sand that likely stems from innate differences in grain angularity. Electron microscopy of the experimental products revealed aragonite needles 1-3 µm in length identical to those described in carbonate mud from a range of modern environments. Our results suggest that abrasion during bed load and suspended load transport of carbonate sand, even over small areas, is likely a significant potential source of carbonate mud in both modern and ancient carbonate environments.
Mechanical Parameters of Rubber-Sand Mixtures for Numerical Analysis of a Road Embankment
NASA Astrophysics Data System (ADS)
Kowalska, Magdalena; Chmielewski, Maciej
2017-10-01
Waste production is one of the greatest problems of the modern world. It is inevitably related to the increase of industrialization. One of the most difficult, and growing in amounts, waste is scrap tyres. The most common method of utilization of end-of-life tyres by their incineration raises much concern in terms of air pollution. More sustainable seems to reuse the tyre derived products - rubber in particular - in civil engineering, where the interesting properties of this material may be effectively utilized. This paper presents results of direct shear strength tests on sand-rubber mixtures, which were next applied to a numerical FEM (finite element method) model of a road embankment built on soft ground. The laboratory tests, conducted for two types of scrap tyre rubber granulates (0.5 - 2 mm and 1 - 5 mm in size) mixed with medium fluvial sand in various proportions (5, 10, 30 and 50% by weight), proved that the unit weight of the mixtures is distinctly smaller that the unit weight of sand alone and at 50% rubber content it drops by half. The internal angle of friction stays almost unchanged for the mixtures with up to 10% of rubber (33 - 37°), but decreases by about 10° when the rubber content increases to 50%. In most of the cases analysed, the cohesion intercept is higher in case of sand-rubber mixtures when compared to sand alone. The numerical model simulated a 4.5 m high embankment with a 3 m thick layer made of sand-rubber mixtures, containing 0%, 10% or 30% of the waste product, founded on a weak subsoil (with a 3 m layer of organic soil). The results showed that stability factor of the structure built with the layer containing 30% of the coarser rubber granulate has increased from 1.60 - for sand only, to 2.15. The embankment was also able to carry load increased from 32 kPa to 45.5 kPa and its base showed much smaller settlement. The results prove that the use of tyre derived aggregates in embankment construction is not only an effective way of utilization of this problematic waste, but can also improve behaviour of such a structure.
Liang, Zheng; Li, Yajiao; Li, Peng; Jiang, Chunbo
2018-01-01
Excessive phosphorus (P) contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP) pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil), and eight intermittent tests with single filler (Blast furnace slag mixed with sand). Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS) modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume. PMID:29742120
Weight and Volume of Plantation-Grown Choctawhatchee Sand Pine
W. Henry McNab; Kenneth W. Outcalt; Raymond H. Brendemuehl
1985-01-01
The aboveground green weight of the total tree and its major components, the main stem and crown, were determined in eight stands of planted Choctawhatchee sand-pine ranging in age from 7 to 27 years. Eighty-three trees, ranging in d.b.h. from 0.7 to11.1 inches from 11 to 59 feet in total height, were sampled. After testing for significant differences, data were...
Laboratory Validation of the Sand Fly Fever Virus Antigen Assay
2015-12-01
TOSV), sandfly fever Sicilian virus (SFSV), sandfly fever Naples virus (SFNV), and Punta Toro virus (Tesh 1988 , Alkan et al . 2013). These viruses pose a...of meningitis in Mediter- ranean and southern European countries during the vector season (Braito et al . 1997). Sandfly fever Sicilian virus also...stationed there (Peralta et al . 1965). Rapid field assessments of sand flies for phleboviruses have been previously unavailable. The available tests are
Sources of Vibrio mimicus Contamination of Turtle Eggs
Acuña, María T.; Díaz, Gerardo; Bolaños, Hilda; Barquero, Candy; Sánchez, Olga; Sánchez, Luz M.; Mora, Grettel; Chaves, Anny; Campos, Elena
1999-01-01
Vibrio mimicus contamination of sand increased significantly during the arrival of the olive ridley sea turtles (Lepidochelys olivacea) at Ostional anidation beach, Costa Rica. Statistical analysis supports that eggs are contaminated with V. mimicus by contact with the sand nest. V. mimicus was isolated from eggs of all nests tested, and ctxA+ strains were found in 31% of the nests, all of which were near the estuary. PMID:9872804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orendorff, Christopher; Lamb, Joshua; Steele, Leigh Anna Marie
This report describes recommended abuse testing procedures for rechargeable energy storage systems (RESSs) for electric vehicles. This report serves as a revision to the FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications (SAND2005-3123).
Hardness characteristic of dental porcelain synthesized from Indonesian natural sand
NASA Astrophysics Data System (ADS)
Gunawan, J.; Taufik, D.; Takarini, V.; Hasratiningsih, Z.; Ramelan, A.
2018-02-01
Porcelain has been one of dental biomaterials which can be used to restore tooth structure. Veneer and jacket crown were the examples of dental porcelain restoration. Since wear resistance is related to the strength on its surface, then Vickers Hardness Test of the synthesized porcelain was applied subsequently. If the porcelain hardness number is too high, it should be considered that an abrasion of the opposing teeth could occur. On previous research, dental porcelain had been successfully synthesized from Indonesian natural sand. In this experiment, 5 samples were prepared from a mixture of 65w/o Pangaribuan feldspar, 25w/o Belitung silica, 5w/o Sukabumi kaolinite, and 5w/o potassium salt. This synthesized porcelain samples were invested on 5 cm diameter resin each. A kilogram of load was placed on top of each sample for 10 seconds on 7 different indented areas using ZwickRoell Indentec ZHVμ Micro Vickers. The average hardness number of synthesized dental porcelain made from Indonesian natural sand was 936.06 VHN which was higher than the average hardness number of porcelain restoration. In conclusion of the hardness test, synthesized dental porcelain made from Indonesian natural sand can potentially be used as a core, which shall support hardness and strength of the crown restoration.
Equivalent electron fluence for space qualification of shallow junction heteroface GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stock, L. V.
1984-01-01
It is desirable to perform qualification tests prior to deployment of solar cells in space power applications. Such test procedures are complicated by the complex mixture of differing radiation components in space which are difficult to simulate in ground test facilities. Although it has been shown that an equivalent electron fluence ratio cannot be uniquely defined for monoenergetic proton exposure of GaAs shallow junction cells, an equivalent electron fluence test can be defined for common spectral components of protons found in space. Equivalent electron fluence levels for the geosynchronous environment are presented.
Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming
NASA Astrophysics Data System (ADS)
Stokes, Stephen; Gaylord, David R.
1993-05-01
Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.
A simple control for sediment-toxicity exposures using the amphipod, Hyalella azteca
Lasier, Peter J.; Urich, Matthew L.
2014-01-01
Sediment-toxicity exposures comparing survival and growth of the freshwater amphipod, Hyalella azteca, are often components of aquatic-habitat assessments. Standardized exposure methods have been established and require evaluations for quality assurance. Test acceptability using performance-based criteria can be determined from exposures to control sediments, which are collected from the environment or formulated from commercially available components. Amending sand with leached alfalfa solids provided a simple formulated sediment that elicited consistently acceptable survival and growth in 28-day exposures with and without a daily feeding regime. A procedure is described for preparing the sediment along with results from comparisons among sand, amended sand, and field-collected sediments that incorporated three feeding regimes.
Effect of water content on the water repellency for hydrophobized sands
NASA Astrophysics Data System (ADS)
Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.
2011-12-01
Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum value of 0.068 cm s-1/2 at 1 g HA kg-1 sand, and then gradually increased.
Use of Brazilian sugarcane bagasse ash in concrete as sand replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Almir, E-mail: almir@ufscar.b; Lima, Sofia Araujo, E-mail: sofiaalima@yahoo.com.b
2010-06-15
Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction asmore » inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.« less
New Experiences in Dike Construction with Soil-Ash Composites and Fine-Grained Dredged Materials
NASA Astrophysics Data System (ADS)
Duszyński, Remigiusz; Duszyńska, Angelika; Cantré, Stefan
2017-12-01
The supporting structure inside a coastal dike is often made of dredged non-uniform sand with good compaction properties. Due to the shortage of natural construction material for both coastal and river dikes and the surplus of different processed materials, new experiments were made with sand-ash mixtures and fine-grained dredged materials to replace both dike core and dike cover materials resulting in economical, environmentally friendly and sustainable dikes. Ash from EC Gdańsk and dredged sand from the Vistula river were mixed to form an engineering material used for dike construction. The optimum sand-ash composites were applied at a field test site to build a large-scale research dike. Fine-grained dredged materials from Germany were chosen to be applied in a second full-scale research dike in Rostock. All materials were investigated according to the standards for soil mechanical analysis. This includes basic soil properties, mechanical characteristics, such as grain-size distribution, compaction parameters, compressibility, shear strength, and water permeability. In the field, the infiltration of water into the dike body as well as the erosion resistance of the cover material against overflowing water was determined. Results of both laboratory and field testing are discussed in this paper. In conclusion, the mixing of bottom ash with mineral soil, such as relatively uniform dredged sand, fairly improves the geotechnical parameters of the composite, compared to the constituents. Depending on the composite, the materials may be suitable to build a dike core or an erosion-resistant dike cover.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
Evaluation of submarine strain-gage systems for monitoring coastal sediment migration
NASA Technical Reports Server (NTRS)
Shideler, G. L.; Mcgrath, D. G.
1973-01-01
Single and multiple strain-gage systems were respectively evaluated as in situ point and areal sensors for monitoring sand-height variations in coastal environments. Static loading tests indicate that gage response pressure is linear for sand heights up to 24 inches. Response pressures are a function of both sand height and aggregate density, with density being influenced by both sediment texture and degree of compaction. Poorer sediment sorting and greater compaction result in higher response pressures. Field tests in a beach foreshore environment indicate that the gage systems are effective qualitative instruments for monitoring long-period migration trends of beach sediments; whereas, short-period responses are not sufficiently reliable. The durability and compactness of the gage systems must be substantially increased for effective field operations. It is recommended that the systems' qualitative potentials be further developed, whereas their development as quantitative instruments be terminated. Further development should emphasize the construction of remote recording systems designed for semipermanent installation.
Wolfson, M.L.; Naar, D.F.; Howd, P.A.; Locker, S.D.; Donahue, B.T.; Friedrichs, Carl T.; Trembanis, A.C.; Richardson, M.D.; Wever, T.F.
2007-01-01
A Kongsberg Simrad EM 3000 multibeam sonar (Kongsberg Simrad, Kongsberg, Norway) was used to conduct a set of six repeat high-resolution bathymetric surveys west of Indian Rocks Beach (IRB), just to the south of Clearwater, FL, between January and March 2003, to observe in situ scour and burial of instrumented inert mines and mine-like cylinders. Three closely located study sites were chosen: two fine-sand sites, a shallow one located in ??? 13 m of water depth and a deep site located in ???14 m of water depth; and a coarse-sand site in ???13 m. Results from these surveys indicate that mines deployed in fine sand are nearly buried within two months of deployment (i.e., they sunk 74.5% or more below the ambient seafloor depth). Mines deployed in coarse sand showed a lesser amount of scour, burying until they present roughly the same hydrodynamic roughness as the surrounding rippled bedforms. These data were also used to test the validity of the Virginia Institute of Marine Science (VIMS, Gloucester Point, VA) 2-D burial model. The model worked well in areas of fine sand, sufficiently predicting burial over the course of the experiment. In the area of coarse sand, the model greatly overpredicted the amount of burial. This is believed to be due to the presence of rippled bedforms around the mines, which affect local bottom morphodynamics and are not accounted for in the model, an issue currently being addressed by the modelers. This paper focuses specifically on two instrumented mines: an acoustic mine located in fine sand and an optical instrumented mine located in coarse sand. ?? 2007 IEEE.
ERIC Educational Resources Information Center
Jan, Show-Li; Shieh, Gwowen
2017-01-01
Equivalence assessment is becoming an increasingly important topic in many application areas including behavioral and social sciences research. Although there exist more powerful tests, the two one-sided tests (TOST) procedure is a technically transparent and widely accepted method for establishing statistical equivalence. Alternatively, a direct…
Electrical-analog-model study of water resources of the Columbus area, Bartholomew County, Indiana
Watkins, Frank A.; Heisel, J.E.
1970-01-01
The Columbus study area is in part of a glacial outwash sand and gravel aquifer that was deposited in a preglacial bedrock valley. The study area extends from the north line of Bartholomew County to the south county line and includes a small part of Jackson County south of Sand Creek and east of the East Fork White River. This report area includes about 100 square miles of the aquifer. In the Columbus area, ground water in the outwash aquifer is unconfined. Results of pumping tests and estimates derived from specific-capacity data indicate that the average horizontal permeability for this aquifer is about 3,500 gallons per day per square foot. An average coefficient of storage of about 0.2 was determined from pumping tests. Transmissibilities range from near zero in some places along the boundary to about 500,000 gallons per day per foot in the thicker parts of the aquifer. About 800,000 acre-feet of water is in storage in the aquifer. This storage is equivalent to an average yield of 34 million gallons per day for about 21 years without recharge. An electrical-analog model was built to analyze the aquifer system and determine the effects of development. Analysis of the model indicates that there is more than enough water to meet the estimated needs of the city of Columbus without seriously depleting the aquifer. Additional withdrawals will affect the flow in the Flatrock River, but if the withdrawals are made south of the city, they will not affect the river any more than present pumping. Future pumping should be confined to the deepest part of the outwash aquifer and (or) to the area adjacent to the streams. On the basis of an hypothesized amount and distribution of pumping, the decline in water levels in the Columbus area as predicted by the model for the period 1970-2015 ranged from about 20 feet in the center of the areas of pumping to 3 feet or less in the areas upstream and downstream from these areas of pumping.
Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones
NASA Astrophysics Data System (ADS)
Dewers, Thomas; Hajash, Andrew
1995-07-01
Mineral-water interactions under conditions of nonhydrostatic stress play a role in subjects as diverse as ductile creep in fault zones, phase relations in metamorphic rocks, mass redistribution and replacement reactions during diagenesis, and loss of porosity in deep sedimentary basins. As a step toward understanding the fundamental geochemical processes involved, using naturally rounded St. Peter sand, we have investigated the kinetics of pore volume loss and quartz-water reactions under nonhydrostatic, hydrothermal conditions in flow-through reactors. Rate laws for creep and mineral-water reaction are derived from the time rate of change of pore volume, sand-water dissolution kinetics, and (flow rate independent) steady state silica concentrations, and reveal functional dependencies of rates on grain size, volume strain, temperature, effective pressure (confining minus pore pressure), and specific surface areas. Together the mechanical and chemical rate laws form a self-consistent model for coupled deformation and water-rock interaction of porous sands under nonhydrostatic conditions. Microstructural evidence shows a progressive widening of nominally circular and nominally flat grain-grain contacts with increasing strain or, equivalently, porosity loss, and small quartz overgrowths occurring at grain contact peripheries. The mechanical and chemical data suggest that the dominant creep mechanism is due to removal of mass from grain contacts (termed pressure solution or solution transfer), with a lesser component of time-dependent crack growth and healing. The magnitude of a stress-dependent concentration increase is too large to be accounted for by elastic or dislocation strain energy-induced supersaturations, favoring instead the normal stress dependence of molar Gibbs free energy associated with grain-grain interfaces.
Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, Robert; Ruple, John; Tanana, Heather
2011-01-01
Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nation’s richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utah’s oil shale and oil sands resources requires an understanding of jurisdictional issues and themore » challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.« less
Geopressured well project Sweet Lake, Cameron Parish, Louisiana. Final report Feb 80-Sep 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, K.S.
1983-01-01
The Sweet Lake geopressured-geothermal test well(Magma Gulf-Technadril/DOE Amoco Fee 1) was drilled in Cameron Parish, Louisiana under a Department of Energy contract. The primary purpose was to demonstrate technological and economic recovery of the geopressured-geothermal resource. The Gas Research Institute funded ancillary work in mud logging, micropaleontology, organic geochemistry, rock mechanics, and core analysis. The well was perforated in the upper Frio Miogypsinoides sand, at a depth of 15,387-15,414 feet. Mud logging and micropaleontology were used to monitor stratigraphic position during the drilling of the well and were particularly important in picking the casing point at the top of themore » Miogypsinoides sand. Several phases of testing have been carried out, including an initial flow test, a reservoir limit test, and long-term (6+ month) testing.« less
Advanced Techniques for Simulating the Behavior of Sand
NASA Astrophysics Data System (ADS)
Clothier, M.; Bailey, M.
2009-12-01
Computer graphics and visualization techniques continue to provide untapped research opportunities, particularly when working with earth science disciplines. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs we are developing new techniques for simulating sand. In addition, through collaboration with the Oregon Space Grant, we’ve been communicating with the Jet Propulsion Laboratory (JPL) to exchange ideas and gain feedback on our work. More specifically, JPL’s DARTS Laboratory specializes in planetary vehicle simulation, such as the Mars rovers. This simulation utilizes a virtual "sand box" to test how planetary rovers respond to different terrains while traversing them. Unfortunately, this simulation is unable to fully mimic the harsh, sandy environments of those found on Mars. Ideally, these simulations should allow a rover to interact with the sand beneath it, particularly for different sand granularities and densities. In particular, there may be situations where a rover may become stuck in sand due to lack of friction between the sand and wheels. In fact, in May 2009, the Spirit rover became stuck in the Martian sand and has provided additional motivation for this research. In order to develop a new sand simulation model, high performance computing will play a very important role in this work. More specifically, graphics processing units (GPUs) are useful due to their ability to run general purpose algorithms and ability to perform massively parallel computations. In prior research, simulating vast quantities of sand has been difficult to compute in real-time due to the computational complexity of many colliding particles. With the use of GPUs however, each particle collision will be parallelized, allowing for a dramatic performance increase. In addition, spatial partitioning will also provide a speed boost as this will help limit the number of particle collision calculations. However, since the goal of this research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.
Obuchowski, N A
2001-10-15
Electronic medical images are an efficient and convenient format in which to display, store and transmit radiographic information. Before electronic images can be used routinely to screen and diagnose patients, however, it must be shown that readers have the same diagnostic performance with this new format as traditional hard-copy film. Currently, there exist no suitable definitions of diagnostic equivalence. In this paper we propose two criteria for diagnostic equivalence. The first criterion ('population equivalence') considers the variability between and within readers, as well as the mean reader performance. This criterion is useful for most applications. The second criterion ('individual equivalence') involves a comparison of the test results for individual patients and is necessary when patients are followed radiographically over time. We present methods for testing both individual and population equivalence. The properties of the proposed methods are assessed in a Monte Carlo simulation study. Data from a mammography screening study is used to illustrate the proposed methods and compare them with results from more conventional methods of assessing equivalence and inter-procedure agreement. Copyright 2001 John Wiley & Sons, Ltd.
Improved Detection Technique for Solvent Rinse Cleanliness Verification
NASA Technical Reports Server (NTRS)
Hornung, S. D.; Beeson, H. D.
2001-01-01
The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.
Jang, Seok-Joon; Rokugo, Keitetsu; Park, Wan-Shin; Yun, Hyun-Do
2014-01-01
This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior. PMID:28788522
Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling
NASA Astrophysics Data System (ADS)
Veenhof, Rick; Wu, Wei
2017-04-01
Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.
The lithostratigraphy of a marine kame delta-outwash fan complex at Pease AFB, Newington, NH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dineen, R.J.; Manning, S.; McGeehan, K.
The overburden stratigraphy at Pease AFB is based on over 1,200 wells, borings, piezometers, and test pits, and includes five lithologic units: Fill, Upper Sand (US), Marine Clay and Silt (MCS), Lower Sand (LS), and Till (GT). The US is a yellow brown, poorly sorted sand to silty sand and is massive to laminated, and locally has hummocky bedding. The MCS (the Presumpscot Formation) is a dark gray, massive to laminated sandy to silty clay, and is locally interbedded with silty sand. The MCS contains a trace of organic matter, primarily as fine particles of peat. The LS is amore » gray to brown, poorly sorted, silty sand to gravelly sand that is massive to planar bedded and locally grades down into GT and/or upward into MCS. The GT consists of a massive to crudely bedded dark gray to dark brown, very poorly sorted, sandy silt to gravelly, silty sand. The US, MCS, LS and upper part of the GT were deposited in a marine environment at or near the ice margin. Pease AFB is built on two large fans of gravelly sand (LS plus US) that are bordered to the east by NW-SE till ridges (drumlins ). The northern-most fan is flat-topped with a surface elevation of 30 m ASL. The southern fan is more hummocky, with a surface elevation of 18.5 m ASL. Both fans coarsen towards the NW, and are interbedded with MCS towards the SE. The apices of the fans overlie deeply-scoured troughs in the rock surface. The fans are interpreted to be kame deltas or submarine outwash fans that are deposited along the retreating Wisconsinan ice margin by concentrated meltwater flow. Later, the US may have been deposited by marine shoreface erosion of the emergent fans as the ice front retreated and sea level fell.« less
The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah
Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.
1999-01-01
A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks for the White Rim oil. The most attractive potential sources for White Rim oil include beds within one or more of the following formations: the Proterozoic Chuar Group, which is present in the subsurface southwest of the Tar Sand triangle; the Mississippian Delle Phosphatic Member of the Deseret Limestone and equivalent formations, the Permian Kaibab Limestone, the Sinbad Limestone Member of the Triassic Moenkopi Formation, and the Jurassic Arapien Shale, Twin Creek Limestone, and Carmel Formation, which are present west of the Tar Sand triangle; the Pennsylvanian Paradox Formation in the Paradox basin east of the Tar Sand triangle; and the Permian Park City Formation northwest of the Tar Sand triangle. Each formation has a high total organic carbon content and is distributed over a wide enough geographic area to have provided a huge volume of oil. Source beds in all of the formations reached thermal maturity at times prior to or during the time that migration into the White Rim is interpreted to have occurred. Based on all available data, the most likely source for the Tar Sand triangle appears to be the Mississippian Delle Phosphatic Member of the Deseret Limestone. Secondary migration out of the Delle is interpreted to have occurred during the Cretaceous, during Sevier thrusting. Subsequent tertiary migration into the Tar Sand triangle reservoir is interpreted to have occurred later, during middle Tertiary Laramide deformation.
Cold Regions Test of Tracked and Wheeled Vehicles
2015-12-11
with CTIS setting in the Highway setting and Mud, Sand and Snow setting. (7) Conduct the trials a minimum of three times at each speed as stated in...lock brake system. Record the stopping distance data and record any slew from the centerline. Document if the vehicle experiences engine stall ...while operating in snow. The TOP includes guidance for snow as well as mud, sand , swamps, and wet clay. Most conventional wheeled vehicles cannot
2008-09-01
results. In Stanton and Chu (2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of...Oceanographic Institution Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low...grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor
A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis
2016-10-01
14. ABSTRACT Leishmaniasis is caused by the protozoan Leishmania and is generally transmitted by the bite of sand flies of the genus Lutzomyia or...INTRODUCTION: Leishmaniasis is caused by the protozoan Leishmania and is generally transmitted by the bite of sand flies of the genus Lutzomyia or...and requires minimal training, will improve the quality of life of populations living in endemic areas. The availability of RPA-LF in economically
ERIC Educational Resources Information Center
Degiorgio, Lisa
2015-01-01
Equivalency of test versions is often assumed by counselors and evaluators. This study examined two versions, paper-pencil and computer based, of the Driver Risk Inventory, a DUI/DWI (driving under the influence/driving while intoxicated) risk assessment. An overview of computer-based testing and standards for equivalency is also provided. Results…
NASA Astrophysics Data System (ADS)
Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.
2008-12-01
The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.
Equivalence Testing as a Tool for Fatigue Risk Management in Aviation.
Wu, Lora J; Gander, Philippa H; van den Berg, Margo; Signal, T Leigh
2018-04-01
Many civilian aviation regulators favor evidence-based strategies that go beyond hours-of-service approaches for managing fatigue risk. Several countries now allow operations to be flown outside of flight and duty hour limitations, provided airlines demonstrate an alternative method of compliance that yields safety levels "at least equivalent to" the prescriptive regulations. Here we discuss equivalence testing in occupational fatigue risk management. We present suggested ratios/margins of practical equivalence when comparing operations inside and outside of prescriptive regulations for two common aviation safety performance indicators: total in-flight sleep duration and psychomotor vigilance task reaction speed. Suggested levels of practical equivalence, based on expertise coupled with evidence from field and laboratory studies, are ≤ 30 min in-flight sleep and ± 15% of reference response speed. Equivalence testing is illustrated in analyses of a within-subjects field study during an out-and-back long-range trip. During both sectors of their trip, 41 pilots were monitored via actigraphy, sleep diary, and top of descent psychomotor vigilance task. Pilots were assigned to take rest breaks in a standard lie-flat bunk on one sector and in a bunk tapered 9 from hip to foot on the other sector. Total in-flight sleep duration (134 ± 53 vs. 135 ± 55 min) and mean reaction speed at top of descent (3.94 ± 0.58 vs. 3.77 ± 0.58) were equivalent after rest in the full vs. tapered bunk. Equivalence testing is a complimentary statistical approach to difference testing when comparing levels of fatigue and performance in occupational settings and can be applied in transportation policy decision making.Wu LJ, Gander PH, van den Berg M, Signal TL. Equivalence testing as a tool for fatigue risk management in aviation. Aerosp Med Hum Perform. 2018; 89(4):383-388.
NASA Technical Reports Server (NTRS)
Peters, Benjamin; Hussain, Sarosh; Waller, Jess
2017-01-01
Spectra or similar Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is the likely choice for future structural space suit restraint materials due to its high strength-to-weight ratio, abrasion resistance, and dimensional stability. During long duration space missions, space suits will be subjected to significant amounts of high-energy radiation from several different sources. To insure that pressure garment designs properly account for effects of radiation, it is important to characterize the mechanical changes to structural materials after they have been irradiated. White Sands Test Facility (WSFTF) collaborated with the Crew and Thermal Systems Division at the Johnson Space Center (JSC) to irradiate and test various space suit materials by examining their tensile properties through blunt probe puncture testing and single fiber tensile testing after the materials had been dosed at various levels of simulated GCR and SPE Iron and Proton beams at Brookhaven National Laboratories. The dosages were chosen based on a simulation developed by the Structural Engineering Division at JSC for the expected radiation dosages seen by space suit softgoods seen on a Mars reference mission. Spectra fabric tested in the effort saw equivalent dosages at 2x, 10x, and 20x the predicted dose as well as a simulated 50 year exposure to examine the range of effects on the material and examine whether any degradation due to GCR would be present if the suit softgoods were stored in deep space for a long period of time. This paper presents the results of this work and outlines the impact on space suit pressure garment design for long duration deep space missions.
Establishment of an equivalence acceptance criterion for accelerated stability studies.
Burdick, Richard K; Sidor, Leslie
2013-01-01
In this article, the use of statistical equivalence testing for providing evidence of process comparability in an accelerated stability study is advocated over the use of a test of differences. The objective of such a study is to demonstrate comparability by showing that the stability profiles under nonrecommended storage conditions of two processes are equivalent. Because it is difficult at accelerated conditions to find a direct link to product specifications, and hence product safety and efficacy, an equivalence acceptance criterion is proposed that is based on the statistical concept of effect size. As with all statistical tests of equivalence, it is important to collect input from appropriate subject-matter experts when defining the acceptance criterion.
NASA Astrophysics Data System (ADS)
MicicBatka, Vesna; Schmid, Doris; Marko, Florian; Velimirovic, Milica; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo
2015-04-01
Successful emplacement of nanoscale zero-valent iron (nZVI) within the contaminated source zone is a prerequisite for the use of nZVI technology in groundwater remediation. Emplacement of nZVI is influenced i.e., by the injection technique and the injection velocity applied, as well as by the mobility of nZVI in the subsurface. Whereas processes linked to the injection can be controlled by the remediation practitioners, the mobility of nZVI in the subsurface remains limited. Even though mobility of nZVI is somewhat improved by surface coating with polyelectrolytes, it is still greatly affected by the groundwater composition and physical and chemical heterogeneities of aquifer grains. In order to promote mobility of nZVI it is needed to alter the surface charge heterogeneities of aquifer grains. Modifying the aquifer grain's surfaces by means of polyelectrolyte coating is an approach proposed to increase the overall negative surface charge of the aquifer grain surfaces, hinder deposition of nZVI onto aquifer grains, and finally promote nZVI mobility. In this study the effect of different polyelectrolytes on the nZVI mobility is tested in natural sands deriving from real brownfield sites that are proposed to be remediated using the nZVI technology. Sands collected from brownfield sites were characterized in terms of grain size distribution, mineralogical and chemical composition, and organic carbon content. Furthermore, surface charge of these sands was determined in both, low- and high ionic strength background solutions. Finally, changes of the sand's surface charges were examined after addition of the proposed aquifer modifiers, lignin sulfonate and humic acid. Surface charge of brownfield sands in low ionic strength background solution is more negative compared to that in high ionic strength background solution. An increase in negative surface potential of brownfield sand was recorded when aquifer modifiers were applied in a background solution with low ionic strength, indicating their potential to improve nZVI mobility under comparable environmental conditions. In contrast, no significant change of the surface potential of brownfield sand was observed when aquifer modifiers were applied in a background solution with high ionic strength. The potential of the aquifer modifiers to promote the mobility of nZVI was furthermore tested in flow-through columns, starting with the one filled with natural quartz sand with rough surface, low ionic strength background solutions and pre-injecting lignin sulfonate in concentration of 50 mg/L. The preliminary results showed that the pre-injection of lignin sulfonate does increase mobility of nZVI under this experimental condition. Further mobility tests will be carried out in order to elucidate the potential of the aquifer modifiers to promote the mobility of nZVI in sands with a complex mineralogy and in the background solutions with varying ionic strength, in order to account for the condition that resemble those at polluted sites. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517.
Test Rover Aids Preparations in California for Curiosity Rover on Mars
2012-05-11
NASA Mars Science Laboratory mission team members ran mobility tests on the test rover called Scarecrow on sand dunes near Death Valley, Ca. in early May 2012 in preparation for operating the Curiosity rover, currently en route to Mars.
Quantifying the benefits of improved rolling of chip seals : final report, June 2008.
DOT National Transportation Integrated Search
2008-06-01
This report presents an improvement in the rolling protocol for chip seals based on an evaluation of aggregate : retention performance and aggregate embedment depth. The flip-over test (FOT), Vialit test, modified sand circle : test, digital image pr...
Phleboviruses associated with sand flies in arid bio-geographical areas of Central Tunisia.
Dachraoui, K; Fares, W; Bichaud, L; Barhoumi, W; Beier, J C; Derbali, M; Cherni, S; Lamballerie, X de; Chelbi, I; Charrel, R N; Zhioua, E
2016-06-01
An entomological investigation was carried out in 2014 at two sites located in Central Tunisia, one irrigated and another non-irrigated situated in arid bio-geographical areas. Sand flies of the subgenus Larroussius namely Phlebotomus perfiliewi, Phlebotomus perniciosus, and Phlebotomus longicuspis are the most abundant sand fly species in the irrigated site. However, in the non-irrigated site, Phlebotomus papatasi of the Phlebotomus genus is the most abundant species. A total of 3191 sand flies were collected and pooled with up to 30 specimens per pool based on sex, trapping location and collection date, were tested for the presence of phleboviruses by nested reverse transcriptase polymerase chain reaction in the polymerase gene and sequenced. Of a total of 117 pools, 4 were positive, yielding a minimum infection rate of sand flies with phleboviruses of 0.12%. Phylogenetic analysis performed using partial nucleotide and amino acid sequence in the polymerase gene showed that these phleboviruses belonged to four different clusters corresponding to Toscana virus (TOSV), Saddaguia virus (SADV), Sandfly Fever Sicilian Virus (SFSV) and Utique virus (UTIV). This study provides more evidence that the abundance of P. perfiliewi is associated with the development of irrigation in arid bio-geographical areas of Central Tunisia which may have led to the emergence of phleboviruses. We report the first detection of TOSV from sand flies collected from Central Tunisia. Copyright © 2016 Elsevier B.V. All rights reserved.