Claborn, David; Masuoka, Penny; Morrow, Meredith; Keep, Lisa
2008-12-18
Nearly 1300 cases of leishmaniasis have been identified in American military personnel deployed to Iraq and Afghanistan. The symptoms of this disease can range from a mild, self-limiting cutaneous infection to a deadly visceral infection and are not prevented by chemoprophylaxis or immunization. Effective treatments, however, are available. The disease-causing parasite is spread through the bite of the female sand fly. Although the disease occurs in both the Old World and the New World, the parasite species differ between the hemispheres. The large number of cases in military veterans has caused some concern that Old World, temperate-adapted parasite species could be introduced into the native sand fly populations of American military facilities where veterans of the current conflicts return following their deployments. This paper reports part of a larger study to analyze the risk of such an accidental importation. Four potential habitats on two large Army facilities in the Southeast United States were surveyed to determine relative sand fly density. The National Land Cover Map was used to provide sand fly density prediction maps by habitat. Sand fly density was significantly higher in deciduous forest and even higher at the interface between forest and open grassland. The evergreen forest and agricultural fields supported very low densities. On Fort Campbell, KY, the percentage of land covered by suitable habitat was very high. A sand fly density prediction map identified large tracts of land where infected individuals would be at higher risk of exposure to sand fly bites, resulting in an increased risk of introducing the parasite to a native insect population. On Fort Bragg, NC, however, commercial farming of long leaf pine reduced the percentage of the land covered in vegetation suitable for the support of sand flies. The risk of introducing an exotic Leishmania spp. on Fort Bragg, therefore, is considered to be much lower than on Fort Campbell. A readily available land cover product can be used at the regional level to identify areas of sand fly habitat where human populations may be at higher risk of exposure. The sand fly density prediction maps can be used to direct further surveillance, insect control, or additional patient monitoring of potentially infected soldiers.
Srinivasan, R; Jambulingam, P; Vanamail, P
2013-07-01
Abundance pattern of sand flies in relation to several environmental factors, such as type of areas, dwellings, landforms, land usage pattern, and surface soil pH, was assessed in 81 areas or villages of Puducherry district, Puducherry Union Territory, located on the coastal plain of southern India, for three seasons, between November 2006 and October 2008, adopting hand-catch method. In total, 1,319 sand fly specimens comprising 12 species under two genera, viz., Phlebotomus and Sergentomyia, were collected. Among them, Phlebotomus (Euphlebotomus) argentipes Annandale & Brunetti, the vector of visceral leishmaniasis in India, was the predominant species in all habitats surveyed. The hierarchical cluster analysis showed that the density of sand flies was 10-fold higher in high-density group and fivefold higher in medium-density group, compared with the no or low-density group. Sand fly density was found to be influenced significantly with the type of areas, dwellings, landforms, land usage pattern, and surface soil pH in different groups. Rural areas located on fluvial landform with alkaline surface soil pH, supporting rice cultivation and luxuriant vegetation, are the most influencing factors that favor sand fly abundance and diversity in this district.
Miranda, Débora Elienai de Oliveira; Sales, Kamila Gaudêncio da Silva; Faustino, Maria Aparecida da Gloria; Alves, Leucio Câmara; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Carvalho, Gílcia Aparecida
2015-06-01
Cutaneous leishmaniasis caused by Leishmania braziliensis is endemic in Brazil, where Lutzomyia whitmani is the most important vector involved in the transmission to humans, particularly in the peridomestic environment. Herein, we assessed the ecology of sand flies, including Lu. whitmani, in a low-density residential rural area with mixed forest/agricultural exploitation in north-eastern Brazil, where cutaneous leishmaniasis is endemic. Particularly, we hypothesized that sand fly abundance was correlated with climatic variables. Sand fly collections were carried out monthly from August 2013 to August 2014, using seven CDC light traps, for three consecutive nights, in three kinds of environments: indoor, peridomicile and forest. Collected sand flies were identified based on morphology and females of Lu. whitmani (n=169), Lu. amazonensis (n=134) and Lu. complexa (n=21) were selected and tested by PCR for Leishmania (Viannia) spp. In total, 5167 sand flies belonging to 19 species were identified, being that Lu. choti (43.2%) was the most frequent species, followed by Lu. amazonensis (16.6%), Lu. whitmani (15.8%), Lu. sordellii (10.7%) and Lu. quinquefer (5.8%), which together represented over 90% of the collected sand flies. All females tested by PCR were negative. The number of sand flies collected daily was positively correlated with temperature and negatively correlated with rainfall and relative humidity. Furthermore, there was a positive correlation between daily number of sand flies and daily average saturation deficit. This study points out that the number of sand flies captured daily is correlated to climatic variables, including saturation deficit, which may represent a useful parameter for monitoring sand fly populations in leishmaniasis-endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Hazratian, Teimour; Rassi, Yavar; Oshaghi, Mohammad Ali; Yaghoobi-Ershadi, Mohammad Reza; Fallah, Esmael; Shirzadi, Mohammad Reza; Rafizadeh, Sina
2011-08-01
To investigate species composition, density, accumulated degree-day and diversity of sand flies during April to October 2010 in Azarshahr district, a new focus of visceral leishmaniasis in north western Iran. Sand flies were collected using sticky traps biweekly and were stored in 96% ethanol. All specimens were mounted in Puri's medium for species identification using valid keys of sandflies. The density was calculated by the formula: number of specimens/m(2) of sticky traps and number of specimens/number of traps. Degree-day was calculated as follows: (Maximum temperature + Minimum temperature)/2-Minimum threshold. Diversity indices of the collected sand flies within different villages were estimated by the Shannon-weaver formula ( H'=∑i=1sPilog(e)Pi). Totally 5 557 specimens comprising 16 Species (14 Phlebotomus, and 2 Sergentomyia) were indentified. The activity of the species extended from April to October. Common sand-flies in resting places were Phlebotomus papatasi, Phlebotomus sergenti and Phlebotomus mongolensis. The monthly average density was 37.6, 41.1, 40.23, 30.38 and 30.67 for Almalodash, Jaragil, Segaiesh, Amirdizaj and Germezgol villages, respectively. Accumulated degree-day from early January to late May was approximately 289 degree days. The minimum threshold temperature for calculating of accumulated degree-day was 17.32°. According on the Shannon-weaver (H'), diversity of sand flies within area study were estimated as 0.917, 1.867, 1.339, 1.673, and 1.562 in Almalodash, Jaragil, Segaiesh, Amirdizaj and Germezgol villages, respectively. This study is the first detailed research in terms of species composition, density, accumulated degree-day and diversity of sand flies in an endemic focus of visceral leishamaniasis in Azarshahr district. The population dynamics of sand flies in Azarshahr district were greatly affected by climatic factors. According to this study the highest activity of the collected sand fly species occurs at the teritary week of August. It could help health authorities to predicate period of maximum risk of visceral leishamaniasis transmission and implement control program. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Properties of Fly Ash Blocks Made from Adobe Mould
NASA Astrophysics Data System (ADS)
Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.
2018-02-01
Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.
Properties of Fly Ash Blocks Made from Adobe Mould
NASA Astrophysics Data System (ADS)
Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.
2018-06-01
Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.
Barhoumi, Walid; Qualls, Whitney A.; Archer, Reginald; Fuller, Douglas O.; Chelbi, Ifhem; Cherni, Saifedine; Derbali, Mohamed; Arheart, Kristopher L.; Zhioua, Elyes; Beier, John C.
2015-01-01
The distribution expansion of important human visceral leishmaniasis (HVL) and sporadic cutaneous leishmaniasis (SCL) vector species, Phlebotomus perfiliewi and P. perniciosus, throughout central Tunisia is a major public health concern. This study was designed to investigate if the expansion of irrigation influences the abundance of sand fly species potentially involved in the transmission of HVL and SCL located in arid bioclimatic regions. Geographic and remote sensing approaches were used to predict the density of visceral leishmaniasis vectors in Tunisia. Entomological investigations were performed in the governorate of Sidi Bouzid, located in the arid bioclimatic region of Tunisia. In 2012, sand flies were collected by CDC light traps located at nine irrigated and nine non-irrigated sites to determine species abundance. Eight species in two genera were collected. Among sand flies of the subgenus Larroussius, P. perfiliewi was the only species collected significantly more in irrigated areas. Trap data were then used to develop Poisson regression models to map the apparent density of important sand fly species as a function of different environmental covariates including climate and vegetation density. The density of P. perfiliewi is predicted to be moderately high in the arid regions. These results highlight that the abundance of P. perfiliewi is associated with the development of irrigated areas and suggests that the expansion of this species will continue to more arid areas of the country as irrigation sites continue to be developed in the region. The continued increase in irrigated areas in the Middle East and North Africa region deserves attention, as it is associated with the spread of L. infantum vector P. perfiliewi. Integrated vector management strategies targeting irrigation structures to reduce sand fly vector populations should be evaluated in light of these findings. PMID:25447265
Huda, M Mamun; Kumar, Vijay; Das, Murari Lal; Ghosh, Debashis; Priyanka, Jyoti; Das, Pradeep; Alim, Abdul; Matlashewski, Greg; Kroeger, Axel; Alfonso-Sierra, Eduardo; Mondal, Dinesh
2016-10-06
New methods for controlling sand fly are highly desired by the Visceral Leishmaniasis (VL) elimination program of Bangladesh, India and Nepal for its consolidation and maintenance phases. To support the program we investigated safety, efficacy and cost of Durable Wall Lining to control sand fly. This multicentre randomized controlled study in Bangladesh, India and Nepal included randomized two intervention clusters and one control cluster. Each cluster had 50 households except full wall surface coverage (DWL-FWSC) cluster in Nepal which had 46 households. Ten of 50 households were randomly selected for entomological activities except India where it was 6 households. Interventions were DWL-FWSC and reduced wall surface coverage (DWL-RWSC) with DWL which covers 1.8 m and 1.5 m height from floor respectively. Efficacy was measured by reduction in sand fly density by intervention and sand fly mortality assessment by the WHO cone bioassay test at 1 month after intervention. Trained field research assistants interviewed household heads for socio-demographic information, knowledge and practice about VL, vector control, and for their experience following the intervention. Cost data was collected using cost data collection tool which was designed for this study. Statistical analysis included difference-in-differences estimate, bivariate analysis, Poisson regression model and incremental cost-efficacy ratio calculation. Mean sand fly density reduction by DWL-FWSC and DWL-RWSC was respectively -4.96 (95 % CI, -4.54, -5.38) and -5.38 (95 % CI, -4.89, -5.88). The sand fly density reduction attributed by both the interventions were statistically significant after adjusting for covariates (IRR = 0.277, p < 0.001 for DWL-RWSC and IRR = 0.371, p < 0.001 for DWL-FWSC). The efficacy of DWL-RWSC and DWL-FWSC on sand fly density reduction was statistically comparable (p = 0.214). The acceptability of both interventions was high. Transient burning sensations, flash on face and itching were most common adverse events and were observed mostly in Indian site. There was no serious adverse event. DWL-RWSC is cost-saving compared to DWL-FWSC. The incremental cost-efficacy ratio was -6.36, where DWL-RWSC dominates DWL-FWSC. DWL-RWSC intervention is safe, efficacious, cost-saving and cost-effective in reducing indoor sand fly density. The VL elimination program in the Indian sub-continent may consider DWL-RWSC for sand fly control for its consolidation and maintenance phases.
Courtenay, Orin; Peters, Nathan C; Rogers, Matthew E; Bern, Caryn
2017-10-01
Quantitation of the nonlinear heterogeneities in Leishmania parasites, sand fly vectors, and mammalian host relationships provides insights to better understand leishmanial transmission epidemiology towards improving its control. The parasite manipulates the sand fly via production of promastigote secretory gel (PSG), leading to the "blocked sand fly" phenotype, persistent feeding attempts, and feeding on multiple hosts. PSG is injected into the mammalian host with the parasite and promotes the establishment of infection. Animal models demonstrate that sand flies with the highest parasite loads and percent metacyclic promastigotes transmit more parasites with greater frequency, resulting in higher load infections that are more likely to be both symptomatic and efficient reservoirs. The existence of mammalian and sand fly "super-spreaders" provides a biological basis for the spatial and temporal clustering of clinical leishmanial disease. Sand fly blood-feeding behavior will determine the efficacies of indoor residual spraying, topical insecticides, and bed nets. Interventions need to have sufficient coverage to include transmission hot spots, especially in the absence of field tools to assess infectiousness. Interventions that reduce sand fly densities in the absence of elimination could have negative consequences, for example, by interfering with partial immunity conferred by exposure to sand fly saliva. A deeper understanding of both sand fly and host biology and behavior is essential to ensuring effectiveness of vector interventions.
Dos Santos Silva, Júlia; Caranha, Lindemberg; Moura Santos, Fabrício Kássio; Dos Santos, Antonio Pereira; Rodrigues da Silva, Luiz Osvaldo; Ferreira Rangel, Elizabeth
2017-08-29
Entomological surveillance of sand fly vectors was carried out to support leishmaniasis prevention and control measures in areas affected by the São Francisco River Transposition Project. Sand flies were collected monthly between May 2011 and December 2014 in seven municipalities: Missão Velha, Brejo Santo, Lavras da Mangabeira, Iguatu, Mauriti, Jaguaribe and Jaguaretama, in dwellings, peridomicile and forest areas for three consecutive days, for a period of 12 h each day (18:00 to 06:00 h). Differences in species composition between sites were tested with Shannon's diversity index, the similarity between habitats was estimated by the Sørensen's qualitative similarity index and, for the most abundant species in each municipality, a standardized index of species abundance was applied. The influence of climatic factors on sand fly population densities was analyzed using Spearman's correlation coefficients. A total of 214,213 sand fly specimens belonging to 18 species were captured. The most abundant species in all municipalities was Lutzomyia longipalpis (Lutz & Neiva, 1912). The municipalities of Mauriti and Missão Velha stand out in terms of high species richness, with the latter exhibiting the greatest diversity. The number of sand flies in the Iguatu, Jaguaribe and Jaguaretama municipality was higher during the rainy months, whereas the populations declined in the drier months; the sand fly population density in other municipalities (Missão Velha, Brejo Santo, Lavras de Mangabeira and Mauriti) showed negative correlation with rainfall. This study confirms the presence of several Leishmania spp. vectors in the seven municipalities affected by the São Francisco River Transposition Project, with Lu. longipalpis being the most abundant species at all study sites. Vector populations in these municipalities should be monitored, ultimately to assess the associations between environmental changes and sand fly population dynamics and leishmaniasis transmission risk.
Sánchez-García, Laura; Berzunza-Cruz, Miriam; Becker-Fauser, Ingeborg; Rebollar-Téllez, Eduardo A
2010-06-01
The surveillance of prevalent Leishmania sand fly vectors is an important issue for epidemiological studies in populated areas where leishmaniasis is endemic. In this study, we collected sand flies from a peri-urban area in the southeast of Mexico. Natural infection with Leishmania (L.) mexicana was studied by PCR using a Leishmania internal transcribed spacer of the ribosomal RNA gene for amplification. Infected Lutzomyia olmeca olmeca, Lu. shannoni and Lu. cruciata sand flies were collected mainly during the high transmission season (November to March), coinciding with the highest sand fly densities. Additionally, positive specimens of Lu. olmeca olmeca were also captured during July and August. The infected sand flies were from primary forest (subperennial forest) and secondary forest (18-25 years old and 10-15 years old respectively). Sand flies collected with Disney and Shannon traps were the ones found to be infected with L. (L.) mexicana. We conclude that the high-risk period in which L. (L.) mexicana is transmitted in the peri-urban area of Chetumal City is from July to March and that transmission is associated with both the subperennial forest and the secondary forest. 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Boussaa, Samia; Kahime, Kholoud; Samy, Abdallah M; Salem, Abdelkrim Ben; Boumezzough, Ali
2016-02-02
Cutaneous Leishmaniasis (CL) is one of the most neglected tropical diseases in Morocco. Leishmania major and L. tropica are the main culprits identified in all endemic foci across the country. These two etiological agents are transmitted by Phlebotomus papatasi and P. sergenti, the two most prevalent sand fly species in Morocco. Previous studies reflected gaps of knowledge regarding the environmental fingerprints that affect the distribution of these two potential vectors across Morocco. The sand flies were collected from 48 districts across Morocco using sticky paper traps. Collected specimens were preserved in 70% ethanol for further processing and identification. Male and female densities were calculated in each site to examine their relations to the environmental conditions across these sites. The study used 19 environmental variables including precipitation, aridity, elevation, soil variables and a composite representing maximum, minimum and mean of day- and night-time Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI). A total of 11,717 specimens were collected during this entomological survey. These specimens represented 11 species of two genera; Phlebotomus and Sergentomyia. Correlations of the sand fly densities with the environmental variables were estimated to identify the variables which influence the distribution of the two potential vectors, Phlebotomus papatasi and P. sergenti, associated with all CL endemic foci across the country. The density of P. papatasi was most affected by temperature changes. The study showed a significant positive correlation between the densities of both sexes of P. papatasi and night-time temperatures. Both P. papatasi and P. sergenti showed a negative correlation with aridity, but, such correlation was only significant in case of P. papatasi. NDVI showed a positive correlation only with densities of P. sergenti, while, soil PH and soil water stress were negatively correlated with the densities of both males and females of only P. papatasi. Our results identified the sand fly species across all CL endemic sites and underlined the influences of night-time temperature, soil water stress and NDVI as the most important variables affecting the sand fly distribution in all sampled sites. This preliminary study considered the importance of these covariates to anticipate the potential distribution of P. papatasi and P. sergenti in Morocco.
González, Estela; Álvarez, Ana; Ruiz, Sonia; Molina, Ricardo; Jiménez, Maribel
2017-07-01
Since 2010 a human leishmaniasis outbreak has been notified in southwestern Madrid region that still remains active. Entomological surveys have been carried out in the affected area in order to obtain information about species diversity, distribution, and density of sand flies. Moreover, molecular identification of blood meal preferences of sand flies and molecular detection of Leishmania infantum has been performed. In this work, we optimized a real time PCR assay in order to determine parasite loads in unfed and blood-fed Phlebotomus perniciosus female sand flies caught in the focus area. Results showed elevated parasite loads in nearly 70% of the studied positive sand flies. Furthermore, significantly higher parasite loads were observed in females without blood in their guts. In conclusion, high L. infantum loads found in P. perniciosus sand flies from the Madrid focus support the exceptional characteristics of this outbreak. Copyright © 2017 Elsevier B.V. All rights reserved.
Toumi, Amine; Chlif, Sadok; Bettaieb, Jihene; Ben Alaya, Nissaf; Boukthir, Aicha; Ahmadi, Zaher E; Ben Salah, Afif
2012-01-01
Old world Zoonotic Cutaneous Leishmaniasis (ZCL) is a vector-borne human disease caused by Leishmania major, a unicellular eukaryotic parasite transmitted by pool blood-feeding sand flies mainly to wild rodents, such as Psammomys obesus. The human beings who share the rodent and sand fly habitats can be subverted as both sand fly blood resource. ZCL is endemic in the Middle East, Central Asia, Subsaharan and North Africa. Like other vector-borne diseases, the incidence of ZCL displayed by humans varies with environmental and climate factors. However, so far no study has addressed the temporal dynamics or the impact of climate factors on the ZCL risk. Seasonality during the same epidemiologic year and interval between ZCL epidemics ranging from 4 to 7 years were demonstrated. Models showed that ZCL incidence is raising i) by 1.8% (95% confidence intervals CI:0.0-3.6%) when there is 1 mm increase in the rainfall lagged by 12 to 14 months ii) by 5.0% (95% CI: 0.8-9.4%) when there is a 1% increase in humidity from July to September in the same epidemiologic year. Higher rainfall is expected to result in increased density of chenopods, a halophytic plant that constitutes the exclusive food of Psammomys obesus. Consequently, following a high density of Psammomys obesus, the pool of Leishmania major transmissible from the rodents to blood-feeding female sand flies could lead to a higher probability of transmission to humans over the next season. These findings provide the evidence that ZCL is highly influenced by climate factors that could affect both Psammomys obesus and the sand fly population densities.
Toumi, Amine; Chlif, Sadok; Bettaieb, Jihene; Alaya, Nissaf Ben; Boukthir, Aicha; Ahmadi, Zaher E.; Salah, Afif Ben
2012-01-01
Background Old world Zoonotic Cutaneous Leishmaniasis (ZCL) is a vector-borne human disease caused by Leishmania major, a unicellular eukaryotic parasite transmitted by pool blood-feeding sand flies mainly to wild rodents, such as Psammomys obesus. The human beings who share the rodent and sand fly habitats can be subverted as both sand fly blood resource. ZCL is endemic in the Middle East, Central Asia, Subsaharan and North Africa. Like other vector-borne diseases, the incidence of ZCL displayed by humans varies with environmental and climate factors. However, so far no study has addressed the temporal dynamics or the impact of climate factors on the ZCL risk. Principal Findings Seasonality during the same epidemiologic year and interval between ZCL epidemics ranging from 4 to 7 years were demonstrated. Models showed that ZCL incidence is raising i) by 1.8% (95% confidence intervals CI:0.0–3.6%) when there is 1 mm increase in the rainfall lagged by 12 to 14 months ii) by 5.0% (95% CI: 0.8–9.4%) when there is a 1% increase in humidity from July to September in the same epidemiologic year. Conclusion/Significance Higher rainfall is expected to result in increased density of chenopods, a halophytic plant that constitutes the exclusive food of Psammomys obesus. Consequently, following a high density of Psammomys obesus, the pool of Leishmania major transmissible from the rodents to blood-feeding female sand flies could lead to a higher probability of transmission to humans over the next season. These findings provide the evidence that ZCL is highly influenced by climate factors that could affect both Psammomys obesus and the sand fly population densities. PMID:22563513
Das, Pradeep; Ghosh, Debashis; Priyanka, Jyoti; Matlashewski, Greg; Kroeger, Axel; Upfill-Brown, Alexander
2016-01-01
Background We investigated the efficacy, safety and cost of lime wash of household walls plus treatment of sand fly breeding places with bleach (i.e. environmental management or EM), insecticide impregnated durable wall lining (DWL), and bed net impregnation with slow release insecticide (ITN) for sand fly control in the Indian sub-continent. Methods This multi-country cluster randomized controlled trial had 24 clusters in each three sites with eight clusters per high, medium or low sand fly density stratum. Every cluster included 45–50 households. Five households from each cluster were randomly selected for entomological measurements including sand fly density and mortality at one, three, nine and twelve months post intervention. Household interviews were conducted for socioeconomic information and intervention acceptability assessment. Cost for each intervention was calculated. There was a control group without intervention. Findings Sand fly mortality [mean and 95%CI] ranged from 84% (81%-87%) at one month to 74% (71%-78%) at 12 months for DWL, 75% (71%-79%) at one month to 49% (43%-55%) at twelve months for ITN, and 44% (34%-53%) at one month to 22% (14%-29%) at twelve months for EM. Adjusted intervention effect on sand fly density measured by incidence rate ratio ranged from 0.28 (0.23–0.34) at one month to 0.62 (0.51–0.75) at 12 months for DWL; 0.72 (0.62–0.85) at one month to 1.02 (0.86–1.22) at 12 months for ITN; and 0.89 (0.76–1.03) at one months to 1.49 (1.26–1.74) at 12 months for EM. Household acceptance of EM was 74% compared to 94% for both DWL and ITN. Operational cost per household in USD was about 5, 8, and 2 for EM, DWL and ITN, respectively. Minimal adverse reactions were reported for EM and ITN while 36% of households with DWL reported transient itching. Interpretation DWL is the most effective, durable and acceptable control method followed by ITN. The Visceral Leishmaniasis (VL) Elimination Program in the Indian sub-continent should consider DWL and ITN for sand fly control in addition to IRS. PMID:27533097
Bordbar, Ali; Parvizi, Parviz
2014-03-01
Only Leishmania major is well known as a causative agent of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Our objective was to find Leishmania parasites circulating in reservoir hosts, sand flies and human simultaneously. Sand flies, rodents and prepared smears of humans were sampled. DNA of Leishmania parasites was extracted, and two fragments of ITS-rDNA gene amplified by PCR. RFLP and sequencing were employed to identify Leishmania parasites. Leishmania major and L. turanica were identified unequivocally by targeting and sequencing ITS-rDNA from humans, rodents and sand flies. The new Leishmania species close to gerbilli (GenBank Accession Nos. EF413076; EF413087) was discovered only in sand flies. Based on parasite detection of ITS-rDNA in main and potential reservoir hosts and vectors and humans, we conclude that at least two Leishmania species are common in the Turkmen Sahra ZCL focus. Phylogenetic analysis proved that the new Leishmania is closely related to Leishmania mammal parasites (Leishmania major, Leishmania turanica, Leishmania gerbilli). Its role as a principal agent of ZCL is unknown because it was found only in sand flies. Our findings shed new light on the transmission cycles of several Leishmania parasites in sand flies, reservoir hosts and humans. © 2014 John Wiley & Sons Ltd.
Alten, Bulent; Maia, Carla; Afonso, Maria Odete; Campino, Lenea; Jiménez, Maribel; González, Estela; Molina, Ricardo; Bañuls, Anne Laure; Prudhomme, Jorian; Vergnes, Baptiste; Toty, Celine; Cassan, Cécile; Rahola, Nil; Thierry, Magali; Sereno, Denis; Bongiorno, Gioia; Bianchi, Riccardo; Khoury, Cristina; Tsirigotakis, Nikolaos; Dokianakis, Emmanouil; Antoniou, Maria; Christodoulou, Vasiliki; Mazeris, Apostolos; Karakus, Mehmet; Ozbel, Yusuf; Arserim, Suha K.; Erisoz Kasap, Ozge; Gunay, Filiz; Oguz, Gizem; Kaynas, Sinan; Tsertsvadze, Nikoloz; Tskhvaradze, Lamzira; Gramiccia, Marina; Volf, Petr; Gradoni, Luigi
2016-01-01
Background The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011–2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. Methods/Principal Findings A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel finding for a L. infantum vector. Adults ended the activity starting from mid September through November, without significant correlation with latitude/mean annual temperature of sites. The period of potential exposure to L.infantum in the Mediterranean subregion, as inferred by adult densities calculated from 3 years, 37 sites and 6 competent vector species, was associated to a regular bell-shaped density curve having a wide peak center encompassing the July-September period, and falling between early May to late October for more than 99% of values. Apparently no risk for leishmaniasis transmission took place from December through March in the years considered. We found a common pattern of nocturnal females activity, whose density peaked between 11 pm and 2 am. Conclusions Despite annual variations, multiple collections performed over consecutive years provided homogeneous patterns of the potential behavior of leishmaniasis vectors in selected sites, which we propose may represent sentinel areas for future monitoring. In the investigated years, higher potential risk for L. infantum transmission in the Mediterranean was identified in the June-October period (97% relative vector density), however such risk was not equally distributed throughout the region, since density waves of adults occurred earlier and were more frequent in southern territories. PMID:26900688
Srinivasan, R; Jambulingam, P; Kumar, N Pradeep; Selvakumar, M; Edwin, B; Kumar, T Dilip
2015-08-01
The temporal distribution of sand flies in relation to environmental factors was studied in the Kani tribe settlements located on the southernmost part of the Western Ghats, Kerala, India, between June 2012 and May 2013. This area is known for occurrence of cutaneous leishmaniasis (CL) cases. Employing hand-held aspirator, light trap and sticky-trap collection methods, a total of 7874 sand fly specimens, comprising 19 species was collected. Sergentomyia baghdadis was predominant species, followed by Phlebotomus argentipes. Sand fly abundance was significantly higher indoors (χ(2)=9241.8; p=0.0001) than outdoors. Mean density of P. argentipes in human dwellings, cattle sheds and outdoors was 7.2±2.9, 27.33±21.1 and 0.64±0.2 females/per man-hour (MHR), respectively. No sand fly species other than P. argentipes was obtained from cattle sheds. Although, sand fly populations were prevalent throughout the year, their abundance fluctuated with seasonal changes. Multiple regression analysis with backward elimination indicated that the increase in precipitation and relative humidity contributed to a significant positive association with the increase in sand fly abundance, while the increase in temperature showed no association. Fully engorged female sand flies tested for blood meal source showed multiple host-blood feeding. Analysis of resting populations of sand flies collected from human shelters indicated that the populations were found maximum on interior walls at 6-8 and >8 ft height, including ceiling during summer (F=83.7, df=6, p=0.001) and at the lower half of the wall at 0 and 0-2 ft height, during monsoon season (F=41.4, df=6, p=0.001). In cooler months, no preference to any height level (F=1.67, df=6, p=0.2) was observed. Proportion of females sand flies with Sella's classification of abdominal stages, namely full-fed, half-gravid and gravid females did not vary significantly (t=1.98, p=0.13827) indoors, confirming their endophilic behaviour. Risk of CL transmission in these tribal settlements is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Battisti, James M; Lawyer, Phillip G; Minnick, Michael F
2015-01-01
Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión's disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48 h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72 h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease.
Battisti, James M.; Lawyer, Phillip G.; Minnick, Michael F.
2015-01-01
Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión’s disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease. PMID:26436553
Risueño, José; Muñoz, Clara; Pérez-Cutillas, Pedro; Goyena, Elena; Gonzálvez, Moisés; Ortuño, María; Bernal, Luis Jesús; Ortiz, Juana; Alten, Bulent; Berriatua, Eduardo
2017-04-19
Leishmaniosis is associated with Phlebotomus sand fly vector density, but our knowledge of the environmental framework that regulates highly overdispersed vector abundance distributions is limited. We used a standardized sampling procedure in the bioclimatically diverse Murcia Region in Spain and multilevel regression models for count data to estimate P. perniciosus abundance in relation to environmental and anthropic factors. Twenty-five dog and sheep premises were sampled for sand flies using adhesive and light-attraction traps, from late May to early October 2015. Temperature, relative humidity and other animal- and premise-related data recorded on site and other environmental data were extracted from digital databases using a geographical information system. The relationship between sand fly abundance and explanatory variables was analysed using binomial regression models. The total number of sand flies captured, mostly with light-attraction traps, was 3,644 specimens, including 80% P. perniciosus, the main L. infantum vector in Spain. Abundance varied between and within zones and was positively associated with increasing altitude from 0 to 900 m above sea level, except from 500 to 700 m where it was low. Populations peaked in July and especially during a 3-day heat wave when relative humidity and wind speed plummeted. Regression models indicated that climate and not land use or soil characteristics have the greatest impact on this species density on a large geographical scale. In contrast, micro-environmental factors such as animal building characteristics and husbandry practices affect sand fly population size on a smaller scale. A standardised sampling procedure and statistical analysis for highly overdispersed distributions allow reliable estimation of P. perniciosus abundance and identification of environmental drivers. While climatic variables have the greatest impact at macro-environmental scale, anthropic factors may be determinant at a micro-geographical scale. These finding may be used to elaborate predictive distribution maps useful for vector and pathogen control programs.
Host association and the capacity of sand flies as vectors of lizard malaria in Panama.
Kimsey, R B
1992-08-01
In this paper the capacity of sand flies (Lutzomyia) as vectors of parasites that cause malaria in anoles (Anolis limifrons) in the Zona de Canal, Panama was investigated. Inhabiting all study plots, often in local abundance, L. trinidadensis emerged as the principal candidate sand fly vector; the results of surveys did not suggest a likely mosquito vector. Although L. trinidadensis and infected anoles co-inhabited all plots, their abundances seemed unrelated. No evidence that sand flies parasitized anoles was uncovered. As anole activity patterns in daylight reciprocate with those of sand flies and at night anoles seem to avoid locations that sand flies frequent, anoles may evade sand fly bites altogether. Further, these sand flies occurred in close numerical and ecological association with Thecadactylus rapicauda, a reclusive moist forest gecko, often parasitizing these hosts in large numbers. Thus, sand flies lack capacity as vectors of malaria-causing parasites in central Panamanian anoles.
Clements, Meredith F; Gidwani, Kamlesh; Kumar, Rajiv; Hostomska, Jitka; Dinesh, Diwakar S; Kumar, Vijay; Das, Pradeep; Müller, Ingrid; Hamilton, Gordon; Volfova, Vera; Boelaert, Marleen; Das, Murari; Rijal, Suman; Picado, Albert; Volf, Petr; Sundar, Shyam; Davies, Clive R; Rogers, Matthew E
2010-05-01
Antibody (IgG) responses to the saliva of Phlebotomus argentipes were investigated using serum samples from regions of India endemic and non-endemic for visceral leishmaniasis (VL). By pre-adsorbing the sera against the saliva of the competing human-biting but non-VL vector P. papatasi, we significantly improved the specificity of a P. argentipes saliva enzyme-linked immunosorbent assay. Using this method, we observed a statistically significant correlation between antibodies to P. argenitpes saliva and the average indoor density of female sand flies. Additionally, the method was able to detect recent changes in vector exposure when sera from VL patients were assayed before, during, and after hospitalization and protected from sand fly bites under untreated bed nets. Collectively, these results highlight the utility of antibodies to P. argentipes saliva as an important tool to evaluate VL vector control programs.
Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.
2016-01-01
Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591
Macedo-Silva, Virgínia P; Martins, Daniella R A; De Queiroz, Paula Vivianne Souza; Pinheiro, Marcos Paulo G; Freire, Caio C M; Queiroz, José W; Dupnik, Kathryn M; Pearson, Richard D; Wilson, Mary E; Jeronimo, Selma M B; Ximenes, Maria De Fátima F M
2014-01-01
Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source ofbloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil.
Macedo-Silva, Virgínia P.; Martins, Daniella R. A.; De Queiroz, Paula Vivianne Souza; Pinheiro, Marcos Paulo G.; Freire, Caio C. M.; Queiroz, José W.; Dupnik, Kathryn M.; Pearson, Richard D.; Wilson, Mary E.; Jeronimo, Selma M. B.; Ximenes, Maria De Fátima F.M.
2014-01-01
Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in Brazil, is spread mostly by the bite of the sand fly Lutzomyia longipalpis (Lutz & Neiva). We trapped sand flies in endemic neighborhoods near Natal, Brazil, where cases of human and dog VL were documented. Amplification of species-specific cytochrome b (Cyt b) genes by polymerase chain reaction revealed that sand flies from rural and periurban areas harbored blood from different sources. The most common source of bloodmeal was human, but blood from dog, chicken, and armadillo was also present. We tested the preference for a source of bloodmeal experimentally by feeding L. longipalpis F1 with blood from different animals. There were significant differences between the proportion of flies engorged and number of eggs laid among flies fed on different sources, varying from 8.4 to 19 (P < 0.0001). Blood from guinea pig or horse was best to support sand fly oviposition, but human blood also supported sand fly oviposition well. No sand flies fed on cats, and sand flies feeding on the opossum Monodelphis domestica Wagner produced no eggs. These data support the hypothesis that L. longipalpis is an eclectic feeder, and humans are an important source of blood for this sand fly species in periurban areas of Brazil. PMID:24605474
Sand fly feeding on noxious plants: a potential method for the control of leishmaniasis.
Schlein, Y; Jacobson, R L; Müller, G C
2001-10-01
The sand fly Phlebotomus papatasi transmits Leishmania major, which causes cutaneous leishmaniasis, in vast regions of the Old World. In addition to blood, the sand flies feed on plants. In a study of this diet, we observed that one night of feeding on branches of Solanum jasminoides, Ricinus communis, or Bougainvillea glabra drastically shortened the life span of the sand flies. Flowering B. glabra attracted P. papatasi in the field. Nevertheless, in the region endemic for L. major in yards abounding with vector sand flies, the number of P. papatasi trapped near hedges of B. glabra was eight times less (62 versus 502 flies trapped) than in the control sites. The results imply that B. glabra affords local protection against sand fly bites and decreases the risk of leishmaniasis. We suggest that this and other ornamental plants that are harmful to sand flies can be used as a tool for this purpose.
Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)
Lawyer, Phillip; Killick-Kendrick, Mireille; Rowland, Tobin; Rowton, Edgar; Volf, Petr
2017-01-01
Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies. PMID:29139377
Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes
USDA-ARS?s Scientific Manuscript database
Leishmaniasis is an insect-borne disease caused by several protozoan species in the genus Leishmania, which are vectored by sand fly species in the genera Phlebotomus or Lutzomyia, depending on the sand fly species geographic range. Sand fly bites and leishmaniasis significantly impacted U.S. milita...
2013-09-12
found naturally in plant and animal tissues was highly effective for linking adult sand flies with their larval diet , without having to locate or capture...tissues was highly effective for linking adult sand flies with their larval diet , without having to locate or capture the sand fly larvae themselves. In a...overall adult population of sand flies in an area. However, indirect methods have been used to identify the diets of larvae of other insects through
Molecular epidemiology for vector research on leishmaniasis.
Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa
2010-03-01
Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches.
Molecular Epidemiology for Vector Research on Leishmaniasis
Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa
2010-01-01
Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches. PMID:20617005
Li, Kaili; Chen, Huiying; Jiang, Jinjin; Li, Xiangyu; Xu, Jiannong; Ma, Yajun
2016-01-01
Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome. PMID:27819272
Natural infection of the sand fly Phlebotomus kazeruni by Trypanosoma species in Pakistan
2010-01-01
The natural infection of phlebotomine sand flies by Leishmania parasites was surveyed in a desert area of Pakistan where cutaneous leishmaniasis is endemic. Out of 220 female sand flies dissected, one sand fly, Phlebotomus kazeruni, was positive for flagellates in the hindgut. Analyses of cytochrome b (cyt b), glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA) gene sequences identified the parasite as a Trypanosoma species of probably a reptile or amphibian. This is the first report of phlebotomine sand flies naturally infected with a Trypanosoma species in Pakistan. The possible infection of sand flies with Trypanosoma species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniasis is endemic. PMID:20184773
Cheung, K C; Venkitachalam, T H
2004-01-01
Fly ash has been found to be a potential material for the treatment of municipal and industrial wastewater, and may be useful in the treatment of septic tank effluent. Laboratory columns (30 cm) were used to determine the sorption capacity and hydraulic properties of lagoon fly ash, loamy sand, sand, and sand amended by lagoon fly ash (30 and 60%) and red mud gypsum (20%). The removal of chemical oxygen demand (COD) was high in all column effluents (71-93%). Extent of nitrification was high in Spearwood sand, Merribrook loamy sand and 20% red mud gypsum amended Spearwood sand. However, actual removal of nitrogen (N) was high in columns containing lagoon fly ash. Unamended Spearwood sand possessed only minimal capacity for P sorption. Merribrook loamy sand and red mud gypsum amended sand affected complete P removal throughout the study period of 12 weeks. Significant P leakage occurred from lagoon fly ash amended sand columns following 6-10 weeks of operation. Neither lagoon fly ash nor red mud gypsum caused any studied heavy metal contamination including manganese (Mn), lead (Pb), zinc (Zn), cadmium (Cd) and chromium (Cr) of effluent. It can be concluded that Merribrook loamy sand is better natural soil than Spearwood sand as a filter medium. The addition of lagoon fly ash enhanced the removal of P in Spearwood sand but the efficiency was lower than with red mud gypsum amendment.
Karakuş, Mehmet; Arserim, Suha K; Töz, Seray Özensoy; Özbel, Yusuf
2013-01-01
In this study, the midgut of the sand flies investigated with direct method for the presence of parasites and other organisms. Wild sand flies collected in Kuşadası Town-Aydın, were dissected and midgut contents were examined by light microscopy. After midgut dissection, the head and genitalia of sand fly specimens were clarified and mounted for species identification. During the study, a total of 1027 sand flies were dissected. Eight and two species belonging to Phlebotomus and Sergentomyia genera were determined, respectively. Phlebotomus tobbi was found to be most abundant species (61.34%). A third stage of infective Entomopathogen Nematode belonging to Steinernematidae family was observed in the hemocoel of one specimen of P. tobbi during the dissection process. This is the first finding related to entomopathogen nematodes found in sand flies in Turkey. In the study, the sand fly fauna was determined in Kuşadası Town. For the control of sand flies, entomopathogenic nematodes which are not harmful for non-target organisms, can be used instead of chemical insecticides that can cause unknown damage in the environment.
The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae)
Sima, Michal; Novotny, Marian; Pravda, Lukas; Sumova, Petra; Rohousova, Iva; Volf, Petr
2016-01-01
Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies. PMID:27812196
Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin
2015-01-01
A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. PMID:26335468
The effect of luminous intensity on the attraction of phlebotomine sand flies to light traps.
Lima-Neto, Abdias R; Costa-Neta, Benedita M; da Silva, Apoliana Araújo; Brito, Jefferson M; Aguiar, João V C; Ponte, Islana S; Silva, Francinaldo S
2018-05-04
To improve the efficiency of light traps in collecting phlebotomine sand flies, the potential effects of luminous intensity on the attraction of these insects to traps were evaluated. Sand flies were collected with Hooper Pugedo (HP) light traps fitted with 5-mm light-emitting diodes (LED) bulbs: green (520 nm wavelength-10,000, 15,000 and 20,000 millicandela (mcd) and blue (470 nm-4,000, 12,000 and 15,000 mcd). A total of 3,264 sand flies comprising 13 species were collected. The collected species were Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) (52.48%), Evandromyia evandroi (Costa Lima & Antunes, 1939) (Diptera: Psychodidae) (32.90%) and Micropygomyia goiana (Martins, Falcão, & Silva) (Diptera: Psychodidae) (9.76%). An increase in luminous intensity of the LEDs increased the size of the sand fly catch. The lower luminous intensity of green (10,000 mcd) attracted an average of 13.7 ± 2.8 sand flies/trap per night and the other luminous intensities accounted for a mean of 24.1 ± 4.0 (15,000 mcd) and 28.2 ± 5.0 (20,000 mcd) sand flies/trap per night. Regarding the blue wavelength, the lower luminous intensity (4,000 mcd) attracted an average of 27.4 ± 4.1 sand flies/trap per night, followed by 12,000 mcd (37.6 ± 8.7) and 15,000 mcd (40.5 ± 7.3). Based on our data, the luminous intensity of light traps should be considered when developing light traps for monitoring or controlling phlebotomine sand flies.
Lestinova, Tereza; Rohousova, Iva; Sima, Michal; de Oliveira, Camila I; Volf, Petr
2017-07-01
Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host-sand fly-parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Background Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Methodology/Principal Findings Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected. Conclusion The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.
Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D; Ajami, Nadim J; Petrosino, Joseph F; Meneses, Claudio; Kirby, John R; Valenzuela, Jesus G; Kamhawi, Shaden; Wilson, Mary E
2017-01-17
The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans through the bite of the sand fly Lutzomyia longipalpis Development of the parasite to its virulent metacyclic state occurs in the sand fly gut. In this study, the microbiota within the Lu. longipalpis midgut was delineated by 16S ribosomal DNA (rDNA) sequencing, revealing a highly diverse community composition that lost diversity as parasites developed to their metacyclic state and increased in abundance in infected flies. Perturbing sand fly gut microbiota with an antibiotic cocktail, which alone had no effect on either the parasite or the fly, arrested both the development of virulent parasites and parasite expansion. These findings indicate the importance of bacterial commensals within the insect vector for the development of virulent pathogens, and raise the possibility that impairing the microbial composition within the vector might represent a novel approach to control of vector-borne diseases. Copyright © 2017 Kelly et al.
Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra
2014-01-01
Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.
Contreras Gutiérrez, María Angélica; Vivero, Rafael J.; Vélez, Iván D.; Porter, Charles H.; Uribe, Sandra
2014-01-01
Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia. PMID:24454877
Hashiguchi, Kazue; Velez N., Lenin; Kato, Hirotomo; Criollo F., Hipatia; Romero A., Daniel; Gomez L., Eduardo; Martini R., Luiggi; Zambrano C., Flavio; Calvopina H., Manuel; Caceres G., Abraham; Hashiguchi, Yoshihisa
2014-01-01
To study the sand fly fauna, surveys were performed at four different leishmaniasis-endemic sites in Ecuador from February 2013 to April 2014. A modified and simplified version of the conventional Shannon trap was named “mini-Shannon trap” and put to multiple uses at the different study sites in limited, forested and narrow spaces. The mini-Shannon, CDC light trap and protected human landing method were employed for sand fly collection. The species identification of sand flies was performed mainly based on the morphology of spermathecae and cibarium, after dissection of fresh samples. In this study, therefore, only female samples were used for analysis. A total of 1,480 female sand flies belonging to 25 Lutzomyia species were collected. The number of female sand flies collected was 417 (28.2%) using the mini-Shannon trap, 259 (17.5%) using the CDC light trap and 804 (54.3%) by human landing. The total number of sand flies per trap collected by the different methods was markedly affected by the study site, probably because of the various composition of species at each locality. Furthermore, as an additional study, the attraction of sand flies to mini-Shannon traps powered with LED white-light and LED black-light was investigated preliminarily, together with the CDC light trap and human landing. As a result, a total of 426 sand flies of nine Lutzomyia species, including seven man-biting and two non-biting species, were collected during three capture trials in May and June 2014 in an area endemic for leishmaniasis (La Ventura). The black-light proved relatively superior to the white-light with regard to capture numbers, but no significant statistical difference was observed between the two traps. PMID:25589880
Hashiguchi, Kazue; Velez N, Lenin; Kato, Hirotomo; Criollo F, Hipatia; Romero A, Daniel; Gomez L, Eduardo; Martini R, Luiggi; Zambrano C, Flavio; Calvopina H, Manuel; Caceres G, Abraham; Hashiguchi, Yoshihisa
2014-12-01
To study the sand fly fauna, surveys were performed at four different leishmaniasis-endemic sites in Ecuador from February 2013 to April 2014. A modified and simplified version of the conventional Shannon trap was named "mini-Shannon trap" and put to multiple uses at the different study sites in limited, forested and narrow spaces. The mini-Shannon, CDC light trap and protected human landing method were employed for sand fly collection. The species identification of sand flies was performed mainly based on the morphology of spermathecae and cibarium, after dissection of fresh samples. In this study, therefore, only female samples were used for analysis. A total of 1,480 female sand flies belonging to 25 Lutzomyia species were collected. The number of female sand flies collected was 417 (28.2%) using the mini-Shannon trap, 259 (17.5%) using the CDC light trap and 804 (54.3%) by human landing. The total number of sand flies per trap collected by the different methods was markedly affected by the study site, probably because of the various composition of species at each locality. Furthermore, as an additional study, the attraction of sand flies to mini-Shannon traps powered with LED white-light and LED black-light was investigated preliminarily, together with the CDC light trap and human landing. As a result, a total of 426 sand flies of nine Lutzomyia species, including seven man-biting and two non-biting species, were collected during three capture trials in May and June 2014 in an area endemic for leishmaniasis (La Ventura). The black-light proved relatively superior to the white-light with regard to capture numbers, but no significant statistical difference was observed between the two traps.
Vatandoost, Hassan; Nejati, Jalil; Saghafipour, Abedin; Zahraei-Ramazani, Alireza
2018-03-01
Phlebotomine sand flies occur throughout the tropics and subtropics, as well as in temperate regions of the world. They are vectors of human and canine leishmaniasis and sand fly fevers caused by phleboviruses. This study was aimed to determine the geographic and ecological characteristics of phlebotomine sand flies as vectors of leishmaniasis and to prepare a checklist of phlebotomine sand flies. The study was conducted in Qom province, central Iran, between April and November 2016. Qom is located in latitude 34.6399°N and longitude 50.8759°E with average annual minimum and maximum temperatures of 16.5 and 49 °C, annual rainfall of 150 mm and relative humidity of 84 and 28%, respectively. Sand flies were collected by sticky paper traps from Qom city and its six districts. The sand flies collected were separated from the sticky paper traps using an insulin syringe and kept in 70% ethanol for species identification using taxonomic keys. Also, a literature review was performed using all published reports on phlebotomine sand flies in this province during 1999-2015. A total of 28,410 sand flies from two genera and 14 species were collected. Phlebotomus papatasi, the main vector of zoonotic cutaneous leishmaniasis and arboviruses, and Phlebotomus sergenti , the vector of anthroponotic cutaneous leishmaniasis, were the predominant species followed by Phlebotomus kandelakii , P. major and P. alexandri . Fourteen species from two genera mostly from wet and mountainous areas were identified in the study area. Kahak and Markazi districts were identified as high-risk foci with numerous leishmaniasis vectors species; we recommend intensifying and strengthening of vector control programme in the area of study.
Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C.; Zhioua, Elyes
2016-01-01
The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL. PMID:26999176
Barhoumi, Walid; Fares, Wasfi; Cherni, Saifedine; Derbali, Mohamed; Dachraoui, Khalil; Chelbi, Ifhem; Ramalho-Ortigao, Marcelo; Beier, John C; Zhioua, Elyes
2016-03-16
The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL.
Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes
USDA-ARS?s Scientific Manuscript database
The sand fly, Phlebotomus papatasi (Scopoli) is a major vector of Leishamnia major, the principle causative agent of human cutaneous leishmaniasis in the Middle East, southern Europe, northern Africa, and Southern Asia. Sand fly bites and leishmaniasis significantly impacted U.S. military operations...
Kocher, Arthur; Gantier, Jean-Charles; Gaborit, Pascal; Zinger, Lucie; Holota, Helene; Valiere, Sophie; Dusfour, Isabelle; Girod, Romain; Bañuls, Anne-Laure; Murienne, Jerome
2017-03-01
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies. © 2016 John Wiley & Sons Ltd.
Lutzomyia (Helcocyrtomyia) Apache Young and Perkins (Diptera: Psychodidae) feeds on reptiles
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are vectors of bacteria, parasites, and viruses. In the western USA a sand fly, Lutzomyia apache Young and Perkins, was initially associated with epizootics of vesicular stomatitis virus (VSV), because sand flies were trapped at sites of an outbreak. Additional studies indica...
The search for sand fly adults in a village in southern Egypt
USDA-ARS?s Scientific Manuscript database
There are several good papers in the literature describing methods for collecting adult phlebotomine sand flies from habitats putatively used for resting sites. The published data from such searches demonstrate that finding adult sand flies can be quite difficult even when using established methods....
Evaluation of ULV applications against Old World sand fly species in equatorial Kenya
USDA-ARS?s Scientific Manuscript database
Reducing populations of phlebotomine sand flies in areas prevalent for leishmaniases is of ongoing importance to U.S. military operations. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of malaria indicate that residuals like DDT can be ...
USDA-ARS?s Scientific Manuscript database
Reducing populations of phlebotomine sand flies in areas prevalent for human leishmaniases is of ongoing importance to US military operations and civilian populations in endemic regions. Collateral reduction of sand flies or human cases of leishmaniases during pesticide campaigns against vectors of ...
New Records and Updated Checklist of Phlebotomine Sand Flies (Diptera: Psychodidae) From Liberia.
Obenauer, P J; Rueda, L M; El-Hossary, S S; Watany, N; Stoops, C A; Fakoli, L S; Bolay, F K; Diclaro, J W
2016-05-01
Phlebotomine sand flies from three counties in Liberia were collected from January 2011 to July 2013. In total, 3,118 sand flies were collected: 18 species were identified, 13 of which represented new records for Liberia. An updated taxonomic checklist is provided with a brief note on sand fly biology, and the disease vector potential for species is discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete
NASA Astrophysics Data System (ADS)
Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.
2017-11-01
Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.
USDA-ARS?s Scientific Manuscript database
Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduc...
USDA-ARS?s Scientific Manuscript database
Current US military operations in deserts face persistent threats from sand flies that transmit human Leishmania. Methods to reduce the risk of human infection from leishmaniasis by reducing the number of sand fly vectors were investigated in Kenya. Bifenthrin treated and un-treated camouflage netti...
Contreras, María Angélica; Vivero, Rafael José; Bejarano, Eduar Elías; Carrillo, Lina María; Vélez, Iván Darío
2012-06-01
In Colombia, the diversity of phlebotomine sand flies is high, with 162 recorded species, and which include vectors of Leishmania spp. To identify the sand fly species of medically importance in the area of influence from Amoyá River Hydroelectric Project, Colombia. Sand flies were collected with CDC light traps, Shannon traps and sticky traps, from 15 villages in Chaparral County,Tolima. A total of 1,077 adult sand fly specimens were collected. Thirteen species were found in the genus Lutzomyiaand one species in the genus Warileya.Among the Lutzomyia species, three species--Lutzomyia longiflocosa, Lutzomyia columbiana and Lutzomyia nuneztovari--are important for their epidemiological history.Lutzomyia suapiensis was a new record for Colombia, and Warileya rotundipennis was recorded for the first time in Tolima. This study contributed to an increased knowledge of Colombian sand flies in terms of (1) expanding the geographical distribution of members of the subfamily Phlebotominae, (2) gaining estimates of species-richness and species associations in central Colombia, and (3) providing a better understanding of epidemiology of leishmaniasis in the Chaparral area.
Kelly, Patrick H.; Bahr, Sarah M.; Serafim, Tiago D.; Ajami, Nadim J.; Petrosino, Joseph F.; Meneses, Claudio; Kirby, John R.; Valenzuela, Jesus G.; Kamhawi, Shaden
2017-01-01
ABSTRACT The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. PMID:28096483
Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin
2015-07-01
A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Montoya-Lerma, J; Cadena, H; Segura, I; Travi, B L
1999-01-01
In Colombia, Leishmania mexicana has a scattered geographical distribution and no sand fly vectors have been associated with its transmission. During the present study, the anthropophilic sand fly Lutzomyia columbiana was found to be the only species collected using diverse methods, in a small focus of Le. mexicana in the municipality of Samaniego, SW Colombia. Ecological data indicate that this sand fly species is present in both peri and intradomestic habitats, where it readily bites man. Further evidence comes from experimental infections of wild-caught Lu. columbiana with Le. mexicana after feeding on infected hamsters. Based on these results, it is suggested that this sand fly is the most likely vector in the study area, suggesting the existence of a previously unknown sand fly-parasite association.
Tiwananthagorn, Saruda; Kato, Hirotomo; Yeewa, Ranchana; Muengpan, Amontip; Polseela, Raxsina; Leelayoova, Saovanee
2017-02-01
Leishmaniasis caused by Leishmania martiniquensis infection has been reported in human and domestic animals of Martinique Island, Germany, Switzerland, USA, Myanmar and Thailand. The peculiar clinical features of disseminated cutaneous and visceral forms co-existence render the urgent need of specific diagnostic tool to identify the natural sand fly vectors for effective prevention and control strategies. Loop-mediated isothermal amplification (LAMP) of 18S rRNA gene as well as polymerase chain reaction (PCR) of minicircle kinetoplast DNA gene (PCR-mkDNA) have never been applied to detect L. martiniquensis and L. siamensis in sand fly vectors. The present study was aimed to validate malachite green-LAMP (MG-LAMP) and PCR-mkDNA techniques to detect L. martiniquensis in sand fly vectors, compared with the conventional PCR of internal transcribed spacer 1 (PCR-ITS1). We compared the validity of LAMP of 18S rRNA gene and PCR-mkDNA, to PCR-ITS1 in simulation model of L. martiniquensis infection in Sergentomyia gemmea sand flies. Attributable to the sensitivity and specificity, PCR-mkDNA was consecutively applied to detect L. martiniquensis in 380 female sand fly individuals captured in the newly identified affected region of Lamphun Province, Thailand. Results showed that PCR-mkDNA could detect at least one promastigote per sand fly, which was 10-time superior to LAMP and PCR-ITS1. In addition, PCR-mkDNA was more specific, able to differentiate L. martiniquensis from other viscerotropic Leishmania species, such as L. siamensis, L. (L.) donovani, and L. (L.) infantum. Consecutively, mass screening of L. martiniquensis in 380 female sand fly individuals by PCR-mkDNA was implemented in a new affected area of Thailand where a patient with leishmaniasis/HIV co-infection resides; however Leishmania DNA was undetected. In conclusion, PCR-mkDNA is a promising tool for molecular mass screening of L. martiniquensis infection in outbreak areas where several species of Leishmania and sand flies co-exist.
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand fly vectors of Leishmania continue to threaten US military operations in Africa, Southwest Asia, and the Middle East. Ultra-low volume (ULV) and/or thermal fog pesticide dispersal are potentially effective against sand flies, but operational guidance is thinly based on mosquito con...
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies, including Phlebotomus papatasi, are important blood feeders and vectors that transmit the disease agents (Leishmania) that cause Leishmaniasis. Deployed U.S. Military Personnel in Iraq and Afghanistan suffered from sand fly bites and the disease they transmit. A USDA-DoD joi...
USDA-ARS?s Scientific Manuscript database
Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are haematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens and the ...
Reuse of thermosetting plastic waste for lightweight concrete.
Panyakapo, Phaiboon; Panyakapo, Mallika
2008-01-01
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.
Zorrilla, Victor; De Los Santos, Maxy B; Espada, Liz; Santos, Rocío Del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A; Ballard, Sarah-Blythe; Lescano, Andres G; Vásquez, Gissella M; Valdivia, Hugo O
2017-11-01
Cutaneous leishmaniasis (CL) is an important health problem in the New World affecting civilian and military populations that are frequently exposed in endemic settings. The Peruvian region of Madre de Dios located near the border with Brazil is one of the most endemic CL regions in South America with more than 4,451 reported cases between 2010 and 2015 according to the Peruvian epidemiology directorate. However, little is known regarding the diversity and distribution of sand fly vectors in this region. In this study, we aimed to characterize the sand fly fauna in this endemic setting and identify sand fly species naturally infected with Leishmania possibly involved in pathogen transmission. Sand fly collections were carried out during 2014 and 2015 in the communities of Flor de Acre, Villa Primavera, Mavila and Arca Pacahuara using CDC light traps and Shannon traps. Collected specimens were identified and non-blood-fed females were selected for Leishmania infection screening using kinetoplastid DNA-PCR (kDNA-PCR) and nested Real time PCR for species identification. A total of 10,897 phlebotomines belonging to the genus Lutzomyia (58 species) and Brumptomyia (2 species) were collected. Our study confirmed the widespread distribution and abundance of Lutzomyia (Trichophoromyia) spp. (24%), Lu. whitmani (19.4%) and Lu. yucumensis (15.8%) in the region. Analysis of Shannon diversity index indicates variability in sand fly composition across sites with Villa Primavera presenting the highest sand fly diversity and abundance. Leishmania screening by kDNA-PCR resulted in 45 positive pools collected from Flor de Acre (34 pools), Mavila (10 pools) and Arca Pacahuara (1 pool) and included 14 species: Lu. yucumensis, Lu. aragoi, Lu. sallesi, Lu. sherlocki, Lu. shawi, Lu. walkeri, Lu nevesi, Lu. migonei, Lu. davisi, Lu. carrerai, Lu. hirsuta, Lu. (Trichophoromyia) spp., Lu. llanosmartinsi and Lu. whitmani. Lutzomyia sherlocki, Lu. walkeri and Lu. llanosmartinsi had the highest infection rates (8%, 7% and 6%, respectively). We identified Leishmania guyanensis in two Lu. whitmani pools, and L. braziliensis in two Lu. llanosmartinsi pools and one Lu. davisi pool. Based on our collections there is high sand fly diversity in Madre de Dios, with differences in sand fly abundance and species composition across sites. We identified 14 sand fly species naturally infected with Leishmania spp., having detected natural infection with L. (V.) guyanensis and L. (V.) braziliensis in three sand fly species. These results suggest the presence of several potential vectors that vary in their spatial and geographical distribution, which could explain the high prevalence of CL cases in this region.
Pardo, Raúl H; Cabrera, Olga Lucía; Becerra, Jorge; Fuya, Patricia; Ferro, Cristina
2006-10-01
Between 2003 and 2004 the largest epidemic of cutaneous leishmaniasis in Colombia (2,810 cases, with the highest incidence of 6,202 x 100,000 in 2004) occurred in the sub-Andean rural area of the municipalities of Chaparral and San Antonio in the department of Tolima. The present study was carried out to identify suspected vectors and to establish the knowledge that the inhabitants have about sand flies in order to use this information for vector control. 46 houses were sampled with CDC light traps set up indoors to establish the sand fly species composition, abundance and the percentage of infestation. Houses were examined during daylight to identify endophagy. A questionnaire was applied in order to estimate the knowledge about sand flies, their role in transmission and the sites and seasons of highest abundance. Three anthropophilic sand fly species of possible epidemiological importance were found. L. longiflocosa was the dominant sand fly species accounting for 81.7% (192 / 235) of all catches and infested the highest number of houses (41.7%). The other two species were L. columbiana and L. nuneztovari, with relative abundances of 3.4% and 2.1%, respectively, and house infestations of 13.0% and 6.5%, respectively. There was no evidence of endophilic behavior. Inhabitants recognized sand flies and their role in transmission. They identified the houses and the dry season as the site and time period of highest sand fly abundance. Based on its high anthropophily, predominance and apparent endophagic behavior, L. longiflocosa is the most probable vector of leishmaniasis indoors. L. columbiana and L. nuneztovari could be involved as secondary vectors outdoors. The importance of these findings on sand fly control is discussed.
Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad; Kroeger, Axel
2016-05-01
Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included 'sand fly bionomics', 'habitat', and 'visceral leishmaniasis/kala-azar vector control' using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC.
Chowdhury, Rajib; Kumar, Vijay; Mondal, Dinesh; Das, Murari Lal; Das, Pradeep; Dash, Aditya Prasad
2016-01-01
Background Visceral leishmaniasis (VL), also known as kala-azar in the Indian sub-continent (ISC), is a major public health concern in Bangladesh, India, and Nepal, where it is caused by Leishmania donovani transmitted by the sand fly Phlebotomus argentipes. Various ecological parameters including air temperature, rainfall, wind speed, relative humidity, soil moisture, pH, and organic carbon are known to influence the oviposition of female sand flies, as well as the survival and development of larvae. However, more detailed knowledge on vector behavior, such as biting times, breeding places, and preferred hosts are needed to design optimal evidence-based vector control interventions. Methods In order to facilitate rational decisions regarding VL vector control, a systematic review was conducted to identify the prevailing practice and knowledge gaps in relation to vector bionomics and behavior. Search terms included ‘sand fly bionomics’, ‘habitat’, and ‘visceral leishmaniasis/kala-azar vector control’ using the Boolean operator AND to identify the country of interest, namely: Bangladesh, India, and Nepal. Both PubMed and Google search engines were used. Additional unpublished documents in the three countries were also analyzed. Results Information on the life cycle of VL vectors, their breeding behavior, infection rate with L. donovani, feeding behavior, and seasonal variation are useful for designing vector control operations. Unfortunately, none of the studies on the life cycle of P. argentipes was conducted in field settings of the ISC, so the publications from other locations had to be used for determining the duration of life cycle and development from egg to adult. However, information about breeding places, seasonal variation of vector densities, and 47 out of the selected 51 papers are available from the ISC and can be used for intelligent design of control operations. Conclusion Vector control services should undertake routine insecticide resistance monitoring and adapt indoor residual spraying rounds to the seasonality of vector densities. Further research is needed on potential animal reservoirs for L. donovani, on the breeding habitat, and life cycle of sand flies in the ISC. PMID:27376500
Ferro, C; Morrison, A C; Torres, M; Pardo, R; Wilson, M L; Tesh, R B
1995-07-01
Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Weekly sand fly collections were made from pigpens, houses, and natural resting sites, using hand-held aspirators, sticky (oiled) paper traps, and opossum-baited Disney traps. In total, 263,094 sand flies were collected; L. longipalpis predominated (86.1%), followed by L. trinidadensis (11.0%), L. cayennensis (2.7%), and 8 other Lutzomyia species. The species composition and sex ratio of these sand flies varied among sites and by collection method. L. longipalpis were captured most efficiently by direct aspiration from animal bait. Conversely, sticky paper traps, especially inside houses and at rock resting sites, collected a greater diversity of species, but a lower relative abundance of L. longipalpis.
Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio
2017-01-01
Abstract The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador. The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and “Leishmania sp. siamensis”. Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. PMID:28981860
Baum, Maurício; de Castro, Edilene Alcântara; Pinto, Mara Cristina; Goulart, Thais Marchi; Baura, Walter; Klisiowicz, Débora do Rocio; Vieira da Costa-Ribeiro, Magda Clara
2015-03-01
The feeding behavior of sand flies provides valuable information about the vector/host interactions and elucidates the epidemiological patterns of American cutaneous leishmaniasis (ACL) transmission. The aim of this study was to identify the blood meal sources of sand flies in endemic areas of leishmaniasis in Paraná State through polymerase chain reaction (PCR) amplification of a prepronociceptin (PNOC) gene fragment and its subsequent DNA sequencing. Moreover, molecular assays were conducted to evaluate the sensitivity and reproducibility of the PNOC gene amplification. Besides that, a time-course digestion test of the blood using sand flies that fed artificially on BALB/c mice was performed. Of 1263 female sand flies collected in the field, 93 (3.6%) specimens were engorged and 27 allowed efficient amplification of the PNOC gene. These flies had fed on equine (Equus caballus), porcine (Sus scrofa) and canine (Canis lupus familiaris) species. The results also showed that the identification of the blood meal sources of the sand flies using the molecular method was directly linked to the level of digestion of the blood (time-course) and not to the amount of blood that had been ingested or to the presence of inhibitors in the blood. Copyright © 2014 Elsevier B.V. All rights reserved.
The paratransgenic sand fly: a platform for control of Leishmania transmission.
Hurwitz, Ivy; Hillesland, Heidi; Fieck, Annabeth; Das, Pradeep; Durvasula, Ravi
2011-05-19
Leishmania donovani is transmitted by the bite of the sand fly, Phlebotomus argentipes. This parasite is the agent of visceral leishmaniasis (VL), an endemic disease in Bihar, India, where prevention has relied mainly on DDT spraying. Pesticide resistance in sand fly populations, environmental toxicity, and limited resources confound this approach. A novel paratransgenic strategy aimed at control of vectorial transmission of L. donovani is presented using Bacillus subtilis, a commensal bacterium isolated from the sand fly gut. In this work, B. subtilis expressing Green Fluorescent Protein (GFP) was added to sterilized larval chow. Control pots contained larval chow spiked either with untransformed B. subtilis or phosphate-buffered saline. Fourth-instar P. argentipes larvae were transferred into the media and allowed to mature. The number of bacterial colony forming units, relative abundance and the mean microbial load were determined per developmental stage. Addition of B. subtilis to larval chow did not affect sand fly emergence rates. B. cereus and Lys fusiformis were identified at each developmental stage, revealing transstadial passage of endogenous microbes. Larvae exposed to an exogenous bolus of B. subtilis harbored significantly larger numbers of bacteria. Bacterial load decreased to a range comparable to sand flies from control pots, suggesting an upper limit to the number of bacteria harbored. Emerging flies reared in larval chow containing transformed B. subtilis carried large numbers of these bacteria in their gut lumens. Strong GFP expression was detected in these paratransgenic flies with no spread of transformed bacteria to other compartments of the insects. This is the first demonstration of paratransgenic manipulation of P. argentipes. Paratransgenic manipulation of P. argentipes appears feasible. Expression of leishmanicidal molecules via commensal bacteria commonly found at breeding sites of P. argentipes could render adult sand flies refractory to L. donovani infection.
Kato, Hirotomo; Gomez, Eduardo A; Yamamoto, Yu-ichi; Calvopiña, Manuel; Guevara, Angel G; Marco, Jorge D; Barroso, Paola A; Iwata, Hiroyuki; Hashiguchi, Yoshihisa
2008-09-01
Natural infection of sand flies with Leishmania parasites was surveyed in an Amazonian area in Ecuador where leishmaniasis is endemic. Seventy-one female sand flies were dissected and one was positive for Leishmania protozoa. The species of this sand fly was identified as Lutzomyia (Lu.) tortura on the basis of morphologic characteristics. Analysis of the cytochrome b gene sequence identified the parasite as L. (Viannia) naiffi. We report the distribution of L. (V.) naiffi in Ecuador and detection of a naturally infected sand fly in the Ecuadorian Amazon and natural infection of Lu. tortura with Leishmania parasites in the New World.
Leishmania, microbiota and sand fly immunity.
Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria
2018-06-20
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Morrison, A C; Ferro, C; Pardo, R; Torres, M; Wilson, M L; Tesh, R B
1995-09-01
Nocturnal activity of the sand fly Lutzomyia longipalpis (Lutz & Neiva) was studied from August 1991 to July 1992 in a small rural community in Colombia where American visceral leishmaniasis is endemic. During 2 or 3 nights each month, sand flies were collected with hand-held aspirators each hour between 1730 and 0630 hours, from a pigpen and a cattle corral located 30 m apart. Host-seeking activity of L. longipalpis adults was characterized by 2 general patterns: (1) adult sand fly activity increased shortly after sunset and continued until just after sunrise, and (2) peak sand fly activity was greatest early in the evening (1830-2330 hours) and then declined steadily toward morning. Female L. longipalpis activity generally increased after 2030 hours, whereas that of males remained constant or declined as the evening progressed. There were seasonal differences in sand fly abundance between the 2 sites: peak abundance in the cattle corral occurred during hot, dry periods, whereas maximum abundance in the pigpen occurred when relative humidity was higher. Influence of relative humidity on activity varied with season. Sand fly activity tended to decrease at temperatures below 24 degrees C and increase in the presence of moonlight.
Nzelu, Chukwunonso O; Cáceres, Abraham G; Arrunátegui-Jiménez, Martín J; Lañas-Rosas, Máximo F; Yañez-Trujillano, Henrry H; Luna-Caipo, Deysi V; Holguín-Mauricci, Carlos E; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo
2015-05-01
Phlebotomine sand flies are the only proven vectors of leishmaniases, a group of human and animal diseases. Accurate knowledge of sand fly species identification is essential in understanding the epidemiology of leishmaniasis and vector control in endemic areas. Classical identification of sand fly species based on morphological characteristics often remains difficult and requires taxonomic expertise. Here, we generated DNA barcodes of the cytochrome c oxidase subunit 1 (COI) gene using 159 adult specimens morphologically identified to be 19 species of sand flies, belonging to 6 subgenera/species groups circulating in Peru, including the vector species. Neighbor-joining (NJ) analysis based on Kimura 2-Parameter genetic distances formed non-overlapping clusters for all species. The levels of intraspecific genetic divergence ranged from 0 to 5.96%, whereas interspecific genetic divergence among different species ranged from 8.39 to 19.08%. The generated COI barcodes could discriminate between all the sand fly taxa. Besides its success in separating known species, we found that DNA barcoding is useful in revealing population differentiation and cryptic diversity, and thus promises to be a valuable tool for epidemiological studies of leishmaniasis. Copyright © 2015 Elsevier B.V. All rights reserved.
Rodrigues, Ana Caroline Moura; Melo, Luciana Magalhães; Magalhães, Rafaela Damasceno; de Moraes, Nélio Batista; de Souza Júnior, Antônio Domingos; Bevilaqua, Claudia Maria Leal
2016-04-15
Visceral leishmaniasis (VL) in Brazil is caused by the protozoan Leishmania infantum. This parasite is transmitted by the bite of a female sand fly. The most important sand fly species in VL transmission is Lutzomyia longipalpis. In Fortaleza, the capital of Ceará State, Brazil, the simultaneous occurrence of Lutzomyia migonei and L. longipalpis was detected in localities where VL transmission is observed. The purpose of this study was to determine conclusively if L. migonei can be found naturally infected with L. infantum in key focus in Fortaleza. Using a CDC traps we performed phlebotomine capture during one year. External morphological features and qPCR targeting species-specific gene sequences of Lutzomyia species were used to identify the female phlebotomine sand flies. The molecular identification of the Leishmania species was performed using qPCR targeting species-specific gene sequences of L. infantum and Leishmania braziliensis. The males L. migonei abundance was higher in the rainy season. Humidity and rainfall positively correlated with males L. migonei abundance, while temperature showed a negative correlation. The correlation between the density of L. migonei female with rainfall, relative air humidity, and temperature were not statistically significant. According to the molecular data produced by qPCR amplifications, three positive sand flies were identified as L. longipalpis, and one was identified as L. migonei. The infection rate was 0.35% and 0.18%, respectively. The parasite load was 32,492±2572 L. infantum in L. migonei while the L. longipalpis had parasite loads between 2,444,964.6±116,000 and 6,287,130±124,277. Our findings confirm L. migonei as a potential vector of VL in Fortaleza at a molecular level. Copyright © 2016 Elsevier B.V. All rights reserved.
DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India
Coleman, Michael; Foster, Geraldine M.; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M.; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J. I.; Das, Pradeep
2015-01-01
Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m2)] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m2 was defined as “in range.” The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m2. The mean residual concentration of DDT post-IRS was 0.37 g ai/m2; 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable. PMID:26124110
DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India.
Coleman, Michael; Foster, Geraldine M; Deb, Rinki; Pratap Singh, Rudra; Ismail, Hanafy M; Shivam, Pushkar; Ghosh, Ayan Kumar; Dunkley, Sophie; Kumar, Vijay; Coleman, Marlize; Hemingway, Janet; Paine, Mark J I; Das, Pradeep
2015-07-14
Indoor residual spraying (IRS) is used to control visceral leishmaniasis (VL) in India, but it is poorly quality assured. Quality assurance was performed in eight VL endemic districts in Bihar State, India, in 2014. Residual dichlorodiphenyltrichloroethane (DDT) was sampled from walls using Bostik tape discs, and DDT concentrations [grams of active ingredient per square meter (g ai/m(2))] were determined using HPLC. Pre-IRS surveys were performed in three districts, and post-IRS surveys were performed in eight districts. A 20% threshold above and below the target spray of 1.0 g ai/m(2) was defined as "in range." The entomological assessments were made in four districts in IRS and non-IRS villages. Vector densities were measured: pre-IRS and 1 and 3 mo post-IRS. Insecticide susceptibility to 4% DDT and 0.05% deltamethrin WHO-impregnated papers was determined with wild-caught sand flies. The majority (329 of 360, 91.3%) of pre-IRS samples had residual DDT concentrations of <0.1 g ai/m(2). The mean residual concentration of DDT post-IRS was 0.37 g ai/m(2); 84.9% of walls were undersprayed, 7.4% were sprayed in range, and 7.6% were oversprayed. The abundance of sand flies in IRS and non-IRS villages was significantly different at 1 mo post-IRS only. Sand flies were highly resistant to DDT but susceptible to deltamethrin. The Stockholm Convention, ratified by India in 2006, calls for the complete phasing out of DDT as soon as practical, with limited use in the interim where no viable IRS alternatives exist. Given the poor quality of the DDT-based IRS, ready availability of pyrethroids, and susceptibility profile of Indian sand flies, the continued use of DDT in this IRS program is questionable.
2009-05-01
FLIES 653 addition, DNA from three species of phlebotomine sand ßies Lutzomyia longipalpis (Lutz and Neiva), P. papatasi, and Phlebotomus argentipes...Med. 144: 660Ð664. Lawyer, P., andD. Young. 1991. Diapause and quiescence in Lutzomyia diabolica (Diptera:Psychodidae). Paras- sitologia. 33(Suppl...Canter, F. Keesing, and E. D. Rowton. 2004. Sand ßy ( Lutzomyia vexator) (Diptera:Psychodidae)populations inupstateNewYork: abundance, microhabitat, and
Saghafipour, Abedin; Vatandoost, Hassan; Zahraei-Ramazani, Ali Reza; Yaghoobi-Ershadi, Mohammad Reza; Rassi, Yavar; Shirzadi, Mohammad Reza; Akhavan, Amir Ahmad
2017-01-01
Zoonotic cutaneous leishmaniasis (ZCL) is transmitted to humans by phlebotomine sand fly bites. ZCL is a major health problem in Iran, where basic knowledge gaps about sand fly species diversity persist in some ZCL-endemic areas. This paper describes the richness and spatial distribution of sand fly species, collected with sticky traps, in Qom province, a ZCL-endemic area in central Iran, where sand fly fauna has been poorly studied. Collected species were mapped on urban and rural digital maps based on a scale of 1/50,000. All analyses were undertaken with rural- and urban-level precision, i.e., rural and urban levels were our basic units of analysis. After identifying the sand flies, high-risk foci were determined. For spatial analysis of vector species population, the entomological sampling sites were geo-referenced using GPS. Arc GIS 9.3 software was used to determine the foci with leishmaniasis vector species. Following the analyses, two genera (Phlebotomus and Sergentomyia) and 14 species were identified. Based on the mapping and sand fly dispersion analysis, the rural districts were categorized into three groups-infection reported, without infection, and no report. Based on Geographical Information System analyses, Kahak and Markazi districts were identified as high-risk foci with leishmaniasis vector species. These findings can act as a help guide to direct active control measures to the identified high-risk foci and, eventually, lead to reduction in incidence of the disease. © Crown copyright 2016.
Denlinger, David S.; Lozano-Fuentes, Saul; Lawyer, Phillip G.; Black, William C.; Bernhardt, Scott A.
2015-01-01
Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose–response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management. PMID:26336231
Zorrilla, Victor; De Los Santos, Maxy B.; Espada, Liz; Santos, Rocío del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A.; Ballard, Sarah-Blythe; Lescano, Andres G.; Vásquez, Gissella M.; Valdivia, Hugo O.
2017-01-01
Background Cutaneous leishmaniasis (CL) is an important health problem in the New World affecting civilian and military populations that are frequently exposed in endemic settings. The Peruvian region of Madre de Dios located near the border with Brazil is one of the most endemic CL regions in South America with more than 4,451 reported cases between 2010 and 2015 according to the Peruvian epidemiology directorate. However, little is known regarding the diversity and distribution of sand fly vectors in this region. In this study, we aimed to characterize the sand fly fauna in this endemic setting and identify sand fly species naturally infected with Leishmania possibly involved in pathogen transmission. Methods Sand fly collections were carried out during 2014 and 2015 in the communities of Flor de Acre, Villa Primavera, Mavila and Arca Pacahuara using CDC light traps and Shannon traps. Collected specimens were identified and non-blood-fed females were selected for Leishmania infection screening using kinetoplastid DNA-PCR (kDNA-PCR) and nested Real time PCR for species identification. Results A total of 10,897 phlebotomines belonging to the genus Lutzomyia (58 species) and Brumptomyia (2 species) were collected. Our study confirmed the widespread distribution and abundance of Lutzomyia (Trichophoromyia) spp. (24%), Lu. whitmani (19.4%) and Lu. yucumensis (15.8%) in the region. Analysis of Shannon diversity index indicates variability in sand fly composition across sites with Villa Primavera presenting the highest sand fly diversity and abundance. Leishmania screening by kDNA-PCR resulted in 45 positive pools collected from Flor de Acre (34 pools), Mavila (10 pools) and Arca Pacahuara (1 pool) and included 14 species: Lu. yucumensis, Lu. aragoi, Lu. sallesi, Lu. sherlocki, Lu. shawi, Lu. walkeri, Lu nevesi, Lu. migonei, Lu. davisi, Lu. carrerai, Lu. hirsuta, Lu. (Trichophoromyia) spp., Lu. llanosmartinsi and Lu. whitmani. Lutzomyia sherlocki, Lu. walkeri and Lu. llanosmartinsi had the highest infection rates (8%, 7% and 6%, respectively). We identified Leishmania guyanensis in two Lu. whitmani pools, and L. braziliensis in two Lu. llanosmartinsi pools and one Lu. davisi pool. Conclusions Based on our collections there is high sand fly diversity in Madre de Dios, with differences in sand fly abundance and species composition across sites. We identified 14 sand fly species naturally infected with Leishmania spp., having detected natural infection with L. (V.) guyanensis and L. (V.) braziliensis in three sand fly species. These results suggest the presence of several potential vectors that vary in their spatial and geographical distribution, which could explain the high prevalence of CL cases in this region. PMID:29107954
Quiroga, Cristina; Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio
2017-11-07
The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador.The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and "Leishmania sp. siamensis". Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo
2012-01-01
Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from SW MO, only a single specimen was trapped in SE KS. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a PCR protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416bp fragment from the cytochrome oxidase I gene. PMID:23270176
Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo
2012-11-01
Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected, 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from southwest Missouri, only a single specimen was trapped in southeast Kansas. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a polymerase chain reaction protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416 bp fragment from the cytochrome oxidase c subunit 1 gene.
Leishmaniasis in Texas: Isolation of Leishmania mexicana from Neotoma Micropus
1990-01-01
leishmaniasis cases in Texas, 2) Lutzomyia anthophora, a sand fly which has transmitted Leishmania mexicana under laboratory conditions (Endris et al., 1984...Addis, 1945). Other vertebrates such as opossums, hispid cotton rats, and armadillos and other sand flies such as Lutzomyia diabolica and Lutzomyia texana...Leishmania mexicana by a North American sand fly, Lutzomyia anthophora (Diptera: Psychodidae). Journal of Medical Entomology 24: 243- 247. GRIMALDI, G. Jr
Shimabukuro, Paloma Helena Fernandes; de Andrade, Andrey José; Galati, Eunice Aparecida Bianchi
2017-01-01
Abstract Phlebotomine sand flies are dipteran insects of medical importance because many species are involved in the transmission of pathogens between human and non-human animals. A total of 530 American species of sand flies is presented in an updated checklist, along with their author(s) and year of publication using the classification by Galati (1995, 2003). Distribution by country is also provided. PMID:28794674
Geraci, Nicholas S.; Mukbel, Rami M.; Kemp, Michael T.; Wadsworth, Mariha N.; Lesho, Emil; Stayback, Gwen M.; Champion, Matthew M.; Bernard, Megan A.; Abo-Shehada, Mahmoud; Coutinho-Abreu, Iliano V.; Ramalho-Ortigão, Marcelo; Hanafi, Hanafi A.; Fawaz, Emadeldin Y.; El-Hossary, Shabaan S.; Wortmann, Glenn; Hoel, David F.; McDowell, Mary Ann
2014-01-01
Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents. PMID:24615125
Adler, Gregory H; Becerra, María Teresa; Travi, Bruno L
2003-12-01
Lutzomyia evansi is the vector of Leishmania chagasi in northern Colombia. Differences in feeding success were revealed, when this phlebotomine sand fly was fed on five species of small mammal hosts from an endemic focus of visceral leishmaniasis. In each trial, 50 female sand flies were provided access to similar-sized depilated areas of the hind foot of each of 44 individual mammals and allowed to feed for 30 minutes. The number of engorged sand flies was counted at the end of each trial and compared among host species by analysis of variance and Tukey's multiple comparisons test. Sand flies fed least successfully on Sciurus granatensis, a common squirrel in the endemic area. It has not been found infected with L. chagasi. Intermediate numbers of sand flies engorged on Heteromys anomalus and Zygodontomys brevicauda, but these two mammals have not been found infected with L. chagasi and are not expected to be important in transmission. Sand flies fed most successfully on Didelphis marsupialis and Proechimys canicollis. These are the two most abundant mammals in the endemic area and frequently are infected. Results provided further evidence that these two species are the wild mammals with the greatest impact on transmission of L. chagasi in northern Colombia.
Santamaría, Erika; Ponce, Nubia; Puerta, Concepción; Ferro, Cristina
2005-06-01
The applicability of the polymerase chain reaction (PCR) was evaluated for the detection and identification of parasites in sand fly vectors and thereby precluding the necessity of dissecting them. DNA was extracted from individual, laboratory infected sand flies, and subjected to PCR amplification using specific B1 and B2 primers for parasites of the Leishmania (Viannia) subgenus. The sensitivity and specificity of the PCR primers were defined by means of serial dilutions of a Leishmania culture. Pooled samples of 1 to 5 sandflies were examined in association with the parasite dilutions to determine the point at which sensitivity became reduced. Experimentally infected sand flies were used to compare the sensitivity of the PCR with sand fly dissection and searching for flagellated parasites by microscopic examination. As few as a single parasite was detected, and the sensitivity remained unaltered up to 3 female sand flies per pool. Detection rates were 33% for the traditional technique and 33.3% for PCR. The B1 and B2 primers were confirmed as specific for Leishmania (Viannia) parasites. The demonstrably high sensitivity and specificity of PCR warrant the use of PCR in assessing natural infection rates of Leishmania (Viannia) in field populations of sand fly vectors.
El Sawaf, Bahira M; Kassem, Hala A; Mogalli, Nabil M; El Hossary, Shabaan S; Ramadan, Nadia F
2016-10-01
This report presents the results of the first entomological survey of the sand fly fauna in northwestern Yemen. Sand flies were collected using sticky paper traps and CDC light traps from Hajjah governorate, a cutaneous leishmaniasis focus due to Leishmania tropica. Six Phlebotomus species: P. alexandri, P. arabicus. P. bergeroti, P. orientalis, P. papatasi, P. sergenti and ten Sergentomyia species: S. africana, S. antennata, S. christophersi, S. dolichopa, S. dreyfussi, S. fallax, S. multidens, S. taizi, S. tiberiadis, S. yusafi were identified. P. alexandri was the most predominant Phlebotomus species and P. papatasi was a scarce species. S. fallax was the principal Sergentomyia species and S. dolichopa was the least species encountered. The diversity of the sand fly fauna within and among three altitudinal ranges using Simpson index and Jaccard's diversity coefficient respectively were measured. High species diversity was found in all altitude ranges. There seemed to be more association between sand fly fauna in higher altitudes with fauna from moderate altitudes. Sand fly seasonal activity showed a mono-modal trend in the lowland and a confluent bimodal trend in the highlands. Leishmania DNA could not be detected from 150 Phlebotomus females using PCR-RFLP. A possible zoonotic cutaneous transmission cycle due to Leishmania tropica in northwestern Yemen would involve P. arabicus as the sand fly vector and the rock hyrax as the reservoir host. The vector competence for P. alexandri as a vector of visceral leishmaniasis in Hajjah governorate is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating carrying capacity in a newly colonized sand fly Lutzomyia serrana (Diptera: Psychodidae).
Santamaría, Erika; Munstermann, Leonard E; Ferro, Cristina
2002-02-01
The phlebotomine sand fly Lutzomyia serrana (Damasceno & Arouck) was mass-reared tinder conditions of varying densities in an effort to improve colony production efficiency. To do this, the experimental carrying capacity of a standard rearing chamber was determined, i.e., the optimum population size in relation to density (individuals per unit of space). Rearing chambers of 100 cm3 were populated with 1-50 L. serrana engorged females and an equal number of males. Laboratory conditions were maintained at 23-26 degrees C and 85-95% RH. The following parameters were recorded for each experimental chamber (three replicates): (1) female mortality without oviposition, (2) number of eggs oviposited and (3) number of adults emerging from the egg cohort. Female mortality began to increase substantially in the 26-female chamber, from 5.7% to 15% and finally reaching 60.2% in the 46-50 female chambers. In the chambers containing 1-20 females, egg number and realized adult progeny increased linearly to reach an asymptote. In the 20-50 female chambers, the number of eggs ranged from 420 to 699, and adult production from 306 to 432. The optimum carrying capacity for the 100-cm3 chambers was 22 +/- 2 females. Beyond this number, auto-regulation was initiated, i.e., female mortality without oviposition increased as the number of females per chamber increased. Total number of eggs and adult production was similar in all chambers containing 20-50 females. In conclusion, for optimizing production of mass reared sand flies, determination of the carrying capacity is essential to optimize use of insectary resources, to avoid loss of valuable potentially ovipositing females, and to increase overall production efficiency.
Hashiguchi, Yoshihisa
2016-01-01
The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area. PMID:26735142
Kato, Hirotomo; Cáceres, Abraham G; Hashiguchi, Yoshihisa
2016-01-01
The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area.
Remoli, Maria Elena; Bongiorno, Gioia; Fortuna, Claudia; Marchi, Antonella; Bianchi, Riccardo; Khoury, Cristina; Ciufolini, Maria Grazia; Gramiccia, Marina
2015-11-09
Several viruses have been recently isolated from Mediterranean phlebotomine sand flies; some are known to cause human disease while some are new to science. To monitor the Phlebotomus-borne viruses spreading, field studies are in progress using different sand fly collection and storage methods. Two main sampling techniques consist of CDC light traps, an attraction method allowing collection of live insects in which the virus is presumed to be fairly preserved, and sticky traps, an interception method suitable to collect dead specimens in high numbers, with a risk for virus viability or integrity. Sand flies storage requires a "deep cold chain" or specimen preservation in ethanol. In the present study the influence of sand fly collection and storage methods on viral isolation and RNA detection performances was evaluated experimentally. Specimens of laboratory-reared Phlebotomus perniciosus were artificially fed with blood containing Toscana virus (family Bunyaviridae, genus Phlebovirus). Various collection and storage conditions of blood-fed females were evaluated to mimic field procedures using single and pool samples. Isolation on VERO cell cultures, quantitative Real time-Retro-transcriptase (RT)-PCR and Nested-RT-PCR were performed according to techniques commonly used in surveillance studies. Live engorged sand flies stored immediately at -80 °C were the most suitable sample for phlebovirus identification by both virus isolation and RNA detection. The viral isolation rate remained very high (26/28) for single dead engorged females frozen after 1 day, while it was moderate (10/30) for specimens collected by sticky traps maintained up to 3 days at room temperature and then stored frozen without ethanol. Opposed to viral isolation, molecular RNA detection kept very high on dead sand flies collected by sticky traps when left at room temperature up to 6 days post blood meal and then stored frozen in presence (88/95) or absence (87/88) of ethanol. Data were confirmed using sand fly pools. While the collection and storage methods investigated had not much impact on the ability to detect viral RNA by molecular methods, they affected the capacity to recover viable viruses. Consequently, sand fly collection and handling procedures should be established in advance depending on the goal of the surveillance studies.
Mechanical properties of geopolymer lightweight brick with styrofoam pellet
NASA Astrophysics Data System (ADS)
Abdullah, Mohd Mustafa Al Bakri; Tahir, Muhammad Faheem Mohd; Kadir, Aeslina Abdul; Hussin, Kamarudin; Samson, W. Saiful Iskandar W.
2017-09-01
The utilization of fly ash in brick as partial replacement of cement is gaining immense importance today, mainly on account of the improvement in the long-term durability of brick combined with ecological benefits. In this research, the lightweight brick was produced by using fly ash (class F) as a main material to replace Ordinary Portland Cement (OPC) in the composition of brick. Class F Fly Ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and styrofoam pellet was added to the geopolymer mixture to produce lightweight brick. The brick was prepared in two methods that is wet method and dry method due to different brick composition which is dry method for composition with sand and wet method for composition without sand. The bricks were cured in room temperature at 7 aging days. After 7 days, the compressive strength, water absorption, and density of the brick were investigated, where the optimum ratio for the best bricks has been determined from the lightweight density and has compressive strength more than minimum standard requirement. The best bricks are further produce for curing at 60°C in oven at 28 aging days. Those bricks also were characterized using optical microscope to measure the distribution of styrofoam in brick structure. From the result obtained, the brick that cured at 60°C in oven at 28 aging days has high strength compare to brick that cured in room temperature and at 7 day cured. The water absorption is decreasing as the curing temperature and aging days increased whereas density is increasing.
Falcão de Oliveira, Everton; Casaril, Aline Etelvina; Fernandes, Wagner Souza; Ravanelli, Michelle de Saboya; Medeiros, Márcio José de; Gamarra, Roberto Macedo; Paranhos Filho, Antônio Conceição; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi
2016-01-01
The monthly distribution and abundance of sand flies are influenced by both biotic and abiotic factors. The present study aimed to evaluate the seasonal distribution of sand flies and the relation between their abundance and environmental parameters, including vegetation and climate. This study was conducted over a 2-year period (April 2012 to March 2014). Monthly distribution was evaluated through the weekly deployment of CDC light traps in the peridomicile area of 5 residences in an urban area of the municipality of Corumbá in the State of Mato Grosso do Sul, Brazil. Meteorological data were obtained from the Mato Grosso do Sul Center for Weather, Climate, and Water Resources. The spectral indices were calculated based on spatial resolution images (GeoEye) and the percentage of vegetal coverage. Differences in the abundance of sand flies among the collection sites were assessed using the Kruskal-Wallis test, and the strength of correlations between environmental variables was determined by calculating Spearman's correlation coefficients. Lutzomyia cruzi, Lu. forattinii, and Evandromyia corumbaensis were the most frequently found species. Although no significant association was found among these sand fly species and the tested environmental variables (vegetation and climate), high population peaks were found during the rainy season, whereas low peaks were observed in the dry season. The monthly distribution of sand flies was primarily determined by Lu. cruzi, which accounted for 93.94% of the specimens collected each month throughout the experimental period. The fact that sand flies were detected year-round indicates a continuous risk of infection to humans, demonstrating the need for targeted management and education programs.
Effect of Lures and Trap Placement on Sand Fly and Mosquito Traps
2008-01-01
species (Takken and Kline, 1989), and Lutzomyia spp. sand flies were attracted to the combination of human odors and carbon dioxide in laboratory...McCall, P.J., and Ward, R.D. 1994. Response of adult sandflies, Lutzomyia longipalpis (Diptera: Pyschodidae), to sticky traps baited with host odour...Placement on Sand Fly and Mosquito Traps 175 Rebollar-Tellez, E.A., Hamilton, J.G.C., and Ward, R.D. 1999. Response of female Lutzomyia longipalph to host
2011-03-01
chitin synthesis inhibitors diflubenzuron and novaluron evaluated in these studies were...effective against sand fly larvae and palatable to hamsters. In contrast to the chitin synthesis inhibitors and juvenile hormone analogs...concentrations (mg/kg) Effects Chitin synthesis inhibitor Diflubenzuron 8.97, 89.7, 897 Mortality at larva-to-pupa molt Novaluron 9.88, 98.8,
Travi, B L; Montoya, J; Gallego, J; Jaramillo, C; Llano, R; Velez, I D
1996-05-01
The feeding behavior, seasonality, and natural infection rate of Lutzomyia evansi (Nuñez-Tovar) with Leishmania chagasi (Cuna & Chagas) was studied during a 12-mo period at 2 hamlets, El Contento and Vidales. Sand fly abundance in extra-, peri-, and intradomestic habitats was evaluated with sticky traps and CDC light traps, whereas human bait and Shannon trap collections were made only in peridomestic habitats. All trapping methods showed a clear predominance of L. evansi throughout the year. Sand flies were present during most of the year, with the exception of the driest months (February and March). Although the total number of sand flies was higher in El Contento than in Vidales, a larger proportion of L. evansi was found in intradomestic habitat than in the peri- and extradomestic habitats at Vidales. Also, sand flies from Vidales had a higher infection rate with L. chagasi than did those from El Contento. Although 2 of 9 promastigote infections detected in L. evansi were identified as L. chagasi, the difficulty of isolating and propagating leishmania strains from this visceral leishmaniasis focus precluded characterization of most parasite samples. Parous and infected sand flies were most abundant toward the end of the rainy season (October-December). For this reason, control strategies based on reducing sand fly populations or avoiding human-vector contact should be concentrated during the October-December period.
Phleboviruses associated with sand flies in arid bio-geographical areas of Central Tunisia.
Dachraoui, K; Fares, W; Bichaud, L; Barhoumi, W; Beier, J C; Derbali, M; Cherni, S; Lamballerie, X de; Chelbi, I; Charrel, R N; Zhioua, E
2016-06-01
An entomological investigation was carried out in 2014 at two sites located in Central Tunisia, one irrigated and another non-irrigated situated in arid bio-geographical areas. Sand flies of the subgenus Larroussius namely Phlebotomus perfiliewi, Phlebotomus perniciosus, and Phlebotomus longicuspis are the most abundant sand fly species in the irrigated site. However, in the non-irrigated site, Phlebotomus papatasi of the Phlebotomus genus is the most abundant species. A total of 3191 sand flies were collected and pooled with up to 30 specimens per pool based on sex, trapping location and collection date, were tested for the presence of phleboviruses by nested reverse transcriptase polymerase chain reaction in the polymerase gene and sequenced. Of a total of 117 pools, 4 were positive, yielding a minimum infection rate of sand flies with phleboviruses of 0.12%. Phylogenetic analysis performed using partial nucleotide and amino acid sequence in the polymerase gene showed that these phleboviruses belonged to four different clusters corresponding to Toscana virus (TOSV), Saddaguia virus (SADV), Sandfly Fever Sicilian Virus (SFSV) and Utique virus (UTIV). This study provides more evidence that the abundance of P. perfiliewi is associated with the development of irrigation in arid bio-geographical areas of Central Tunisia which may have led to the emergence of phleboviruses. We report the first detection of TOSV from sand flies collected from Central Tunisia. Copyright © 2016 Elsevier B.V. All rights reserved.
Nevatte, T M; Ward, R D; Sedda, L; Hamilton, J G C
2017-07-21
In Brazil, human and canine visceral leishmaniasis is caused by infection with Leishmania infantum, a Protist parasite transmitted by blood-feeding female Lutzomyia longipalpis sand flies. The objective of this study was to determine if the odour of hamsters, infected with Le. infantum, was more attractive than the odour of the same hamsters, before they were infected. The attractiveness of odour collected from individual hamsters (n = 13), before they were infected, was compared in a longitudinal study, with the attractiveness of the odour of the same hamster in a Y-tube olfactometer bioassay, at a late stage of infection. The odour of six of the golden hamsters was significantly more attractive to 50% of the female sand flies at the end of infection compared to before infection and the odour of four of the golden hamsters was significantly more attractive to 75% of the female sand flies at the end of infection. These results strongly indicate that hamsters infected with Le. infantum become significantly more attractive to a greater proportion of female sand flies as the infection progresses.
Kaldas, Rania M; El Shafey, Azza S; Shehata, Magdi G; Samy, Abdallah M; Villinski, Jeffrey T
2014-04-01
Plants are promising sources of agents useful for the control of vectors of human diseases including leishmaniasis. The effect of Ricinus communis (Euphorbiaceae) and Bougainvillea glabra (Nyctaginaceae), on transmission of leishmaniasis was investigated using them as diets for Phlebotomus papatasi to monitor their effect on life-history traits. P. papatasi were allowed to feed separately on both plants then offered a blood-meal. Fed-females were observed daily for egg-laying and subsequent developmental stages. P. papatasi was able to feed on B. glabra (29.41% females and 46.30% males) and R. communis (5.80% females and 10.43% males). 34.28% of females died within 24-48 hours post-feeding on R. communis, whereas, it was 16.5% in females fed on B. glabra. Overall fecundity of surviving females was reduced compared to controls, reared on standard laboratory diet; however there was no effect on the sex ratio of progeny. Female P. papatasi in the control group had significantly longer life span compared to plant-fed group. Feeding on these plants not only decreased sand fly survival rates but incurred negative effects on fecundity. Findings indicate that planting high densities of R. communis and B. glabra in sand flies-endemic areas will reduce population sizes and reduce the risk of Leishmania major infections.
Sant’Anna, Mauricio R.V.; Jones, Nathaniel G.; Hindley, Jonathan A.; Mendes-Sousa, Antonio F.; Dillon, Rod J.; Cavalcante, Reginaldo R.; Alexander, Bruce; Bates, Paul A.
2008-01-01
The phlebotomine sand fly Lutzomyia longipalpis takes blood from a variety of wild and domestic animals and transmits Leishmania (Leishmania) infantum chagasi, etiological agent of American visceral leishmaniasis. Blood meal identification in sand flies has depended largely on serological methods but a new protocol described here uses filter-based technology to stabilise and store blood meal DNA, allowing subsequent PCR identification of blood meal sources, as well as parasite detection, in blood-fed sand flies. This technique revealed that 53.6% of field-collected sand flies captured in the back yards of houses in Teresina (Brazil) had fed on chickens. The potential applications of this technique in epidemiological studies and strategic planning for leishmaniasis control programmes are discussed. PMID:18606150
Bejarano, Eduar Elías; Uribe, Sandra; Rojas, Winston; Dario Velez, Iván
2002-07-01
Although once associated only with rural areas, the American leishmaniasis vectors now appear to be associated also with urban and suburban areas of the Neotropics. Following the appearance of the first autochthonous visceral and cutaneous leishmaniasis cases in the urban area of the city of Sincelejo, Colombia, a preliminary entomological survey of the sand fly species composition was performed using Shannon and CDC light traps. A total of 486 sand flies representing six Lutzomyia species were collected. L. evansi, L. panamensis and L. gomezi, known vectors of Leishmania spp. were the predominant sand fly species around dwellings. The finding of these species in relation to the appearance of the first cases of leishmaniasis in the city mentioned is discussed.
Denlinger, David S; Lozano-Fuentes, Saul; Lawyer, Phillip G; Black, William C; Bernhardt, Scott A
2015-09-01
Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose-response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chaves, Luis Fernando; Calzada, Jose E; Rigg, Chystrie; Valderrama, Anayansi; Gottdenker, Nicole L; Saldaña, Azael
2013-06-06
Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency.
Giraud, Emilie; Martin, Oihane; Dillon, Rod J.; Műller, Ingrid
2018-01-01
Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1β, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel’s ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG’s ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages. PMID:29352310
González, Estela; Jiménez, Maribel; Hernández, Sonia; Martín-Martín, Inés; Molina, Ricardo
2017-08-01
An unusual increase of human leishmaniasis cases due to Leishmania infantum is occurring in an urban area of southwestern Madrid, Spain, since 2010. Entomological surveys have shown that Phlebotomus perniciosus is the only potential vector. Direct xenodiagnosis in hares (Lepus granatensis) and rabbits (Oryctolagus cuniculus) collected in the focus area proved that they can transmit parasites to colonized P. perniciosus. Isolates were characterized as L. infantum. The aim of the present work was to conduct a comprehensive study of sand flies in the outbreak area, with special emphasis on P. perniciosus. Entomological surveys were done from June to October 2012-2014 in 4 stations located close to the affected area. Twenty sticky traps (ST) and two CDC light traps (LT) were monthly placed during two consecutive days in every station. LT were replaced every morning. Sand fly infection rates were determined by dissecting females collected with LT. Molecular procedures applied to study blood meal preferences and to detect L. infantum were performed for a better understanding of the epidemiology of the outbreak. A total of 45,127 specimens belonging to 4 sand fly species were collected: P. perniciosus (75.34%), Sergentomyia minuta (24.65%), Phlebotomus sergenti (0.005%) and Phlebotomus papatasi (0.005%). No Phlebotomus ariasi were captured. From 3203 P. perniciosus female dissected, 117 were infected with flagellates (3.7%). Furthermore, 13.31% and 7.78% of blood-fed and unfed female sand flies, respectively, were found infected with L. infantum by PCR. The highest rates of infected P. perniciosus were detected at the end of the transmission periods. Regarding to blood meal preferences, hares and rabbits were preferred, although human, cat and dog blood were also found. This entomological study highlights the exceptional nature of the Leishmania outbreak occurring in southwestern Madrid, Spain. It is confirmed that P. perniciosus is the only vector in the affected area, with high densities and infection rates. Rabbits and hares were the main blood meal sources of this species. These results reinforce the need for an extensive and permanent surveillance in this region, and others of similar characteristics, in order to control the vector and regulate the populations of wild reservoirs.
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are small hematophagous vectors of human and zoonotic leishmaniases present throughout tropical and subtropical areas of the world. These flies present serious problems for military operations and resident populations in the Middle East and other areas where they are endemic....
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are small hematophagous flies present throughout tropical and subtropical areas of the world and are vectors of human and zoonotic leishmaniases. Human cutaneous leishmaniasis is a debilitating disease presenting major problems for U.S. military operations in the Middle East,...
Dobson, Deborah E; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J; Beverley, Stephen M; Sacks, David L
2010-11-11
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.
Angkasekwinai, Nasikarn; Atkins, Erin H.; Johnson, Richard N.; Grieco, John P.; Ching, Wei Mei; Chao, Chien Chung
2014-01-01
Background Carrion' disease, caused by Bartonella bacilliformis, remains truly neglected due to its focal geographical nature. A wide spectrum of clinical manifestations, including asymptomatic bacteremia, and lack of a sensitive diagnostic test can potentially lead to a spread of the disease into non-endemic regions where competent sand fly vectors may be present. A reliable test capable of detecting B. bacilliformis is urgently needed. Our objective is to develop a loop-mediated isothermal amplification (LAMP) assay targeting the pap31 gene to detect B. bacilliformis. Methods and Findings The sensitivity of the LAMP was evaluated in comparison to qPCR using plasmid DNA containing the target gene and genomic DNA in the absence and presence of human or sand fly DNA. The detection limit of LAMP was 1 to 10 copies/µL, depending on the sample metrics. No cross-reaction was observed when testing against a panel of various closely related bacteria. The utility of the LAMP was further compared to qPCR by the examination of 74 Lutzomyia longipalpis sand flies artificially fed on blood spiked with B. bacilliformis and harvested at days (D) 1, 3, 5, 7 and 9 post feeding. Only 86% of sand flies at D1 and 63% of flies at D3 were positive by qPCR. LAMP was able to detect B. bacilliformis in all those flies confirmed positive by qPCR. However, none of the flies after D3 were positive by either LAMP or qPCR. In addition to demonstrating the sensitivity of the LAMP assay, these results suggest that B. bacilliformis cannot propagate in artificially fed L. longipalpis. Conclusions The LAMP assay is as sensitive as qPCR for the detection of B. bacilliformis and could be useful to support diagnosis of patients in low-resource settings and also to identify B. bacilliformis in the sand fly vector. PMID:25522230
Pardo, Raúl H; Carvajal, Alexander; Ferro, Cristina; Davies, Clive R
2006-10-01
Householder vector control measures can be encouraged by health promotion campaigns which take into account peoples' attitudes and focus on key gaps in knowledge. To describe household sandfly control practices in an endemic area of cutaneous leishmaniasis in the department of Huila, Colombia, and determine how these are influenced by attitudes, knowledge and socioeconomic status. A household questionnaire was applied to collect information on: demography, socioeconomic status, knowledge of cutaneous leishmaniasis and of sandflies and their role in transmission, and the control activities practiced. Indoor sandfly abundance was estimated by light trap collections. Amongst 249 interviewees, 86% knew about cutaneous leishmaniasis and 98% sand flies. 35% of interviewees who knew about cutaneous leishmaniasis practiced measures with the purpose of its control. This practice was higher amongst the 32% who knew that sand flies transmit cutaneous leishmaniasis. However, 82% of interviewees practiced sand fly control measures, and these were significantly associated with high sand fly abundance. Measures included smoke, bednets, and house spraying with insecticide or non-insecticidal substances. Householders using the high cost measures (bednets and insecticide) had the highest economic status. Health education programmes should note that sand fly nuisance can initiate control measures, but that knowledge of the role of sand flies in transmission could enhance activities. The socioeconomic findings indicate that targeted bednet subsidies could reduce inequities in health status amongst cutaneous leishmaniasis endemic communities.
Dantas-Torres, Filipe; Sales, Kamila Gaudêncio da Silva; Miranda, Débora Elienai de Oliveira; da Silva, Fernando José; Figueredo, Luciana Aguiar; de Melo, Fábio Lopes; de Brito, Maria Edileuza Felinto; Andrade, Maria Sandra; Brandão-Filho, Sinval Pinto
2017-02-01
Outbreaks of cutaneous leishmaniasis are relatively common among soldiers involved in nocturnal activities in tropical forests. We investigated the population dynamics of sand flies in a military training camp located in a remnant of Atlantic rainforest in northeastern Brazil, where outbreaks of cutaneous leishmaniasis have sporadically been described. From July 2012 to July 2014, light traps were monthly placed in 10 collection sites, being nine sites located near the forest edge and one near a sheep and goat stable. Light traps operated from 5:00 pm to 6:00 am, during four consecutive nights. Leishmania infection in sand flies was assessed using a fast real-time PCR assay. Cases of cutaneous leishmaniasis among soldiers were also investigated. In total, 24,606 sand flies belonging to 25 species were identified. Males (n = 12,683) predominated over females (n = 11,923). Sand flies were present during all months, being more numerous in March (n = 1,691) and April 2013 (n = 3,324). Lutzomyia choti (72.9%) was the most abundant species, followed by Lutzomyia longispina (13.8%), Lutzomyia complexa (5.3%), representing together >90% of the sand flies collected. Forty cases of cutaneous leishmaniasis were recorded among soldiers from January 2012 to December 2014. Leishmania isolates were obtained from eight patients and were all characterized as Leishmania braziliensis. Soldiers and anyone overnighting in Atlantic rainforest remnants should adopt preventative measures such as the use of repellents on bare skin or clothes and insecticide-treated tents.
Moradi, Mohammad; Rassi, Yavar; Abai, Mohammad Reza; Zahraei Ramazani, Alireza; Mohebali, Mehdi; Rafizadeh, Sayena
2018-06-01
Cutaneous leishmaniasis (CL) is endemic and a major health problem in 17 provinces out of 31 in Iran. This study aimed to determine vectors and reservoirs of the disease using molecular techniques in the borderline of Iran and Iraq. Sand flies and rodents were sampled using sticky paper traps and metal wire live traps, respectively, in the selected villages. About 10% of archived confirmed human positive slides was randomly checked for Leishmania by PCR-RFLP assay. The female sand flies were dissected in alcohol 96% in a sterile condition, the head and two segments of the abdomen end permanently mounted for identification and the remaining of body used for DNA extraction. The direct parasitological tests were carried out on the stained slides of rodents for Leishmania as well as PCR-RFLP assay used for molecular detection of parasite. A total of 2050 sand flies were identified comprising of Phlebotomus papatasi , Sergentomyia sintoni , Se . clydei , Se . mervynae , Se . theodori, Se . dentate and Se . iranica . The Ph . papatasi was ranked as a prevailing sand fly species. Molecular tests on female sand flies revealed infection of Ph . papatasi to Leishmania major . Direct parasitology and molecular tests confirmed of 20% infection to L . major among the sole rodents species " Tatera indica ". Due to wide dispersion of rodents colonies in the area and long favorite climate condition for sand flies, the CL foci will be provided the health risk for the religious tourists.
Sales, Kamila Gaudêncio da Silva; Miranda, Débora Elienai de Oliveira; da Silva, Fernando José; Figueredo, Luciana Aguiar; de Melo, Fábio Lopes; de Brito, Maria Edileuza Felinto; Andrade, Maria Sandra; Brandão-Filho, Sinval Pinto
2017-01-01
Outbreaks of cutaneous leishmaniasis are relatively common among soldiers involved in nocturnal activities in tropical forests. We investigated the population dynamics of sand flies in a military training camp located in a remnant of Atlantic rainforest in northeastern Brazil, where outbreaks of cutaneous leishmaniasis have sporadically been described. From July 2012 to July 2014, light traps were monthly placed in 10 collection sites, being nine sites located near the forest edge and one near a sheep and goat stable. Light traps operated from 5:00 pm to 6:00 am, during four consecutive nights. Leishmania infection in sand flies was assessed using a fast real-time PCR assay. Cases of cutaneous leishmaniasis among soldiers were also investigated. In total, 24,606 sand flies belonging to 25 species were identified. Males (n = 12,683) predominated over females (n = 11,923). Sand flies were present during all months, being more numerous in March (n = 1,691) and April 2013 (n = 3,324). Lutzomyia choti (72.9%) was the most abundant species, followed by Lutzomyia longispina (13.8%), Lutzomyia complexa (5.3%), representing together >90% of the sand flies collected. Forty cases of cutaneous leishmaniasis were recorded among soldiers from January 2012 to December 2014. Leishmania isolates were obtained from eight patients and were all characterized as Leishmania braziliensis. Soldiers and anyone overnighting in Atlantic rainforest remnants should adopt preventative measures such as the use of repellents on bare skin or clothes and insecticide-treated tents. PMID:28241005
Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG.
Rogers, Matthew E; Ilg, Thomas; Nikolaev, Andrei V; Ferguson, Michael A J; Bates, Paul A
2004-07-22
Sand flies are the exclusive vectors of the protozoan parasite Leishmania, but the mechanism of transmission by fly bite has not been determined nor incorporated into experimental models of infection. In sand flies with mature Leishmania infections the anterior midgut is blocked by a gel of parasite origin, the promastigote secretory gel. Here we analyse the inocula from Leishmania mexicana-infected Lutzomyia longipalpis sand flies. Analysis revealed the size of the infectious dose, the underlying mechanism of parasite delivery by regurgitation, and the novel contribution made to infection by filamentous proteophosphoglycan (fPPG), a component of promastigote secretory gel found to accompany the parasites during transmission. Collectively these results have important implications for understanding the relationship between the parasite and its vector, the pathology of cutaneous leishmaniasis in humans and also the development of effective vaccines and drugs. These findings emphasize that to fully understand transmission of vector-borne diseases the interaction between the parasite, its vector and the mammalian host must be considered together.
Anaguano, David F; Ponce, Patricio; Baldeón, Manuel E; Santander, Stephanie; Cevallos, Varsovia
2015-12-01
Cutaneous leishmaniasis is a neglected tropical disease transmitted by phlebotomine sand flies of the genus Lutzomyia. In South America, cutaneous leishmaniasis is endemic in the majority of countries. There are no previous reports of phlebotomine sand fly host feeding sources in Ecuador. We identified blood meal sources for phlebotomine sand fly species in Valle Hermoso, a hyper endemic area for leishmaniasis in Ecuador. Phlebotomine sand fly collections were carried out during the dry and rainy seasons. PCR and multiplex PCR were performed from DNA extracted from the abdomens of blood-fed females to specifically identify the avian and mammalian blood meal sources. Avian-blood (77%), mammalian-blood (16%) and mixed avian-mammalian blood (7%) were found in the samples. At the species level, blood from chickens (35.5%), humans (2.8%), cows (2.8%) and dogs (1.9%) was specifically detected. Nyssomyia trapidoi was the most common species of Lutzomyia found that fed on birds. The present results may aid the development of effective strategies to control leishmaniasis in Ecuador. Copyright © 2015 Elsevier B.V. All rights reserved.
Recent advances in phlebotomine sand fly research related to leishmaniasis control.
Bates, Paul A; Depaquit, Jerôme; Galati, Eunice A B; Kamhawi, Shaden; Maroli, Michele; McDowell, Mary Ann; Picado, Albert; Ready, Paul D; Salomón, O Daniel; Shaw, Jeffrey J; Traub-Csekö, Yara M; Warburg, Alon
2015-02-27
Phlebotomine sand flies are the subject of much research because of the role of their females as the only proven natural vectors of Leishmania species, the parasitic protozoans that are the causative agents of the neglected tropical disease leishmaniasis. Activity in this field was highlighted by the eighth International Symposium on Phlebotomine Sand flies (ISOPS) held in September 2014, which prompted this review focusing on vector control. Topics reviewed include: Taxonomy and phylogenetics, Vector competence, Genetics, genomics and transcriptomics, Eco-epidemiology, and Vector control. Research on sand flies as leishmaniasis vectors has revealed a diverse array of zoonotic and anthroponotic transmission cycles, mostly in subtropical and tropical regions of Africa, Asia and Latin America, but also in Mediterranean Europe. The challenge is to progress beyond descriptive eco-epidemiology, in order to separate vectors of biomedical importance from the sand fly species that are competent vectors but lack the vectorial capacity to cause much human disease. Transmission modelling is required to identify the vectors that are a public health priority, the ones that must be controlled as part of the integrated control of leishmaniasis. Effective modelling of transmission will require the use of entomological indices more precise than those usually reported in the leishmaniasis literature.
Jochim, Ryan C; Teixeira, Clarissa R; Laughinghouse, Andre; Mu, Jianbing; Oliveira, Fabiano; Gomes, Regis B; Elnaiem, Dia-Eldin; Valenzuela, Jesus G
2008-01-14
In the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi. Comparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein. This transcriptome analysis represents the largest set of sequence data reported from a specific sand fly tissue and provides further information of the transcripts present in the sand fly Lutzomyia longipalpis. This analysis provides the detailed information of molecules present in the midgut of this sand fly and the transcripts potentially modulated by blood feeding and by the presence of the Leishmania parasite. More importantly, this analysis suggests that Leishmania infantum chagasi alters the expression profile of certain midgut transcripts in the sand fly during blood meal digestion and that this modulation may be relevant for the survival and establishment of the parasite in the gut of the fly. Moreover, this analysis suggests that these changes may be occurring during the digestion of the blood meal and not afterwards.
Myšková, Jitka; Dostálová, Anna; Pěničková, Lucie; Halada, Petr; Bates, Paul A; Volf, Petr
2016-07-25
Leishmania parasites are transmitted by phlebotomine sand flies and a crucial step in their life-cycle is the binding to the sand fly midgut. Laboratory studies on sand fly competence to Leishmania parasites suggest that the sand flies fall into two groups: several species are termed "specific/restricted" vectors that support the development of one Leishmania species only, while the others belong to so-called "permissive" vectors susceptible to a wide range of Leishmania species. In a previous study we revealed a correlation between specificity vs permissivity of the vector and glycosylation of its midgut proteins. Lutzomyia longipalpis and other four permissive species tested possessed O-linked glycoproteins whereas none were detected in three specific vectors examined. We used a combination of biochemical, molecular and parasitological approaches to characterize biochemical and biological properties of O-linked glycoprotein of Lu. longipalpis. Lectin blotting and mass spectrometry revealed that this molecule with an apparent molecular weight about 45-50 kDa corresponds to a putative 19 kDa protein with unknown function detected in a midgut cDNA library of Lu. longipalpis. We produced a recombinant glycoprotein rLuloG with molecular weight around 45 kDa. Anti-rLuloG antibodies localize the native glycoprotein on epithelial midgut surface of Lu. longipalpis. Although we could not prove involvement of LuloG in Leishmania attachment by blocking the native protein with anti-rLuloG during sand fly infections, we demonstrated strong binding of rLuloG to whole surface of Leishmania promastigotes. We characterized a novel O-glycoprotein from sand fly Lutzomyia longipalpis. It has mucin-like properties and is localized on the luminal side of the midgut epithelium. Recombinant form of the protein binds to Leishmania parasites in vitro. We propose a role of this molecule in Leishmania attachment to sand fly midgut.
The phlebotomine sand flies fauna in Parque Estadual do Rio Doce, Minas Gerais, Brazil.
de Souza, Cristian Ferreira; Brazil, Reginaldo Peçanha; Bevilacqua, Paula Dias; Andrade Filho, Jose Dilermando
2015-12-02
Phlebotomine sand flies are dipterans of the family Psychodidae. They are very important to veterinary medicine because some species are vectors of infective forms of Leishmania spp., the etiological agents of leishmaniasis. The Parque Estadual do Rio Doce is located in an area with constant reports of cases of leishmaniasis. In order to better understanding the phlebotamine sand fly fauna of the park, the present work was undertaken with the goal of analyzing phlebotomine sand flies collected there, verifying their seasonality and correlating their presence with forest and/or anthropic areas. To analyze the fauna of phlebotomine sand flies, HP-type, model CDC light traps were distributed along the Juquita trail of PERD. Twelve traps were installed between September 2012 and February 2014, and captured specimens were identified to species. A total of 1993 phlebotomine sand flies of 30 species were captured. The most abundant species were Pressatia choti, Psychodopygus davisi and Nyssomyia intermedia. The high number of Nyssomyia intermedia captured drew attention because they are considered one of the vectors of the infective Leishmania braziliensis present at PERD. No seasonality was observed in the occurrence of phlebotomine sand flies captured at PERD. The number of captured specimens of vector species, and the distance of traps from the forest boarder, were negatively correlated, showing that these vectors (Nyssomyia intermedia, Nyssomyia whitmani and Migonemyia migonei) were less common inside the forest area and that attention should be drawn to other potential vector species in the forest. These results can contribute to leishmaniasis prevention strategies directed at the visitors and professionals at or near PERD. The finding of the presence of Leishmania vectors in the park area must be given attention, since disease transmission can threaten people who visit PERD and its surroundings. Therefore, information on the prevention of leishmaniasis needs to be provided to all people who go there.
Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus
Hostomská, Jitka; Volfová, Věra; Mu, Jianbing; Garfield, Mark; Rohoušová, Iva; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C
2009-01-01
Background Sand fly saliva plays an important role in blood feeding and Leishmania transmission as it was shown to increase parasite virulence. On the other hand, immunity to salivary components impedes the establishment of infection. Therefore, it is most desirable to gain a deeper insight into the composition of saliva in sand fly species which serve as vectors of various forms of leishmaniases. In the present work, we focused on Phlebotomus (Adlerius) arabicus, which was recently shown to transmit Leishmania tropica, the causative agent of cutaneous leishmaniasis in Israel. Results A cDNA library from salivary glands of P. arabicus females was constructed and transcripts were sequenced and analyzed. The most abundant protein families identified were SP15-like proteins, ParSP25-like proteins, D7-related proteins, yellow-related proteins, PpSP32-like proteins, antigen 5-related proteins, and 34 kDa-like proteins. Sequences coding for apyrases, hyaluronidase and other putative secreted enzymes were also represented, including endonuclease, phospholipase, pyrophosphatase, amylase and trehalase. Mass spectrometry analysis confirmed the presence of 20 proteins predicted to be secreted in the salivary proteome. Humoral response of mice bitten by P. arabicus to salivary antigens was assessed and many salivary proteins were determined to be antigenic. Conclusion This transcriptomic analysis of P. arabicus salivary glands is the first description of salivary proteins of a sand fly in the subgenus Adlerius. Proteomic analysis of P. arabicus salivary glands produced the most comprehensive account in a single sand fly species to date. Detailed information and phylogenetic relationships of the salivary proteins are provided, expanding the knowledge base of molecules that are likely important factors of sand fly-host and sand fly-Leishmania interactions. Enzymatic and immunological investigations further demonstrate the value of functional transcriptomics in advancing biological and epidemiological research that can impact leishmaniasis. PMID:19555500
Vivero, Rafael José; Torres-Gutierrez, Carolina; Bejarano, Eduar E; Peña, Horacio Cadena; Estrada, Luis Gregorio; Florez, Fernando; Ortega, Edgar; Aparicio, Yamileth; Muskus, Carlos E
2015-02-22
The location of the microhabitats where immature phlebotomine sand flies of the genus Lutzomyia develop is one of the least-known aspects of this group of medically important insects. For this reason strategies of source reduction approach for their control have not been possible in contrast to other insect vectors (such as mosquitoes), because their juvenile stages in terrestrial microhabitats is difficult to detect. Direct examination of soil samples, incubation of substrates and the use of emergence traps were the methods used to identify juvenile stages in 160 soil samples from urban and forest habitats within the foci of Leishmania transmission in Colombia. Immatures collected were identified subsequent from the rearing and emergence of adults using taxonomic keys or the analysis of the mitochondrial marker cytochrome oxidase I. Plant species associated with the natural breeding sites were identified and physicochemical properties of the soils were analyzed. A total of 38 (23.7%) sampling sites were identified as breeding sites, 142 phlebotomine sand flies were identified, belonging to 13 species of the genus Lutzomyia and two of Brumptomyia. The greatest numbers of immature were found within the tabular roots (51 immature sand flies from eight positive sites) and bases of trees (35 immature sand flies from 11 sites). The characterization and presence of the tree species (mainly Ceiba pentadra, Anacardium excelsum, Pseudosamanea guachapale) and the physicochemical properties (relative humidity and carbon/nitrogen ratio) of the soils associated with these breeding sites are significant factors in explaining the diversity and abundance of phlebotomine sand flies. Immature phlebotomine sand flies of the genus Lutzomyia in Colombia can be found in a wide variety of breeding sites rich in organic matter, high relative humidity and are associated with a typical vegetation of each locality. These results provide new perspectives for the study of the ecology of the genus Lutzomyia in Colombia and the development of vector control strategies.
Studies of Phlebotomine Sand Flies.
A laboratory colony of the sand fly, Lutzomyia anthophora, was established in Gainesville, Florida. Identification keys to the American species of...Sycorax, Warileya and Brumptomyia are given. Also keys to several groups of the large genus Lutzomyia are provided.
Comer, J A; Kavanaugh, D M; Stallknecht, D E; Corn, J L
1994-11-01
Population dynamics of Lutzomyia shannoni Dyar were studied on Ossabaw Island, GA, to define further the role of this species in the epizootiology of the New Jersey serotype of vesicular stomatitis (VSNJ) virus. Bimonthly collections of sand flies egressing from hollow trees from April to November 1991 indicated that there were three generations of sand flies. Data from light trap collections from 1986 through 1989 indicated that similar seasonal cycles occurred during previous years. At this site, we hypothesize that L. shannoni undergoes facultative diapause. Two isolates of VSNJ virus were obtained from female sand flies collected in May and June of 1991. We believe that the virus overwinters in immature L. shannoni and that transovarially infected sand flies emerging each spring initiate a summer amplification cycle in swine on Ossabaw Island.
de Ávila, Márcia Moreira; Brilhante, Andreia Fernandes; de Souza, Cristian Ferreira; Bevilacqua, Paula Dias; Galati, Eunice Aparecida Bianchi; Brazil, Reginaldo Peçanha
2018-01-26
Phlebotomine sand flies (Diptera: Psychodidae) are insects of medical importance due to their involvement in the zoonotic transmission of Leishmania spp. to vertebrates. The aim of this work was to study the ecology of the sand fly fauna of two types of environments, a rural environment (the Transacreana Road) and an urban park (Horto Florestal Park), both located in the municipality of Rio Branco in the state of Acre, Brazil. Additionally, this study intended to investigate Leishmania infection and blood meal sources of these sand flies using molecular techniques. The sand fly fauna was studied in different environments (i.e. forest and peridomestic environments in a rural area, and an urban forest) using Shannon traps and HP light traps to collect sand fly specimens over 13 consecutive months (December 2014 to January 2016). For investigating natural infection by Leishmania and the source of sand fly blood meals, DNA samples were extracted from female sand flies and subjected to polymerase chain reaction targeting ITS1 and cytb genes. DNA sequencing was subsequently used to identify species of Leishmania and the source of blood meals. A total of 2515 individual sand flies of 43 species were collected and identified, Trichophoromyia auraensis (839; 33.35%), Trichophoromyia spp. (537; 21.35%) and Evandromyia saulensis (187; 7.43%) were more abundant in the rural area (S = 41 species) than in the urban forest. No significant differences were found in species richness between forest and peridomestic environments in the rural area (H = 0.04; P > 0.05), but a larger number of species was found in the forest. Leishmania DNA was sequenced in 13 samples, confirming the presence of L. (V.) braziliensis in Th. auraensis (n = 1), Ev. saulensis (n = 2), Ev. walkeri (n = 1), Ps. llanosmartinsi (n = 1), Pi. nevesi (n = 2), Ps. davisi (n = 1), Ps. ayrozai (n = 1), Pa. aragaoi (n = 1), Ny. antunesi (n = 1) and Ev. infraspinosa (n = 1). Only Ps. ayrozai possessed a sequence similar to that of L. (V.) guyanensis (99%). Through microscopic analysis, five specimens of Ev. saulensis were found to possess flagellate forms in the hindgut, with an infection rate of 2.4%. Samples from 33 fed females were submitted to cytb gene amplification, for which sequencing determined that all were similar to the sequence deposited on GenBank for Gallus gallus (domestic chicken). The high abundance of Trichophoromyia auraensis and Ev. saulensis, and the detection of L. (V.) braziliensis DNA, suggests that both species may be vectors of American tegumentary leishmaniasis. Psychodopygus ayrozai was found to be infected by L. (V) braziliesnsis and L. (V.) guyanensis, and although collected in low abundance, it may be a potential vector in the region. The sand fly fauna was found to be rich and diverse with predominance of the genus Psychodopygus. Identification of food sources of fed females showed that 100% amplified a gene region compatible with the domestic chicken, which although considered refractory in the disease transmission cycle, may have an influence on the population dynamics of sand flies.
Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan.
Hassan, Mo'awia Mukhtar; Widaa, Sally Osman; Osman, Osman Mohieldin; Numiary, Mona Siddig Mohammed; Ibrahim, Mihad Abdelaal; Abushama, Hind Mohammed
2012-03-07
Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years.
Ferro, C; Pardo, R; Torres, M; Morrison, A C
1997-11-01
An intensive search for the larval habitats of Lutzomyia longipalpis (Lutz & Neiva) was conducted from November 1992 to October 1993 at a small rural community in Colombia where American visceral leishmaniasis is endemic. Emergence traps constructed from polyvinyl chloride pipes were used to sample a variety of soil microhabitats that included edge areas of covered pigpens, cattle corrals, the base of trees, and leaf litter at sites within 40 m of a house, rocks in fields located between 50 and 500 m from houses, and sites within a patch of secondary forest (rocks, base of palm trees, and leaf litter). The teneral status of the sand flies captured in the emergence traps was confirmed by laboratory studies that determined the rate of terminalia rotation in male L. longipalpis and the rate of cuticular growth layer formation of the thoracic phragma in both sexes of this species. A total of 58 teneral sand flies was captured during the study period (49 wk). Fifteen specimens were L. longipalpis; of these 11 (5 sand flies per square meter) were captured near pigpens, 3 (1.4 sand flies per square meter) were captured near rock resting sites, and 1 (1.6 sand flies per square meter) was collected at the base of a tree. The remainder of the sand flies were either L. trinidadensis (Newstead) or L. cayennensis (Flock & Abonnenc). Our results indicate that L. longipalpis larvae were dispersed widely in sites near houses, rather than concentrated in a few optimal microhabitats.
Rodrigues, Bruno Leite; Carvalho-Costa, Luís Fernando; Pinto, Israel de Souza; Rebêlo, José Manuel Macário
2018-03-17
Sand fly (Diptera: Psychodidae) taxonomy is complex and time-consuming, which hampers epidemiological efforts directed toward controlling leishmaniasis in endemic regions such as northeastern Brazil. Here, we used a fragment of the mitochondrial cytochrome c oxidase I (COI) gene to identify sand fly species in Maranhão State (northeastern Brazil) and to assess cryptic diversity occurring at different spatial scales. For this, we obtained 148 COI sequences of 15 sand fly species (10 genera) from Maranhão (fine spatial scale), and joined them to COI sequences from other Brazilian localities (distant about 2,000 km from Maranhão, broad spatial scale) available in GenBank. We revealed cases of cryptic diversity in sand flies both at fine (Lutzomyia longipalpis (Lutz and Neiva) and Evandromyia termitophila (Martins, Falcão and Silva)) and broad spatial scales (Migonemyia migonei (França), Pressatia choti (Floch and Abonnenc), Psychodopygus davisi (Root), Sciopemyia sordellii (Shannon and Del Ponte), and Bichromomyia flaviscutellata (Mangabeira)). We argue that in the case of Bi. flaviscutellata, the cryptic diversity is associated with a putative new species. Cases in which DNA taxonomy was not as effective as morphological identification possibly involved recent speciation and/or introgressive hybridization, highlighting the need for integrative approaches to identify some sand fly species. Finally, we provide the first barcode sequences for four species (Brumptomyia avellari (Costa Lima), Evandromyia infraspinosa (Mangabeira), Evandromyia evandroi (Costa Lima and Antunes), and Psychodopygus complexus (Mangabeira)), which will be useful for further molecular identification of neotropical species.
Insecticide resistance in the sand fly, Phlebotomus papatasi from Khartoum State, Sudan
2012-01-01
Background Phlebotomus papatasi the vector of cutaneous leishmaniasis (CL) is the most widely spread sand fly in Sudan. No data has previously been collected on insecticide susceptibility and/or resistance of this vector, and a first study to establish a baseline data is reported here. Methods Sand flies were collected from Surogia village, (Khartoum State), Rahad Game Reserve (eastern Sudan) and White Nile area (Central Sudan) using light traps. Sand flies were reared in the Tropical Medicine Research Institute laboratory. The insecticide susceptibility status of first progeny (F1) of P. papatasi of each population was tested using WHO insecticide kits. Also, P. papatasi specimens from Surogia village and Rahad Game Reserve were assayed for activities of enzyme systems involved in insecticide resistance (acetylcholinesterase (AChE), non-specific carboxylesterases (EST), glutathione-S-transferases (GSTs) and cytochrome p450 monooxygenases (Cyt p450). Results Populations of P. papatasi from White Nile and Rahad Game Reserve were sensitive to dichlorodiphenyltrichloroethane (DDT), permethrin, malathion, and propoxur. However, the P. papatasi population from Surogia village was sensitive to DDT and permethrin but highly resistant to malathion and propoxur. Furthermore, P. papatasi of Surogia village had significantly higher insecticide detoxification enzyme activity than of those of Rahad Game Reserve. The sand fly population in Surogia displayed high AChE activity and only three specimens had elevated levels for EST and GST. Conclusions The study provided evidence for malathion and propoxur resistance in the sand fly population of Surogia village, which probably resulted from anti-malarial control activities carried out in the area during the past 50 years. PMID:22397726
Carvalho, Gustavo Mayr de Lima; De Vasconcelos, Fernanda Bernardes; Da Silva, Daniela Gonçalves; Botelho, Helbert Antônio; Filho, José Dilermando Andrade
2011-07-01
Leishmaniasis is a complex of zoonotic diseases that are endemic to many Brazilian states. They are transmitted to the vertebrates by the bite of the hematophagous female sand fly (Diptera: Psychodidae) vectors. Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in large urban centers, their transmission continues to occur primarily in a wild environment and may be associated with professional activities, ecotourism activities, or both. This study investigates the ecological parameters of the sand flies present in Ibitipoca State Park, Minas Gerais, Brazil. During 2009, systematic collections of sand flies were made monthly using HP light traps installed at five sites, including three natural settings (a cave, riparian vegetation, and a rain forest), the tourist and researchers' accommodations, and a surrounding domestic livestock area. In total, 161 sand flies (seven species) were collected, the most abundant, particularly in the surrounding domestic livestock area, being Lutzomyia (Psychodopygus) lloydi (Antunes, 1937). Furthermore, a previously unidentified Lutzomyia (Sciopemyia) sp. was prevalent in the cave environment. There are no existing records of the occurrence of leishmaniasis in Ibitipoca State Park; however, the some species of the subgenus Psychodopygus are known vectors of Leishmania spp in Brazil. Hence, the presence of a species of this genus in areas surrounding the park may represent a risk to ecotourism and the local inhabitants. Our study shows the importance of regular monitoring of the various areas used by humans to determine the distribution and spread of sand fly vectors for preventive management to forestall potential risk to health and consequent effect on ecotourists.
Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M. C.; Valenzuela, Jesus G.
2012-01-01
Introduction Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi–a model sand fly for Leishmania-vector-host molecular interactions–is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. Methods and Findings A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Conclusions Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas. PMID:23139741
Abdeladhim, Maha; Jochim, Ryan C; Ben Ahmed, Melika; Zhioua, Elyes; Chelbi, Ifhem; Cherni, Saifedine; Louzir, Hechmi; Ribeiro, José M C; Valenzuela, Jesus G
2012-01-01
Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.
Identification of phlebotomine sand fly blood meals by real-time PCR.
Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe
2015-04-16
Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black rats, up to 5 days after the blood meal. These assays represent promising tools for the identification of blood meal in field-collected female sand flies.
Orshan, Laor; Elbaz, Shirly; Ben-Ari, Yossi; Akad, Fouad; Afik, Ohad; Ben-Avi, Ira; Dias, Debora; Ish-Shalom, Dan; Studentsky, Liora; Zonstein, Irina
2016-01-01
Background Zoonotic cutaneous leishmaniasis has long been endemic in Israel. In recent years reported incidence of cutaneous leishmaniasis increased and endemic transmission is being observed in a growing number of communities in regions previously considered free of the disease. Here we report the results of an intensive sand fly study carried out in a new endemic focus of Leishmania major. The main objective was to establish a method and to generate a data set to determine the exposure risk, sand fly populations' dynamics and evaluate the efficacy of an attempt to create "cordon sanitaire" devoid of active jird burrows around the residential area. Methodology/Principal Findings Sand flies were trapped in three fixed reference sites and an additional 52 varying sites. To mark sand flies in the field, sugar solutions containing different food dyes were sprayed on vegetation in five sites. The catch was counted, identified, Leishmania DNA was detected in pooled female samples and the presence of marked specimens was noted. Phlebotomus papatasi, the vector of L. major in the region was the sole Phlebotomus species in the catch. Leishmania major DNA was detected in ~10% of the pooled samples and the highest risk of transmission was in September. Only a few specimens were collected in the residential area while sand fly numbers often exceeded 1,000 per catch in the agricultural fields. The maximal travel distance recorded was 1.91km for females and 1.51km for males. The calculated mean distance traveled (MDT) was 0.75km. Conclusions The overall results indicate the presence of dense and mobile sand fly populations in the study area. There seem to be numerous scattered sand fly microsites suitable for development and resting in the agricultural fields. Sand flies apparently moved in all directions, and reached the residential area from the surrounding agricultural fields. The travel distance noted in the current work, supported previous findings that P. papatasi like P. ariasi, can have a relatively long flight range and does not always stay near breeding sites. Following the results, the width of the "cordon sanitaire" in which actions against the reservoir rodents were planned, was extended into the depth of the agricultural fields. PMID:27427959
Inbar, Ehud; Lawyer, Philip; Sacks, David; Podini, Daniele
2016-05-01
In the Indian sub-continent, visceral leishmaniasis (VL), also known as kala azar, is a fatal form of leishmaniasis caused by the kinetoplastid parasite Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. VL is prevalent in northeast India where it is believed to have an exclusive anthroponotic transmission cycle. There are four distinct cohorts of L. donovani exposed individuals who can potentially serve as infection reservoirs: patients with active disease, cured VL cases, patients with post kala azar dermal leishmaniasis (PKDL), and asymptomatic individuals. The relative contribution of each group to sustaining the transmission cycle of VL is not known. To answer this critical epidemiological question, we have addressed the feasibility of an approach that would use forensic DNA methods to recover human DNA profiles from the blood meals of infected sand flies that would then be matched to reference DNA sampled from individuals living or working in the vicinity of the sand fly collections. We found that the ability to obtain readable human DNA fingerprints from sand flies depended entirely on the size of the blood meal and the kinetics of its digestion. Useable profiles were obtained from most flies within the first 24 hours post blood meal (PBM), with a sharp decline at 48 hours and no readable profiles at 72 hours. This early time frame necessitated development of a sensitive, nested-PCR method compatible with detecting L. donovani within a fresh, 24 hours blood meal in flies fed on infected hamsters. Our findings establish the feasibility of the forensic DNA method to directly trace the human source of an infected blood meal, with constraints imposed by the requirement that the flies be recovered for analysis within 24 hours of their infective feed.
Dokhan, Mostafa Ramahdan; Kenawy, Mohamed Amin; Doha, Said Abdallah; El-Hosary, Shabaan Said; Shaibi, Taher; Annajar, Badereddin Bashir
2016-02-01
Al Rabta in the North-West of Libya is a rural area where cutaneous leishmaniasis (CL) is endemic for long time. Few reports are available on sand flies in this area which is an important focus of CL. Therefore, this study aimed at updating the species composition, and monthly fluctuation of sand flies in this area. Sand flies were biweekly collected by CDC light traps from June to November 2012 and April to November 2013 in two villages, Al Rabta East (RE) and Al Rabta West (RW). Nine species (6 Phlebotomus and 3 Sergentomyia) were reported in the two villages. A total of 5605 and 5446 flies were collected of which Phlebotomus represented 59.30 and 56.63% in RE and RW, respectively. Sergentomyia minuta and Phlebotomus papatasi were the abundant species. Generally, more males were collected than females for all species. The overall ratios (males: females) for most of species were not deviated from the expected 1:1 ratio (Chi-squared, P>0.05). Sand fly abundance (fly/trap) is directly related to the temperature and RH (P<0. 01) while it inversely related to wind velocity (P>0.05). Flies were active from April to November with increased activity from June to October. Prominent peaks were in September and June. The abundance of P. papatasi and Phlebotomus sergenti, vectors of CL (August-October) coincided with the reported higher numbers of CL cases (August- November). The obtained results could be important for the successful planning and implementation of leishmaniasis control programs. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Background Insecticide thermal fogging (ITF) is a tool to control vector borne diseases. Insecticide application success for vector control has been associated with housing materials and architecture. Vector abundance is correlated with weather changes. Nevertheless, housing quality and weather impacts on vector abundance have been unaccounted for in most New World insecticide control trials for leishmaniasis vectors. Methods We conducted a 15 month insecticide control trial that included two deltamethrin [6 mg a.i.m-2] based ITF interventions in 12 of 24 monitored houses at Trinidad de Las Minas, a hyperendemic cutaneous leishmaniasis transmission village in western Panamá. During the study we followed sand fly (SF) abundance, keeping track of rainfall and quantified housing quality using an index based on architecture and construction materials. Results We found a 50 to 80% reduction in SF density in the fogged houses when compared with control houses, while controlling for seasonal changes in SF abundance associated with rainfall. We found heterogeneities in the reductions, as abundance changed according to SF species: Lutzomyia gomezi, Lu. panamensis, Lu. dysponeta and Lu. triramula reduced in density between 40% and 90% after ITF. In contrast, Lu. trapidoi density increased 5% after ITF. Differences in the impact of ITF were associated with housing quality, the most destitute houses, i.e., those with features that ease insect entrance, had a disproportionally larger SF abundance, in some cases with increased domiciliary SF density following the ITF. Conclusion Our results suggest the potential of insecticide application to control SF density and leishmaniasis transmission could depend on housing quality beyond insecticide efficiency. PMID:23742709
Gomez, Eduardo A; Kato, Hirotomo; Hashiguchi, Yoshihisa
2014-12-01
A countrywide surveillance of sand flies was performed to obtain information on their geographical distribution and natural infection by Leishmania protozoa in Ecuador. A total of 18,119 sand flies were collected by human landing collections during 32 years from 1982 to 2014, and 29 species were recognized. The most prevalent 10 species were Lutzomyia gomezi, Lu. robusta, Lu. hartmanni, Lu. shannoni, Lu. trapidoi, Lu. panamensis, Lu. maranonensis, Lu. ayacuchensis, Lu. tortura and Lu. yuilli yuilli, and their topographical and vertical distributions were identified. Among all the sand flies, only 197 (1.09%) flies of four Lutzomyia species, Lu. gomezi, Lu. trapidoi, Lu. tortura and Lu. ayacuchensis, were positive for Leishmania. Endotrypanum, a flagellate parasite not pathogenic to humans, were detected in five Lutzomyia species, Lu. robusta, Lu. hartmanni, Lu. trapidoi, Lu. panamensis and Lu. yuilli yuilli, suggesting wide vector-ranges of Endotrypanum species. These data on the genus Lutzomyia and their natural infections with Leishmania and Endotrypanum will be useful for transmission studies and surveillance of leishmaniasis. Copyright © 2014 Elsevier B.V. All rights reserved.
Cabrera, Olga Lucía; Mosquera, Laureano; Santamaría, Erika; Ferro, Cristina
2009-03-01
Although cases of leishmaniasis have been reported in the province of Guaviare, Colombia, no entomological studies were included to identify the Lutzomyia sand fly vector species in that area. Lutzomyia species were identified from four townships of Guaviare. Probable vectors were named based on those species involved in transmission in other areas. Sampling was undertaken with CDC light traps suspended at heights between 1.5 m and 9 m. Additional sand flies were collected with Shannon traps and by aspiration of adult flies from daytime resting sites. Sand flies belonging to 37 different species were collected. 35 of them were recorded for the first time in Guaviare Province. Four species were new records for Colombia: Lutzomyia begonae, L. campbelli, L. sericea and L. nematoducta. The most abundant species were L. hirsuta 24.3% (148/610), L. yuilli 15.2% (93/610), L. davisi 10.3% (63/610), followed by L. fartigi, L. carrerai, L. antunesi, L. flaviscutellata and L. olmeca bicolor. Seven of these species of have been associated previously with endemic or epidemic transmission of leishmaniasis.
Dobson, Deborah E.; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J.; Beverley, Stephen M.; Sacks, David L.
2010-01-01
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania. PMID:21085609
A proteomic map of the unsequenced kala-azar vector Phlebotomus papatasi using cell line.
Pawar, Harsh; Chavan, Sandip; Mahale, Kiran; Khobragade, Sweta; Kulkarni, Aditi; Patil, Arun; Chaphekar, Deepa; Varriar, Pratyasha; Sudeep, Anakkathil; Pai, Kalpana; Prasad, T S K; Gowda, Harsha; Patole, Milind S
2015-12-01
The debilitating disease kala-azar or visceral leishmaniasis is caused by the kinetoplastid protozoan parasite Leishmania donovani. The parasite is transmitted by the hematophagous sand fly vector of the genus Phlebotomus in the old world and Lutzomyia in the new world. The predominant Phlebotomine species associated with the transmission of kala-azar are Phlebotomus papatasi and Phlebotomus argentipes. Understanding the molecular interaction of the sand fly and Leishmania, during the development of parasite within the sand fly gut is crucial to the understanding of the parasite life cycle. The complete genome sequences of sand flies (Phlebotomus and Lutzomyia) are currently not available and this hinders identification of proteins in the sand fly vector. The current study utilizes a three frame translated transcriptomic data of P. papatasi in the absence of genomic sequences to analyze the mass spectrometry data of P. papatasi cell line using a proteogenomic approach. Additionally, we have carried out the proteogenomic analysis of P. papatasi by comparative homology-based searches using related sequenced dipteran protein data. This study resulted in the identification of 1313 proteins from P. papatasi based on homology. Our study demonstrates the power of proteogenomic approaches in mapping the proteomes of unsequenced organisms. Copyright © 2015 Elsevier B.V. All rights reserved.
Nzelu, Chukwunonso O.; Kato, Hirotomo; Puplampu, Naiki; Desewu, Kwame; Odoom, Shirley; Wilson, Michael D.; Sakurai, Tatsuya; Katakura, Ken; Boakye, Daniel A.
2014-01-01
Background Leishmania major and an uncharacterized species have been reported from human patients in a cutaneous leishmaniasis (CL) outbreak area in Ghana. Reports from the area indicate the presence of anthropophilic Sergentomyia species that were found with Leishmania DNA. Methodology/Principal Findings In this study, we analyzed the Leishmania DNA positive sand fly pools by PCR-RFLP and ITS1 gene sequencing. The trypanosome was determined using the SSU rRNA gene sequence. We observed DNA of L. major, L. tropica and Trypanosoma species to be associated with the sand fly infections. This study provides the first detection of L. tropica DNA and Trypanosoma species as well as the confirmation of L. major DNA within Sergentomyia sand flies in Ghana and suggests that S. ingrami and S. hamoni are possible vectors of CL in the study area. Conclusions/Significance The detection of L. tropica DNA in this CL focus is a novel finding in Ghana as well as West Africa. In addition, the unexpected infection of Trypanosoma DNA within S. africana africana indicates that more attention is necessary when identifying parasitic organisms by PCR within sand fly vectors in Ghana and other areas where leishmaniasis is endemic. PMID:24516676
Mukhopadhyay, Jaba; Braig, Henk R.; Rowton, Edgar D.; Ghosh, Kashinath
2012-01-01
Background Cutaneous leishmaniasis is a neglected, vector-borne parasitic disease and is responsible for persistent, often disfiguring lesions and other associated complications. Leishmania, causing zoonotic cutaneous leishmaniasis (ZCL) in the Old World are mainly transmitted by the predominant sand fly vector, Phlebotomus papatasi. To date, there is no efficient control measure or vaccine available for this widespread insect-borne infectious disease. Methodology/Principal Findings A survey was carried out to study the abundance of different natural gut flora in P. papatasi, with the long-term goal of generating a paratransgenic sand fly that can potentially block the development of Leishmania in the sand fly gut, thereby preventing transmission of leishmania in endemic disease foci. Sand flies, in particular, P. papatasi were captured from different habitats of various parts of the world. Gut microbes were cultured and identified using 16S ribosomal DNA analysis and a phylogenetic tree was constructed. We found variation in the species and abundance of gut flora in flies collected from different habitats. However, a few Gram-positive, nonpathogenic bacteria including Bacillus flexus and B. pumilus were common in most of the sites examined. Conclusion/Significance Our results indicate that there is a wide range of variation of aerobic gut flora inhabiting sand fly guts, which possibly reflect the ecological condition of the habitat where the fly breeds. Also, some species of bacteria (B. pumilus, and B. flexus) were found from most of the habitats. Important from an applied perspective of dissemination, our results support a link between oviposition induction and adult gut flora. PMID:22629302
Gentes, Marie-Line; Whitworth, Terry L; Waldner, Cheryl; Fenton, Heather; Smits, Judit E
2007-04-01
Oil sands mining is steadily expanding in Alberta, Canada. Major companies are planning reclamation strategies for mine tailings, in which wetlands will be used for the bioremediation of water and sediments contaminated with polycyclic aromatic hydrocarbons and naphthenic acids during the extraction process. A series of experimental wetlands were built on companies' leases to assess the feasibility of this approach, and tree swallows (Tachycineta bicolor) were designated as upper trophic biological sentinels. From May to July 2004, prevalence and intensity of infestation with bird blow flies Protocalliphora spp. (Diptera: Calliphoridae) were measured in nests on oil sands reclaimed wetlands and compared with those on a reference site. Nestling growth and survival also were monitored. Prevalence of infestation was surprisingly high for a small cavity nester; 100% of the 38 nests examined were infested. Nests on wetlands containing oil sands waste materials harbored on average from 60% to 72% more blow fly larvae than those on the reference site. Nestlings on reclaimed sites suffered mean parasitic burdens about twice that of those on the reference site; and for comparable parasitic load, they exhibited greater pathologic effects (e.g., decreased body mass) than control nestlings. The heavy blow fly infestation on oil sands-impacted wetlands suggests that oil sands mining disturbs several components of the local ecosystem, including habitat characteristics, blow fly predators, and host resistance to parasites.
Characteristics of SCC with Fly Ash and Manufactured Sand
NASA Astrophysics Data System (ADS)
Praveen Kumar, K.; Radhakrishna
2016-09-01
Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.
Poché, David M; Grant, William E; Wang, Hsiao-Hsuan
2016-08-01
Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.
León, Cielo; Paz, Andrea; López, Marla; Molina, Gisell; Toro, Diana; Ortiz, Mario; Cordovez, Juan Manuel; Atencia, María Claudia; Aguilera, Germán; Tovar, Catalina
2018-01-01
Leishmaniases are neglected tropical diseases exhibiting complex transmission cycles due to the number of parasite species circulating, sand fly species acting as vectors and infected mammals, including humans, which are defined in the New World as accidental hosts. However, current transmission scenarios are changing, and the disease is no longer exclusively related to forested areas but urban transmission foci occur, involving some species of domestic animals as suspected reservoirs. The aim of this study was to determine the transmission cycles in urban environments by evaluating sand fly diversity, detection of Leishmania DNA, and bloodmeal sources through intra and peridomestic collections. The study was carried out in Colombia, in 13 municipalities of Cordoba department, implementing a methodology that could be further used for the evaluation of vector-borne diseases in villages or towns. Our sampling design included 24 houses randomly selected in each of 15 villages distributed in 13 municipalities, which were sampled in two seasons in 2015 and 2016. Sand flies were collected using CDC light traps placed in intra and peridomestic habitats. In addition to the morphological identification, molecular identification through DNA barcodes was also performed. A total of 19,743 sand flies were collected and 13,848 of them (10,268 females and 3,580 males) were used in molecular procedures. Circulation of two known parasite species–Leishmania infantum and Leishmania panamensis was confirmed. Blood source analyses showed that sand flies fed on humans, particularly in the case of the known L. infantum vector, P. evansi; further analyses are advised to evaluate the reservoirs involved in parasite transmission. Our sampling design allowed us to evaluate potential transmission cycles on a department scale, by defining suspected vector species, parasite species present in different municipalities and feeding habits. PMID:29320544
Paternina, Luís E; Verbel-Vergara, Daniel; Romero-Ricardo, Luís; Pérez-Doria, Alveiro; Paternina-Gómez, Margaret; Martínez, Lily; Bejarano, Eduar E
2016-01-01
Identification of the bloodmeal sources of phlebotomine sand flies is fundamental to determining which species are anthropophilic and understanding the transmission of Leishmania parasites in natural epidemiological settings. The objective of this study was to identify sand fly bloodmeals in the mixed leishmaniasis focus of the department of Sucre, northern Colombia. In all 141 engorged female sand flies were analyzed, after being captured in intradomiciliary, peridomiciliary and extradomiciliary habitats with Shannon and CDC traps and by active searching in diurnal resting sites. Bloodmeals were identified by sequencing and analysis of a 358bp fragment of the mitochondrial gene Cytochrome b (CYB) and a 330bp fragment of the nuclear gene prepronociceptin (PNOC). Using both genes 105 vertebrate bloodmeals were identified, with an efficiency of 72% for CYB but only 7% for PNOC. Ten species of vertebrates were identified as providing bloodmeal sources for 8 sand fly species: Homo sapiens (Lutzomyia evansi, Lutzomyia panamensis, Lutzomyia micropyga, Lutzomyia shannoni and Lutzomyia atroclavata), Equus caballus (L. evansi, L. panamensis and Lutzomyia cayennensis cayennensis), Equus asinus (L. evansi and L. panamensis), Bos taurus (L. evansi, L. panamensis and L. c. cayennensis), Tamandua mexicana (L. shannoni and Lutzomyia trinidadensis), Proechimys guyanensis (L. evansi, L. panamensis and L. c. cayennensis), Mabuya sp. (Lutzomyia micropyga), Anolissp. (L. micropyga), Sus scrofa (L. evansi and Lutzomyia gomezi) and Gallus gallus (L. evansi). Cattle, donkeys, humans and pigs were significantly more important than other animals (P=0.0001) as hosts of L. evansi, this being the most abundant sand fly species. The five Lutzomyia species in which blood samples of human origin were detected included L. micropyga and L. atroclavata, constituting the first evidence of anthropophily in both species. Copyright © 2015 Elsevier B.V. All rights reserved.
González, Camila; León, Cielo; Paz, Andrea; López, Marla; Molina, Gisell; Toro, Diana; Ortiz, Mario; Cordovez, Juan Manuel; Atencia, María Claudia; Aguilera, Germán; Tovar, Catalina
2018-01-01
Leishmaniases are neglected tropical diseases exhibiting complex transmission cycles due to the number of parasite species circulating, sand fly species acting as vectors and infected mammals, including humans, which are defined in the New World as accidental hosts. However, current transmission scenarios are changing, and the disease is no longer exclusively related to forested areas but urban transmission foci occur, involving some species of domestic animals as suspected reservoirs. The aim of this study was to determine the transmission cycles in urban environments by evaluating sand fly diversity, detection of Leishmania DNA, and bloodmeal sources through intra and peridomestic collections. The study was carried out in Colombia, in 13 municipalities of Cordoba department, implementing a methodology that could be further used for the evaluation of vector-borne diseases in villages or towns. Our sampling design included 24 houses randomly selected in each of 15 villages distributed in 13 municipalities, which were sampled in two seasons in 2015 and 2016. Sand flies were collected using CDC light traps placed in intra and peridomestic habitats. In addition to the morphological identification, molecular identification through DNA barcodes was also performed. A total of 19,743 sand flies were collected and 13,848 of them (10,268 females and 3,580 males) were used in molecular procedures. Circulation of two known parasite species-Leishmania infantum and Leishmania panamensis was confirmed. Blood source analyses showed that sand flies fed on humans, particularly in the case of the known L. infantum vector, P. evansi; further analyses are advised to evaluate the reservoirs involved in parasite transmission. Our sampling design allowed us to evaluate potential transmission cycles on a department scale, by defining suspected vector species, parasite species present in different municipalities and feeding habits.
Carvalho, G M L; Brazil, R P; Rêgo, F D; Ramos, M C N F; Zenóbio, A P L A; Andrade Filho, J D
2017-01-01
Leishmania spp. are distributed throughout the world, and different species are associated with varying degrees of disease severity. In Brazil, Leishmania transmission involves several species of phlebotomine sand flies that are closely associated with different parasites and reservoirs, and thereby giving rise to different transmission cycles. Infection occurs during the bloodmeals of sand flies obtained from a variety of wild and domestic animals, and sometimes from humans. The present study focused on detection of Leishmania DNA in phlebotomine sand flies from a cave in the state of Minas Gerais. Detection of Leishmania in female sand flies was performed with ITS1 PCR-RFLP (internal transcribed spacer 1) using HaeIII enzyme and genetic sequencing for SSUrRNA target. The survey of Leishmania DNA was carried out on 232 pools and the parasite DNA was detected in four: one pool of Lutzomyia cavernicola (Costa Lima, 1932), infected with Le. infantum (ITS1 PCR-RFLP), two pools of Evandromyia sallesi (Galvão & Coutinho, 1939), both infected with Leishmania braziliensis complex (SSUrRNA genetic sequencing analysis), and one pool of Sciopemyia sordellii (Shannon & Del Ponte, 1927), infected with subgenus Leishmania (SSUrRNA genetic sequencing analysis). The present study identified the species for Leishmania DNA detected in four pools of sand flies, all of which were captured inside the cave. These results represent the first molecular detection of Lu cavernicola with Le infantum DNA, Sc sordellii with subgenus Leishmania DNA, and Ev sallesi with Leishmania braziliensis complex DNA. The infection rate in females captured for this study was 0.17%. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mohammed, Mohammed A; Khalid, Noteila M; Aboud, Mariam A
2018-03-06
Recent reports showed high numbers of visceral leishmaniasis cases in North Darfur, western Sudan. Due to a lack of previous studies, no information is available on local transmission of the disease in these areas. Therefore, a pilot entomological and epidemiological study was conducted in Al-Malha Locality during the year 2013, to investigate possibility of local transmission and places and times of the year where and when people contract the infection. Kala-azar incidence data were obtained from records of Ministry of Health, North Darfur; Al-Malha rural hospital; and the Federal Ministry of Health, Division of Communicable and Non-communicable Diseases. Sand flies were collected using sticky paper and rodent burrow traps from five different microhabitats during three different phases of the year. Species identification was undertaken using appropriate taxonomic keys. Data were statistically analyzed to determine the distribution of kala-azar among different age groups and between sexes, and to compare the species richness and distribution of different sandfly species between the different microhabitats. The most affected age groups with kala-azar during the period 2013-2016 were children between one and five years old and those under one year. Females were found to be more affected than males. A total of 918 sand fly specimens were collected using sticky paper and rodent burrow traps from five microhabitats. Identified specimens belong to 13 species; 5 Phlebotomus and 8 Sergentomyia. Phlebotomus orientalis, the principal vector of visceral leishmaniasis (VL) in Sudan and other East African countries, was found for the first time in the area. No other known vector of VL was found in the collection. The highest number of sand flies was recorded during the summer season (63%), with S. antennata (48%) and S. schwetzi (24.1%) being the most abundant species. Among Phlebotomus species, P. orientalis showed relatively high density (8.6%). A dry seasonal water course (called "Khor") seems to be the most preferred habitat for most of the sand fly species since most of the collections (41.2%) were made from this site, followed by the rodent burrows. The presence of P. orientalis and the high prevalence of VL in infants in the Al-Malha area provide the first evidence for local transmission of the parasite causing kala-azar in Darfur. Transmission is probably occurring during summer near the woodland where a high density of the vector was recorded. As a pre-requisite for designing effective control of VL in North Darfur, large scale entomological and epidemiological studies are recommended.
First molecular detection of Leishmania tarentolae-like DNA in Sergentomyia minuta in Spain.
Bravo-Barriga, Daniel; Parreira, Ricardo; Maia, Carla; Blanco-Ciudad, Juan; Afonso, Maria Odete; Frontera, Eva; Campino, Lenea; Pérez-Martín, Juan Enrique; Serrano Aguilera, Francisco Javier; Reina, David
2016-03-01
Phlebotomine sand flies (Diptera, Psychodidae) are vectors of multiple Leishmania species, among which Leishmania infantum stands out as a being frequently pathogenic to humans and dogs in Mediterranean countries. In this study, Sergentomyia minuta sand flies were collected using CDC miniature light traps in different 431 biotopes from Southwest Spain. A total of 114 females were tested for the presence of Leishmania DNA by targeting ITS-1 and cyt-B sequences by PCR. Leishmania DNA was detected in one S. minuta. Characterization of the obtained DNA sequences by phylogenetic analyses revealed close relatedness with Leishmania tarentolae Wenyon, 1921 as well as with both human and canine pathogenic strains of Asian origin (China), previously described as Leishmania sp. To our knowledge, this is the first report of phlebotomine sand flies naturally infected with L. tarentolae-like in Spain. The possible infection of sand flies with novel Leishmania species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniosis is endemic.
Kato, Hirotomo; Bone, Abdon E.; Mimori, Tatsuyuki; Hashiguchi, Kazue; Shiguango, Gonzalo F.; Gonzales, Silvio V.; Velez, Lenin N.; Guevara, Angel G.; Gomez, Eduardo A.; Hashiguchi, Yoshihisa
2016-01-01
An epidemiological study of leishmaniasis was performed in Amazonian areas of Ecuador since little information on the prevalent Leishmania and sand fly species responsible for the transmission is available. Of 33 clinical specimens from patients with cutaneous leishmaniasis (CL), causative parasites were identified in 25 samples based on cytochrome b gene analysis. As reported previously, Leishmania (Viannia) guyanensis and L. (V.) braziliensis were among the causative agents identified. In addition, L. (V.) lainsoni, for which infection is reported in Brazil, Bolivia, Peru, Suriname, and French Guiana, was identified in patients with CL from geographically separate areas in the Ecuadorian Amazon, corroborating the notion that L. (V.) lainsoni is widely distributed in South America. Sand flies were surveyed around the area where a patient with L. (V.) lainsoni was suspected to have been infected. However, natural infection of sand flies by L. (V.) lainsoni was not detected. Further extensive vector searches are necessary to define the transmission cycle of L. (V.) lainsoni in Ecuador. PMID:27191391
Beati, Lorenza; Cáceres, Abraham G; Lee, Jamie A; Munstermann, Leonard E
2004-02-01
Lutzomyia spp. are New World phlebotomine sand flies, many of which are involved in the transmission of human diseases, such as leishmaniases and bartonellosis. The systematic classification of the approximately 400 species in the genus has been based on morphological characters, but the relationships within the genus are still very much in question. We have inferred phylogenies of 32 species of phlebotomine sand flies belonging to seven sub-genera and two species groups, by using fragments of the mitochondrial small subunit (12SrRNA) and of the nuclear large subunit (28SrRNA) ribosomal gene sequences. The subgenus Helcocyrtomyia and the Verrucarum species group, prominent representatives of the Peruvian sand fly fauna, were represented by 11 and 7 species, respectively. Although based on a limited number of taxa, the resulting phylogenies, based on 837 characters, provide an initial phylogenetic backbone for the progressive reconstruction of infrageneric relationships within Lutzomyia.
Synanthropy of mosquitoes and sand flies near the Aimorés hydroelectric power plant, Brazil.
Barata, R A; Ursine, R L; Nunes, F P; Morais, D H; Araújo, H S
2012-12-01
The environmental changes resulting from the construction of hydroelectric dams may affect the fauna of insect vectors and consequently the epidemiology of the diseases they transmit. This work examined the mosquito and sand fly fauna in the area of the Aimorés hydroelectric power plant, analyzing the seasonal distribution and the degree of species synanthropy in different ecotopes. Between November, 2008 and September, 2009, entomological captures were performed with the help of HP light traps in the rural, urban, and forest areas of Aimorés, Ituêta, Resplendor, and Baixo Guandu counties. The fauna proved to be quite diversified. Twenty-two species of mosquitoes and 11 species of sand flies were found. Culex quinquefasciatus was predominant among mosquitoes (76.7%), while Lutzomyia intermedia prevailed among sand flies (34.5%). Some of the captured species have medical interest. Supported by the high degree of synanthropy, those species reinforce the need for epidemiological surveillance. © 2012 The Society for Vector Ecology.
Brazil, Reginaldo P; Pontes, Michelle C de Queiroz; Passos, Wagner Lança; Rodrigues, Andressa A Fuzari; Brazil, Beatriz Gomes
2011-03-01
Cutaneous leishmaniasis, caused by Leishmania (Viannia) braziliensis, is sporadic in many rural and suburban areas of Rio de Janeiro State. An investigation was carried out during 2008/9 in the Municipality of Saquarema, Rio de Janeiro, Southeast Brazil, in order to identify the phlebotomine sand fly fauna. More than 2,100 sand flies were collected in peridomestic areas in two chicken coops using CDC light traps. Nine species of phlebotomine sand flies were identified: Nyssomyia intermedia, Nyssomyia whitmani, Pintomyia (P.) pessoai, Pintomyia (P.) fischeri, Pintomyia (P.) bianchigalatiae, Migonemyia (M.) migonei, Lutzomyia (L.) longipalpis, Brumptomyia cunhai and Brumptomyia guimaraesi. Based on the results of this study together with related studies in other CL foci in Rio de Janeiro, both Nissomyia intermedia and Migonemyia migonei can be considered suspect vectors of the disease in the region. The potential risk of VL due to the presence of its proven vector L. longipalpis is discussed. © 2011 The Society for Vector Ecology.
2013-01-01
Background Sand flies (Diptera: Psychodidae) are the vectors of Leishmania parasites, the causative agents of leishmaniasis. Cutaneous leishmaniasis is an increasing public health problem in the Republic of Suriname and is mainly caused by Leishmania (Vianna) guyanensis, but L. (V.) braziliensis, L. (L.) amazonensis, and L. (V.) naiffi also infect humans. Transmission occurs predominantly in the forested hinterland of the country. Information regarding the potential vectors of leishmaniasis in Suriname is limited. This study aims to broaden the knowledge about vectors involved in the transmission of cutaneous leishmaniasis in Suriname. For this purpose, sand flies were characterized in various foci of cutaneous leishmaniasis in the country, the districts of Para, Brokopondo, and Sipaliwini. Methods Sand flies were collected in areas around mining plots and villages using CDC light traps in the period between February 2011 and March 2013. They were categorized by examination of the spermathecea (females) and the external genitalia (males). Results A total of 2,743 sand fly specimens belonging to 34 different species were captured, including four species (Lutzomyia aragaoi, Lu. ayrozai, Lu. damascenoi, and Lu. sordellii) that had never before been described for Suriname. Five percent of the catch comprised Lu. squamiventris sensu lato, one female of which was positive with L. (V.) braziliensis and was captured in a gold mining area in Brokopondo. Other sand fly species found positive for Leishmania parasites were Lu. trichopyga, Lu. ininii, and Lu. umbratilis, comprising 32, 8, and 4%, respectively, of the catch. These were captured at gold mining areas in Brokopondo and Sipaliwini, but the Leishmania parasites they had ingested could not be identified due to insufficient amounts of DNA. Conclusions The sand fly fauna in Suriname is highly diverse and comprises Lutzomyia species capable of transmitting Leishmania parasites. Four new Lutzomyia species have been found, and four species - Lu. squamiventris (s.l.), Lu. trichopyga, Lu. ininii, and Lu. umbratilis - have been found to harbor Leishmania parasites. The latter were among the most abundant species captured. These observations may contribute to the understanding of leishmaniasis transmission and the development of control programs in Suriname. PMID:24499490
2013-01-01
Background Leishmaniasis remains a serious neglected disease, with more than 350 million people potentially at risk worldwide. Control strategies often rely on spraying residual insecticides to target populations of the sand fly vectors that transmit Leishmania parasites when blood-feeding. These programmes are often difficult to sustain effectively, as sand fly resting sites must be resprayed on a regular basis. Here, we investigate whether application of insecticide-impregnated netting to a surface could act as an alternative to residual spraying for controlling the American visceral leishmaniasis vector Lutzomyia longipalpis. Methods Female L. longipalpis from our laboratory colony were exposed for 1 h to three treatments applied to plywood surfaces: 2% permethrin-impregnated netting (Olyset®), 20 mg a.i.m-2 micro-encapsulated lambda-cyhalothrin (Demand CS®) and a no-treatment control. We compared the speed at which these treatments acted, by measuring the percentage of sand flies killed both immediately after exposure to the treatment for 1 hour, as well as the number that had died 24 h after the 1 hour exposure. We repeated the experiment at 6 and 12 months following application to test the effectiveness of each treatment over time. Results When first applied, the lambda-cyhalothrin killed more sand flies in the first hour than the permethrin-impregnated netting. However, the effectiveness of the lambda-cyhalothrin diminished over time, so that there was no difference between the two treatments at 12 months. Both killed more sand flies than the control. When measured 24 h following exposure, both test treatments had killed close to 100% of sand flies when first applied, but while the lethal effect of the netting was maintained at close to 100% over 12 months, the effectiveness of the residual insecticide diminished to approximately 80% after 6 months. Conclusions The results of these initial laboratory experiments indicate that covering surfaces with insecticide impregnated netting material may provide a longer-lasting solution for killing sand flies than residual spraying. Field trials are needed to identify the feasibility of treating surfaces with netting or similar impregnated materials as part of a control program. In targeting L. longipalpis, the greatest benefits may be seen in treating animal sheds with netting, where these sand flies aggregate in large numbers, and which can be difficult to treat repeatedly by conventional spraying. PMID:23642213
Ebrahimi, Sahar; Bordbar, Ali; Rastaghi, Ahmad R Esmaeili; Parvizi, Parviz
2016-06-01
Cutaneous leishmaniasis (CL) is a complex vector-borne disease caused by Leishmania parasites that are transmitted by the bite of several species of infected female phlebotomine sand flies. Monthly factor analysis of climatic variables indicated fundamental variables. Principal component-based regionalization was used for recognition of climatic zones using a clustering integrated method that identified five climatic zones based on factor analysis. To investigate spatial distribution of the sand fly species, the kriging method was used as an advanced geostatistical procedure in the ArcGIS modeling system that is beneficial to design measurement plans and to predict the transmission cycle in various regions of Khuzestan province, southwest of Iran. However, more than an 80% probability of P. papatasi was observed in rainy and temperate bio-climatic zones with a high potential of CL transmission. Finding P. sergenti revealed the probability of transmission and distribution patterns of a non-native vector of CL in related zones. These findings could be used as models indicating climatic zones and environmental variables connected to sand fly presence and vector distribution. Furthermore, this information is appropriate for future research efforts into the ecology of Phlebotomine sand flies and for the prevention of CL vector transmission as a public health priority. © 2016 The Society for Vector Ecology.
Coleman, Russell E; Burkett, Douglas A; Putnam, John L; Sherwood, Van; Caci, Jennifer B; Jennings, Barton T; Hochberg, Lisa P; Spradling, Sharon L; Rowton, Edgar D; Blount, Keith; Ploch, John; Hopkins, Grady; Raymond, Jo-Lynne W; O'Guinn, Monica L; Lee, John S; Weina, Peter J
2006-07-01
One of the most significant modern day efforts to prevent and control an arthropod-borne disease during a military deployment occurred when a team of U.S. military entomologists led efforts to characterize, prevent, and control leishmaniasis at Tallil Air Base (TAB), Iraq, during Operation Iraqi Freedom. Soon after arriving at TAB on 22 March 2003, military entomologists determined that 1) high numbers of sand flies were present at TAB, 2) individual soldiers were receiving many sand fly bites in a single night, and 3) Leishmania parasites were present in 1.5% of the female sand flies as determined using a real-time (fluorogenic) Leishmania-generic polymerase chain reaction assay. The rapid determination that leishmaniasis was a specific threat in this area allowed for the establishment of a comprehensive Leishmaniasis Control Program (LCP) over 5 mo before the first case of leishmaniasis was confirmed in a U.S. soldier deployed to Iraq. The LCP had four components: 1) risk assessment, 2) enhancement of use of personal protective measures by all personnel at TAB, 3) vector and reservoir control, and 4) education of military personnel about sand flies and leishmaniasis. The establishment of the LCP at TAB before the onset of any human disease conclusively demonstrated that entomologists can play a critical role during military deployments.
Biology and distribution of Lutzomyia apache as it relates to VSV
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are vectors of bacteria, parasites, and viruses. Lutzomyia apache was incriminated as a vector of vesicular stomatitis viruses(VSV)due to overlapping ranges of the sand fly and outbreaks of VSV. I report on newly discovered populations of L. apache in Wyoming from Albany and ...
USDA-ARS?s Scientific Manuscript database
Current U.S. military operations in deserts face persistent threats from sand flies that transmit human Leishmania. In this study we investigated the efficacy of artificial barriers treated with residual insecticide to potentially reduce the risk of human infection from leishmaniasis by reducing the...
Studies of Phlebotomine Sand Flies.
1979-08-31
wellcomei, a proven vector of leishmaniasis elsewhere in Brazil, was found by the Principal Investigator and colleagues in rainforest north of the Amazon ...and Sycoracinae). Technical Bull. 806. Agr. Exp. Stat., Univ. of Fla. 166 p. 15. Arias, J. and D.G. Young. 1980. Sand flies of the central Amazon of
Sand fly control in Kenya with residual pesticide application on HESCO barriers
USDA-ARS?s Scientific Manuscript database
US military operations in hot-arid regions still face significant impacts from mosquito and sand fly vectors of diseases. Personal protective measures (PPM) such as DEET or treated bed nets and clothing can reduce contact with disease vectors and nuisance insects; however, irregular use of PPM coupl...
USDA-ARS?s Scientific Manuscript database
Leishmaniasis is an insect-borne disease caused by several protozoan species in the genus Leishmania, vectored by sand fly species in the genera Phlebotomus, Lutzomyia or others, with different species affecting different geographic ranges. Phlebotomus papatasi (Scopoli) is a major vector of Leishma...
Diaz-Albiter, Hector; Mitford, Roanna; Genta, Fernando A.; Sant'Anna, Mauricio R. V.; Dillon, Rod J.
2011-01-01
The phlebotomine sand fly Lutzomyia longipalpis is the most important vector of American visceral leishmaniasis (AVL), the disseminated and most serious form of the disease in Central and South America. In the natural environment, most female L. longipalpis are thought to survive for less than 10 days and will feed on blood only once or twice during their lifetime. Successful transmission of parasites occurs when a Leishmania-infected female sand fly feeds on a new host. Knowledge of factors affecting sand fly longevity that lead to a reduction in lifespan could result in a decrease in parasite transmission. Catalase has been found to play a major role in survival and fecundity in many insect species. It is a strong antioxidant enzyme that breaks down toxic reactive oxygen species (ROS). Ovarian catalase was found to accumulate in the developing sand fly oocyte from 12 to 48 hours after blood feeding. Catalase expression in ovaries as well as oocyte numbers was found to decrease with age. This reduction was not found in flies when fed on the antioxidant ascorbic acid in the sugar meal, a condition that increased mortality and activation of the prophenoloxidase cascade. RNA interference was used to silence catalase gene expression in female Lu. longipalpis. Depletion of catalase led to a significant increase of mortality and a reduction in the number of developing oocytes produced after blood feeding. These results demonstrate the central role that catalase and ROS play in the longevity and fecundity of phlebotomine sand flies. PMID:21408075
Efficacy of Commercial Mosquito Traps in Capturing Phlebotomine Sand Flies in Egypt
USDA-ARS?s Scientific Manuscript database
Adult mosquito traps of four types that are marketed for homeowner use in residential settings were compared with a standard CDC light trap for efficacy in collecting phlebotomine sand flies. We evaluated the Mosquito MagnetTM Pro (MMP), the SentinelTM 360 mosquito trap (S360), the BG-SentinelTM mo...
Response of Phlebotomine Sand Flies to Light-Emitting Diode-Modified Light Traps in Southern Egypt
2007-04-01
light. Only one study has been performed on a New World sand fly ( Lutzomyia Iongipalpis) measuring spectral sensitivity with an electroretinogram... Lutzomyia longipalpis sandflies. Med. Vet. Entomol. 10: 372-374. Muir, L.E., M.J. Thorne, and D.H. Kay. 1992. Aedes aegypti (Diptera: Culicidae) vision
USDA-ARS?s Scientific Manuscript database
A study was conducted with support from the Department of Defense’s Deployed Warfighter Protection (DWFP) Program to evaluate the susceptibility of two old world sand fly species, Phlebotomus papatasi and P. duboscqi, to a number of commonly used pyrethroid and organophosphate insecticides. A simpl...
Souza, Nataly Araujo de; Silva, Juliana Bastos da; Godoy, Rodrigo Espíndola; Souza, Filipe Jonas Mattos de; Andrade-Coelho, Cláudia Alves de; Silva, Vanderlei Campos; Azevedo, Alfredo Carlos Rodrigues de; Rangel, Elizabeth Ferreira
2015-01-01
The presence of American cutaneous leishmaniasis (ACL) in the communities of the Campus FIOCRUZ Mata Atlântica (CFMA) in the City of Rio de Janeiro initiated the investigation of the Phlebotominae fauna in the Atlantic Forest to determine the occurrence of putative ACL vectors associated with the enzootic cycle. For 24 consecutive months, sand flies were captured inside the forest and in the border area near the communities. The following sand fly species were identified: Brumptomyia brumpti, Brumptomyia cunhai, Brumptomyia nitzulescui, Lutzomyia edwardsi, Lutzomyia pelloni, and Lutzomyia quinquefer. Other identified sand fly vectors, such as Lutzomyia intermedia (the predominant species), Lutzomyia migonei, Lutzomyia whitmani, Lutzomyia fischeri, and Lutzomyia hirsuta hirsuta, are associated with ACL transmission, and the vector for American visceral leishmaniases (AVL), Lutzomyia longipalpis, was also found. All sand fly vectors were found in both studied environments except for Lutzomyia whitmani, which was only identified in the forest. This study represents the first identification of Lutzomyia longipalpis in the CFMA, and the epidemiological implications are discussed.
Schall, Jos J
2011-11-01
Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.
Wasserberg, G; Kirsch, P; Rowton, E D
2014-06-01
A 3-chamber in-line olfactometer designed for use with sand flies is described and tested as a high-throughput method to screen honeys for attractiveness to Phlebotomus papatasi (four geographic isolates), P. duboscqi (two geographic isolates), and Lutzomyia longipalpis maintained in colonies at the Walter Reed Army Institute of Research. A diversity of unifloral honey odors were evaluated as a proxy for the natural floral odors that sand flies may use in orientation to floral sugar sources in the field. In the 3-chamber in-line olfactometer, the choice modules come directly off both sides of the release area instead of angling away as in the Y-tube olfactometer. Of the 25 honeys tested, five had a significant attraction for one or more of the sand fly isolates tested. This olfactometer and high-throughput method has utility for evaluating a diversity of natural materials with unknown complex odor blends that can then be down-selected for further evaluation in wind tunnels and/or field scenarios. © 2014 The Society for Vector Ecology.
Kato, Hirotomo; Calvopiña, Manuel; Criollo, Hipatia; Hashiguchi, Yoshihisa
2013-12-01
Epidemiological surveillance of leishmaniasis was conducted in a northern Amazonian region of Ecuador, in which cutaneous leishmaniasis cases were recently reported. Sand flies were captured in the military training camp, and the natural infection of sand flies by Leishmania species was examined. Out of 334 female sand flies dissected, the natural infection by flagellates was microscopically detected in 3.9% of Lutzomyia yuilli yuilli and 3.7% of Lutzomyia tortura, and the parasite species were identified as Endotrypanum and Leishmania (Viannia) naiffi, respectively. After the sand fly surveillance, specimens from cutaneous leishmaniasis (CL) patients considered to have acquired the infection in the training camp area were obtained, and the infected parasite species were identified as L. (V.) naiffi. The present study reported first cases of CL caused by L. (V.) naiffi infection in Ecuador. In addition, a high ratio of infection of Lu. tortura by L. (V.) naiffi in the same area strongly suggested that Lu. tortura is responsible for the transmission of L. (V.) naiffi in this area. Copyright © 2013 Elsevier B.V. All rights reserved.
Field evaluation of a new light trap for phlebotomine sand flies.
Gaglio, Gabriella; Napoli, Ettore; Falsone, Luigi; Giannetto, Salvatore; Brianti, Emanuele
2017-10-01
Light traps are one of the most common attractive method for the collection of nocturnal insects. Although light traps are generally referred to as "CDC light traps", different models, equipped with incandescent or UV lamps, have been developed. A new light trap, named Laika trap 3.0, equipped with LED lamps and featured with a light and handy design, has been recently proposed into the market. In this study we tested and compared the capture performances of this new trap with those of a classical light trap model under field conditions. From May to November 2013, a Laika trap and a classical light trap were placed biweekly in an area endemic for sand flies. A total of 256 sand fly specimens, belonging to 3 species (Sergentomyia minuta, Phlebotomus perniciosus, Phlebotomus neglectus) were collected during the study period. The Laika trap captured 126 phlebotomine sand flies: P. perniciosus (n=38); S. minuta (n=88), a similar number of specimens (130) and the same species were captured by classical light trap which collected also 3 specimens of P. neglectus. No significant differences in the capture efficiency at each day of trapping, neither in the number of species or in the sex of sand flies were observed. According to results of this study, the Laika trap may be a valid alternative to classical light trap models especially when handy design and low power consumption are key factors in field studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Hanafi-Bojd, A A; Rassi, Y; Yaghoobi-Ershadi, M R; Haghdoost, A A; Akhavan, A A; Charrahy, Z; Karimi, A
2015-12-01
Visceral leishmaniasis (VL) is an important vector-borne disease in Iran. Till now, Leishmania infantum has been detected from five species of sand flies in the country including Phlebotomus kandelakii, Phlebotomus major s.l., Phlebotomus perfiliewi, Phlebotomus alexandri and Phlebotomus tobbi. Also, Phlebotomus keshishiani was found to be infected with Leishmania parasites. This study aimed at predicting the probable niches and distribution of vectors of visceral leishmaniasis in Iran. Data on spatial distribution studies of sand flies were obtained from Iranian database on sand flies. Sample points were included in data from faunistic studies on sand flies conducted during 1995-2013. MaxEnt software was used to predict the appropriate ecological niches for given species, using climatic and topographical data. Distribution maps were prepared and classified in ArcGIS to find main ecological niches of the vectors and hot spots for VL transmission in Iran. Phlebotomus kandelakii, Ph. major s.l. and Ph. alexandri seem to have played a more important role in VL transmission in Iran, so this study focuses on them. Representations of MaxEnt model for probability of distribution of the studied sand flies showed high contribution of climatological and topographical variables to predict the potential distribution of three vector species. Isothermality was found to be an environmental variable with the highest gain when used in isolation for Ph. kandelakii and Ph. major s.l., while for Ph. alexandri, the most effective variable was precipitation of the coldest quarter. The results of this study present the first prediction on distribution of sand fly vectors of VL in Iran. The predicted distributions were matched with the disease-endemic areas in the country, while it was found that there were some unaffected areas with the potential transmission. More comprehensive studies are recommended on the ecology and vector competence of VL vectors in the country. © 2015 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.
2016-07-01
The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.
Dostálová, Anna; Votýpka, Jan; Favreau, Amanda J; Barbian, Kent D; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C
2011-05-10
Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.
Lima, Leonardo H G de M; Mesquita, Marcelo R; Skrip, Laura; de Souza Freitas, Moisés T; Silva, Vladimir C; Kirstein, Oscar D; Abassi, Ibrahim; Warburg, Alon; Balbino, Valdir de Q; Costa, Carlos H N
2016-07-20
Little is known about the feeding behavior of hematophagous insects that require plant sugar to complete their life cycles. We studied plant feeding of Lutzomyia longipalpis sand flies, known vectors of Leishmania infantum/chagasi parasites, in a Brazilian city endemic with visceral leishmaniasis. The DNA barcode technique was applied to identify plant food source of wild-caught L. longipalpis using specific primers for a locus from the chloroplast genome, ribulose diphosphate carboxylase. DNA from all trees or shrubs within a 100-meter radius from the trap were collected to build a barcode reference library. While plants from the Anacardiaceae and Meliaceae families were the most abundant at the sampling site (25.4% and 12.7% of the local plant population, respectively), DNA from these plant families was found in few flies; in contrast, despite its low abundance (2.9%), DNA from the Fabaceae family was detected in 94.7% of the sand flies. The proportion of sand flies testing positive for DNA from a given plant family was not significantly associated with abundance, distance from the trap, or average crown expansion of plants from that family. The data suggest that there may indeed be a feeding preference of L. longipalpis for plants in the Fabaceae family.
Verma, Sudha; Das, Sushmita; Mandal, Abhishek; Ansari, Md Yousuf; Kumari, Sujata; Mansuri, Rani; Kumar, Ajay; Singh, Ruby; Saini, Savita; Abhishek, Kumar; Kumar, Vijay; Sahoo, Ganesh Chandra; Das, Pradeep
2017-06-23
In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to uninfected. Interestingly, during the early transition stage, substantial killing was observed in ISP2 knocked down (ISP2KD) parasites compared to wild type (WT), whereas ISP1 knocked down (ISP1KD) parasites remained viable. Therefore, our study clearly indicates that LdISP2 is a more effective inhibitor of serine peptidases than LdISP1. Our results suggest that the lack of ISP2 is detrimental to the parasites during the early transition from amastigotes to promastigotes. Moreover, the results of the present study demonstrated for the first time that LdISP2 has an important role in the inhibition of peptidases and promoting L. donovani survival inside the Phlebotomus argentipes midgut.
Bray, Daniel P.; Carter, Vicky; Alves, Graziella B.; Brazil, Reginaldo P.; Bandi, Krishna K.; Hamilton, James G. C.
2014-01-01
Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases. PMID:24651528
Bray, Daniel P; Carter, Vicky; Alves, Graziella B; Brazil, Reginaldo P; Bandi, Krishna K; Hamilton, James G C
2014-03-01
Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases.
Casanova, Cláudio; Andrighetti, Maria T M; Sampaio, Susy M P; Marcoris, Maria L G; Colla-Jacques, Fernanda E; Prado, Angelo P
2013-01-01
The scarcity of information on the immature stages of sand flies and their preferred breeding sites has resulted in the focus of vectorial control on the adult stage using residual insecticide house-spraying. This strategy, along with the treatment of human cases and the euthanasia of infected dogs, has proven inefficient and visceral leishmaniasis continues to expand in Brazil. Identifying the breeding sites of sand flies is essential to the understanding of the vector's population dynamic and could be used to develop novel control strategies. In the present study, an intensive search for the breeding sites of Lutzomyia longipalpis was conducted in urban and peri-urban areas of two municipalities, Promissão and Dracena, which are endemic for visceral leishmaniasis in São Paulo State, Brazil. During an exploratory period, a total of 962 soil emergence traps were used to investigate possible peridomiciliary breeding site microhabitats such as: leaf litter under tree, chicken sheds, other animal sheds and uncovered debris. A total of 160 sand flies were collected and 148 (92.5%) were L. longipalpis. In Promissão the proportion of chicken sheds positive was significantly higher than in leaf litter under trees. Chicken shed microhabitats presented the highest density of L. longipalpis in both municipalities: 17.29 and 5.71 individuals per square meter sampled in Promissão and Dracena respectively. A contagious spatial distribution pattern of L. longipalpis was identified in the emergence traps located in the chicken sheds. The results indicate that chicken sheds are the preferential breeding site for L. longipalpis in the present study areas. Thus, control measures targeting the immature stages in chicken sheds could have a great effect on reducing the number of adult flies and consequently the transmission rate of Leishmania (Leishmania) infantum chagasi.
Casanova, Cláudio; Andrighetti, Maria T. M.; Sampaio, Susy M. P.; Marcoris, Maria L. G.; Colla-Jacques, Fernanda E.; Prado, Ângelo P.
2013-01-01
Background The scarcity of information on the immature stages of sand flies and their preferred breeding sites has resulted in the focus of vectorial control on the adult stage using residual insecticide house-spraying. This strategy, along with the treatment of human cases and the euthanasia of infected dogs, has proven inefficient and visceral leishmaniasis continues to expand in Brazil. Identifying the breeding sites of sand flies is essential to the understanding of the vector's population dynamic and could be used to develop novel control strategies. Methodology/Principal finding In the present study, an intensive search for the breeding sites of Lutzomyia longipalpis was conducted in urban and peri-urban areas of two municipalities, Promissão and Dracena, which are endemic for visceral leishmaniasis in São Paulo State, Brazil. During an exploratory period, a total of 962 soil emergence traps were used to investigate possible peridomiciliary breeding site microhabitats such as: leaf litter under tree, chicken sheds, other animal sheds and uncovered debris. A total of 160 sand flies were collected and 148 (92.5%) were L. longipalpis. In Promissão the proportion of chicken sheds positive was significantly higher than in leaf litter under trees. Chicken shed microhabitats presented the highest density of L. longipalpis in both municipalities: 17.29 and 5.71 individuals per square meter sampled in Promissão and Dracena respectively. A contagious spatial distribution pattern of L. longipalpis was identified in the emergence traps located in the chicken sheds. Conclusion The results indicate that chicken sheds are the preferential breeding site for L. longipalpis in the present study areas. Thus, control measures targeting the immature stages in chicken sheds could have a great effect on reducing the number of adult flies and consequently the transmission rate of Leishmania (Leishmania) infantum chagasi. PMID:24069494
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, David; Purgert, Robert; Rhudy, Richard
2000-04-21
The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containingmore » 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.« less
Berger, Ruti; Wasserberg, Gideon; Warburg, Alon; Orshan, Laor; Kotler, Burt P
2014-08-01
Populations at the edge of their geographic distributions are referred to as peripheral populations. Very little attention has been given to this topic in the context of persistence of infectious disease in natural populations. In this study, we examined this question using zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major in the Negev Desert of Israel as a model system. Here, we suggest that the regional persistence of Phlebotomus papatasi populations and L. major transmission in the Sede Boqer region could be explained through processes akin to sink-source and/or mainland-island metapopulation dynamics. Given its potentially enzootically superior ecological conditions, we hypothesize that the Zin Valley ecotope constitutes the "mainland" or the "source" patch for the Sede Boqer area where L. major transmission is persistent and resistant to local extinctions (die-outs) whereas the local sand fly populations on the Zin Plateau ("island patch" or "sink patch") are more prone to local extinctions. Between 2007 and 2008, we trapped sand flies and sand rats in the two areas and compared sand fly abundance and L. major infection prevalence in both. In both 2007 and 2008, sand fly abundance was high and continuous in the Zin Wadi but low and discontinuous in the Zin Plateau. Infection prevalence of sand rats was significantly higher in the Wadi (13%) compared with the Zin Plateau (3%). Minimum infection rate in sand flies did not differ significantly between the two areas. Overall, our results are consistent with the premise that the Zin Valley population is relatively robust in terms of L. major transmission, whereas transmission is potentially more tenuous in the plateau. Understanding the biotic and abiotic processes enabling the persistence of L. major and other vector-borne diseases in peripheral disease foci is important for predicting the effect of anthropogenic land use and climate change.
Berger, Ruti; Warburg, Alon; Orshan, Laor; Kotler, Burt P.
2014-01-01
Abstract Populations at the edge of their geographic distributions are referred to as peripheral populations. Very little attention has been given to this topic in the context of persistence of infectious disease in natural populations. In this study, we examined this question using zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major in the Negev Desert of Israel as a model system. Here, we suggest that the regional persistence of Phlebotomus papatasi populations and L. major transmission in the Sede Boqer region could be explained through processes akin to sink-source and/or mainland-island metapopulation dynamics. Given its potentially enzootically superior ecological conditions, we hypothesize that the Zin Valley ecotope constitutes the “mainland” or the “source” patch for the Sede Boqer area where L. major transmission is persistent and resistant to local extinctions (die-outs) whereas the local sand fly populations on the Zin Plateau (“island patch” or “sink patch”) are more prone to local extinctions. Between 2007 and 2008, we trapped sand flies and sand rats in the two areas and compared sand fly abundance and L. major infection prevalence in both. In both 2007 and 2008, sand fly abundance was high and continuous in the Zin Wadi but low and discontinuous in the Zin Plateau. Infection prevalence of sand rats was significantly higher in the Wadi (13%) compared with the Zin Plateau (3%). Minimum infection rate in sand flies did not differ significantly between the two areas. Overall, our results are consistent with the premise that the Zin Valley population is relatively robust in terms of L. major transmission, whereas transmission is potentially more tenuous in the plateau. Understanding the biotic and abiotic processes enabling the persistence of L. major and other vector-borne diseases in peripheral disease foci is important for predicting the effect of anthropogenic land use and climate change. PMID:25072990
USDA-ARS?s Scientific Manuscript database
The cattle tick, Boophilus microplus, and the sand fly, Phlebotomus papatasi (Pp), are vectors of infectious agents affecting cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from R. microplus(BmAChE1) and Pp (PpAchE) for c...
USDA-ARS?s Scientific Manuscript database
Traps used for mosquitoes can possibly used to capture phlebotomine sand flies as well, but little testing has been done. Traps powered by propane could be extremely useful because most produce their own carbon dioxide (CO2), which can increase the number of sand flies captured. Scientists at the US...
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Fadzil, M. Y.; Nazrin Akmal, A. Z. Muhammad; Ahmad, S. Wan; Nur Azzimah, Z.; Hanafi, H. Mohd; Mohamad Hafizuddin, R.
2018-04-01
Both oil palm shell (OPS) and fly ash are by-product generated from the industries. Disposal of these by-product as wastes cause negative impact to the environment. The use of both oil palm shell and fly ash in concrete is seen as an economical solution for making green and denser concrete. The primary aim of this research is to determine the effects of FA utilization as sand replacement in oil palm shell lightweight aggregate concrete (OPS LWAC) towards sulphate resistance. Five concrete mixes containing fly ash as sand replacement namely 0%, 10%, 20%, 30% and 40% were prepared in these experimental work. All mixes were cast in form of cubes before subjected to sulphate solution for the period of 5 months. It was found that addition of 10% fly ash as sand replacement content resulted in better sulphate resistance of OPS LWAC. The occurrence of pozzolanic reaction due to the presence of FA in concrete has consumed the vulnerable Calcium hydroxide to be secondary C-S-H gel making the concrete denser and more durable.
Construction procedures using self hardening fly ash
NASA Astrophysics Data System (ADS)
Thornton, S. I.; Parker, D. G.
1980-07-01
Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.
Dokhan, Mostafa Ramahdan; Kenawy, Mohamed Amin; Shaibi, Taher; Annajar, Badereddin Bashir
2017-01-01
Background: Al Rabta is a rural area in the North-West of Libya that represents an important focus of zoonotic cutaneous leishmaniasis. This study aimed to evaluate the effect of Ultra Low Volume (ULV) applications in controlling sand flies and its impact on leishmaniasis transmission in this area. Methods: Two neighboring villages were selected: Al Rabta West (RW) as cypermethrin treated village and Al Rabta East (RE) as check one. The ULV was evaluated through 3 spraying cycles during Apr, Jun and Sep 2013. In the two villages, a number of outdoor sites were selected for sampling of sand flies (twice a month) using the CDC light traps. The cases of CL reported in the two villages during the study period were obtained from Al Rabta health center. Results: The two villages were similar where 9 species of sand flies (6 of Phlebotomu and 3 of Sergentomyia) were collected of which S. minuta and P. papatasi were the abundant species. As compared to the pre- ULV spraying, during the post- spraying periods: i) the reduction in abundance of the different species ranged from 20.85 to 77.52% with 46.69% as an overall reduction for all species altogether and, ii) in significantly (P> 0.05) higher mean ratio of males: females for all species altogether (1:2.41). Moreover, ULV spraying resulted in the absence of CL (Leishmania major) cases (Passive Case Detection) Conclusion: The efficiency of ULV spraying in reducing sand fly population, CL cases and consequently limits the disease transmission. PMID:29322056
Pereira-Filho, Adalberto Alves; Fonteles, Raquel Silva; Bandeira, Maria da Conceição Abreu; Moraes, Jorge Luiz Pinto; Rebêlo, José Manuel Macário; Melo, Maria Norma
2018-02-20
Sand flies are very common in the region of Lençóis Maranhenses National Park, an important tourist attraction in Brazil. However, the role of some species and their relative importance locally in Leishmania Ross 1903 transmission is unclear. The objective of this study was to identify Leishmania infection in phlebotomine sand flies collected around the Lençóis Maranhenses National Park, an important conservation area and popular international/national tourist destination with a high incidence of leishmaniasis. Sand flies were collected in peridomiciliary areas on the tourist route from September 2012 to August 2013. The captured females were subjected to molecular analyses for the detection of Leishmania DNA. Sand flies were infected with four Leishmania species: Leishmania (Viannia) braziliensis (Vianna, 1911) was found in Lutzomyia whitmani (Antunes and Coutinho, 1939) (2.1%) and Lutzomyia longipalpis (Lutz and Neiva, 1912) (1.7%); Leishmania (Leishmania) infantum (Nicole, 1908) infected Lutzomyia wellcomei (Fraiha, Shaw, and Lainson, 1971) (20%), Lutzomyia sordellii (Shannon and Del Ponte, 1927) (4.3%), Lu. longipalpis (3.7%), and Lu. whitmani (0.8%); Leishmania (Leishmania) amazonensis (Lainson & Shaw, 1972) was found in Lu. whitmani (0.58%), while Leishmania (Viannia) lainsoni infected Lutzomyia evandroi (Costa Lima and Antunes, 1936) (3.4%), Lu. longipalpis (1.06%), and Lu. whitmani (0.29%). The occurrence of these parasites requires control measures to reduce the incidence of cutaneous leishmaniasis and to contain a possible epidemic of visceral leishmaniasis, the most severe form of the disease.
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies, including Phlebotomus papatasi, are blood feeders and vectors of significant public health importance because they transmit Leishmania spp., which cause leishmaniasis. Deployed U.S. Military personnel in the Middle East suffer from sand fly bites and are at risk of contract...
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies, including Phlebotomus papatasi, are blood feeders and vectors of significant public health importance because they transmit Leishmania spp., which cause leishmaniasis. Deployed U.S. Military personnel in the Middle East suffer from sand fly bites and are at risk of contracti...
USDA-ARS?s Scientific Manuscript database
Species composition, activity patterns and blood meal analysis of sand fly populations were investigated in the metropolitan region of Thessaloniki, North Greece from May to October 2011. Sampling was conducted weekly in 3 different environments (animal facilities, open fields, residential areas) al...
Studies of the Biology of Phleboviruses in Sandflies.
1983-02-01
8217Ahiebotomus fever, sand fly fever, arbovirus, medical entomology, Phiebotomus, Lutzomyia, vector-borne diseases, insect cell cultures, _)_Laboratory...parenteral administration. Most of the viruses replicated in sand flies after intrathorazic inoculation; however, the insects were quite refractory to oral...cells was also established and tested for its ability to support the growth of a number of different arbaviruses. Most of the rhabdoviruses
USDA-ARS?s Scientific Manuscript database
Sand flies are recognized as the major vector of canine visceral leishmaniasis. However, in some areas of Brazil where sand flies do not occur, this disease is found in humans and dogs. There has been speculation that ticks might play a role in transmission of canine visceral leishmaniasis and the D...
Morrison, A C; Ferro, C; Pardo, R; Torres, M; Devlin, B; Wilson, M L; Tesh, R B
1995-07-01
Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1993 in a small rural community in Colombia where American visceral leishmaniasis is endemic. Standardized weekly sand fly collections made from pigpens and natural resting sites displayed a bimodal annual abundance cycle, with a small peak occurring in October-November and a larger one in April-May. Time series analysis was employed to quantify the associations between sand fly abundance and weather factors (temperature, relative humidity, and rainfall). In addition to a prominent 6-mo cycle. Fourier analysis of the collection data demonstrated that the L. longipalpis population also exhibited a 5- to 8-wk cycle that may represent the length of larval development. Autoregressive moving average models were fit to weekly collection data and their residuals were regressed against rainfall, temperature, and relative humidity. A significant positive association between female L. longipalpis abundance and the relative humidity and rainfall recorded 3 wk earlier was found, indicating that these factors may be of value in predicting sand fly abundance. Additionally, these data indicated that L. longipalpis larvae may become quiescent during adverse conditions.
Galardo, Allan Kardec Ribeiro; Galardo, Clícia Denis; Silveira, Guilherme Abbad; Ribeiro, Kaio Augusto Nabas; Hijjar, Andréa Valadão; Oliveira, Liliane Leite; Dos Santos, Thiago Vasconcelos
2015-01-01
An entomological study was conducted as part of a vector-monitoring program in the area associated with the Santo Antônio hydroelectric system in State of Rondônia, Western Amazonian Brazil. Fourteen sampling sites were surveyed to obtain data on the potential vectors of Leishmania spp. in the area. Sand flies were collected from 2011 to 2014 during the months of January/February (rainy season), May/June (dry season), and September/October (intermediary season) using light traps arranged in three vertical strata (0.5, 1, and 20m). A total of 7,575 individuals belonging to 62 species/subspecies were collected. The five most frequently collected sand flies were Psychodopygus davisi (Root) (36.67%), Trichophoromyia ubiquitalis (Mangabeira) (8.51%), Nyssomyia umbratilis (Ward & Fraiha) (6.14%), Bichromomyia flaviscutellata (Mangabeira) (5.74%), and Psychodopygus complexus (Mangabeira) (5.25%). These species have been implicated in the transmission of American cutaneous leishmaniasis agents in the Brazilian Amazon region and described as potential vectors of this disease in the study area. Additional surveillance is needed, especially in areas where these five species of sand fly are found.
Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha
2015-01-01
DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil. PMID:26506007
Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio
2015-01-01
DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.
Yared, Solomon; Gebresilassie, Araya; Akililu, Essayas; Deribe, Kebede; Balkew, Meshesha; Warburg, Alon; Hailu, Asrat; Gebre-Michael, Teshome
2017-12-01
The Leishmaniases are caused by the protozoan parasites of the genus Leishmania and are transmitted to humans by the bite of infected female phlebotomine sand flies. Both visceral and cutaneous leishmaniases are widely distributed in different parts of Ethiopia. The aim of this study was to determine the diversity and altitudinal distribution of phlebotomine sand flies from Kafta Humera to Gondar town in northwest Ethiopia. Seven localities were selected with distinct altitudinal variations between 550m above sea level (m a.s.l) and 2300m a.s.l. In each locality, sand flies were collected using standard CDC light traps and sticky traps during the active sand fly season from December 2012 to May 2013. Shannon-Weiner species diversity index and Jaccard's coefficient were used to estimate species diversity and similarity between altitudes and localities, respectively. A total of 89,044 sand flies (41,798 males and 47, 246 females) were collected from the seven localities/towns throughout the study period. Twenty-two species belonging to 11 species in the genus Phlebotomus and 11 species in the genus Sergentomyia were documented. Of these, Sergentomyia clydei (25.87%), S. schwetzi (25.21%), S. africana (24.65%), S. bedfordi (8.89%), Phlebotomus orientalis (6.43%), and S. antennata (4.8%) were the most prevalent species. The remaining 10 Phlebotomus species and six Sergentomyia were less frequent catches. In CDC light trap and sticky trap, higher species diversity and richness for both male and female sand flies was observed at low altitude ranging from 550 to 699m a.s.l in Adebay village in Kafta Humera district whereas low species richness and high evenness of both sexes were also observed in an altitude 1950-2300m a.s.l. The results revealed that the presence of leishmaniasis vectors such as P. orientalis, P. longipes, P. papatasi, and P. duboscqi in different altitudes in northwest Ethiopia. P. orientalis a vector of L. donovani, occurred between altitude 500-1100m a.s.l, the area could be at high risk of VL. P. longipes a vector of L. aethiopica, was recorded in the highland area in Tikil-Dingay and Gondar town, implicating the possibility of CL transmission. Hence, further investigation into vector competence in relation to leishmaniasis (VL and CL) in the region is very vital. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Taxonomy and Biology of Phlebotomine Vectors of Human Disease.
Five new Lutzomyia species were collected in Colombia in 1986; these previously unknown females of other sand flies were illustrated and described...and Peru, were discovered. Lutzomyia peruensis, a suspected vector of Leishmania in Peru, may represent two or more morphospecies. Results of studies...of oocyte topography of 5 Lutzomyia species and brain cell chromosomes of 12 species showed interspecific variation. Specimens of sand flies from
Phlebotomine Vectors of Human Disease.
1983-12-30
to the phiebotomine sand fly fauna of Ecuador.................... ... .. .. .. ..... II. New records of phiebotomine sand flies from Peru with a...THIS PAGE (When Date Entered) ii SECURITY CLASSIFICATION OF THIS PAGE(Whdn Dat& Batored) collected for the first time in Peru at a site in Madre de...of the former disease in Peru with 3,795 human cases reported in 1982. Collections of phlebotomines in Costa Rica yielded an undescribed Lutzomyia
Imidacloprid as a Potential Agent for the Systemic Control of Sand Flies
2011-03-01
Imidacloprid as a potential agent for the systemic control of sand flies Gideon Wasserberg1,4*, Richard... imidacloprid as a systemic control agent. First, to evaluate the blood-feeding effect, we fed adult female Phlebotomus papatasi with imidacloprid ...mortality was obtained with a dose of only 250 ppm. Overall, results support the feasibility of imidacloprid as a systemic control agent that
Posada-López, L; Galvis-Ovallos, F; Galati, E A B
2018-01-10
A new species of phlebotomine sand fly, Trichophoromyia velezbernali sp. n. Posada-López, Galvis & Galati, from Colombian Amazonia is described with illustrations and images of male and female adults. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Many military tents are made of vinyl and cotton duck. Because it is useful to treat exterior tent surfaces to manage phlebotomine sand flies, DoD and ARS scientists evaluated the efficacy of 3 residual insecticides on both tent fabrics. P. papatasi was effectively killed by shade-stored and sun-exp...
Chagas, Erica Cristina da Silva; Silva, Arineia Soares; Fé, Nelson Ferreira; Ferreira, Lucas Silva; Sampaio, Vanderson de Souza; Terrazas, Wagner Cosme Morhy; Guerra, Jorge Augusto Oliveira; Souza, Rodrigo Augusto Ferreira de; Silveira, Henrique; Guerra, Maria das Graças Vale Barbosa
2018-03-13
Phlebotomine sand flies (Diptera: Psychodidae) are vectors of Leishmania species, the etiological agents of leishmaniasis, which is one of the most important emerging infectious diseases in the Americas. In the state of Amazonas in Brazil, anthropogenic activities encourage the presence of these insects around rural homes. The present study aimed to describe the composition and distribution of sand fly species diversity among the ecotopes (intradomicile, peridomicile and forest) in an area of American cutaneous leishmaniasis transmission and detect natural infection with Leishmania DNA to evaluate which vectors are inside houses and whether the presence of possible vectors represents a hazard of transmission. Phlebotomine sand flies were collected using light traps. A total of 2469 specimens representing 54 species, predominantly females (71.2%), were collected from four sites. Polymerase chain reaction analysis was performed on 670 samples to detect Leishmania DNA. Most of the samples (79.5%) were collected in the forest, with areas closer to rural dwellings yielding a greater abundance of suspected or proven vectors and a larger number of species containing Leishmania DNA. Nyssomyia umbratilis and Bichromomyia flaviscutellata were found near rural homes, and Ny. umbratilis was also found inside homes. Leishmania DNA was detected in different species of sand flies in all ecotopes, including species with no previous record of natural infection. There is no evidence that vectors of American cutaneous leishmaniasis are becoming established inside homes, but there are sand flies, including Ny. umbratilis and other possible vectors, in environments characterized by a human presence. These species continue to be predominant in the forest but are prevalent in areas closer to ecotopes with a greater human presence. The existence of proven or suspected vectors in this ecotope is due to the structural organization of rural settlements and may represent a hazard of transmission. Although the detection of Leishmania DNA in species that were not previously considered vectors does not mean that they are transmitting the parasite, it does show that the parasite is circulating in ecotopes where these species are found.
Monteiro, Carolina Cunha; Villegas, Luis Eduardo Martinez; Campolina, Thais Bonifácio; Pires, Ana Clara Machado Araújo; Miranda, Jose Carlos; Pimenta, Paulo Filemon Paolucci; Secundino, Nagila Francinete Costa
2016-08-31
Parasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector. We performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota. Bacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups. The metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing the constituents of Lu. intermedia native microbiota contribute to the knowledge regarding the bacterial community in an important sand fly vector and allow for further studies to better understand how the microbiota interacts with vectors of human parasites and to develop tools for biological control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, David; Purgert, Robert; Rhudy, Richard
1999-10-15
Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less
Utilization of fly ash and ultrafine GGBS for higher strength foam concrete
NASA Astrophysics Data System (ADS)
Gowri, R.; Anand, K. B.
2018-02-01
Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.
Alkan, Cigdem; Zapata, Sonia; Bichaud, Laurence; Moureau, Grégory; Lemey, Philippe; Firth, Andrew E; Gritsun, Tamara S; Gould, Ernest A; de Lamballerie, Xavier; Depaquit, Jérôme; Charrel, Rémi N
2015-12-01
A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses. Copyright © 2015 Alkan et al.
Hanafi-Bojd, Ahmad Ali; Khoobdel, Mehdi; Soleimani-Ahmadi, Moussa; Azizi, Kourosh; Aghaei Afshar, Abbas; Jaberhashemi, Seyed Aghil; Fekri, Sajjad; Safari, Reza
2018-02-28
Cutaneous Leishmaniasis (CL) is one of the main neglected vector-borne diseases in the Middle East, including Iran. This study aimed to map the spatial distribution and species composition of sand flies in Hormozgan Province and to predict the best ecological niches for main CL vectors in this area. A database that included all earlier studies on sand flies in Hormozgan Province was established. Sand flies were also collected from some localities across the province. Prediction maps for main vectors were developed using MaxEnt model. A total of 27 sand fly species were reported from the study area. Phlebotomus papatasi Scopoli, Phlebotomus sergenti s.l. Parrot, Phlebotomus alexandri Sinton, Sergentomyia sintoni Pringle, Sergentomyia clydei Sinton, Sergentomyia tiberiadis Adler, and Sergentomyia baghdadis Adler (Diptera: Psychodidae) had the widest distribution range. The probability of their presence as the main vectors of CL was calculated to be 0.0003-0.9410 and 0.0031-0.8880 for P. papatasi and P. sergenti s.l., respectively. The best ecological niches for P. papatasi were found in the central south, southeast, and a narrow area in southwest, whereas central south to northern area had better niches for P. sergenti s.l. The endemic areas are in Bandar-e Jask, where transmission occurs, whereas in Bastak, the cases were imported from endemic foci of Fars province. In conclusion, proven and suspected vectors of CL and VL were recorded in this study. Due to the existence of endemic foci of CL, and favorite ecological niches for its vectors, there is potential risk of emerging CL in new areas.
Infran, J O M; Souza, D A; Fernandes, W S; Casaril, A E; Eguchi, G U; Oshiro, E T; Fernandes, C E S; Paranhos Filho, A C; Oliveira, A G
2017-01-01
Recording the nycthemeral rhythm of sand flies allows the evaluation of the daily activity in different ecotypes, the period of greatest activity, and their degree of anthropophily. We investigated the fauna and the rhythm of sand fly activity in an ecotourism region in Mato Grosso do Sul (MS) state, Brazil. Sand flies were captured monthly, using a Shannon trap for 24 h periods between July 2012 and June 2014. We collected 1,815 sand flies, in which Lutzomyia whitmani (=Nyssomyia whitmani, sensu Galati) and Lutzomyia longipalpis were the most abundant species during the dry season, with activity from 5 p.m.-7 a.m. and 6 p.m.-5 a.m., respectively. Both species require particular attention as vectors of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum in several regions of Brazil, including MS. However, Lutzomyia dispar was more anthropophilic, and was most active between January and March, from 5 p.m. to 5 a.m. Lutzomyia misionensis (=Pintomyia misionensis, sensu Galati) was present throughout both years, active from 4 p.m. to 5 a.m. Other species were active from 5 p.m. to 6 a.m. Due to intense tourism in the months that coincide with a high number of vectors for leishmaniases in Piraputanga, it is essential to determine vector-monitoring strategies in the area by investigating sand fly rhythm while not neglecting other periods of the year when the insects are present. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zapata, Sonia; Bichaud, Laurence; Moureau, Grégory; Lemey, Philippe; Firth, Andrew E.; Gritsun, Tamara S.; Gould, Ernest A.; de Lamballerie, Xavier; Depaquit, Jérôme
2015-01-01
ABSTRACT A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses. PMID:26355096
Nascimento, Bruno Warlley Leandro; Saraiva, Lara; Neto, Rafael Gonçalves Teixeira; Meira, Paula Cavalcante Lamy Serra e; Sanguinette, Cristiani de Castilho; Tonelli, Gabriel Barbosa; Botelho, Helbert Antônio; Belo, Vinícius Silva; Silva, Eduardo Sérgio da; Gontijo, Célia Maria Ferreira; Filho, José Dilermando Andrade
2013-03-01
The transmission of Leishmania involves several species of sand flies that are closely associated with various parasites and reservoirs, with differing transmission cycles in Brazil. A study on the phlebotomine species composition has been conducted in the municipality of Divinópolis, Minas Gerais, Brazil, an endemic area for cutaneous leishmaniasis (CL), which has intense occurrence of visceral leishmaniasis (VL) cases. In order to study the sand flies populations and their seasonality, CDC light traps (HP model) were distributed in 15 houses which presented at least one case of CL or VL and in five urban parks (green areas). Collections were carried out three nights monthly from September 2010 to August 2011. A total of 1064 phlebotomine specimens were collected belonging to two genera and seventeen species: Brumptomyia brumpti, Lutzomyia bacula, Lutzomyia cortelezzii, Lutzomyia lenti, Lutzomyia sallesi, Lutzomyia longipalpis, Lutzomyia migonei, Lutzomyia intermedia, Lutzomyia neivai, Lutzomyia whitmani, Lutzomyia christenseni, Lutzomyia monticola, Lutzomyia pessoai, Lutzomyia aragaoi, Lutzomyia brasiliensis, Lutzomyia lutziana, and Lutzomyia sordellii. L. longipalpis, the main vector of Leishmania infantum in Brazil, was the most frequent species, accounting for 76.9% of the total, followed by L. lenti with 8.3%, this species is not a proven vector. Green and urban areas had different sand flies species composition, whereas the high abundance of L. longipalpis in urban areas and the presence of various vector species in both green and urban areas were also observed. Our data point out to the requirement of control measures against phlebotomine sand flies in the municipality of Divinópolis and adoption of strategies aiming entomological surveillance. Copyright © 2012 Elsevier B.V. All rights reserved.
Doehl, Johannes S. P.; Sádlová, Jovana; Aslan, Hamide; Pružinová, Kateřina; Votýpka, Jan; Kamhawi, Shaden; Volf, Petr
2017-01-01
Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation. PMID:28095465
Gidwani, Kamlesh; Picado, Albert; Rijal, Suman; Singh, Shri Prakash; Roy, Lalita; Volfova, Vera; Andersen, Elisabeth Wreford; Uranw, Surendra; Ostyn, Bart; Sudarshan, Medhavi; Chakravarty, Jaya; Volf, Petr; Sundar, Shyam; Boelaert, Marleen; Rogers, Matthew Edward
2011-01-01
Background Visceral leishmaniasis is the world' second largest vector-borne parasitic killer and a neglected tropical disease, prevalent in poor communities. Long-lasting insecticidal nets (LNs) are a low cost proven vector intervention method for malaria control; however, their effectiveness against visceral leishmaniasis (VL) is unknown. This study quantified the effect of LNs on exposure to the sand fly vector of VL in India and Nepal during a two year community intervention trial. Methods As part of a paired-cluster randomized controlled clinical trial in VL-endemic regions of India and Nepal we tested the effect of LNs on sand fly biting by measuring the antibody response of subjects to the saliva of Leishmania donovani vector Phlebotomus argentipes and the sympatric (non-vector) Phlebotomus papatasi. Fifteen to 20 individuals above 15 years of age from 26 VL endemic clusters were asked to provide a blood sample at baseline, 12 and 24 months post-intervention. Results A total of 305 individuals were included in the study, 68 participants provided two blood samples and 237 gave three samples. A random effect linear regression model showed that cluster-wide distribution of LNs reduced exposure to P. argentipes by 12% at 12 months (effect 0.88; 95% CI 0.83–0.94) and 9% at 24 months (effect 0.91; 95% CI 0.80–1.02) in the intervention group compared to control adjusting for baseline values and pair. Similar results were obtained for P. papatasi. Conclusions This trial provides evidence that LNs have a limited effect on sand fly exposure in VL endemic communities in India and Nepal and supports the use of sand fly saliva antibodies as a marker to evaluate vector control interventions. PMID:21931871
Gidwani, Kamlesh; Picado, Albert; Rijal, Suman; Singh, Shri Prakash; Roy, Lalita; Volfova, Vera; Andersen, Elisabeth Wreford; Uranw, Surendra; Ostyn, Bart; Sudarshan, Medhavi; Chakravarty, Jaya; Volf, Petr; Sundar, Shyam; Boelaert, Marleen; Rogers, Matthew Edward
2011-09-01
Visceral leishmaniasis is the world' second largest vector-borne parasitic killer and a neglected tropical disease, prevalent in poor communities. Long-lasting insecticidal nets (LNs) are a low cost proven vector intervention method for malaria control; however, their effectiveness against visceral leishmaniasis (VL) is unknown. This study quantified the effect of LNs on exposure to the sand fly vector of VL in India and Nepal during a two year community intervention trial. As part of a paired-cluster randomized controlled clinical trial in VL-endemic regions of India and Nepal we tested the effect of LNs on sand fly biting by measuring the antibody response of subjects to the saliva of Leishmania donovani vector Phlebotomus argentipes and the sympatric (non-vector) Phlebotomus papatasi. Fifteen to 20 individuals above 15 years of age from 26 VL endemic clusters were asked to provide a blood sample at baseline, 12 and 24 months post-intervention. A total of 305 individuals were included in the study, 68 participants provided two blood samples and 237 gave three samples. A random effect linear regression model showed that cluster-wide distribution of LNs reduced exposure to P. argentipes by 12% at 12 months (effect 0.88; 95% CI 0.83-0.94) and 9% at 24 months (effect 0.91; 95% CI 0.80-1.02) in the intervention group compared to control adjusting for baseline values and pair. Similar results were obtained for P. papatasi. This trial provides evidence that LNs have a limited effect on sand fly exposure in VL endemic communities in India and Nepal and supports the use of sand fly saliva antibodies as a marker to evaluate vector control interventions.
Species diversity of sand flies and ecological niche model of Phlebotomus papatasi in central Iran.
Abedi-Astaneh, Fatemeh; Akhavan, Amir Ahmad; Shirzadi, Mohammd Reza; Rassi, Yavar; Yaghoobi-Ershadi, Mohammad Reza; Hanafi-Bojd, Ahmad Ali; Akbarzadeh, Kamran; Nafar-Shalamzari, Reza; Parsi, Sohbat; Abbasi, Ali; Raufi, Hedayatollah
2015-09-01
Cutaneous leishmaniasis (CL) is the most important vector-borne disease in Iran. Qom Province is a very important area in the case of CL transmission, because of high traffic population from other parts of the country, or even other countries, as well as existence of confirmed foci of the disease. The aim of this study was to determine the ecology of sand flies in two different climates of this province and model the distribution of the main vector. Sand flies were collected monthly during April 2013-April 2014, at 22 urban/rural collection sites. Site selection was constrained by the geographical distribution of CL cases in recent years. Shannon-Weiner and Evenness indices were used to compare diversity in two studied climates. ArcGIS and MaxEnt were used to map and predict the appropriate ecological niches for sand flies. Totally, 5389 sand flies were collected and 12 species were identified. The most abundant species were Sergentomyia sintoni, P. papatasi, P. sergenti s.l. and Phlebotomus alexandri. Two peaks of activity were found in May and August in lowlands; while in mountainous areas they were observed in June and September. Species diversity in mountainous areas was found to be higher than in lowlands. The environmental variable with the highest gain in MaxEnt model was the monthly mean of (max temp-min temp). A big part of the lowland areas provides good ecological niches for P. papatasi and therefore higher transmission potential. These findings can be used in stratification of potential for CL transmission in Qom province. Copyright © 2015 Elsevier B.V. All rights reserved.
Cochero, Suljey; Anaya, Yosed; Díaz, Yirys; Paternina, Margaret; Luna, Arturo; Paternina, Luis; Eduar Elías, Bejarano
2007-01-01
The presence of sand flies naturally infected with trypanosomatid parasites was determined in Los Montes de Maria, Colombia, a region considered endemic for visceral and cutaneous leishmaniasis. Phlebotomines were collected using CDC light-traps, and sticky traps soaked with castor oil placed in the peri and intradomestic habitats. Six species of Lutzomyia were morphologically identified among the 159 sand flies captured: Lu. evansi, Lu. cayennensis cayennensis, Lu. trinidadensis, Lu. atroclavata, Lu. gomezi and Lu. dubitans. A DNA band of 800 pb corresponding to the small-subunit ribosomal RNA gene (ssrRNA) of the family Trypanosomatidae was amplified in one pool of nine females of Lu. cayennensis cayennensis. This finding constitutes the first evidence of natural infection of this sand fly species with trypanosomatid parasites in Los Montes de Maria.
Mann, Rajinder S; Kaufman, Phillip E
2010-12-01
Laboratory colonization of hematophagous insects must include an efficient method of blood feeding, preferably by artificial means. Strict rules for obtaining animal use permits, extensive animal maintenance costs, and indirect anesthesia effects on animal health warrant the development of an artificial membrane feeding technique for sand fly colonization in laboratories. An attempt was made to colonize Lutzomyia shannoni using an artificial blood feeding membrane to replace the use of live animals commonly used for sand fly blood-feeding purposes. Lutzomyia shannoni readily fed through a pig intestine membrane exposed at an angle of 45°. However, it did not feed through a chicken skin membrane. Olfactory attractants were unable to improve blood-feeding efficiency. Plaster of Paris was the most suitable oviposition substrate. Female L. shannoni adults laid no eggs on moist sand substrate. Sand fly adults held in groups of ten or more laid higher numbers of eggs than did individually maintained sand flies. Inclusion of the L. longipalpis oviposition hormone dodecanoic acid or the presence of previously laid eggs did not stimulate L. shannoni oviposition. The average L. shannoni egg, larval, and pupal duration were 9.3, 36.7, and 17.8 days, respectively. The addition of a 20% sugar solution improved adult female longevity. Females survived longer (14.8 days) than males (11.9 days). Lutzomyia shannoni was successfully colonized in the laboratory for up to four generations using this artificial membrane technique. © 2010 The Society for Vector Ecology.
U.S. Army Medical Department Journal, April-June 2008
2008-06-01
IGR), against dengue vector mosquitoes. In the Peruvian Amazon community at Iquitos, Stancil42 (Naval Medical Research Center Detachment, Peru ...Research Unit- Kenya, Nairobi; Naval Medical Research Center Detachment, Lima, Peru ; Naval Medical Research Unit-2, Jakarta, Indonesia; and the Naval...These projects have revealed that sand flies often emerge from the soil beneath tents and camps. In an effort to prevent sand flies breeding in rodent
Laboratory Validation of the Sand Fly Fever Virus Antigen Assay
2015-12-01
TOSV), sandfly fever Sicilian virus (SFSV), sandfly fever Naples virus (SFNV), and Punta Toro virus (Tesh 1988 , Alkan et al . 2013). These viruses pose a...of meningitis in Mediter- ranean and southern European countries during the vector season (Braito et al . 1997). Sandfly fever Sicilian virus also...stationed there (Peralta et al . 1965). Rapid field assessments of sand flies for phleboviruses have been previously unavailable. The available tests are
Acoustic signals in the sand fly Lutzomyia (Nyssomyia) intermedia (Diptera: Psychodidae)
2011-01-01
Background Acoustic signals are part of the courtship of many insects and they often act as species-specific signals that are important in the reproductive isolation of closely related species. Here we report the courtship songs of the sand fly Lutzomyia (Nyssomyia) intermedia, one of the main vectors of cutaneous leishmaniasis in Brazil. Findings Recordings were performed using insects from three localities from Eastern Brazil: Posse and Jacarepaguá in Rio de Janeiro State and Corte de Pedra in Bahia State. The three areas have remnants of the Brazilian Atlantic forest, they are endemic for cutaneous leishmaniasis and L. intermedia is the predominant sand fly species. We observed that during courtship L. intermedia males from all populations produced pulse songs consisting of short trains. No significant differences in song parameters were observed between the males of the three localities. Conclusions L. intermedia males produce acoustic signals as reported for some other sand flies such as the sibling species of the Lutzomyia longipalpis complex. The lack of differences between the males from the three localities is consistent with previous molecular studies of the period gene carried out in the same populations, reinforcing the idea that L. intermedia is not a species complex in the studied areas and that the three populations are likely to have similar vectorial capacities. PMID:21569534
Acoustic signals in the sand fly Lutzomyia (Nyssomyia) intermedia (Diptera: Psychodidae).
Vigoder, Felipe M; Souza, Nataly A; Peixoto, Alexandre A
2011-05-13
Acoustic signals are part of the courtship of many insects and they often act as species-specific signals that are important in the reproductive isolation of closely related species. Here we report the courtship songs of the sand fly Lutzomyia (Nyssomyia) intermedia, one of the main vectors of cutaneous leishmaniasis in Brazil. Recordings were performed using insects from three localities from Eastern Brazil: Posse and Jacarepaguá in Rio de Janeiro State and Corte de Pedra in Bahia State. The three areas have remnants of the Brazilian Atlantic forest, they are endemic for cutaneous leishmaniasis and L. intermedia is the predominant sand fly species. We observed that during courtship L. intermedia males from all populations produced pulse songs consisting of short trains. No significant differences in song parameters were observed between the males of the three localities. L. intermedia males produce acoustic signals as reported for some other sand flies such as the sibling species of the Lutzomyia longipalpis complex. The lack of differences between the males from the three localities is consistent with previous molecular studies of the period gene carried out in the same populations, reinforcing the idea that L. intermedia is not a species complex in the studied areas and that the three populations are likely to have similar vectorial capacities.
Vianna, Elisa Neves; Morais, Maria Helena Franco; de Almeida, Andréa Sobral; Sabroza, Paulo Chagastelles; Reis, Ilka Afonso; Dias, Edelberto Santos; Carneiro, Mariângela
2016-01-01
Urban occurrence of human and canine visceral leishmaniasis (VL) is linked to households with characteristics conducive to the presence of sand flies. This study proposes an ad hoc classification of households according to the environmental characteristics of receptivity to phlebotominae and an entomological study to validate the proposal. Here we describe the phlebotominae population found in intra- and peridomiciliary environments and analyse the spatiotemporal distribution of the VL vector Lutzomyia longipalpis of households receptive to VL. In the region, 153 households were classified into levels of receptivity to VL followed by entomological surveys in 40 of those properties. Kruskal-Wallis verified the relationship between the households’ classification and sand fly abundance and Kernel analysis evaluated L. longipalpis spatial distribution: of the 740 sand flies were captured, 91% were L. longipalpis; 82% were found peridomiciliary whilst the remaining 18% were found intradomiciliary. No statistically significant association was found between sandflies and households levels. L. longipalpis counts were concentrated in areas of high vulnerability and some specific households were responsible for the persistence of the infestation. L. longipalpis prevails over other sand fly species for urban VL transmission. The entomological study may help target the surveillance and vector control strategies to domiciles initiating and/or maintaining VL outbreaks. PMID:27223866
Nzelu, Chukwunonso O; Gomez, Eduardo A; Cáceres, Abraham G; Sakurai, Tatsuya; Martini-Robles, Luiggi; Uezato, Hiroshi; Mimori, Tatsuyuki; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo
2014-04-01
Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.
2014-01-01
Background Sand fly collections were performed to study ecological aspects of the Phlebotominae fauna of the Xakriabá Indigenous Reserve, an area with endemic cutaneous leishmaniasis, located in the state of Minas Gerais, Brazil. Methods The collections were performed in peridomicile areas and along trails previously selected for the study of wild and synanthropic Leishmania hosts. Differences in the distribution patterns of the sand fly species as well as in species richness and abundance between the different ecotopes were investigated during both rainy and dry seasons over the course of the study period. Results A total of 8,046 sand flies belonging to 11 genera and 28 species were collected. Lutzomyia longipalpis and Nyssomyia intermedia were the most abundant species in peridomicile areas, whereas Martinsmyia minasensis and Lutzomyia cavernicola were the most abundant species among the different trail ecotopes. Conclusion The different composition of the sand fly fauna observed in the peridomicile areas and in the trails during the study, reinforces the importance of sampled different areas in a phlebotomine fauna survey. The presence of Lutzomyia longipalpis and Ny. Intermedia most abundant in peridomicile can be important to Leishmania infantum and Leishmania braziliensis transmission in the Imbaúbas native village. PMID:24886717
Efficacy of 65% permethrin applied to dogs as a spot-on against Phlebotomus perniciosus.
Molina, R; Espinosa-Góngora, C; Gálvez, R; Montoya, A; Descalzo, M A; Jiménez, M I; Dado, D; Miró, G
2012-07-06
Leishmania infantum is a protozoan parasite causing leishmaniosis, a visceral disease transmitted by the bites of sand flies. As the main reservoir of the parasite, dogs are the principal targets of control measures against this disease, which affects both humans and dogs. Several studies have revealed the usefulness of topical insecticide treatment (collars, spot-ons and sprays) in reducing the incidence and prevalence of L. infantum. The present study was designed to test the efficacy of 65% permethrin applied to dogs as a spot-on against the sand fly vector Phlebotomus perniciosus. The duration of the desired effects was also estimated to help design an optimal treatment regimen. Twelve dogs assigned to treatment (n=6) and control (n=6) groups were exposed to sand flies once a week over a seven-week period. Repellent and insecticidal efficacies were estimated and compared amongst the groups. Our findings indicate satisfactory repellent, or anti-feeding, effects lasting 3 weeks and short-term insecticidal effects lasting 2 weeks after initial application. Accordingly, we recommend the use of this product every 2-3 weeks during the active phlebotomine sand fly period to protect dogs against the bites of P. perniciosus. Copyright © 2012 Elsevier B.V. All rights reserved.
Fernández, María Soledad; Martínez, Mariela Florencia; Pérez, Adriana Alicia; Santini, María Soledad; Gould, Ignacio Tomás; Salomón, Oscar Daniel
2015-12-01
The performance of two light-emitting diode traps with white and black light for capturing phlebotomine sand flies, developed by the Argentinean Leishmaniasis Research Network (REDILA-WL and REDILA-BL traps), were compared with the traditional CDC incandescent light trap. Entomological data were obtained from six sand fly surveys conducted in Argentina in different environments. Data analyses were conducted for the presence and the abundance of Lutzomyia longipalpis, Migonemyia migonei, and Nyssomyia whitmani (106 sites). No differences were found in presence/absence among the three types of traps for all sand fly species (p>0.05). The collection mean of Lu. longipalpis from the REDILA-BL didn´t differ from the CDC trap means, nor were differences seen between the REDILA-WL and the CDC trap collection means (p>0.05), but collections were larger from the REDILA-BL trap compared to the REDILA-WL trap (p<0.05). For Mg. migonei and Ny. whitmani, no differences were found among the three types of traps in the number of individuals captured (p>0.05). These results suggest that both REDILA traps could be used as an alternative capture tool to the original CDC trap for surveillance of these species, and that the REDILA-BL will also allow a comparable estimation of the abundance of these flies to the CDC light trap captures. In addition, the REDILA-BL has better performance than the REDILA-WL, at least for Lu. longipalpis. © 2015 The Society for Vector Ecology.
Surendran, S N; Karunaratne, S H P P; Adams, Z; Hemingway, J; Hawkes, N J
2005-08-01
With an increasing incidence of cutaneous leishmaniasis in Sri Lanka, particularly in northern provinces, insecticide-mediated vector control is under consideration. Optimizing such a strategy requires the characterization of sand fly populations in target areas with regard to species composition and extant resistance, among other parameters. Sand flies were collected by human bait and cattle-baited net traps on Delft Island, used as an illegal transit location by many refugees returning to the north of Sri Lanka from southern India where leishmaniasis is endemic. For species identification, genomic DNA was extracted and a fragment of the ribosomal 18S gene amplified. The sequence from all flies analysed matched that of Phlebotomus argentipes Annandale & Brunetti, the primary vector in India and the most likely vector in Sri Lanka. Independent morphological analysis also identified P. argentipes. To establish the current susceptibility status of vector species, data were obtained at the biochemical level, from which potential cross-resistance to alternative insecticides can be predicted. The Delft Island collection was assayed for the activities of four enzyme systems involved in insecticide resistance (acetylcholinesterase, non-specific carboxylesterases, glutathione-S-transferases and cytochrome p450 monooxygenases), establishing baselines against which subsequent collections can be evaluated. There was preliminary evidence for elevated esterases and altered acetylcholinesterase in this population, the first report of these resistance mechanisms in sand flies to our knowledge, which probably arose from the malathion-based spraying regimes of the Anti-Malarial Campaign.
Leishmania sand fly interaction: progress and challenges.
Bates, Paul A
2008-08-01
Complex interactions occurs between Leishmania parasites and their sand fly vectors. Promastigotes of Leishmania live exclusively within the gut, possess flagella and are motile, and kinesins, kinases and G proteins have been described that play a role in regulating flagellar assembly. Movement within the gut is not random: promastigotes can detect gradients of solutes via chemotaxis and osmotaxis. Further they use their flagella to attach to the fly midgut using surface glyconconjugates, a key step in establishment of the infection. Differentiation of mammal-infective stages is characterised by significant biochemical and cellular remodelling. Further, the parasites can manipulate the behaviour of the vector to maximise their transmission, and flies may even deliver altruistic apoptotic forms to aid transmission of infective stages.
Strength and Density of Geopolymer Mortar Cured at Ambient Temperature for Use as Repair Material
NASA Astrophysics Data System (ADS)
Warid Wazien, A. Z.; Bakri Abdullah, Mohd Mustafa Al; Abd. Razak, Rafiza; Mohd Remy Rozainy, M. A. Z.; Faheem Mohd Tahir, Muhammad
2016-06-01
Geopolymers produced by synthesizing aluminosilicate source materials with an alkaline activator solution promised an excellent properties akin to the existing construction material. This study focused on the effect of various binder to sand ratio on geopolymer mortar properties. Mix design of geopolymer mortar was produced using NaOH concentration of 12 molars, ratio of fly ash/alkaline activator and ratio Na2SiO3/NaOH of 2.0 and 2.5 respectively. Samples subsequently ware cured at ambient temperature. The properties of geopolymer mortar were analysed in term of compressive strength and density at different period which are on the 3rd and 7th day of curing. Experimental results revealed that the addition of sand slightly increase the compressive strength of geopolymer. The optimum compressive strength obtained was up to 31.39 MPa on the 7th day. The density of geopolymer mortar was in the range between 2.0 g/cm3 to 2.23 g/cm3. Based on this findings, the special properties promoted by geopolymer mortar display high potential to be implemented in the field of concrete patch repair.
Medical Entomology in the United States Department of Defense: Challenging and Rewarding
2011-06-01
of forces succumbing to such debilitating diseases as malaria, dengue , chikungunya, Rift Valley fever , etc. It is the mission of the US DoD’s...disease outbreaks. Military entomologists were also sent to the US Gulf Coast region to provide disease vector surveillance and control assistance...insidious, blood-sucking fly known as the “sand fly” (Phlebotomus spp.) has become well known to personnel deployed to the region . Sand flies can
2013-01-01
identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a...tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85...improve effectiveness of pesticide application for control of the new world sand fly Lutzomyia longipalpis in chicken sheds [13]. Attempts to control
Studies of Phlebotomine Sand Flies.
1982-06-30
CLASSIFICATION OF THIS PAQE(W,. Date St.4- 20 ain subgenera of Lutzomyia were reviewed; a large work on the phlebotomines of Colombia , representing... Lutzomyia cirrita n. sp. from Colombia with a new synonym in the genus (Diptera: Psychodidae). Fla. Ent. 57:321-325. 8. Young, D.G. and D.J. Lewis. 1977...Report) * III. SUPPLEMENTARY NOTES III. KEY WORDS (Continue on reverse side if necesary and Identify by block number) Sand Fly Phlebotomus Lutzomyia
A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis
2016-10-01
14. ABSTRACT Leishmaniasis is caused by the protozoan Leishmania and is generally transmitted by the bite of sand flies of the genus Lutzomyia or...INTRODUCTION: Leishmaniasis is caused by the protozoan Leishmania and is generally transmitted by the bite of sand flies of the genus Lutzomyia or...and requires minimal training, will improve the quality of life of populations living in endemic areas. The availability of RPA-LF in economically
de Menezes, Juliana Perrone; Saraiva, Elvira M; da Rocha-Azevedo, Bruno
2016-05-04
Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.
Barreto, M; Burbano, M E; Barreto, P
2000-01-01
A total of 4,840 phlebotomine sand flies from 54 localities in Putumayo department (=state), in the Colombian Amazon region, were collected in Shannon traps, CDC light traps, resting places and from human baits. At least 42 Lutzomyia species were registered for the first time to the department. Psychodopygus and Nyssomyia were the subgenera with the greatest number of taxa, the most common species being L. (N.) yuilli and L. (N.) pajoti. They were sympatric in a wide zone of Putumayo, indicating that they should be treated as full species (new status). Among the anthropophilic sand flies, L. gomezi and L. yuilli were found in intradomiciliar, peridomestic, urban or forest habitats. L. richardwardi, L. claustrei, L. nocticola and L. micropyga are reported for the first time in the Colombian Amazon basin. L. pajoti, L. sipani and L. yucumensis are new records for Colombia.
Field evaluation of fly ash in aggregate shoulder materials : final report.
DOT National Transportation Integrated Search
1985-06-01
This study consisted of an evaluation of self-hardening fly ash (Class C) used as an additive in the treatment of shoulders surfaced with sand clay gravel and/or shell (oyster). This was accomplished through construction of fly ash treated aggregate ...
Studies of Phlebotomine Sand Flies.
1981-05-01
20, It different from Report) IS. SUPPLEMENTARY NOTES 9’. KEY WOFDS (Continue an teers*e aide it necessa y mid identify by block number) Lutzomyia ...illustrations and a description of a new species. Other new Lutzomyia sand flies were discovered in Mexico and Ecuador. A species group of Lutzomyia ...egg structure of some Lutzomyia D IN J OBSOLETE Continued-- / ’DD , j. 1473 EtnT oN OFNvS = LT Unclaggi;fi;R~d y - SECURITY CLASSIFICA rIOm OF THIS
Absavaran, A; Rassi, Y; Parvizi, P; Oshaghi, MA; Abaie, MR; Rafizadeh, S; Mohebali, M; Zarea, Z; Javadian, E
2009-01-01
Background: The adult female sand flies (Diptera: Psychodidae) of the subgenus Larroussius are important vectors of Leishmania infantum (Kinetoplastida: Tripanosomatidae) in Meshkinshahr district, Northwest of Iran. Four Phlebotomus (Larroussius) species are present in this area, i.e. Phlebotomus (Larroussius) kandelakii, P. (La.) major, P. (La.) perfiliewi and P. (La.) tobbi. The objective of the present study was to identify and distinguish the females of P. perfiliewi, P. major and P. tobbi, in this district. Methods: Adult sand flies were collected with sticky papers, CDC light traps, and aspirator in 2006. Individual sand flies of this four species from thirty different locations were characterized morphologically and by comparative DNA sequences analyses of a fragment of mitochondrial gene Cytochrome b (Cyt b) and nuclear gene Elongation Factor 1-alpha (EF-1α). PCR amplification was carried out for all three species P. major, P. perfiliewi and P. tobbi in the subgenus Larroussius. Results: Phylogenetic analyses of P. major populations in this study displayed two different populations and genetic diversity. Spermathecal segment number, pharyngeal armature and other morphological characters of these three species were examined and found to present consistent interspecific differences. Conclusion: According to our findings, the phylogeny of Cyt b and EF-1α haplotypes confirms the relationships between P. major, P. tobbi and P. perfiliewi as already defined by their morphological similarities. PMID:22808379
Rafizadeh, Sayena; Saraei, Mehrzad; Abaei, Mohammad Reza; Oshaghi, Mohammad Ali; Mohebali, Mehdi; Peymani, Amir; Naserpour-Farivar, Taghi; Bakhshi, Hassan; Rassi, Yavar
2016-06-01
Leishmaniasis is an important public health disease in many developing countries as well in Iran. The main objective of this study was to investigate on leishmania infection of wild caught sand flies in an endemic focus of disease in Esfarayen district, north east of Iran. Sand flies were collected by sticky papers and mounted in a drop of Puri's medium for species identification. Polymerase chain reaction techniques of kDNA, ITS1-rDNA, followed by restriction fragment length polymorphism were used for identification of DNA of Leishmania parasites within infected sand flies. Among the collected female sand flies, two species of Phlebotomus papatasi and Phlebotomus salehi were found naturally infected with Leishmania major. Furthermore, mixed infection of Leishmania turanica and L. major was observed in one specimen of P. papatasi. Sequence analysis revealed two parasite ITS1 haplotypes including three L. major with accession numbers: KJ425408, KJ425407, KM056403 and one L. turanica. (KJ425406). The haplotype of L. major was identical (100%) to several L. major sequences deposited in GenBank, including isolates from Iran, (Gen Bank accession nos.AY573187, KC505421, KJ194178) and Uzbekistan (Accession no.FN677357). To our knowledge, this is the first detection of L. major within wild caught P. salehi in northeast of Iran.
Martín-Martín, Inés
2013-01-01
Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166
Nogueira, Paula M.; Assis, Rafael R.; Torrecilhas, Ana C.; Saraiva, Elvira M.; Pessoa, Natália L.; Campos, Marco A.; Marialva, Eric F.; Ríos-Velasquez, Cláudia M.; Pessoa, Felipe A.; Secundino, Nágila F.; Rugani, Jerônimo N.; Nieves, Elsa; Turco, Salvatore J.; Melo, Maria N.
2016-01-01
The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly. PMID:27508930
Nogueira, Paula M; Assis, Rafael R; Torrecilhas, Ana C; Saraiva, Elvira M; Pessoa, Natália L; Campos, Marco A; Marialva, Eric F; Ríos-Velasquez, Cláudia M; Pessoa, Felipe A; Secundino, Nágila F; Rugani, Jerônimo N; Nieves, Elsa; Turco, Salvatore J; Melo, Maria N; Soares, Rodrigo P
2016-08-01
The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.
2010-01-01
Background Current strategies for controlling American visceral leishmaniasis (AVL) have been unable to prevent the spread of the disease across Brazil. With no effective vaccine and culling of infected dogs an unpopular and unsuccessful alternative, new tools are urgently needed to manage populations of the sand fly vector, Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae). Here, we test two potential strategies for improving L. longipalpis control using the synthetic sand fly pheromone (±)-9-methylgermacrene-B: the first in conjunction with spraying of animal houses with insecticide, the second using coloured sticky traps. Results Addition of synthetic pheromone resulted in greater numbers of male and female sand flies being caught and killed at experimental chicken sheds sprayed with insecticide, compared to pheromone-less controls. Furthermore, a ten-fold increase in the amount of sex pheromone released from test sheds increased the number of females attracted and subsequently killed. Treating sheds with insecticide alone resulted in a significant decrease in numbers of males attracted to sheds (compared to pre-spraying levels), and a near significant decrease in numbers of females. However, this effect was reversed through addition of synthetic pheromone at the time of insecticide spraying, leading to an increase in number of flies attracted post-treatment. In field trials of commercially available different coloured sticky traps, yellow traps caught more males than blue traps when placed in chicken sheds. In addition, yellow traps fitted with 10 pheromone lures caught significantly more males than pheromone-less controls. However, while female sand flies showed a preference for both blue and yellow pheromone traps sticky traps over white traps in the laboratory, neither colour caught significant numbers of females in chicken sheds, either with or without pheromone. Conclusions We conclude that synthetic pheromone could currently be most effectively deployed for sand fly control through combination with existing insecticide spraying regimes. Development of a standalone pheromone trap remains a possibility, but such devices may require an additional attractive host odour component to be fully effective. PMID:20222954
Denlinger, David S; Creswell, Joseph A; Anderson, J Laine; Reese, Conor K; Bernhardt, Scott A
2016-04-15
Insecticide resistance to synthetic chemical insecticides is a worldwide concern in phlebotomine sand flies (Diptera: Psychodidae), the vectors of Leishmania spp. parasites. The CDC bottle bioassay assesses resistance by testing populations against verified diagnostic doses and diagnostic times for an insecticide, but the assay has been used limitedly with sand flies. The objective of this study was to determine diagnostic doses and diagnostic times for laboratory Lutzomyia longipalpis (Lutz & Nieva) and Phlebotomus papatasi (Scopoli) to ten insecticides, including pyrethroids, organophosphates, carbamates, and DDT, that are used worldwide to control vectors. Bioassays were conducted in 1,000-ml glass bottles each containing 10-25 sand flies from laboratory colonies of L. longipalpis or P. papatasi. Four pyrethroids, three organophosphates, two carbamates and one organochlorine, were evaluated. A series of concentrations were tested for each insecticide, and four replicates were conducted for each concentration. Diagnostic doses were determined only during the exposure bioassay for the organophosphates and carbamates. For the pyrethroids and DDT, diagnostic doses were determined for both the exposure bioassay and after a 24-hour recovery period. Both species are highly susceptible to the carbamates as their diagnostic doses are under 7.0 μg/ml. Both species are also highly susceptible to DDT during the exposure assay as their diagnostic doses are 7.5 μg/ml, yet their diagnostic doses for the 24-h recovery period are 650.0 μg/ml for Lu. longipalpis and 470.0 μg/ml for P. papatasi. Diagnostic doses and diagnostic times can now be incorporated into vector management programs that use the CDC bottle bioassay to assess insecticide resistance in field populations of Lu. longipalpis and P. papatasi. These findings provide initial starting points for determining diagnostic doses and diagnostic times for other sand fly vector species and wild populations using the CDC bottle bioassay.
Alcolea, Pedro J.; Alonso, Ana; Domínguez, Mercedes; Parro, Víctor; Jiménez, Maribel; Molina, Ricardo; Larraga, Vicente
2016-01-01
Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation. PMID:27163123
Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr
2016-01-01
Background Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Methodology/Principal Findings Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Conclusions/Significance Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species. PMID:26986566
Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr
2016-03-01
Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.
Alcolea, Pedro J; Alonso, Ana; Domínguez, Mercedes; Parro, Víctor; Jiménez, Maribel; Molina, Ricardo; Larraga, Vicente
2016-05-01
Zoonotic visceral leishmaniasis is a vector-borne disease caused by Leishmania infantum in the Mediterranean Basin, where domestic dogs and wild canids are the main reservoirs. The promastigote stage replicates and develops within the gut of blood-sucking phlebotomine sand flies. Mature promastigotes are injected in the dermis of the mammalian host and differentiate into the amastigote stage within parasitophorous vacuoles of phagocytic cells. The major vector of L. infantum in Spain is Phlebotomus perniciosus. Promastigotes are routinely axenized and cultured to mimic in vitro the conditions inside the insect gut, which allows for most molecular, cellular, immunological and therapeutical studies otherwise inviable. Culture passages are known to decrease infectivity, which is restored by passage through laboratory animals. The most appropriate source of promastigotes is the gut of the vector host but isolation of the parasite is technically challenging. In fact, this option is not viable unless small samples are sufficient for downstream applications like promastigote cultures and nucleic acid amplification. In this study, in vitro infectivity and differential gene expression have been studied in cultured promastigotes at the stationary phase and in promastigotes isolated from the stomodeal valve of the sand fly P. perniciosus. About 20 ng RNA per sample could be isolated. Each sample contained L. infantum promastigotes from 20 sand flies. RNA was successfully amplified and processed for shotgun genome microarray hybridization analysis. Most differentially regulated genes are involved in regulation of gene expression, intracellular signaling, amino acid metabolism and biosynthesis of surface molecules. Interestingly, meta-analysis by hierarchical clustering supports that up-regulation of 22.4% of the differentially regulated genes is specifically enhanced by the microenvironment (i.e. sand fly gut or culture). The correlation between cultured and naturally developed promastigotes is strong but not very high (Pearson coefficient R2 = 0.727). Therefore, the influence of promastigote culturing should be evaluated case-by-case in experimentation.
Bettaieb, Jihene; Abdeladhim, Maha; Hadj Kacem, Saoussen; Abdelkader, Rania; Gritli, Sami; Chemkhi, Jomaa; Aslan, Hamide; Kamhawi, Shaden; Ben Salah, Afif; Louzir, Hechmi; Valenzuela, Jesus G.; Ben Ahmed, Melika
2015-01-01
Background During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. Methodology/Principal Findings Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. Conclusions/Significance Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease. PMID:26368935
Wolff, Marta; Galati, Eunice Aparecida Bianchi
2002-04-01
Two new species of phlebotomine sand fly from Colombian Andes are described, belonging to the subgenus Pifanomyia of the genus Pintomyia. P. (P.) limafalcaoae sp. nov. for which both sexes are described, is assigned to the series pia while P. (P.) antioquiensis sp. nov., known only from the male, is included in the series verrucarum. The subgenus Pifanomyia is characterized and identification keys presented for the two new species.
2006-07-05
an infection cycle becoming established in other hosts such as rodents and/or dogs. A hypothetical worst case scenario would unfold as 14...training exercises, family camp-outs, hiking, fishing, etc. The sand flies then vector the parasite to the rodent population during subsequent blood...feeds. The infection becomes locally established and maintained in the natural rodent population with sustained enzootic cycles that periodically
Tabbabi, Ahmed; Bousslimi, Nadia; Rhim, Adel; Aoun, Karim; Bouratbine, Aïda
2011-01-01
During September 2010, 133 female sand flies were caught inside houses of patients with cutaneous leishmaniasis in the focus for this disease in southeastern Tunisia and subsequently dissected. One specimen was positive for Leishmania protozoa. This sand fly species was identified as Phlebotomus sergenti, and the parasite was identified as L. tropica. This is the first report of P. sergenti involvement in transmission of L. tropica in Tunisia. PMID:21976566
2014-01-01
We review existing information on the epidemiology of American Cutaneous Leishmaniasis (ACL) in Panama, with emphasis on the bionomics of anthropophilic Lutzomyia sand fly species. Evidence from Panamanian studies suggests that there are six anthropophilic species in the country: Lutzomyia trapidoi, Lu. panamensis, Lu. gomezi, Lu. ylephiletor, Lu. sanguinaria and Lu. pessoana (Henceforth Lu. carrerai thula). In general, these taxa are abundant, widespread and feed opportunistically on their hosts, which make them potential transmitters of pathogens to a broad range of wildlife, domesticated animals and humans. Furthermore, nearly all man-biting species in Panama (with the exception of Lu. gomezi) expand demographically during the rainy season when transmission is likely higher due to elevated Leishmania infection rates in vector populations. Despite this, data on the distribution and prevalence of ACL suggest little influence of vector density on transmission intensity. Apart from Lu. trapidoi, anthropophilic species seem to be most active in the understory, but vertical stratification, as well as their opportunistic feeding behavior, could vary geographically. This in turn seems related to variation in host species composition and relative abundance across sites that have experienced different degrees of human alteration (e.g., deforestation) in leishmaniasis endemic regions of Panama. PMID:24886629
Moo-Llanes, David; Ibarra-Cerdeña, Carlos N.; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M.
2013-01-01
Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases. PMID:24069478
Moo-Llanes, David; Ibarra-Cerdeña, Carlos N; Rebollar-Téllez, Eduardo A; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M
2013-01-01
Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.
Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral Leishmaniasis
Soares, Bárbara Ribeiro; Souza, Ana Paula Almeida; Prates, Deboraci Brito; de Oliveira, Camila I.; Barral-Netto, Manoel; Miranda, José Carlos; Barral, Aldina
2013-01-01
Leishmania infantum chagasi causes visceral leishmaniasis (VL); it is transmitted by the sand fly Lutzomyia longipalpis that injects saliva and parasites into the host's skin during a blood meal. Chickens represent an important blood source for sand flies and their presence in the endemic area is often cited as a risk factor for VL transmission. However, the role of chickens in VL epidemiology has not been well defined. Here, we tested if chicken antibodies against Lu. longipalpis salivary gland sonicate (SGS) could be used as markers of exposure to sand fly bites. All naturally exposed chickens in a VL endemic area in Brazil developed anti-SGS IgY antibodies. Interestingly, Lu. longipalpis recombinant salivary proteins rLJM17 and rLJM11 were also able to detect anti-SGS IgY antibodies. Taken together, these results show that chickens can be used to monitor the presence of Lu. longipalpis in the peri-domiciliary area in VL endemic regions, when used as sentinel animals. PMID:23912591
Soares, Bárbara Ribeiro; Souza, Ana Paula Almeida; Prates, Deboraci Brito; de Oliveira, Camila I; Barral-Netto, Manoel; Miranda, José Carlos; Barral, Aldina
2013-01-01
Leishmania infantum chagasi causes visceral leishmaniasis (VL); it is transmitted by the sand fly Lutzomyia longipalpis that injects saliva and parasites into the host's skin during a blood meal. Chickens represent an important blood source for sand flies and their presence in the endemic area is often cited as a risk factor for VL transmission. However, the role of chickens in VL epidemiology has not been well defined. Here, we tested if chicken antibodies against Lu. longipalpis salivary gland sonicate (SGS) could be used as markers of exposure to sand fly bites. All naturally exposed chickens in a VL endemic area in Brazil developed anti-SGS IgY antibodies. Interestingly, Lu. longipalpis recombinant salivary proteins rLJM17 and rLJM11 were also able to detect anti-SGS IgY antibodies. Taken together, these results show that chickens can be used to monitor the presence of Lu. longipalpis in the peri-domiciliary area in VL endemic regions, when used as sentinel animals.
Carvalho, G M L; Rêgo, F D; Tanure, A; Silva, A C P; Dias, T A; Paz, G F; Andrade Filho, J D
2017-07-01
PCR-based identification of vertebrate host bloodmeals has been performed on several vectors species with success. In the present study, we used a previously published PCR protocol followed by DNA sequencing based on primers designed from multiple alignments of the mitochondrial cytochrome b gene used to identify avian and mammalian hosts of various hematophagous vectors. The amplification of a fragment encoding a 359 bp sequence of the Cyt b gene yielded recognized amplification products in 192 female sand flies (53%), from a total of 362 females analyzed. In the study area of Casa Branca, Brazil, blood-engorged female sand flies such as Lutzomyia longipalpis (Lutz & Neiva, 1912), Migonemyia migonei (França, 1924), and Nyssomyia whitmani (Antunes & Coutinho, 1939) were analyzed for bloodmeal sources. The PCR-based method identified human, dog, chicken, and domestic rat blood sources. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
U.S. military operations face significant negative impacts on mission readiness from disease-vector and nuisance filth flies, mosquitoes, and sand flies. Through the Deployed War Fighter Protection Program (DWFP) we previously developed small scale 9 ft by 3 ft pesticide-treated perimeters enhanced ...
Host status of blueberry to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Armstrong, John W; Zee, Francis T
2009-10-01
Forced infestation studies were conducted to determine whether northern or southern highbush blueberries, Vaccinium corymbosum L., are hosts for the invasive tephritid fruit flies in Hawaii. Fruit were exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal and adult emergence. The number of puparia, number of puparia per gram, and percentage of adult emergence on 'Bluecrop' blueberry were significantly higher for B. dorsalis and C. capitata than B. cucurbitae; B. dorsalis, C. capitata, and B. cucurbitae produced an average of 1.06, 0.60, and 0.09 pupae per g fruit and had 5.8, 54.1, and 12.7% adult emergence, respectively. 'Berkeley' blueberries produced an average of only 0.06, 0.02, and 0.0 pupae per g fruit for B. dorsalis, C. capitata, and B. cucurbitae, respectively. Similarly, six blueberry cultivars were harvested weekly for 10 wk, exposed to Bactrocera latifrons (Hendel) in cages, and held for pupal and adult emergence on either sand or artificial diet. In total, 2,677 blueberries were exposed to 2681 B. latifons and held on sand, and no pupariation or adult emergence was observed. Small numbers of B. latifrons puparia and adults emerged from the artificial diet treatment in all cultivars. Results from rearing on sand and diet indicate that blueberry is an acceptable oviposition host for B. latifrons but not an adequate developmental host. These data suggest blueberry is potentially a good host for B. dorsalis and C. capitata, and an adequate host for Bactrocera cucurbitae, but that there may be significant variation in resistance among cultivars. Blueberry seems to be a nonhost for B. latifrons.
Giantsis, Ioannis A; Chaskopoulou, Alexandra; Claude Bon, Marie
2017-02-01
Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are hematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens, and the implementation of targeted pest control strategies. Here, we designed a novel, time-saving, cost-effective and easy-to-apply molecular methodology, which avoids sequencing, for the identification of the following six Eastern Mediterranean sand fly species: Phebotomus perfiliewi Parrot, Phebotomus simici Theodor, Phebotomus tobbi Adler and Theodor, Phebotomus papatasi Scopoli, Sergentomyia dentata Sinton, and Sergentomyia minuta Theodor. This methodology, which is a multiplex PCR assay using one common and six diagnostic primers, is based on species-specific single-nucleotide polymorphisms of the nuclear 18S rRNA gene. Amplification products were easily and reliably separated in agarose gel yielding one single clear band of diagnostic size for each species. Further, we verified its successful application on tissue samples that were immersed directly to the PCR mix, skipping DNA extraction. The direct multiplex PCR can be completed in < 3 h, including all operating procedures, and costing no more than a simple PCR. The applicability of this methodology in the detection of hybrids is an additional considerable benefit. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vivero, Rafael J; Contreras, María Angélica; Suaza, Juan D; Vélez, Iván D; Porter, Charles; Uribe, Sandra
2017-03-29
The departments of Chocó and Antioquia in Colombia show climatic and vegetation conditions favoring the establishment of vector species of the genus Lutzomyia and the transmission of Leishmania spp. to human populations entering conserved forest environments. To report the species of Phlebotomine sandflies present in three natural reserves in the Darien and Pacific regions of Colombia. Sand flies were collected specifically in the natural reserves El Aguacate (Acandí, Chocó), Nabugá (Bahía Solano, Chocó) and Tulenapa (Carepa, Antioquia). Sand flies were collected with CDC light traps, active search in resting places and Shannon traps. The taxonomic determination of species was based on taxonomic keys. For some species of taxonomic interest, we evaluated the partial sequences of the 5' region of COI gene. A total of 611 adult sand flies were collected: 531 in Acandí, 45 in Carepa and 35 in Bahía Solano. Seventeen species of the genus Lutzomyia, three of the genus Brumptomyia and one of the genus Warileya were identified. The genetic distances (K2P) and grouping supported (>99%) in the neighbor joining dendrogram were consistent for most established molecular operational taxonomic units (MOTU) of the Aragaoi group and clearly confirmed the identity of Lu. coutinhoi. Species that have importance in the transmission of leishmaniasis in Acandí, Bahía Solano and Carepa were identified. The presence of Lu. coutinhoi was confirmed and consolidated in Colombia.
Carvalho, Augusto M.; Cristal, Juqueline R.; Muniz, Aline C.; Carvalho, Lucas P.; Gomes, Regis; Miranda, José C.; Barral, Aldina; Carvalho, Edgar M.; de Oliveira, Camila I.
2015-01-01
Background. Leishmaniasis is caused by parasites transmitted to the vertebrate host by infected sand flies. During transmission, the vertebrate host is also inoculated with sand fly saliva, which exerts powerful immunomodulatory effects on the host's immune response. Methods. We conducted a prospective cohort analysis to characterize the human immune response to Lutzomyia intermedia saliva in 264 individuals, from an area for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Results. Antibodies were found in 150 individuals (56.8%); immunoglobulin G1 and G4 were the predominant subclasses. Recall responses to salivary gland sonicate showed elevated production of interleukin 10 (IL-10), interleukin 13, interferon γ, CXCL9, and CCL2 compared with controls. CD4+CD25+ T cells, including Foxp3+ cells, were the main source of IL-10. L. braziliensis replication was increased (P < .05) in macrophages cocultured with saliva-stimulated lymphocytes from exposed individuals and addition of anti–IL-10 reverted this effect. Positive correlation between antibody response to saliva and cellular response to Leishmania was not found. Importantly, individuals seropositive to saliva are 2.1 times more likely to develop CL (relative risk, 2.1; 95% confidence interval, 1.07–4.2; P < .05). Conclusions. Exposure to L. intermedia sand flies skews the human immune response, facilitating L. braziliensis survival in vitro, and increases the risk of developing CL. PMID:25596303
Teixeira, Clarissa; Gomes, Regis; Collin, Nicolas; Reynoso, David; Jochim, Ryan; Oliveira, Fabiano; Seitz, Amy; Elnaiem, Dia-Eldin; Caldas, Arlene; de Souza, Ana Paula; Brodskyn, Cláudia I; de Oliveira, Camila Indiani; Mendonca, Ivete; Costa, Carlos H N; Volf, Petr; Barral, Aldina; Kamhawi, Shaden; Valenzuela, Jesus G
2010-03-23
Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.
Scott Altman flying Shuttle Training Aircraft (STA).
2009-03-04
JSC2009-E-054053 (4 March 2009) --- Astronaut Scott Altman, STS-125 commander, flies a Shuttle Training Aircraft (STA) over White Sands Test Facility, New Mexico, during a training session. Photo Credit: Richard N. Clark, AOD division chief
Scott Altman flying Shuttle Training Aircraft (STA).
2009-03-04
JSC2009-E-054052 (4 March 2009) --- Astronaut Scott Altman, STS-125 commander, flies a Shuttle Training Aircraft (STA) over White Sands Test Facility, New Mexico, during a training session. Photo Credit: Richard N. Clark, AOD division chief
Chowdhury, Rajib; Dotson, Ellen; Blackstock, Anna J.; McClintock, Shannon; Maheswary, Narayan P.; Faria, Shyla; Islam, Saiful; Akter, Tangin; Kroeger, Axel; Akhter, Shireen; Bern, Caryn
2011-01-01
Integrated vector management is a pillar of the South Asian visceral leishmaniasis (VL) elimination program, but the best approach remains a matter of debate. Sand fly seasonality was determined in 40 houses sampled monthly. The impact of interventions on Phlebotomus argentipes density was tested from 2006–2007 in a cluster-randomized trial with four arms: indoor residual spraying (IRS), insecticide-treated nets (ITNs), environmental management (EVM), and no intervention. Phlebotomus argentipes density peaked in March with the highest proportion of gravid females in May. The EVM (mud plastering of wall and floor cracks) showed no impact. The IRS and ITNs were associated with a 70–80% decrease in male and female P. argentipes density up to 5 months post intervention. Vector density rebounded by 11 months post-IRS, whereas ITN-treated households continued to show significantly lower density compared with households without intervention. Our data suggest that both IRS and ITNs may help to improve VL control in Bangladesh. PMID:21540372
Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al
2016-06-01
The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.
Evaluation of sewage sludge incineration ash as a potential land reclamation material.
Lin, Wenlin Yvonne; Ng, Wei Cheng; Wong, Belinda Shu Ee; Teo, Serena Lay-Ming; Sivananthan, Gayathiri D/O; Baeg, Gyeong Hun; Ok, Yong Sik; Wang, Chi-Hwa
2018-05-23
This study evaluated the potential of utilising sewage sludge incineration ash as a land reclamation material. Toxicity assessment of the leachate of the ash was carried out for both terrestrial and marine organisms. Both the fruit fly Drosophila melanogaster and barnacle Amphibalanus amphitrite showed that both bottom and fly ash leached at liquid-to-solid (L/S) ratio 5 did not substantially affect viabilities. The leachate carried out at L/S 10 was compared to the European Waste Acceptance Criteria and the sewage sludge ashes could be classified as non-hazardous waste. The geotechnical properties of the sewage sludge ash were studied and compared to sand, a conventional land reclamation material, for further evaluation of its potential as a land reclamation material. It was found from direct shear test that both bottom and fly ashes displayed similar and comparable shear strength to that of typical compacted sandy soil based on the range of internal friction angle obtained. However, the consolidation profile of bottom ash was significantly different from sand, while that of fly ash was more similar to sand. Our study showed that the sewage sludge ash has the potential to be used as a land reclamation material. Copyright © 2018 Elsevier B.V. All rights reserved.
Bravo-Barriga, D; Parreira, R; Maia, C; Afonso, M O; Blanco-Ciudad, J; Serrano, F J; Pérez-Martín, J E; Gómez-Gordo, L; Campino, L; Reina, D; Frontera, E
2016-12-01
Leishmaniosis caused by Leishmania infantum is present in Mediterranean countries, with high prevalence in areas of the center and south of Spain. However, in some regions such as Extremadura (in southwest of Spain), data has not been updated since 1997. The aim of this work was (i) to provide information about the distribution of phlebotomine sand fly species in western of Spain (Extremadura region), (ii) to determine risk factors for the presence of sand fly vectors and (iii) to detect Leishmania DNA and identify blood meal sources in wild caught females. During 2012-2013, sand flies were surveyed using CDC miniature light-traps in 13 of 20 counties in Extremadura. Specimens were identified morphologically and females were used for molecular detection of Leishmania DNA by kDNA, ITS-1 and cyt-B. In addition, blood meals origins were analyzed by a PCR based in vertebrate cyt b gene. A total of 1083 sand flies of both gender were captured and identified. Five species were collected, Phlebotomus perniciosus (60.76%), Sergentomyia minuta (29.92%), P. ariasi (7.11%), P. papatasi (1.48%) and P. sergenti (0.74%). The last three species constitute the first report in Badajoz, the most southern province of Extremadura region. Leishmania DNA was detected in three out of 435 females (one P. pernicious and two S. minuta). Characterization of obtained DNA sequences by phylogenetic analyses revealed close relatedness with Leishmania tarentolae in S. minuta and L. infantum in P. perniciosus. Haematic preferences showed a wide range of hosts, namely: swine, humans, sheep, rabbits, horses, donkeys and turkeys. The simultaneous presence of P. perniciosus and P. ariasi vectors, the analysis of blood meals, together with the detection of L. infantum and in S. minuta of L. tarentolae, confirms the ideal conditions for the transmission of this parasitosis in the western of Spain. These results improve the epidemiological knowledge of leishmaniosis and its vectors in this part of Spain, highlighting the need for ongoing entomological and parasitological surveillance. Copyright © 2016 Elsevier B.V. All rights reserved.
Galvis-Ovallos, Fredy; Casanova, Claudio; Sevá, Anaiá da Paixão; Galati, Eunice Aparecida Bianchi
2017-05-30
Visceral leishmaniasis (VL) is an important public health challenge in Brazil because of the high number of human and canine cases reported annually. Leishmania infantum is the etiological agent of VL and Lutzomyia longipalpis is its main vector. However, evidence suggests that this taxon constitutes a species complex. In Sao Paulo state, there are two populations of Lu. longipalpis, each secreting distinct pheromones, (S)-9-methylgermacrene-B and Cembrene 1; both have been associated with different patterns of VL transmission. The aim of the present study was to investigate the temporal distribution and natural infection of the (S)-9-methylgermacrene-B population of the Lu. longipalpis complex in a highly VL endemic area of Sao Paulo state to obtain information that may contribute to the surveillance of this zoonosis and to the planning of preventive and control measures. The study was carried out in Panorama municipality, Sao Paulo State. Captures were made during 24 months in seven domiciles. The relation between sand fly abundance and climatic variables, temperature and humidity, was analyzed and natural infection by Leishmania spp. in sand fly females was investigated by nested PCR. A total of 4120 sand flies, with predominance of Lu. longipalpis (97.2%) were captured. The highest averages of sand flies/night/trap occurred in the rainy season (November-March) and a positive, significant correlation between sand fly abundance and the temperature and humidity 20 days before the capture days was found. Leishmania infantum DNA was detected in three out of 250 pools of females analyzed, giving an estimated minimum infection rate of 1.2%. The identification of the climatic association between the high abundance of the vector in this highly endemic VL focus constitutes a fundamental point for evaluating future vector and dog control measures and this information increases the data of VL foci in Sao Paulo state that could contribute to the public health authorities in planning prevention and control measures. The identification of natural infection by Le. infantum in Lu. longipalpis specimens reinforces the importance of entomological surveillance activities in this municipality.
Oroya Fever and Verruga Peruana: Bartonelloses Unique to South America
Minnick, Michael F.; Anderson, Burt E.; Lima, Amorce; Battisti, James M.; Lawyer, Phillip G.; Birtles, Richard J.
2014-01-01
Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelialcell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control. PMID:25032975
Araujo-Pereira, Thais; Fuzari, Andressa A; Andrade Filho, José Dilermado; Pita-Pereira, Daniela; Britto, Constança; Brazil, Reginaldo P
2014-08-07
Notifications concerning American Cutaneous Leishmaniasis have increased in recent years in the state of Acre, Brazil. Despite identification of distinct Leishmania species isolated from cutaneous lesions, there are still no records of visceral leishmaniasis in the state. However, studies on the sand fly fauna in this region are still limited. Insects were collected from April 2011 to April 2012, using HP light traps distributed in four residential areas and one recreational area in Rio Branco, Capital of the State of Acre in the Amazon region of Brazil. A total of 456 sand flies were collected, comprising 256 females and 200 males. Taxonomic identification revealed 16 Phlebotominae genera and 23 species, as follows: Trichophoromyia auraensis, Nyssomyia whitmani, Nyssomyia antunesi, Pressatia choti, Evandromyia saulensis, Evandromyia walkeri, Evandromyia begonae, Migonemyia migonei, Pintomyia serrana, Psychodopygus paraensis, Sciopemyia sordelii, Migonemyia pusilla, Pintomyia nevesi, Brumptomyia avellari, Micropygomyia acanthopharynx, Micropygomyia micropyga, Pintomyia odax, Lutzomyia sherlocki, Pressatia calcarata, Pressatia duncanae, Bichromomyia flaviscutellata, Evandromyia bourrouli and Evandromyia bacula. From this group, Tr. auraensis and Ny. whitmani were the most abundant species in both forested areas and the peridomiciliary environment. We find that the sand fly fauna in the urban and peri urban areas of Rio Branco is very diverse comprising 23 species, as diverse as that in areas of primary forest. Some species, such as Nyssomyia whitmani, Ny. antunesi and Bichromomyia flaviscutellata are known vectors of parasites responsible for cutaneous leishmaniasis, and Trichophoromyia auraensis is a putative vector in this Amazonian region.
Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.
2015-01-01
Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714
Lyda, Todd A; Joshi, Manju B; Andersen, John F; Kelada, Andrew Y; Owings, Joshua P; Bates, Paul A; Dwyer, Dennis M
2015-06-01
Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts.
Hashiguchi, Yoshihisa; Gomez L, Eduardo A; Cáceres, Abraham G; Velez, Lenin N; Villegas, Nancy V; Hashiguchi, Kazue; Mimori, Tatsuyuki; Uezato, Hiroshi; Kato, Hirotomo
2018-02-01
The vector Lutzomyia sand flies and reservoir host mammals of the Leishmania parasites, causing the Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador were thoroughly reviewed, performing a survey of literatures including our unpublished data. The Peruvian L. (V.) peruviana, a principal Leishmania species causing Andean-CL in Peru, possessed three Lutzomyia species, Lu. peruensis, Lu. verrucarum and Lu. ayacuchensis as vectors, while the Ecuadorian L. (L.) mexicana parasite possessed only one species Lu. ayacuchensis as the vector. Among these, the Ecuadorian showed a markedly higher rate of natural Leishmania infections. However, the monthly and diurnal biting activities were mostly similar among these vector species was in both countries, and the higher rates of infection (transmission) reported, corresponded to sand fly's higher monthly-activity season (rainy season). The Lu. tejadai sand fly participated as a vector of a hybrid parasite of L. (V.) braziliensis/L. (V.) peruviana in the Peruvian Andes. Dogs were considered to be principal reservoir hosts of the L. (V.) peruviana and L. (L.) mexicana parasites in both countries, followed by other sylvatic mammals such as Phyllotis andium, Didelphis albiventris and Akodon sp. in Peru, and Rattus rattus in Ecuador, but information on the reservoir hosts/mammals was extremely poor in both countries. Thus, the Peruvian disease form demonstrated more complicated transmission dynamics than the Ecuadorian. A brief review was also given to the control of vector and reservoirs in the Andes areas. Such information is crucial for future development of the control strategies of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Meneguzzi, Viviane Coutinho; dos Santos, Claudiney Biral; Leite, Gustavo Rocha; Fux, Blima; Falqueto, Aloísio
2016-01-01
Cutaneous leishmaniasis (CL) is caused by a protozoan of the genus Leishmania and is transmitted by sand flies. The state of Espírito Santo (ES), an endemic area in southeast Brazil, has shown a considerably high prevalence in recent decades. Environmental niche modelling (ENM) is a useful tool for predicting potential disease risk. In this study, ENM was applied to sand fly species and CL cases in ES to identify the principal vector and risk areas of the disease. Sand flies were collected in 466 rural localities between 1997 and 2013 using active and passive capture. Insects were identified to the species level, and the localities were georeferenced. Twenty-one bioclimatic variables were selected from WorldClim. Maxent was used to construct models projecting the potential distribution for five Lutzomyia species and CL cases. ENMTools was used to overlap the species and the CL case models. The Kruskal–Wallis test was performed, adopting a 5% significance level. Approximately 250,000 specimens were captured, belonging to 43 species. The area under the curve (AUC) was considered acceptable for all models. The slope was considered relevant to the construction of the models for all the species identified. The overlay test identified Lutzomyia intermedia as the main vector of CL in southeast Brazil. ENM tools enable an analysis of the association among environmental variables, vector distributions and CL cases, which can be used to support epidemiologic and entomological vigilance actions to control the expansion of CL in vulnerable areas. PMID:27783641
Investigations of some building materials for γ-rays shielding effectiveness
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Kaur, Baljit; Sidhu, Gurdeep Singh; Kumar, Ajay
2013-06-01
For construction of residential and non-residential buildings bricks are used as building blocks. Bricks are made from mixtures of sand, clay, cement, fly ash, gypsum, red mud and lime. Shielding effectiveness of five soil samples and two fly ash samples have been investigated using some energy absorption parameters (Mass attenuation coefficients, mass energy absorption coefficients, KERMA (kinetic energy released per unit mass), HVL, equivalent atomic number and electron densities) firstly at 14 different energies from 81-1332 keV then extended to wide energy range 0.015-15 MeV. The soil sample with maximum shielding effectiveness has been used for making eight fly ash bricks [(Lime)0.15 (Gypsum)0.05 (Fly Ash)x (Soil)0.8-x, where values of x are from 0.4-0.7]. High Purity Germanium (HPGe) detector has been used for gamma-ray spectroscopy. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence (EDXRF) spectrometer. The agreements of theoretical and experimental values of mass attenuation coefficient have been found to be quite satisfactory. It has been verified that common brick possess the maximum shielding effectiveness for wide energy range 0.015-15 MeV. The results have been shown graphically with some useful conclusions for making radiation safe buildings.
Ferro, C; Morrison, A C; Torres, M; Pardo, R; Wilson, M L; Tesh, R B
1995-09-01
Ecological studies on the sand fly Lutzomyia longipalpis (Lutz & Neiva) were conducted during 1990-1992 in a small rural community in Colombia where American visceral leishmaniasis (AVL) is endemic. Subsamples of sand flies collected weekly from pigpens, the interior of houses, and natural outdoor resting sites were dissected to determine physiological age and Leishmania chagasi Cunha & Chagas infection rates. Eleven female L. longipalpis had flagellates in their gut, 2 of which were successfully cultured and identified as Leishmania chagasi. The reproductive status, stage of ovarian development, and trophic history of female sand flies varied among sites, habitats, and time of collection. The percentage of parous females ranged from about one-third to two-thirds overall and varied seasonally. Of most relevance to AVL transmission was the finding that 8% of L. longipalpis females were multiparous. In addition, our data suggest that L. longipalpis rest inside houses after blood-feeding outdoors, and that this species can blood-feed more than once during a single gonotrophic cycle.
NASA Astrophysics Data System (ADS)
Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti
2017-03-01
Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.
González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor
2011-01-01
Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037
Aslan, Hamide; Oliveira, Fabiano; Meneses, Claudio; Castrovinci, Philip; Gomes, Regis; Teixeira, Clarissa; Derenge, Candace A.; Orandle, Marlene; Gradoni, Luigi; Oliva, Gaetano; Fischer, Laurent; Valenzuela, Jesus G.; Kamhawi, Shaden
2016-01-01
Canine leishmaniasis (CanL) is a chronic fatal disease of dogs and a major source of human infection through propagation of parasites in vectors. Here, we infected 8 beagles through multiple experimental vector transmissions with Leishmania infantum–infected Lutzomyia longipalpis. CanL clinical signs varied, although live parasites were recovered from all dog spleens. Splenic parasite burdens correlated positively with Leishmania-specific interleukin 10 levels, negatively with Leishmania-specific interferon γ and interleukin 2 levels, and negatively with Leishmania skin test reactivity. A key finding was parasite persistence for 6 months in lesions observed at the bite sites in all dogs. These recrudesced following a second transmission performed at a distal site. Notably, sand flies efficiently acquired parasites after feeding on lesions at the primary bite site. In this study, controlled vector transmissions identify a potentially unappreciated role for skin at infectious bite sites in dogs with CanL, providing a new perspective regarding the mechanism of Leishmania transmissibility to vector sand flies. PMID:26768257
Coelho-Finamore, J M; Freitas, V C; Assis, R R; Melo, M N; Novozhilova, N; Secundino, N F; Pimenta, P F; Turco, S J; Soares, R P
2011-03-01
Interspecies variations in lipophosphoglycan (LPG) have been the focus of intense study over the years due its role in specificity during sand fly-Leishmania interaction. This cell surface glycoconjugate is highly polymorphic among species with variations in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO(4) backbone of repeat units. However, the degree of intraspecies polymorphism in LPG of Leishmania infantum (syn. Leishmania chagasi) is not known. In this study, intraspecific variation in the repeat units of LPG was evaluated in 16 strains of L. infantum from Brazil, France, Algeria and Tunisia. The structural polymorphism in the L. infantum LPG repeat units was relatively slight and consisted of three types: type I does not have side chains; type II has one β-glucose residue that branches off the disaccharide-phosphate repeat units and type III has up to three glucose residues (oligo-glucosylated). The significance of these modifications was investigated during in vivo interaction of L. infantum with Lutzomyia longipalpis, and in vitro interaction of the parasites and respective LPGs with murine macrophages. There were no consequential differences in the parasite densities in sand fly midguts infected with Leishmania strains exhibiting type I, II and III LPGs. However, higher nitric oxide production was observed in macrophages exposed to glucosylated type II LPG. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Murat, Paula Guerra; de Medeiros, Márcio José; Souza, Alda Izabel; de Oliveira, Alessandra Gutierrez
2017-01-01
Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis–infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis–infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L. infantum transmission. Moreover, it was also permissive to L. amazonensis. PMID:28234913
Falcão de Oliveira, Everton; Oshiro, Elisa Teruya; Fernandes, Wagner de Souza; Murat, Paula Guerra; Medeiros, Márcio José de; Souza, Alda Izabel; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi
2017-02-01
Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis-infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis-infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L. infantum transmission. Moreover, it was also permissive to L. amazonensis.
Monthly activity of Phlebotominae sand flies in Sistan-Baluchistan Province, Southeast Iran.
Kassiri, H; Javadian, E; Sharififard, M
2013-01-01
The monthly activity of sand flies, which are vectors of leishmaniasis, was studied from May to October 1997 in three regions (plains, mountainous, coastal) of the Sistan-Bluchistan Province using sticky paper traps. In each village, three houses were selected. 30 sticky traps were installed indoors (bedroom, guestroom, toilet, bathroom) and 30 were installed outdoors (rodent burrows, wall cracks). In total, 8,558 and 1,596 sand fly specimens were collected and identified from outdoors and indoors, respectively. Ten species of Phlebotomus and eight species of Sergentomyia were collected outdoors, and nine species of Phlebotomus and 10 species of Sergentomyia were collected indoors. Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was the predominant species found indoors in the plains region (58.4% of insects caught in the region) and was active during the whole study period. The P. papatasi peaks of activity were in early May and early October. Sergentomyia clydei (Sinton) was found to be the most abundant species outdoors in the plains region and comprised 64.7% of the total insects caught in the region. Sergentomyia clydei and S. tiberiadis (Alder, Theodor, and Lourie) were the predominant indoor and outdoor, respectively, species from the mountainous region, making up 19.8% and 35%, respectively, of all the insects caught in the region. Phlebotomus sergenti Parrot is a proven vector of urban cutaneous leishmaniasis, and P. alexandri (Sinton) is a probable vector of Kala-Azar, and both were collected during this study. Phlebotomus papatasi was the most predominant species collected indoors in the coastal region (50.8%), its peak activity was in May. Sergentomyia sintoni Pringle was the most predominant species collected outdoors in the coastal region (36.4%), and its peak activity was in October. Awareness of the peak activity times of sand flies can be useful in developing strategies to control the flies.
Monthly Activity of Phlebotominae Sand Flies in Sistan-Baluchistan Province, Southeast Iran
Kassiri, H.; Javadian, E.; Sharififard, M.
2013-01-01
The monthly activity of sand flies, which are vectors of leishmaniasis, was studied from May to October 1997 in three regions (plains, mountainous, coastal) of the Sistan-Bluchistan Province using sticky paper traps. In each village, three houses were selected. 30 sticky traps were installed indoors (bedroom, guestroom, toilet, bathroom) and 30 were installed outdoors (rodent burrows, wall cracks). In total, 8,558 and 1,596 sand fly specimens were collected and identified from outdoors and indoors, respectively. Ten species of Phlebotomus and eight species of Sergentomyia were collected outdoors, and nine species of Phlebotomus and 10 species of Sergentomyia were collected indoors. Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was the predominant species found indoors in the plains region (58.4% of insects caught in the region) and was active during the whole study period. The P. papatasi peaks of activity were in early May and early October. Sergentomyia clydei (Sinton) was found to be the most abundant species outdoors in the plains region and comprised 64.7% of the total insects caught in the region. Sergentomyia clydei and S. tiberiadis (Alder, Theodor, and Lourie) were the predominant indoor and outdoor, respectively, species from the mountainous region, making up 19.8% and 35%, respectively, of all the insects caught in the region. Phlebotomus sergenti Parrot is a proven vector of urban cutaneous leishmaniasis, and P. alexandri (Sinton) is a probable vector of Kala-Azar, and both were collected during this study. Phlebotomus papatasi was the most predominant species collected indoors in the coastal region (50.8%), its peak activity was in May. Sergentomyia sintoni Pringle was the most predominant species collected outdoors in the coastal region (36.4%), and its peak activity was in October. Awareness of the peak activity times of sand flies can be useful in developing strategies to control the flies. PMID:24784790
Pervious concrete using fly ash aggregate as coarse aggregate-an experimental study
NASA Astrophysics Data System (ADS)
Dash, Subhakanta; Kar, Biswabandita; Mukherjee, Partha Sarathi
2018-05-01
The present study deals with the fabrication of pervious concrete from fly ash aggregates. The pervious concrete were obtained by the mixture of three different size fly ash aggregates (4.75 mm,9.5 mm,12.5 mm), Portland cement, water with little amount of sand or without sand. Admixtures like Silica fume(SF) and Super plasticizer are added to the mixture to enhance the strength of concrete. Trial being taken on preparation of Fly ash based pervious concrete (FPC) with different w/c ratio i.e. 0.30, 0.35 and 0.40 respectively. Tests such as porosity, permeability and compressive, strength are studied for this concrete material and the result concluded that the concrete when cured for 28 days its compressive strength falls in between 7.15 - 15.74 MPa and permeability 9.38 - 16.07 mm/s with porosity 27.59 - 34.05% and these are suited to be used as for use as an environment friendly concrete.
NASA Astrophysics Data System (ADS)
Mallisa, Harun; Turuallo, Gidion
2017-11-01
This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.
NASA Technical Reports Server (NTRS)
Farrokh, H.
1975-01-01
The theory of a Gerdien condenser operating in a collision controlled medium is reviewed. Design and electronics of a Gerdien condenser probe suitable for flying on the Arcas rocket is presented. Aerodynamics properties of the instrument in continuous flow are discussed. The method of data reduction and experimental results of one successful flight at White Sands Missile Range (WSMR), New Mexico, on 11 January 1974 are reported. This investigation shows positive ions in two relatively distinct mobility groups between 47 and 65 km and a more continuous distribution of mobilities between 38 and 47 km.
Composition and application of novel sprayable phosphate cement (grancrete) that bonds to styrofoam
Wagh, Arun S.; Paul, Jr., James W.
2007-01-09
A dry mix particulate composition of a calcined oxide of Mg and/or Ca, an acid phosphate, and fly ash or equivalent, wherein the calcined oxide is present in the range of from about 17% to about 40% by weight and the acid phosphate is present in the range of from about 29% to about 52% by weight and the fly ash or equivalent is present in the range of from about 24% to about 39% by weight when sand is added to the dry mix, it is present in the range of from about 39% to about 61% by weight of the combined dry mix and sand. A method of forming a structural member is also disclosed wherein an aqueous slurry of about 8 12 pounds of water is added to dry mix and sand.
Aslan, Hamide; Dey, Ranadhir; Meneses, Claudio; Castrovinci, Philip; Jeronimo, Selma Maria Bezerra; Oliva, Gætano; Fischer, Laurent; Duncan, Robert C.; Nakhasi, Hira L.; Valenzuela, Jesus G.; Kamhawi, Shaden
2013-01-01
Background. Visceral leishmaniasis (VL) is transmitted by sand flies. Protection of needle-challenged vaccinated mice was abrogated in vector-initiated cutaneous leishmaniasis, highlighting the importance of developing natural transmission models for VL. Methods. We used Lutzomyia longipalpis to transmit Leishmania infantum or Leishmania donovani to hamsters. Vector-initiated infections were monitored and compared with intracardiac infections. Body weights were recorded weekly. Organ parasite loads and parasite pick-up by flies were assessed in sick hamsters. Results. Vector-transmitted L. infantum and L. donovani caused ≥5-fold increase in spleen weight compared with uninfected organs and had geometric mean parasite loads (GMPL) comparable to intracardiac inoculation of 107–108 parasites, although vector-initiated disease progression was slower and weight loss was greater. Only vector-initiated L. infantum infections caused cutaneous lesions at transmission and distal sites. Importantly, 45.6%, 50.0%, and 33.3% of sand flies feeding on ear, mouth, and testicular lesions, respectively, were parasite-positive. Successful transmission was associated with a high mean percent of metacyclics (66%–82%) rather than total GMPL (2.0 × 104–8.0 × 104) per midgut. Conclusions. This model provides an improved platform to study initial immune events at the bite site, parasite tropism, and pathogenesis and to test drugs and vaccines against naturally acquired VL. PMID:23288926
Vieira, V R; Azevedo, A C R; Alves, J R C; Guimarães, A E; Aguiar, G M
2015-09-01
The description of the first and autochthonous case of diffuse cutaneous leishmaniasis in the municipality of Paraty, State of Rio de Janeiro, brought the interest of this study. Sand flies were captured over a 3-yr period. Using manual suction tubes, sand flies were collected from the inner and outer walls of homes, in the living spaces of domestic animals, and in Shannon light traps, which were set up outside homes and in the forest. CDC light traps were installed inside homes, around the exterior of the houses, and along the divide and within the forest. A total of 102,937 sand flies were collected, representing 23 species--three from the genus Brumptomyia and 20 from the genus Lutzomyia. Of these, six species, Lutzomyia intermedia, Lutzomyia fischeri, Lutzomyia migonei, Lutzomyia whitmani, and Lutzomyia pessoai have already been recorded as being naturally infected by Leishmania braziliensis, and one species, Lutzomyia ayrozai, by Leishmania naiffi. Lu. intermedia is the vector of Le. braziliensis in the study area, particularly inside the homes and on the exterior of the houses. Lu. fischeri can also act as vector of Le. braziliensis in domestic environments and particularly in the wild. The third-ranked Lu. migonei was the most abundant in kennels, suggesting its canine affinity. Lu. whitmani, ranked fourth, still has characteristics indicative of the wild, but with a significant number located on the edge of the forest, suggesting a selection process of adaptation to the anthropic environment. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Klun, Jerome A; Khrimian, Ashot; Debboun, Mustapha
2006-01-01
A series of behavioral tests with Aedes aegypti (L.), Anopheles stephensi Liston, mosquitoes, and the sand fly Phlebotomus papatasi Scopoli in the presence of Deet, SS220, and Picaridin topically applied to the skin of human volunteers showed that the insects were deterred from feeding on and repelled from surfaces emanating the compounds. When offered a 12- or 24-cm2 area of skin, one-half treated with compound and one-half untreated, the insects fed almost exclusively on untreated skin. The sand flies and mosquitoes did not at any time physically contact chemically treated surfaces. When treated and untreated skin areas were covered with cloth, insects contacted, landed, and bit only through cloth covering untreated skin. These observations provided evidence that the compounds deterred feeding and repelled insects from treated surfaces primarily as a result of olfactory sensing. When cloth, one-half untreated and one-half treated with chemical, was placed over untreated skin, insects only touched and specifically bit through the untreated cloth. This showed that the activity of the chemicals does not involve a chemical x skin interaction. In the presence of any of the three chemicals, no matter how they were presented to the insects, overall population biting activity was reduced by about one-half relative to controls. This reduction showed a true repellent effect for the compounds. Results clearly showed that Deet, SS220, and Picaridin exert repellent and deterrent effects upon the behavior of mosquitoes and sand flies. Heretofore, the combined behavioral effects of these compounds upon mosquito and sand fly behavior were unknown. Moreover, protection afforded by Deet, SS220, and Picaridin against the feeding of these three disease vectors on humans is mechanistically a consequence of the two chemical effects.
Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.
2013-01-01
Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705
de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I
2013-01-01
Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.
Coleman, Russell E; Hochberg, Lisa P; Swanson, Katherine I; Lee, John S; McAvin, James C; Moulton, John K; Eddington, David O; Groebner, Jennifer L; O'Guinn, Monica L; Putnam, John L
2009-05-01
Sand flies collected between April 2003 and November 2004 at Tallil Air Base, Iraq, were evaluated for the presence of Leishmania parasites using a combination of a real-time Leishmania-generic polymerase chain reaction (PCR) assay and sequencing of a 360-bp fragment of the glucose-6-phosphate-isomerase (GPI) gene. A total of 2,505 pools containing 26,574 sand flies were tested using the real-time PCR assay. Leishmania DNA was initially detected in 536 pools; however, after extensive retesting with the real-time PCR assay, a total of 456 pools were considered positive and 80 were considered indeterminate. A total of 532 samples were evaluated for Leishmania GPI by sequencing, to include 439 PCR-positive samples, 80 PCR-indeterminate samples, and 13 PCR-negative samples. Leishmania GPI was detected in 284 samples that were sequenced, to include 281 (64%) of the PCR-positive samples and 3 (4%) of the PCR-indeterminate samples. Of the 284 sequences identified as Leishmania, 261 (91.9%) were L. tarentolae, 18 (6.3%) were L. donovani-complex parasites, 3 (1.1%) were L. tropica, and 2 were similar to both L. major and L. tropica. Minimum field infection rates were 0.09% for L. donovani-complex parasites, 0.02% for L. tropica, and 0.01% for the L. major/tropica-like parasite. Subsequent sequencing of a 600-bp region of the "Hyper" gene of 12 of the L. donovani-complex parasites showed that all 12 parasites were L. infantum. These data suggest that L. infantum was the primary leishmanial threat to U.S. military personnel deployed to Tallil Air Base. The implications of these findings are discussed.
1988-06-01
densities of Mississippi River point bar sands . 73. It is particularly conclusive to compare the available critical void ratio data for point bar sands on... River encounters the difficulty that the density of large parts of Zone A sands is between the upper and lower critical densities . All laboratory... sands of the Lower Mississippi River point bar deposits generally contain some strata of subcritical density , and the initial tendenc% of such sands
DOT National Transportation Integrated Search
2003-07-01
The instability and pumping response of non-plastic, high silt (and fine sand) soils was investigated. Common reagents, i.e., lime, lime-fly ash, Portland cement, and slag cement were included as admixtures with three high silt (and fine sand) soils....
USDA-ARS?s Scientific Manuscript database
US military operations in field conditions face significant negative impacts on mission readiness from disease-vector and nuisance populations of filth flies, mosquitoes, and sand flies. Although measures are in place to protect personnel in the field from these insect threats, experiences from rece...
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
An Insight into the Sialome of the Black Fly, Simulium vittatum
Andersen, John F.; Pham, Van M.; Meng, Zhaojing; Champagne, Donald E.; Ribeiro, José M. C.
2009-01-01
Adaptation to vertebrate blood feeding includes development of a salivary ‘magic potion’ that can disarm host hemostasis and inflammatory reactions. Within the lower Diptera, a vertebrate blood-sucking mode evolved in the Psychodidae (sand flies), Culicidae (mosquitoes), Ceratopogonidae (biting midges), Simuliidae (black flies), and in the frog-feeding Corethrellidae. Sialotranscriptome analyses from several species of mosquitoes and sand flies and from one biting midge indicate divergence in the evolution of the blood-sucking salivary potion, manifested in the finding of many unique proteins within each insect family, and even genus. Gene duplication and divergence events are highly prevalent, possibly driven by vertebrate host immune pressure. Within this framework, we describe the sialome (from Greek sialo, saliva) of the black fly Simulium vittatum and discuss the findings within the context of the protein families found in other blood-sucking Diptera. Sequences and results of Blast searches against several protein family databases are given in Supplemental Tables S1 and S2, which can be obtained from http://exon.niaid.nih.gov/transcriptome/S_vittatum/T1/SV-tb1.zip and http://exon.niaid.nih.gov/transcriptome/S_vittatum/T2/SV-tb2.zip. PMID:19166301
Force Protection Leader’s Guide
1993-01-01
and TC1-13, Hot Weather Flying Sense. • As a minimum: □ Taxiing. Get helicopter airborne and through ETL as quickly as possible to rninimize sand...protective covers between flights to protect aircraft from excess heat and to stop sand and dirt from getting into moving parts. • Wipe oil and grease...nonabrasive material—then attach cover. • Add oil and hydraulic fluid directly from original unopened containers to help stop sand and dirt from getting
Fuzari, Andressa Alencastre; Delmondes, Aline Ferreira Dos Santos; Barbosa, Vanessa De Araújo; Marra, Francisco de Assis; Brazil, Reginaldo Peçanha
2016-01-01
The sand fly, Lutzomyia longipalpis, is the main vector of Leishmania infantum in the Americas, primarily occurring in areas of apparent anthropomorphic modifications in several regions of Brazil. Sand flies were captured using light traps. Out of all captured species, Lu. longipalpis numbers had increased within the park. We report the occurrence of Lu. longipalpis in an area of Atlantic Forest, possibly representing the first sylvatic population of Lu. longipalpis in an area absent of peridomestic captures, but with the risk of L. infantum transmission in the areas of Niterói and Maricá.
Rispail, Philippe; Dereure, Jacques; Jarry, Daniel
2002-06-01
Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical distribution of these diseases in the Western Mediterranean basin and contributes to the determination, in a rational manner, of the high risk zones.
de Oliveira, Alessandra Gutierrez; Andrade Filho, José Dilermando; Falcão, Alda Lima; Brazil, Reginaldo Peçanha
2003-01-01
From February 1999 to February 2000, sand flies were captured weekly with CDC light traps at five sites in the urban area of Campo Grande, Mato Grosso do Sul State, Brazil. Traps were placed in 11 different ecotopes in the environment (ground level, tree canopies, and forest edge) and the peridomicile (chicken coops and banana trees). A total of 1,245 sand flies were captured, belonging to 28 species: 4 species from genus Brumptomyia Fran a & Parrot, 1921 and 24 from genus Lutzomyia Fran a, 1924. The species were: B. avellari, B. brumpti, B. galindoi, B. pintoi, L. aragaoi, L. bourrouli, L. campograndensis, L. cerradincola, L. christenseni, L. claustrei, L. cortelezzii, L. corumbaensis, L. cruzi, L. damascenoi, L. flaviscutellata, L. hermanlenti, L. lenti, L. longipalpis, L. longipennis, L. migonei, L. punctigeniculata, L. quinquefer, L. renei, L. shannoni, L. sordellii, L. teratodes, L. termitophila, and L. whitmani. L. longipalpis and L. cruzi, vectors of visceral leishmaniasis, and L. whitmani, L. flaviscutellata and L. migonei, vectors of cutaneous leishmaniasis, were captured in the urban area. The most frequent species were L. termitophila, L. aragaoi, L. lenti, L. longipennis, and L. longipalpis.
Vásquez-Trujillo, Adolfo; Santamaría-Herreño, Erika; González-Reina, Angélica E; Buitrago-Alvarez, Luz S; Góngora-Orjuela, Agustín; Cabrera-Quintero, Olga L
2008-01-01
Identifying probable cutaneous leishmaniasis vectors in a rural area a few kilometres from the city of Villavicencio, taking the relative abundance of sand-flies and their natural infection with Leishmania spphaving into account. A CDC trap was used for sampling sand-flies in and around 15 dwellings. Pools of three females from the most abundant Lutzomyia species were used for identifying Leishmania spp. by PCR, with OL1 and OL2 primers. 1 304 sand-flies from nine species were captured, of which L. antunesi (75,6 %) and L. walkeri (19,2 %) were the most abundant. These was a low abundance of L. panamensis and L. gomezi anthropophilic species (<2,4 %). PCR detected Leishmania spp. infection in two L. antunesi groups (total=123 processed females). Due to the fact that L. antunesi was the most abundant species and was found to have Leishmania infection, it may be considered to be the main suspected cutaneous leishmaniasis vector in the rural area being studied. It is recommended that detailed studies of this species' biology (including biting and resting behaviour) should be carried out, aimed at furthering vector control measures.
Özbel, Yusuf; Karakuş, Mehmet; Arserim, Suha K; Kalkan, Şaban Orçun; Töz, Seray
2016-03-01
Human visceral leishmaniasis (VL) is reported from 38 provinces of Turkey and dogs are accepted as main reservoir hosts. Kuşadası town, belonging to Aydın province and located in western part of Turkey, is endemic for human and canine visceral leishmaniasis caused by Leishmania infantum MON1 and MON98. In this study, phlebotomine survey was conducted to determine the vector sand fly species and to identify sand fly blood meal sources. In August and September 2012, 1027 sand fly specimens were caught using CDC light traps. Eight Phlebotomus and two Sergentomyia species with the dominancy of Phlebotomus tobbi (61.34%) were detected. A total of 622 female sand flies (571 Phlebotomus; 51 Sergentomyia) were checked for Leishmania infection by direct dissection of the midgut. The half of the midgut content was inoculated into NNN culture for isolation of the parasite. Leishmania species-specific ITS1 real time PCR, conventional PCR assays of ITS1 and hsp70 genes and subsequent sequencing were performed from extracted DNAs. A region of cytochrome b (cyt-b) gene of vertebrates based PCR was used to determine the source of blood meal of sand flies. In microscopical examinations, two female specimens (0.32%) were found naturally infected with high number and different stages of promastigotes. No growth was observed in NNN culture but Leishmania DNA was obtained from both specimens. First positive specimen was identified as P. tobbi and L. infantum DNA was detected. Second specimen was Sergentomyia dentata, but Leishmania DNA could not be identified on species level. A total of 16 blood-fed female P. tobbi specimens were used for blood meal analysis and eight, three and one specimens were positive for human, dog and mouse, respectively. This is the first detection of Leishmania promastigotes using microscopical examination in P. tobbi and S. dentata in human and canine visceral leishmaniasis endemic area in western part of Turkey. Our results indicate that, (i) P. tobbi is the principal vector species and (ii) human and dogs are main blood sources. The detection of Leishmania sp. in Sergentomyia species may be an evidence for natural cycle of Sauro-leishmania agents in the area. Copyright © 2016 Elsevier B.V. All rights reserved.
Overcoming the effects of rogue taxa: Evolutionary relationships of the bee flies
Trautwein, Michelle D.; Wiegmann, Brian M.; Yeates, David K
2011-01-01
Bombyliidae (5000 sp.), or bee flies, are a lower brachyceran family of flower-visiting flies that, as larvae, act as parasitoids of other insects. The evolutionary relationships are known from a morphological analysis that yielded minimal support for higher-level groupings. We use the protein-coding gene CAD and 28S rDNA to determine phylogeny and to test the monophyly of existing subfamilies, the divisions Tomophtalmae, and ‘the sand chamber subfamilies’. Additionally, we demonstrate that consensus networks can be used to identify rogue taxa in a Bayesian framework. Pruning rogue taxa post-analysis from the final tree distribution results in increased posterior probabilities. We find 8 subfamilies to be monophyletic and the subfamilies Heterotropinae and Mythicomyiinae to be the earliest diverging lineages. The large subfamily Bombyliinae is found to be polyphyletic and our data does not provide evidence for the monophyly of Tomophthalmae or the ‘sand chamber subfamilies’. PMID:21686308
Azpurua, Jorge; De La Cruz, Dianne; Valderama, Anayansi; Windsor, Donald
2010-01-01
Background Sand flies (Diptera, Psychodidae, Phlebotominae) in the genus Lutzomyia are the predominant vectors of the protozoan disease leishmaniasis in the New World. Within the watershed of the Panama Canal, the cutaneous form of leishmaniasis is a continuous health threat for residents, tourists and members of an international research community. Here we report the results of screening a tropical forest assemblage of sand fly species for infection by both Leishmania and a microbe that can potentially serve in vector population control, the cytoplasmically transmitted rickettsia, Wolbachia pipientis. Knowing accurately which Lutzomyia species are present, what their evolutionary relationships are, and how they are infected by strains of both Leishmania and Wolbachia is of critical value for building strategies to mitigate the impact of this disease in humans. Methodology and Findings We collected, sorted and then used DNA sequences to determine the diversity and probable phylogenetic relationships of the Phlebotominae occurring in the understory of Barro Colorado Island in the Republic of Panama. Sequence from CO1, the DNA barcoding gene, supported 18 morphology-based species determinations while revealing the presence of two possible “cryptic” species, one (Lu. sp. nr vespertilionis) within the Vespertilionis group, the other (Lu. gomezi) within the Lutzomyia-cruciata series. Using ITS-1 and “minicircle” primers we detected Leishmania DNA in 43.3% of Lu. trapidoi, 26.3% of Lu. gomezi individuals and in 0% of the other 18 sand fly species. Identical ITS-1 sequence was obtained from the Leishmania infecting Lu. trapidoi and Lu. gomezi, sequence which was 93% similar to Leishmania (viannia) naiffi in GenBank, a species previously unknown in Panama, but recognized as a type of cutaneous leishmaniasis vectored broadly across northern and central South America. Distinct strains of the intracellular bacterium Wolbachia were detected in three of 20 sand fly species, including Lu. trapidoi, in which it frequently co-occurred with Leishmania. Conclusions Both morphological and molecular methods were used to examine an assemblage of 20 sand fly species occurring in the forests of the Panama Canal area. Two of these species, members of separate clades, were found to carry Leishmania at high frequency and hence are likely vectors of leishmaniasis to humans or other mammal species. A single Leishmania species, identified with high confidence as Le. naiffi, was carried by both species. That Le. naiffi is known to cause cutaneous lesions in South America but has hitherto not been reported or implicated in Panama opens the possibility that its range has recently expanded to include the Isthmus or that it occurs as a recent introduction. The occurrence of Leishmania and Wolbachia in Lu. trapidoi identifies one important vector of the disease as a potential target for gene introductions using Wolbachia population sweeps. PMID:20231892
Prediction of Liquefaction Potential of Dredge Fill Sand by DCP and Dynamic Probing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Md. Jahangir; Azad, Abul Kalam; Rahman, Ziaur
2008-07-08
From many research it is proved that liquefaction potential of sand is function of mainly relative density and confining pressure. During routine site investigations, high-quality sampling and laboratory testing of sands are not feasible because of inevitable sample disturbance effects and budgetary constraints. On the other hand quality control of sand fill can be done by determining in situ density of sand in layer by layer which is expensive and time consuming. In this paper TRL DCP (Transportation Research Laboratory Dynamic Cone Penetration) and DPL (Dynamic Probing Light) are calibrated to predict the relative density of sand deposit. For thismore » purpose sand of known relative density is prepared in a calibration chamber which is a mild steel cylinder with diameter 0.5 m and height 1.0 m. Relative density of sand is varied by controlling height of fall and diameter of hole of sand discharge bowl. After filling, every time DPL and DCP tests are performed and for every blow the penetration of cone is recorded. N10 is then calculated from penetration records. Thus a database is compiled where N10 and relative densities are known. A correlation is made between N{sub 10} and relative density for two types of sand. A good correlation of N{sub 10} and relative density is found.« less
USDA-ARS?s Scientific Manuscript database
The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...
NASA Astrophysics Data System (ADS)
Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana
2010-05-01
Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10μm) and fine grained Fe3O4 (grain size < 20 μm). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand material. In medium and fine sand the contaminants moved only to the depths of several cm due to the pore-space blocking and water flow decrease. Fine-grained magnetite shows different behavior. Position of peaks value is more or less stable and maximum depth of penetration is only a few cm in all cases. Higher grain size value is probably reason for higher stability of magnetite. Moreover, magnetic interaction between grains increase "effective" grain size value and restricts transport in material with given porosity. This research is supported by the Grant Agency ASCR under grant IAA300120701
El-Naggar, Mostafa H; Shoukry, Nahla M; Soliman, Belal A; Darwish, Ahmed B; El-Sawaf, Bahira M
2006-04-01
Zoonotic cutaneous leishmaniasis (ZCL) is endemic in Sinai Peninsula. The sand fly and reservoirs were investigated in Suez G., since new settlements and land reclamation programs are ongoing. The results showed that Phlebotomus papatasi reached its highest density in September. The successfully colonized P. papatasi facilitated its biology and competence study. An autogenous trait was proven within P. papatasi population indicating its ability to survive and breed during adverse conditions. The vector competence was carried out under laboratory condition through feeding on lesion of a L. major experimentally infected hamster and by membrane feeding technique. Both hamsters and BALB-c mice inoculated with L. major developed ZCL lesions.
Breeding protocol for the sand fly Nyssomyia neivai (Diptera: Psychodidae) in laboratory conditions.
Goulart, Thais Marchi; da Rocha Silva, Flávia Benini; Machado, Vicente Estevam; Oliveira, Wanderson Henrique Cruz; de Castro, Camila Feitosa; Rodrigues, Marili Villa Nova; Pinto, Mara Cristina
2017-10-01
The information in this protocol covers from the basic steps and material necessary to start a sand fly colony up to the specific details which are important to the success of a Nyssomyia neivai colony. The greatest problems in our colony of Ny. neivai were solved with specific care, for instance, using vermiculite and an adequate number of adults in oviposition containers; the control of fungus with the exact amount of diet for the larvae and humidity control; a second blood meal for females and control of the number of times animals are used for blood meals. Currently, our colony is at F22 generation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ibáñez-Bernal, Sergio; Cáceres, Abraham G
2011-03-01
The female of the phlebotomine sand fly Lutzomyia reclusa Fernández & Rogers 1991 [= Pintomyia (Pifanomyia) reclusa (Fernández & Rogers) sensu Galati], is described for the first time, based on specimens collected in the Department of Cajamarca, in northern Peru. The female can be recognized from other species of the series pia, species group Verrucarum, by wing venation with beta shorter than half of alpha, labrum just shorter than head width but longer than flagellomere 1, palpomere 5 much longer than palpomere 3, arrangement of cibarial armature, and form of spermathecae and relative size of spermathecal ducts. Diagnostic characters and measurements of the male of Lu. reclusa are provided as well.
2010-01-01
forDiseaseControl andPrevention (CDC) light trap for efÞcacy in collecting phlebotomine sand ßies (Diptera: Psychodidae) in a small farming village in the...Prevention (CDC) light trap for ef?acy in collecting phlebotomine sand ?es (Diptera: Psychodidae) in a small farming village in the Nile River Valley 10 km...Testing was conducted in June, August, and September 2007, in Bahrif village, a farming com- munity of 500 people 10 km north of Aswan on the east
Moreno, Mabel; Ferro, Cristina; Rosales-Chilama, Mariana; Rubiano, Luisa; Delgado, Marcela; Cossio, Alexandra; Gómez, Maria Adelaida; Ocampo, Clara; Saravia, Nancy Gore
2015-01-01
The expansion of transmission of cutaneous leishmaniasis from sylvatic ecosystems into peri-urban and domestic settings has occurred as sand flies have adapted to anthropogenic environmental modifications. Assessment of the intradomiciliary presence of sand flies in households of the settlement “La Cabaña”, in the Department of Risaralda, Colombia, revealed an abundance of Warileya rotundipennis. This unexpected observation motivated further analyses to evaluate the participation of this species in the transmission of cutaneous leishmaniasis. Collections using CDC light traps were conducted during two consecutive nights in May and August 2011. The total of 667 sand flies collected were classified into five species: W. rotundipennis (n = 654; 98.05%), Nyssomyia trapidoi (n = 7; 1.04%); Lutzomyia (Helcocyrtomyia) hartmanni (n = 3; 0.44%); Lutzomyia lichyi (n = 2; 0.29%) and Psychodopygus panamensis (n = 1; 0.14%). The striking predominance of W. rotundipennis within households during both wet (May) and dry (August) seasons, anthropophilic behavior demonstrated by human blood in 95.23% (60/63) evaluable blood-engorged specimens, and natural infection (5/168–3%) with genetically similar parasites of the Leishmania (Viannia) subgenus observed in a patient in this community, support the involvement of W. rotundipennis in the domestic transmission of cutaneous leishmaniasis in “La Cabaña”. PMID:25917717
Florin, David A; Rebollar-Téllez, Eduardo A
2013-11-01
The medically important sand fly Lutzomyia shannoni (Dyar 1929) was collected at eight different sites: seven within the southeastern United States and one in the state of Quintana Roo, Mexico. A canonical discriminant analysis was conducted on 40 female L. shannoni specimens from each of the eight collection sites (n = 320) using 49 morphological characters. Four L. shannoni specimens from each of the eight collection sites (n = 32) were sent to the Barcode of Life Data systems where a 654-base pair segment of the cytochrome c oxidase subunit 1 (CO1) genetic marker was sequenced from each sand fly. Phylogeny estimation based on the COI segments, in addition to genetic distance, divergence, and differentiation values were calculated. Results of both the morphometric and molecular analyses indicate that the species has undergone divergence when examined between the taxa of the United States and Quintana Roo, Mexico. Although purely speculative, the arid or semiarid expanse from southern Texas to Mexico City could be an allopatric barrier that has impeded migration and hence gene flow, resulting in different morphology and genetic makeup between the two purported populations. A high degree of intragroup variability was noted in the Quintana Roo sand flies.
Lana, Rosana Silva; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; França-Silva, João Carlos; Lara-Silva, Fabiana de Oliveira; Lima, Ana Cristina Vianna Mariano da Rocha; Moreira de Avelar, Daniel; Martins, Juliana Cristina Dias; Dias, Edelberto Santos
2015-01-01
In the New World, the leishmaniases are primarily transmitted to humans through the bites of Leishmania-infected Lutzomyia (Diptera: Psychodidae) phlebotomine sand flies. Any or both of two basic clinical forms of these diseases are endemic to several cities in Brazil—the American cutaneous leishmaniasis (ACL) and the American visceral leishmaniasis (AVL). The present study was conducted in the urban area of a small-sized Brazilian municipality (Jaboticatubas), in which three cases of AVL and nine of ACL have been reported in the last five years. Jaboticatubas is an important tourism hub, as it includes a major part of the Serra do Cipó National Park. Currently, no local data is available on the entomological fauna or circulating Leishmania. During the one-year period of this study, we captured 3,104 phlebotomine sand flies belonging to sixteen Lutzomyia species. In addition to identifying incriminated or suspected vectors of ACL with DNA of the etiological agent of AVL and vice versa, we also detected Leishmania DNA in unexpected Lutzomyia species. The expressive presence of vectors and natural Leishmania infection indicates favorable conditions for the spreading of leishmaniases in the vicinity of the Serra do Cipó National Park. PMID:25793193
Effect of fly ash calcination in geopolymer synthesis
NASA Astrophysics Data System (ADS)
Samadhi, Tjokorde Walmiki; Jatiningrum, Mirna; Arisiani, Gresia
2015-12-01
Geopolymer, a largely amorphous class of inorganic polymer consisting of aluminosilicate repeat units, is an environmentally attractive engineering material due to its ability to consume aluminosilicate waste as raw materials. This work studies the effect of the calcination temperature of a coal fly ash generated by a low-efficiency boiler on the mechanical strength of geopolymer mortar synthesized using a mixture of the fly ash, potassium hydroxide as the alkali activator, and locally available sand as the filler aggregate. The calcination temperature is varied between 500-700 °C, with a calcination period of 2 hours in an electric furnace. Two sand samples with different particle size distributions are used. The key response variable is the compressive strength at room temperature, measured after curing at 80 °C for 7 and 14 days. Uncalcined ash, with a carbon content of approximately 31.0%, is not amenable for geopolymer synthesis. Analysis of experimental data using the ANOVA method for general factorial design identifies significant main effects for all three experimental variables. Two-way interactions are significant, except that between sand type and curing period. Higher calcination temperature significantly improves the strength of the mortar. However, the strength of the obtained geopolymer mortars are still significantly lower than that of ordinary Portland cement mortar.
Ferreira, Viviana P.; Fazito Vale, Vladimir; Pangburn, Michael K.; Abdeladhim, Maha; Ferreira Mendes-Sousa, Antonio; Coutinho-Abreu, Iliano V.; Rasouli, Manoochehr; Brandt, Elizabeth A.; Meneses, Claudio; Lima, Kolyvan Ferreira; Nascimento Araújo, Ricardo; Horácio Pereira, Marcos; Kotsyfakis, Michalis; Oliveira, Fabiano; Kamhawi, Shaden; Ribeiro, Jose M. C.; Gontijo, Nelder F.; Collin, Nicolas; Valenzuela, Jesus G.
2016-01-01
Blood-feeding insects inject potent salivary components including complement inhibitors into their host’s skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases. PMID:26758086
Lana, Rosana Silva; Michalsky, Érika Monteiro; Fortes-Dias, Consuelo Latorre; França-Silva, João Carlos; Lara-Silva, Fabiana de Oliveira; Lima, Ana Cristina Vianna Mariano da Rocha; Moreira de Avelar, Daniel; Martins, Juliana Cristina Dias; Dias, Edelberto Santos
2015-01-01
In the New World, the leishmaniases are primarily transmitted to humans through the bites of Leishmania-infected Lutzomyia (Diptera: Psychodidae) phlebotomine sand flies. Any or both of two basic clinical forms of these diseases are endemic to several cities in Brazil--the American cutaneous leishmaniasis (ACL) and the American visceral leishmaniasis (AVL). The present study was conducted in the urban area of a small-sized Brazilian municipality (Jaboticatubas), in which three cases of AVL and nine of ACL have been reported in the last five years. Jaboticatubas is an important tourism hub, as it includes a major part of the Serra do Cipó National Park. Currently, no local data is available on the entomological fauna or circulating Leishmania. During the one-year period of this study, we captured 3,104 phlebotomine sand flies belonging to sixteen Lutzomyia species. In addition to identifying incriminated or suspected vectors of ACL with DNA of the etiological agent of AVL and vice versa, we also detected Leishmania DNA in unexpected Lutzomyia species. The expressive presence of vectors and natural Leishmania infection indicates favorable conditions for the spreading of leishmaniases in the vicinity of the Serra do Cipó National Park.
de Oliveira, Everton Falcão; dos Santos Fernandes, Carlos Eurico; Araújo e Silva, Elaine; Brazil, Reginaldo Peçanha; de Oliveira, Alessandra Gutierrez
2013-12-01
The life cycle of vectors and the reservoirs that participate in the chain of infectious diseases have a strong relationship with the environmental dynamics of the ecosystems in which they live. Oscillations in population abundance and seasonality of insects can be explained by factors inherent in each region and time period. Therefore, knowledge of the relationship and influence of environmental factors on the population of Lutzomyia longipalpis is necessary because of the high incidence of visceral leishmaniasis (VL) in Brazil. This study evaluates the influence of abiotic variables on the population density and seasonal behavior of L. longipalpis in an urban endemic area of VL in Brazil. The sand fly captures were performed every two months between November, 2009 and November, 2010 in the peridomicile of 13 randomly selected residences. We captured 1,367 specimens of L. longipalpis, and the ratio of male/female flies was 2.86:1. The comparison of the total male specimens in the two seasons showed a statistical difference in the wet season, but there was no significant difference when considering the total females. With respect to climatic variables, a significant negative association was observed only with wind speed. During periods of high wind speeds, the population density of this vector decreased. The presence of L. longipalpis was found in all months of the study with bimodal behavior and population peaks during the wet season. © 2013 The Society for Vector Ecology.
Vlkova, Michaela; Sima, Michal; Rohousova, Iva; Kostalova, Tatiana; Sumova, Petra; Volfova, Vera; Jaske, Erin L.; Barbian, Kent D.; Gebre-Michael, Teshome; Hailu, Asrat; Warburg, Alon; Ribeiro, Jose M. C.; Valenzuela, Jesus G.; Jochim, Ryan C.; Volf, Petr
2014-01-01
Background In East Africa, Phlebotomus orientalis serves as the main vector of Leishmania donovani, the causative agent of visceral leishmaniasis (VL). Phlebotomus orientalis is present at two distant localities in Ethiopia; Addis Zemen where VL is endemic and Melka Werer where transmission of VL does not occur. To find out whether the difference in epidemiology of VL is due to distant compositions of P. orientalis saliva we established colonies from Addis Zemen and Melka Werer, analyzed and compared the transcriptomes, proteomes and enzymatic activity of the salivary glands. Methodology/Principal Findings Two cDNA libraries were constructed from the female salivary glands of P. orientalis from Addis Zemen and Melka Werer. Clones of each P. orientalis library were randomly selected, sequenced and analyzed. In P. orientalis transcriptomes, we identified members of 13 main protein families. Phylogenetic analysis and multiple sequence alignments were performed to evaluate differences between the P. orientalis colonies and to show the relationship with other sand fly species from the subgenus Larroussius. To further compare both colonies, we investigated the humoral antigenicity and cross-reactivity of the salivary proteins and the activity of salivary apyrase and hyaluronidase. Conclusions This is the first report of the salivary components of P. orientalis, an important vector sand fly. Our study expanded the knowledge of salivary gland compounds of sand fly species in the subgenus Larroussius. Based on the phylogenetic analysis, we showed that P. orientalis is closely related to Phlebotomus tobbi and Phlebotomus perniciosus, whereas Phlebotomus ariasi is evolutionarily more distinct species. We also demonstrated that there is no significant difference between the transcriptomes, proteomes or enzymatic properties of the salivary components of Addis Zemen (endemic area) and Melka Werer (non-endemic area) P. orientalis colonies. Thus, the different epidemiology of VL in these Ethiopian foci cannot be attributed to the salivary gland composition. PMID:24587463
Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs
Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R.; Hidalgo-Mihart, Mircea; Marina, Carlos F.; Rebollar-Téllez, Eduardo A.; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N.; Sánchez-Cordero, Víctor; Becker, Ingeborg
2015-01-01
Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology. PMID:25629729
Flanley, Catherine M; Ramalho-Ortigao, Marcelo; Coutinho-Abreu, Iliano V; Mukbel, Rami; Hanafi, Hanafi A; El-Hossary, Shabaan S; Fawaz, Emad El-Din Y; Hoel, David F; Bray, Alexander W; Stayback, Gwen; Shoue, Douglas A; Kamhawi, Shaden; Karakuş, Mehmet; Jaouadi, Kaouther; Yaghoobie-Ershadi, Mohammad Reza; Krüger, Andreas; Amro, Ahmad; Kenawy, Mohamed Amin; Dokhan, Mostafa Ramadhan; Warburg, Alon; Hamarsheh, Omar; McDowell, Mary Ann
2018-03-27
Phlebotomus papatasi sand flies are major vectors of Leishmania major and phlebovirus infection in North Africa and across the Middle East to the Indian subcontinent. Population genetics is a valuable tool in understanding the level of genetic variability present in vector populations, vector competence, and the development of novel control strategies. This study investigated the genetic differentiation between P. papatasi populations in Egypt and Jordan that inhabit distinct ecotopes and compared this structure to P. papatasi populations from a broader geographical range. A 461 base pair (bp) fragment from the mtDNA cytochrome b (cyt b) gene was PCR amplified and sequenced from 116 individual female sand flies from Aswan and North Sinai, Egypt, as well as Swaimeh and Malka, Jordan. Haplotypes were identified and used to generate a median-joining network, F ST values and isolation-by-distance were also evaluated. Additional sand fly individuals from Afghanistan, Iran, Israel, Jordan, Libya, Tunisia and Turkey were included as well as previously published haplotypes to provide a geographically broad genetic variation analysis. Thirteen haplotypes displaying nine variant sites were identified from P. papatasi collected in Egypt and Jordan. No private haplotypes were identified from samples in North Sinai, Egypt, two were observed in Aswan, Egypt, four from Swaimeh, Jordan and two in Malka, Jordan. The Jordan populations clustered separately from the Egypt populations and produced more private haplotypes than those from Egypt. Pairwise F ST values fall in the range 0.024-0.648. The clustering patterns and pairwise F ST values indicate a strong differentiation between Egyptian and Jordanian populations, although this population structure is not due to isolation-by-distance. Other factors, such as environmental influences and the genetic variability in the circulating Le. major parasites, could possibly contribute to this heterogeneity. The present study aligns with previous reports in that pockets of genetic differentiation exists between populations of this widely dispersed species but, overall, the species remains relatively homogeneous.
Cortez, A M; Silva, V P M; Queiroz, P V S; Andrade, H T A; Loiola, M I B; Ximenes, M F F M
2007-12-01
In the state of Rio Grande do Norte in northeast Brazil, cases of visceral leishmaniasis (VL) occur mainly in the periurban areas of the city of Natal. Lutzomyia longipalpis Lutz & Neiva 1912 (Diptera: Psychodidae), a vector of Leishmania chagasi (Protozoa: Trypanosomatidae) to humans, is found throughout the state. Flora and fauna influence the distribution of sand fly species, whose horizontal or vertical stratification can be used as a parameter for identifying potential vectors, considering the presence of vertebrate hosts in the area. The purpose of this study was to obtain information about the vertical stratification of phlebotomine sand flies in an endemic area of leishmaniasis in Rio Grande do Norte, and associate it with the presence of other animals in the peridomiciliary environment as well as to analyze, under laboratory conditions, aspects of L. longipalpis reproduction in wild females. The sand flies were captured with light traps hung at different heights in species of Atlantic Forest trees and in a peridomiciliary environment in animal shelters. The traps were placed between 17:30 and 6:00 of the following day, in a peridomiciliary and extradomiciliary area of a forest fragment in both dry and rainy months. In the extradomiciliary environment, the traps were installed at 1, 3 and 5 m above the ground. The biological cycle of L. longipalpis was followed from the eggs of 200 wild females. Specimens of L. lenti, L. walkeri, and L. migonei were captured. The comparison and statistical analysis showed that L. longipalpis is more abundant at a height of 3 m and L. evandroi at 1 m. In the animal shelters (chickens, horses, and armadillos), we captured mainly specimens of L. longipalpis and L. evandroi. The duration of the biological cycle of L. longipalpis was approximately 38 days at a temperature of 28 degrees C.
Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs.
Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R; Hidalgo-Mihart, Mircea; Marina, Carlos F; Rebollar-Téllez, Eduardo A; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N; Sánchez-Cordero, Víctor; Becker, Ingeborg
2015-01-01
Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology.
2013-01-01
Background Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. Methods A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3’-5’-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman’s assay in microplates. Results A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P. papatasi AChE1 was expressed in the baculovirus system and characterized as an insect acetylcholinesterase with substrate preference for acetylthiocholine and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine, BW284c51, malaoxon, and paraoxon, and was insensitive to the butyrylcholinesterase inhibitors ethopropazine and iso-OMPA. Conclusions Results presented here enable the screening and identification of PpAChE mutations resulting in the genotype for insensitive PpAChE. Use of the recombinant P. papatasi AChE1 will facilitate rapid in vitro screening to identify novel PpAChE inhibitors, and comparative studies on biochemical kinetics of inhibition. PMID:23379291
Compressive and bonding strength of fly ash based geopolymer mortar
NASA Astrophysics Data System (ADS)
Zailani, Warid Wazien Ahmad; Abdullah, Mohd Mustafa Al Bakri; Zainol, Mohd Remy Rozainy Mohd Arif; Razak, Rafiza Abd.; Tahir, Muhammad Faheem Mohd
2017-09-01
Geopolymer which is produced by synthesizing aluminosilicate source materials with an alkaline activator solution promotes sustainable and excellent properties of binder. The purpose of this paper is to determine the optimum binder to sand ratio of geopolymer mortars based on mechanical properties. In order to optimize the formulation of geopolymer mortar, various binder to sand ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, and 4.0) are prepared. The investigation on the effect of sand inclusion to the compressive and bonding strength of geopolymer mortar is approached. The experimental results show that the bonding strength performance of geopolymer is also depends on the various binder to sand ratio, where the optimum ratio 0.5 gives a highest strength of 12.73 MPa followed by 12.35 MPa, which corresponds the ratio 1.0 for geopolymer, while the compared value of OPC bonding strength is given by 9.3 MPa. The morphological structure at the interface zone is determined by Scanning Electron Microscope (SEM) and the homogenous bonding between geopolymer and substrate can be observed. Fly ash based geopolymers reveal a new category of mortar which has high potential to be used in the field of concrete repair and rehabilitation.
2014-01-01
Background The efficacy of a slow-release insecticidal and repellent collar containing 10% imidacloprid and 4.5% flumethrin (Seresto, Bayer Animal Health) in preventing Leishmania infantum infection was evaluated in a large population of dogs living in a hyper-endemic area of Sicily (Italy). Methods A total of 219 dogs, negative for L. infantum were enrolled in a multicentre, controlled study. Dogs were divided into two homogeneous groups, defined as G1 (n = 102) and G2 (n = 117). Before the start of the sand fly season, dogs in G1 were treated with the collar while animals in G2 were left untreated, serving as negative controls. Dogs were serially sampled on day D90, D180, D210 and D300 in order to assess Leishmania infection by IFAT, PCR on skin (D210-D300) and bone marrow (D300) and cytology on bone marrow aspirate (D300). Results Three dogs (2.9%) in G1 and 41 (40.2%) in G2 became positive for L. infantum in at least one of the diagnostic tests employed in the study. The number of seropositive dogs in G2 increased in the course of the study from 15 (D90) to 41 (D300), with some of them also positive in other diagnostic tests. Eight (19.6%) of the seropositive dogs in G2 showed an increase in antibody titers ranging from 1:160 to 1:1,280. At the last follow-up, some of dogs in G2 displayed overt clinical signs suggestive of leishmaniosis. The mean incidence density rate at the final follow-up was 4.0% for G1 and 60.7% for G2, leading to a mean efficacy of the collar in protecting dogs at both sites of 93.4%. Conclusions The slow-release collar tested in this study was shown to be safe and highly effective in preventing L. infantum infection in a large population of dogs. Protection conferred by a single collar (up to eight months) spanned an entire sand fly season in a hyper-endemic area of southern Italy. The regular use of collars, at least during the sand fly season, may represent a reliable and sustainable strategy for the prevention of leishmaniosis in dogs living in or travelling to an endemic area. PMID:25023573
Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel
2016-07-01
Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.
Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches
USDA-ARS?s Scientific Manuscript database
Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...
Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches.
USDA-ARS?s Scientific Manuscript database
Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...
USDA-ARS?s Scientific Manuscript database
New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...
Fernandez, R; Galati, E B; Carbajal, F; Wooster, M T; Watts, D M
1998-01-01
A new species of phlebotomine sand fly, Lutzomyia adamsi n. sp., is described and illustrated from specimens collected during August 1994, in Sandia, Department of Puno-Peru. According to the Oficina Nacional de Evaluacion de Recursos Naturales(ONERN 1976), this locality is situated in the life zone known as humid, mountain, low tropical forest (bh-MBT). Many areas in the northern part of Puno, mainly in the Inambari and Tambopata basins, are endemic to leishmaniasis. These areas are the continuation of others, largely known as "leishmaniasic" in the departments of Cusco and Madre de Dios. The morphological characteristics indicated that this species belongs to the genus Lutzomyia, subgenus Helcocyrtomyia Barretto, 1962.
NASA Astrophysics Data System (ADS)
Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.
2017-02-01
The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.
Swinscoe, Isobel; Oliver, David M; Gilburn, Andre S; Quilliam, Richard S
2018-06-19
The sustainable management of recreational beaches is essential for minimising risk of human exposure to microbial pathogens whilst simultaneously maintaining valuable ecosystem services. Decaying seaweed on public beaches is gaining recognition as a substrate for microbial contamination, and is a potentially significant reservoir for human pathogens in close proximity to beach users. Closely associated with beds of decaying seaweed are dense populations of the seaweed fly (Coelopidae), which could influence the spatio-temporal fate of seaweed-associated human pathogens within beach environments. Replicated mesocosms containing seaweed inoculated with a bioluminescent strain of the zoonotic pathogen E. coli O157:H7, were used to determine the effects of two seaweed flies, Coelopa frigida and C. pilipes, on E. coli O157:H7 survival dynamics. Multiple generations of seaweed flies and their larvae significantly enhanced persistence of E. coli O157:H7 in simulated wrack habitats, demonstrating that both female and male C. frigida flies are capable of transferring E. coli O157:H7 between individual wrack beds and into the sand. Adult fly faeces can contain significant concentrations of E. coli O157:H7, which suggests they are capable of acting as biological vectors and bridge hosts between wrack habitats and other seaweed fly populations, and facilitate the persistence and dispersal of E. coli O157:H7 in sandy beach environments. This study provides the first evidence that seaweed fly populations inhabiting natural wrack beds contaminated with the human pathogen E. coli O157:H7 have the capacity to amplify the hazard source, and therefore potential transmission risk, to beach users exposed to seaweed and sand in the intertidal zone. The risk to public health from seaweed flies and decaying wrack beds is usually limited by human avoidance behaviour; however, seaweed fly migration and nuisance inland plagues in urban areas could increase human exposure routes beyond the beach environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seismic and acoustic emissions of a booming dune. [in lunar, planetary and terrestrial sand motion
NASA Technical Reports Server (NTRS)
Criswell, D. R.; Lindsay, J. F.; Reasoner, D. L.
1975-01-01
Acoustic and seismic spectra of booming sand dunes that emit low-frequency musical resonances when the dunes slump or undergo forced shearing are analyzed and described. Previous studies of booming, squeaking, screeching, and roaring sands with pure outputs resembling those of musical instruments, or more turbulent acoustic outputs such as the sound of low-flying propeller aircraft, are reviewed. The possibility of similar phenomena on the moon (thermal moonquakes) or nearby planets (Mars, Venus) is considered on the basis of planetary topography, soil mechanics, and atmosphere.
Strength characteristics of light weight concrete blocks using mineral admixtures
NASA Astrophysics Data System (ADS)
Bhuvaneshwari, P.; Priyadharshini, U.; Gurucharan, S.; Mithunram, B.
2017-07-01
This paper presents an experimental study to investigate the characteristics of light weight concrete blocks. Cement was partially replaced with mineral admixtures like Fly ash (FA), limestone powder waste (LPW), Rice husk ash (RHA), sugarcane fiber waste (SCW) and Chrysopogonzizanioides (CZ). The maximum replacement level achieved was 25% by weight of cement and sand. Total of 56 cubes (150 mm x 150 mm x150 mm) and 18 cylinders (100mmφ and 50mm depth) were cast. The specimens being (FA, RHA, SCW, LPW, CZ, (FA-RHA), (FA-LPW), (FA-CZ), (LPW-CZ), (FA-SCW), (RHA-SCW)).Among the different combination, FA,FA-SCW,CZ,FA-CZ showed enhanced strength and durability, apart from achieving less density.
Faulde, Michael K; Ahmed, Ammar A
2010-08-01
The Horn of Africa represents a region formerly known to be highly susceptible to mosquito-borne infectious diseases. In order to monitor and analyze the current presence and threat of vector mosquitoes, continuous and standardized trapping using CDC light traps without an additional CO2-generator has been carried out at six selected monitoring sites located in Djibouti City, from August 2008 until December 2009. An overall of 620 haematophageous Diptera were trapped, 603 (97.3%) were mosquitoes, 10 (1.6%) were sand flies, and 7 (1.1%) were biting midges, respectively. Genus distribution of mosquitoes revealed that 600 (99.5%) were Culex spp., 2 (0.3%) were Anopheles sergentii, and 1 (0.2%) was Aedes aegypti. Culex species were represented by Cx. quinquefasciatus (78.5%), and Cx. pipiens ssp. torridus (21.5%). The later species was first detected focally in early December 2009 showing a strongly increasing population density resulting in a maximum trap rate of 25 mosquitoes per trap night. Sand flies were all Sergentomyia antennata, and biting midges of the genus Culicoides were represented by C. nubeculosus (71.4%) and C. vexans (28.6 %). The findings included the first records for Cx. pipiens ssp. torridus and An. sergentii in Djibouti. However, none of the captured female Culex spp, the known vector for West Nile Virus, showed positive results for viral nucleic acids using WNV RT-real time PCR system. Also, females An. sergentii were Plasmodium falciparum and P. vivax circumsporozoite protein negative.
Ibáñez-Bernal, Sergio; Fisher, Eric
2015-08-14
A new name for the Oriental genus Nyssomyia Hull, 1962 (Diptera: Asilidae) is proposed. Homonymy exists between this Oriental robber fly genus and the more senior Neotropical phlebotomine sand fly genus Nyssomyia Barretto, 1962 (sensu Galati 2003) (Diptera: Psychodidae), and the following replacement name is proposed: Ekkentronomyia nom. nov. for Nyssomyia Hull (nec Barretto 1962). Accordingly, a new combination is herein proposed for the only species currently included in this genus: Ekkentronomyia ochracea (Hull, 1962) comb. nov.
de FIGUEIREDO, Helen Rezende; SANTOS, Mirella Ferreira da Cunha; CASARIL, Aline Etelvina; INFRAN, Jucelei Oliveira de Moura; RIBEIRO, Leticia Moraes; FERNANDES, Carlos Eurico dos Santos; de OLIVEIRA, Alessandra Gutierrez
2016-01-01
SUMMARY The Aquidauana municipality is considered an endemic area of leishmaniasis and an important tourist site in Mato Grosso do Sul State. The aim of this study was to investigate the sand fly fauna in the city of Aquidauana. Captures were carried out twice a month, from April 2012 to March 2014 with automatic light traps and active aspiration, in the peridomicile and domicile of six residences. A total of 9,338 specimens were collected, 3,179 and 6,159 using light traps and active aspiration, respectively. The fauna consisted of: Brumptomyia brumpti, Evandromyia aldafalcaoae, Ev. evandroi, Ev. lenti, Ev. orcyi, Ev. sallesi, Ev. termitophila, Ev. walkeri, Lutzomyia longipalpis and Psathyromyia bigeniculata. The most abundant species captured was Lutzomyia longipalpis, present in all the ecotopes, predominantly in peridomicile areas, and mainly males. Leishmania DNA was not detected in the insects. It was observed the abundance of the sand fly fauna in the region, as well as the high frequency of Lu. longipalpis, the main vector of L. infantum. The results of this study show the need to increase the monitoring and more effective control measures. It is noteworthy that the studied region presents several activities related to tourism and recreation, increasing the risk of transmission of leishmaniasis to this particular human population. PMID:27982353
Travi, Bruno L; Adler, Gregory H; Lozano, Margarita; Cadena, Horacio; Montoya-Lerma, James
2002-05-01
We examined changes in the phlebotomine fauna resulting from human intervention in a tropical dry forest of Northern Colombia where visceral and cutaneous leishmaniases are endemic. A natural forest reserve (Colosó) and a highly degraded area (San Andrés de Sotavento [SAS]) were sampled monthly for 8 mo using Shannon traps, sticky traps, and resting-site collections. Overall abundances were higher in Colosó (15,988) than in SAS (2,324). and species richness of phlebotomines was greater in the forest reserve (11 species) than in the degraded habitat (seven species). Fisher alpha, a measure of diversity, reinforced this trend. Both sand fly communities were dominated by Lutzomyia evansi (Nuòez-Tovar), vector of Leishmania chagasi (Cunha & Chagas), representing 92 and 81% of all captures in Colosó and SAS, respectively. Lutzomyia longipalpis (Lutz & Neiva), the common vector of visceral leishmaniasis, accounted for 4-7% of the sand fly community. Lutzornyia panamensis (Shannon) and Lutzomya gomezi (Nitzulescu), putative vectors of Leishmania braziliensis (Vianna), had low abundances at both study sites. The zoophilic species Lutzomyia cayennensis (Floch & Abonneuc) and Lutzomyia trinidadensis (Newstead) were present in variable numbers according to trapping methods and site. Habitat degradation negatively affected sand fly communities, but medically important species were able to exploit modified environments, thereby contributing to Lishmania endemicity.
Moreno, Mabel; Ferro, Cristina; Rosales-Chilama, Mariana; Rubiano, Luisa; Delgado, Marcela; Cossio, Alexandra; Gómez, Maria Adelaida; Ocampo, Clara; Saravia, Nancy Gore
2015-08-01
The expansion of transmission of cutaneous leishmaniasis from sylvatic ecosystems into peri-urban and domestic settings has occurred as sand flies have adapted to anthropogenic environmental modifications. Assessment of the intradomiciliary presence of sand flies in households of the settlement "La Cabaña", in the Department of Risaralda, Colombia, revealed an abundance of Warileya rotundipennis. This unexpected observation motivated further analyses to evaluate the participation of this species in the transmission of cutaneous leishmaniasis. Collections using CDC light traps were conducted during two consecutive nights in May and August 2011.The total of 667 sand flies collected were classified into five species: W. rotundipennis (n=654; 98.05%), Nyssomyia trapidoi (n=7; 1.04%); Lutzomyia (Helcocyrtomyia) hartmanni (n=3; 0.44%); Lutzomyia lichyi (n=2; 0.29%) and Psychodopygus panamensis (n=1; 0.14%). The striking predominance of W. rotundipennis within households during both wet (May) and dry (August) seasons, anthropophilic behavior demonstrated by human blood in 95.23% (60/63) evaluable blood-engorged specimens, and natural infection (5/168-3%) with genetically similar parasites of the Leishmania (Viannia) subgenus observed in a patient in this community, support the involvement of W. rotundipennis in the domestic transmission of cutaneous leishmaniasis in "La Cabaña". Copyright © 2015 Elsevier B.V. All rights reserved.
Midgut morphological changes and autophagy during metamorphosis in sand flies.
Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo
2017-06-01
During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.
Colla-Jacques, Fernanda Elisa; Casanova, Cláudio; Prado, Angelo Pires do
2010-03-01
Canine American visceral leishmaniasis and American cutaneous leishmaniasis (ACL) cases have been recorded in Espírito Santo do Pinhal. The aim of this study was to gather knowledge of the sand fly community and its population ecology within the municipality. Captures were made weekly over a period of 15 months in the urban, periurban and rural areas of the municipality, using automatic light traps. A total of 5,562 sand flies were collected, comprising 17 species. The most abundant species were Nyssomyia whitmani and Pintomyia pessoai in the rural area, Lutzomyia longipalpis and Ny. whitmani in the periurban area and Lu. longipalpis in the urban area. The highest species richness and greatest index species diversity were found in the rural area. The similarity index showed that urban and periurban areas were most alike. Lu. longipalpis was found in great numbers during both dry and humid periods. The presence of dogs infected with Leishmania infantum chagasi in the urban area indicates a high risk for the establishment of the disease in the region. A high abundance of Ny. whitmani and Pi. pessoai in the rural and periurban areas indicates the possibility of new cases of ACL occurring in and spreading to the periurban area of Espírito Santo do Pinhal.
Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.; Gildea, Martin L.; T'Kindt, Casey M.
2008-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle. This report provides constitutive material models for one soil, unwashed sand, from NASA Langley's gantry drop test facility and three soils from Kennedy Space Center (KSC). The four soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LS-DYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The four soil models are intended to be specific to the soil conditions discussed in the report. The unwashed sand model represents clayey sand at high density. The KSC models represent three distinct coastal sand conditions: low density dry sand, high density in-situ moisture sand, and high density flooded sand. It is possible to approximate other sands with these models, but the results would be unverified without geotechnical tests to confirm similar soil behavior.
... Library About Advocacy Board of Trustees Contact Us Ethics Foundation for Osteopathic Dermatology What is the FOD? ... is by protecting yourself from sand fly bites. Vaccines and drugs for preventing infection are not yet ...
Sulfate and acid resistant concrete and mortar
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.
Sulfate and acid resistant concrete and mortar
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-06-30
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.
Managing the horn fly (Diptera: Muscidae) using an electric walk-through fly trap.
Watson, D W; Stringham, S M; Denning, S S; Washburn, S P; Poore, M H; Meier, A
2002-10-01
An electric walk-through fly trap was evaluated for the management of the horn fly, Hematobia irritans (L.), on dairy cattle in North Carolina over 2 yr. The trap relies on black lights and electrocution grids to attract and kill flies that are brushed from the cattle passing through. During the first season, horn fly densities were reduced from >1,400 to <200 flies per animal. Horn fly density averaged 269.2 +/- 25.8 on cattle using the walk-through fly trap twice daily, and 400.2 +/- 43.5 on the control group during the first year. The second year, seasonal mean horn fly density was 177.3 +/- 10.8 on cattle using the walk-through fly trap compared with 321.1 +/- 15.8 on the control group. No insecticides were used to control horn flies during this 2-yr study.
Liang, Zheng; Li, Yajiao; Li, Peng; Jiang, Chunbo
2018-01-01
Excessive phosphorus (P) contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP) pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil), and eight intermittent tests with single filler (Blast furnace slag mixed with sand). Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS) modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume. PMID:29742120
Baek, Jin Woong; Choi, Angelo Earvin Sy; Park, Hung Suck
2017-12-01
Optimization studies of a novel and eco-friendly construction material, Thiomer, was investigated in the solidification/stabilization of automobile shredded residue (ASR) fly ash. A D-optimal mixture design was used to evaluate and optimize maximum compressive strength and heavy metals leaching by varying Thiomer (20-40wt%), ASR fly ash (30-50wt%) and sand (20-40wt%). The analysis of variance was utilized to determine the level of significance of each process parameters and interactions. The microstructure of the solidified materials was taken from a field emission-scanning electron microscopy and energy dispersive X-ray spectroscopy that confirmed successful Thiomer solidified ASR fly ash due to reduced pores and gaps in comparison with an untreated ASR fly ash. The X-ray diffraction detected the enclosed materials on the ASR fly ash primarily contained sulfur associated crystalline complexes. Results indicated the optimal conditions of 30wt% Thiomer, 30wt% ASR fly ash and 40wt% sand reached a compressive strength of 54.9MPa. For the optimum results in heavy metals leaching, 0.0078mg/LPb, 0.0260mg/L Cr, 0.0007mg/LCd, 0.0020mg/L Cu, 0.1027mg/L Fe, 0.0046mg/L Ni and 0.0920mg/L Zn were leached out, being environmentally safe due to being substantially lower than the Korean standard leaching requirements. The results also showed that Thiomer has superiority over the commonly used Portland cement asa binding material which confirmed its potential usage as an innovative approach to simultaneously synthesize durable concrete and satisfactorily pass strict environmental regulations by heavy metals leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bejarano, Eduar Elías; Vivero, Rafael José; Uribe, Sandra
2010-05-01
The phlebotomine sand fly Lutzomyia velezi sp.nov. was described and illustrated from male specimens collected by light trap in the Reserva Natural Cañon del Río Claro in the Central Cordillera of the Colombian Andes. The new species belongs to the series sanguinaria of the subgenus Helcocyrtomyia, which is represented in Colombia by Lutzomyia cirrita, Lutzomyia hartmanni, Lutzomyia sanguinaria, Lutzomyia scorzai, Lutzomyia sp. of Pichindé and Lutzomyia tortura. The new species can be differentiated from others of the subgenus by the combination of the following characteristics: long antennal ascoids, reaching level of the papilla, coxite with a single basal seta and fifth palpomere longer than or equal to the sum of the lengths of the third and fourth palpomeres.
Travi, Bruno L; Tabares, Carlos Javier; Cadena, Horacio
2006-10-01
Although canine cutaneous leishmaniasis has been reported in several foci of South America, no published information from Colombia is available. We report on two cases found in the Pacific coast region of this country, which presented as a single scrotal ulcer in one dog, and two ulcers on the external surface of the ear in a second dog. Parasites were isolated by culture in Senekjie's culture medium and identified using monoclonal antibodies. The capacity of these dogs to transmit the parasites to sand fly vectors (Lutzomyia trapidoi, Lutzomyia gomezi, Lutzomyia longipalpis, Lutzomyia youngi) was tested by allowing the flies to feed on the lesion borders. Both isolates were identified as Leishmania (Viannia) braziliensis. No infections were detected upon dissection of engorged flies. A single peri-and sub-lesional injection of 1-2 ml of pentavalent antimony in the dog with ear lesions resulted in clinical cure 6 weeks post-treatment. These observations suggest that although dogs are susceptible to L. braziliensis, their reservoir competence could be low. However, if further studies indicate that canines are capable reservoir hosts of L. Viannia spp., the local treatment of lesions could become a feasible approach to diminish the risk of human infection in the peridomestic setting, without sacrificing infected dogs.
Rodríguez-Rojas, Jorge J; Arque-Chunga, Wilfredo; Fernández-Salas, Ildefonso; Rebollar-Téllez, Eduardo A
2016-06-01
Phlebotominae are the vectors of Leishmania parasites. It is important to have available surveillance and collection methods for the sand fly vectors. The objectives of the present study were to evaluate and compare traps for the collection of sand fly species and to analyze trap catches along months and transects. Field evaluations over a year were conducted in an endemic area of leishmaniasis in the state of Quintana Roo, Mexico. A randomized-block design was implemented in study area with tropical rainforest vegetation. The study design utilized 4 transects with 11 trap types: 1) Centers for Disease Control and Prevention (CDC) light trap with incandescent bulb (CDC-I), 2) CDC light trap with blue light-emitting diodes (LEDs) (CDC-B), 3) CDC light trap with white LEDs (CDC-W), 4) CDC light trap with red LEDs (CDC-R), 5) CDC light trap with green LEDs (CDC-G), 6) Disney trap, 7) Disney trap with white LEDs, 8) sticky panels, 9) sticky panels with white LEDs, 10) delta-like trap, and 11) delta-like trap with white LEDs. A total of 1,014 specimens of 13 species and 2 genera (Lutzomyia and Brumptomyia) were collected. There were significant differences in the mean number of sand flies caught with the 11 traps; CDC-I was (P = 0.0000) more effective than the other traps. Other traps exhibited the following results: CDC-W (17.46%), CDC-B (15.68%), CDC-G (14.89%), and CDC-R (14.30%). The relative abundance of different species varied according to trap types used, and the CDC-I trap attracted more specimens of the known vectors of Leishmania spp., such as like Lutzomyia cruciata, Lu. shannoni, and Lu. ovallesi. Disney trap captured more specimens of Lu. olmeca olmeca. Based on abundance and number of species, CDC light traps and Disney traps appeared to be good candidates for use in vector surveillance programs in this endemic area of Mexico.
Haddad, Nabil; Saliba, Hanadi; Altawil, Atef; Villinsky, Jeffrey; Al-Nahhas, Samar
2015-10-12
Cutaneous leishmaniasis is a disease transmitted by sand fly bites. This disease is highly prevalent in Syria where Leishmania major and Leishmania tropica are the known aetiological agents. In 2011, more than 58,000 cases were reported in the country by the Ministry of Health. The central region of the country harbors 20 % of the reported cases. However, the epidemiology of the disease in this area is not well understood. An epidemiological survey was conducted in 2010 to identity the circulating parasite and the sand fly vector in the central provinces of Edlib and Hama. Sand fly specimens were collected using CDC light traps and identified morphologically. Total DNA was extracted from the abdomens of female specimens and from Giemsa-stained skin lesion smears of 80 patients. Leishmania parasites were first identified by sequencing the ITS1 gene amplicons. Then polymorphism analysis was performed using the RFLP technique. A total of 2142 sand flies were collected. They belonged to eight species, among which Phlebotomus sergenti and Phlebotomus papatasi were the most predominant. L. tropica ITS1 gene was amplified from two pools of P. sergenti specimens and from skin smears of cutaneous leishmaniasis patients. This suggests that P. sergenti is the potential vector species in the study area. The digestion profiles of the obtained amplicons by TaqI restriction enzyme were identical for all analysed L. tropica parasites. Moreover, L. infantum ITS1 gene was amplified from two pools of Phlebotomus tobbi in the relatively humid zone of Edlib. L. tropica is confirmed to be the aetiological agent of cutaneous leishmaniasis cases in the central provinces. RFLP technique failed to show any genetic heterogeneity in the ITS1 gene among the tested parasites. The molecular detection of this parasite in human skin smears and in P. sergenti supports the vector status of this species in the study area. The detection of L. infantum in P. tobbi specimens indicates a potential circulation of this parasite in the humid zone of Edlib. Further epidemiological studies are needed to evaluate the burden of this visceral parasite in the study region.
Fan, Baoli; McHugh, Allen David; Guo, Shujiang; Ma, Quanlin; Zhang, Jianhui; Zhang, Xiaojuan; Zhang, Weixing; Du, Juan; Yu, Qiushi; Zhao, Changming
2018-03-01
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.
Ong, Song-Quan; Ahmad, Hamdan; Jaal, Zairi; Rus, Adanan; Fadzlah, Fadhlina Hazwani Mohd
2017-01-01
Determining the control threshold for a pest is common prior to initiating a pest control program; however, previous studies related to the house fly control threshold for a poultry farm are insufficient for determining such a threshold. This study aimed to predict the population changes of house fly population by comparing the intrinsic rate of increase (r m ) for different house fly densities in a simulated system. This study first defined the knee points of a known population growth curve as a control threshold by comparing the r m of five densities of house flies in a simulated condition. Later, to understand the interactions between the larval and adult populations, the correlation between larval and adult capacity rate (r c ) was studied. The r m values of 300- and 500-fly densities were significantly higher compared with the r m values at densities of 50 and 100 flies. This result indicated their representative indices as candidates for a control threshold. The r c of larval and adult populations were negatively correlated with densities of fewer than 300 flies; this implicated adult populations with fewer than 300 flies as declining while the larval population was growing; therefore, control approaches should focus on the immature stages. The results in the present study suggest a control threshold for house fly populations. Future works should focus on calibrating the threshold indices in field conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ladeia-Andrade, Simone; Fé, Nelson Ferreira; Sanguinette, Cristiani de Castilho; Andrade Filho, José Dilermando
2014-08-29
A new species of phlebotomine sand flies belonging to Trichophoromyia Barretto, 1962 genus is described, based on males collected in Jaú National Park, Amazonas state, Brazil. The Sand flies were mounted in Canada balsam. They were measured with a binocular Olympus CH-2 microscope with the aid of a micrometer objective and the drawings were done with the help of a camera lucida. This new species named Trichophoromyia uniniensis sp. nov. is closely related to Trichophoromyia omagua (Martins, Llanos & Silva, 1976). The former can be distinguished from the latter by the shape of its paramere that has the lower apical region turned up in the new species. With the new species here described a total of 39 species belonging to the Trichophoromyia genus are now known, most of them present in the Amazon rainforest.
Contreras-Gutiérrez, María Angélica; Vélez, Iván Darío; Porter, Charles; Uribe, Sandra Inés
2014-01-01
An updated list of phlebotomine sand flies species in coffee growing areas in the Colombian Andean region is presented. Fifty three species were reported from 12 departments. In addition, species distribution in the region was derived from specimens obtained during intensive field work in five departments, from previously published studies and from the taxonomic revision of specimens in the entomological collection of the Programa de Estudio y Control de Enfermedades Tropicales (PECET). The list includes the genera Brumptomyia (2 species), Lutzomyia (50 species) and Warileya (1 species). The updated list contains eleven new records in the region under study, including Lutzomyia panamensis , a species of medical importance not recorded previously in this zone. Eighteen of the species are considered to be anthropophilic, and many of them have been implicated in the transmission of leishmaniasis.
Carvalho, Gustavo M L; Brazil, Reginaldo P; Sanguinette, Cristiani C; Filho, José D Andrade
2011-08-09
The cave fauna of the Brazil is poorly documented, and among the insects those live or frequent caves and their adjacent environments phlebotomine sand flies call for special attention because several species are vectors of pathogens among vertebrates hosts. A new species of sand fly from Minas Gerais is described based in females and males collected in a cave of the municipality of Lassance. The morphological characters of the new species permit to include in the Evandromyia genus, cortelezzii complex. This complex consists of three species: Evandromyia corumbaensis (Galati, Nunes, Oshiro & Rego, 1989), Evandromyia cortelezzii (Brethes, 1923) and Evandromyia sallesi (Galvao & Coutinho, 1940). The new species can be separate from the others of the cortelezzii complex through morphological characters of the male terminalia and female spermathecae.
Ibáñez-Bernal, Sergio; García-Torres, Carlos Roberto; Vásquez-Márquez, Mario
2017-11-10
Micropygomyia (Coquillettimyia) nahua sp. nov., is described and illustrated based on male and female characteristics. Specimens were collected in the Municipality of Naolinco, state of Veracruz, Mexico. This new species of phlebotomine sand fly has characteristics corresponding to the series vexator Fairchild of Galati, with male similar to Micropygomyia (Coquillettimyia) apache (Young & Perkins), Mi. (Coq.) oppidana (Dampf) and Mi. (Coq.) vexator (Coquillett), but recognized by the male paramere structure and simple apex of aedeagal ducts in the male, the later exception for this species series. Female can be confused with Mi. (Coq.) vexator, Mi. (Coq.) oppidana and Mi. (Coq.) apache, but is distinguishable by the cibarial armature combined with the long and very slender individual spermathecal ducts. Keys for male and female species of Micropygomyia (Coquillettimyia) are provided.
Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg
2013-06-01
The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Arrivillaga-Henríquez, Jazzmín; Enríquez, Sandra; Romero, Vanessa; Echeverría, Gustavo; Pérez-Barrera, Jorge; Poveda, Ana; Navarro, Juan-Carlos; Warburg, Alon; Benítez, Washington
2017-03-29
The province of Pichincha in Ecuador is an endemic area of cutaneous leishmaniasis, where anthropophilic sand flies with natural infection by Leishmania, have been reported as vectors. However, the role in transmission of zoophilic species has not been evaluated. To evaluate natural infection by Leishmania in two zoophilic phlebotomine sand fly species, Lutzomyia reburra and Lu. barrettoi majuscula, and one anthropophilic species, Lu. trapidoi, as well as the endophagy and synanthropism of these species in the northwest of Pichincha. Phlebotomines were collected using CDC light traps in different habitats and altitudes with presence of cutaneous leishmaniasis. Leishmania infection was detected using genomic DNA from females of the collected sand flies. We amplified the internal transcribed spacer gene of ribosomal RNA I (ITS1), the mitochondrial topoisomerase II gene (mtTOPOII), and the nuclear topoisomerase II gene (TopoII). Percentages of positivity for Leishmania, at spatio-temporal scale, proportion of endophagy and synanthropism index were calculated. Natural infection was determined for Le. amazonensis in Lu. reburra (9.5%) and Lu. b. majuscula (23.8%), while in Lu. trapidoi we detected Le. amazonensis, Le. brazilienis and Le. naiffi-lainsoni. Phlebotomines were asynanthropic and with low endophagy. Natural infection with Le. amazonensis was recorded for the first time in Lu. reburra and Lu. b. majuscula, demonstrating the importance of zoophilic phlebotomines in the maintenance of the Leishmania transmission cycle in endemic foci.
Yavar, Rassi; Abedin, Saghafipour; Reza, Abai Mohammad; Ali, Oshaghi Mohammad; Sina, Rafizadeh; Mehdi, Mohebail; Reza, Yaaghobi-Ershadi Mohammad; Fatemeh, Mohtarami; Babak, Farzinnia
2011-02-01
To determine the sand flies species responsible for most transmission of Leishmania major (L. major) to human, as well as to determine the main reservoir hosts of the disease. Sand flies were collected using sticky papers and mounted in Puri's medium for species identification. Rodents were trapped by live Sherman traps. Both sand flies and rodents were subjected to molecular methods for detection of leishmanial parasite. Phlebotomus papatasi (P. papatasi) was the common species in outdoor and indoor resting places. Employing PCR technique only three specimens of 150 P. papatasi (2%) were found naturally infected by parasites with a band of 350 bp which is equal to the L. major parasite. Forty six rodents were captured by Sherman traps and identified. Microscopic investigation on blood smear of the animals for amastigote parasites revealed 1 (3.22%) infected Meriones libycus (M. libycus). Infection of this animal to L. major was confirmed by PCR against rDNA loci of the parasite. This is the first molecular report of parasite infection of both vector (P. papatasi) and reservoir (M. libycus) to L. major in the region. The results indicated that P. papatasi was the primary vector of the disease and circulating the parasite between human and reservoirs and M. libycus was the most important host reservoir for maintenance of the parasite source in the area. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Mechanical and Physical Properties of ASTM C33 Sand
2008-02-01
ERDC/GSL TR-08-2 7 Grain-size Distribution (1) (ASTM D 422) 1 test run on total sand sample Proctor Density Curves (2) (ASTM D 698 and D... Proctor (Figure 4). Because of the noncohesive nature of the SP material, a series of relative density tests measuring both minimum and maximum... density tests were conducted with moisture added to the sand. A summary of the minimum and maximum densities is given in Table 2. During Proctor
Compressive behavior of fine sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley E.; Kabir, Md. E.; Song, Bo
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less
[Leishmaniasis in Ecuador. 5. Leishmaniasis and anthropization on the Pacific coast].
Mouchet, J; Le Pont, F; Leon, R; Echeverria, R; Guderian, R H
1994-03-01
We have evaluated the impact of anthropization of the forest on the incidence of leishmaniasis, due to Leishmania panamensis, in three coastal study areas, Corriente Grande (primary forest), Paraiso Escondido and La Tablada (secondary forest). The situation of isolated dwellings, in deforested areas, has also been analysed in the last two stations. In each station, the study of the density of anthropophilic sand flies, specially Lutzomyia trapidoi, has been conducted in the domestic environment, coffee plantations and undergrowth. The incidence of leishmaniasis was nearly non existent in primary forest, though it ranged from 106 to 147% in the more or less cleared forest. At Corriente Grande, none Lu. trapidoi was caught in houses. In the undergrowth, catches were low (8% of the total). At Paraiso Escondido, Lu. trapidoi was the dominant species, with more than 83% of the catches in the undergrowth and in the coffee plantations (41 Man/hour), as well as in dwellings (10.6 M/h). At La Tablada, in the domestic environment, Lu. gomezi, was the dominant species: 2.8 M/h against 0.1 M/h for Lu. trapidoi. In the coffee plantations and in the undergrowth Lu. trapidoi was the main species, 21 M/h and 14 M/h. Thus in the primary rainforest, leishmaniasis transmission can be very low. In disturbed forest, coffee plantations near houses are good biotopes for Lu. trapidoi. The cycle of L. panamensis has been adapted to this new ecological situation, by being closer to the houses. The reservoirs live and circulate throughout coffee plantations. In deforested areas, neither aggressive sand flies have been observed, nor leishmaniasis transmission.
Smith, Barbara A.; Imamura, Hideo; Sanders, Mandy; Svobodova, Milena; Volf, Petr; Berriman, Matthew; Cotton, James A.; Smith, Deborah F.
2014-01-01
Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle. PMID:24453988
2011-01-01
patterns of UV-labeled droplets captured on cotton ribbons adjacent to sand ßy cages in spray plots did not match patterns ofmortality.Wediscuss the...untreated areas. Surprisingly, ULV active ingredient deposition inferred from patterns of UV-labeled droplets captured on cotton ribbons adjacent to...the west plot on the second spray day; looking south. Cotton droplet capture ribbons have already been attached in position between the posts at each
Arredondo, José; Ruiz, Lía; Hernández, Emilio; Montoya, Pablo; Díaz-Fleischer, Francisco
2016-04-01
The use of genetic sexing strain (GSS) insects in the sterile insect technique (SIT) makes necessary the revision of quality parameters of some stressful steps used during the packing process for aerial release because of possible differences in tolerance between fly strains. Here, we determined the effect of three periods of hypoxia (12, 24, and 36 h at pupal stage), three cage densities (1.0, 1.3, and 1.5 flies/cm2), two different foods (protein/sugar (1/24) and Mubarqui), and three chilling times (20 min [control], 90, and 180 min) on the quality parameters of flies of two Anastrepha ludens (Loew) strains (bisexual and GSS Tapachula-7). In general, the response to stressful conditions of both fly strains was qualitatively equivalent but quantitatively different, as flies of both strains responded equally to the stressful factors; however, flies of Tapachula-7 exhibited lower quality parameters than the control flies. Thus, hypoxia affected the flying ability but not the emergence or longevity of flies. The food type affected the adult weight; protein/sugar produced heavier flies that also survived longer and had a greater mating propensity. Flies under the lowest density were better fliers that those at the other two densities. Increasing chilling time reduced flight ability but not longevity or mating propensity. The implications of these findings for the use of A. ludens GSS in SIT programs are discussed herein.
Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.
Ko, Ming-Sheng; Chen, Ying-Liang; Wei, Pei-Shou
2013-03-01
The municipal solid waste incinerators (MSWIs) in Taiwan generate about 300,000 tons of fly ash annually, which is mainly composed of calcium and silicon compounds, and has the potential for recycling. However, some heavy metals are present in the MSWI fly ash, and before recycling, they need to be removed or reduced to make the fly ash non-hazardous. Accordingly, the purpose of this study was to use a hydrocyclone for the separation of the components of the MSWI fly ash in order to obtain the recyclable portion. The results show that chloride salts can be removed from the fly ash during the hydrocyclone separation process. The presence of a dense medium (quartz sand in this study) is not only helpful for the removal of the salts, but also for the separation of the fly ash particles. After the dense-medium hydrocyclone separation process, heavy metals including Pb and Zn were concentrated in the fine particles so that the rest of the fly ash contained less heavy metal and became both non-hazardous and recyclable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chandipura virus infection causing encephalitis in a tribal population of Odisha in eastern India.
Dwibedi, Bhagirathi; Sabat, Jyotsnamayee; Hazra, Rupenangshu K; Kumar, Anu; Dinesh, Diwakar Singh; Kar, Shantanu K
2015-01-01
The sudden death of 10 children in a tribal village of Kandhamal district, Odisha in eastern India led to this investigation. We conducted a door-to-door survey to identify cases. Antibodies for Chandipura, Japanese encephalitis, dengue, chikungunya and West Nile viruses were tested by ELISA in probable cases. Chandipura virus RNA was tested from both human blood samples and sand flies by reverse transcriptase polymerase chain reaction. We conducted vector surveys in domestic and peridomestic areas, and collected sand flies. Entomological investigations revealed the presence of Phlebotomus argentipes and Sergentomiya sp. Thirty-five patients presented with fever, 12 of them had altered sensorium including 4 who had convulsions. The blood samples of 21 patients were tested; four samples revealed Chandipura virusspecific IgM antibody. Chandipura virus infection causing encephalitis affected this tribal population in eastern India at 1212 m above sea level. Copyright 2015, NMJI.
Phylogenetics of the phlebotomine sand fly group Verrucarum (Diptera: Psychodidae: Lutzomyia).
Cohnstaedt, Lee W; Beati, Lorenza; Caceres, Abraham G; Ferro, Cristina; Munstermann, Leonard E
2011-06-01
Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity--the Lutzomyia longiflocosa-Lutzomyia sauroida pair and the Lutzomyia quasitownsendi-Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution.
Urban parasitology: visceral leishmaniasis in Brazil.
Harhay, Michael O; Olliaro, Piero L; Costa, Dorcas Lamounier; Costa, Carlos Henrique Nery
2011-09-01
Since the early 1980s, visceral leishmaniasis (VL) which is, in general, a rural zoonotic disease, has spread to the urban centers of the north, and now the south and west of Brazil. The principal drivers differ between cities, though human migration, large urban canid populations (animal reservoir), and a decidedly peripatetic and adaptable sand fly vector are the primary forces. The exact number of urban cases remains unclear as a result of challenges with surveillance. However, the number of urban cases registered continues to increase annually. Most control initiatives (e.g. culling infected dogs and household spraying to kill the sand fly) could be effective, but have proven hard to maintain at large scales due to logistical, financial and other reasons. In this article, the urbanization of VL in Brazil is reviewed, touching on these and other topics related to controlling VL within and outside Brazil. Copyright © 2011 Elsevier Ltd. All rights reserved.
2011-01-01
Background The cave fauna of the Brazil is poorly documented, and among the insects those live or frequent caves and their adjacent environments phlebotomine sand flies call for special attention because several species are vectors of pathogens among vertebrates hosts. A new species of sand fly from Minas Gerais is described based in females and males collected in a cave of the municipality of Lassance. Results The morphological characters of the new species permit to include in the Evandromyia genus, cortelezzii complex. This complex consists of three species: Evandromyia corumbaensis (Galati, Nunes, Oshiro & Rego, 1989), Evandromyia cortelezzii (Brethes, 1923) and Evandromyia sallesi (Galvao & Coutinho, 1940). Conclusions The new species can be separate from the others of the cortelezzii complex through morphological characters of the male terminalia and female spermathecae. PMID:21827682
Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia)
Cohnstaedt, Lee W.; Beati, Lorenza; Caceres, Abraham G.; Ferro, Cristina; Munstermann, Leonard E.
2011-01-01
Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity—the Lutzomyia longiflocosa–Lutzomyia sauroida pair and the Lutzomyia quasitownsendi–Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution. PMID:21633028
Rebêlo, José Manuel Macário; Assunção Júnior, Antonildes Nascimento; Silva, Orleans; Moraes, Jorge Luiz Pinto
2010-01-01
The distribution and relative abundance of sand fly species were studied in the municipality of Barreirinhas, Maranhão State, Brazil, around the Lençóis Maranhenses National Park, from January to June 2005, August 2004, July 2005, and September/2008. A total of 6,658 specimens were captured. The most frequent species were Lutzomyia whitmani (46.6%), L. longipalpis (29.9%), L. evandroi (17.1%), and L. lenti (4.8%), while L. termitophila, L. flaviscutellata, L. migonei, L. infraspinosa, L. sordellii, L. wellcomei, L. antunesi, and L. trinidadensis represented 1.6%. The presence of Leishmania vector species explains the high detection rate for tegumentary leishmaniasis in 2000 (308.2), 2001 (310.9), 2002 (338.2), and 2005 (313.6) and active foci of human visceral leishmaniasis in the municipality of Barreirinhas.
First report of naturally infected Sergentomyia minuta with Leishmania major in Tunisia.
Jaouadi, Kaouther; Ghawar, Wissem; Salem, Sadok; Gharbi, Mohamed; Bettaieb, Jihene; Yazidi, Rihab; Harrabi, Mariem; Hamarsheh, Omar; Ben Salah, Afif
2015-12-21
Many sand fly species are implicated in the transmission cycle of Leishmania parasites around the world. Incriminating new sand flies species, as vectors of Leishmania is crucial to understanding the parasite-vector transmission cycle in different areas in Tunisia and surrounding countries. Seventy-four unfed females belonging to the genera Sergentomyia and Phlebotomus were collected in South Tunisia between June and November 2014, using sticky papers. PCR-RFLP (Restriction Fragment Length Polymorphism) analysis of the internal transcribed spacer 1 (ITS1) was used for Leishmania parasites detection and identification. Leishmania (L.) major (Yakimoff & Shokkor, 1914) was identified within two Sergentomyia (S.) minuta (Rondani, 1843) and one Phlebotomus papatasi (Scopoli, 1786). This is the first report of L. major identified from S. minuta in Tunisia. This novel finding enhances the understanding of the transmission cycle of L. major parasites of cutaneous leishmaniasis in an endemic area in South Tunisia.
Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar
NASA Astrophysics Data System (ADS)
Nan, Qin; Hongwei, Wang; Yongyan, Wang
2018-03-01
Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.
Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand
NASA Astrophysics Data System (ADS)
Nanda Kishore, G.; Gayathri, B.
2017-08-01
Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.
Observation of sand waves in the Taiwan Banks using HJ-1A/1B sun glitter imagery
NASA Astrophysics Data System (ADS)
Zhang, Hua-guo; Lou, Xiu-lin; Shi, Ai-qin; He, Xie-kai; Guan, Wei-bing; Li, Dong-ling
2014-01-01
This study focuses on the large sand waves in the Taiwan Banks. Our goals are to observe the sand waves as completely as possible, to obtain their direction, wavelength, density, and ridge length, to analyze their spatial distributions, and to understand the effects of the current field and water depth on the sand waves. This study demonstrates the possibility of using HJ-1A/1B sun glitter imagery with a large swath width and rapid coverage in studying sand waves. Six cloud-free HJ-1A/1B optical images with sun glitter signals received during 2009 to 2011 were processed. The sand waves were mapped based on their features in the images; their direction, wavelength, density, and ridge length were measured and analyzed. We identified 4604 sand waves distributed in an area of 16,400 km2. The distributions of sand waves and their characteristics were analyzed, and the differences of sand waves between the northwestern subregion and the southeastern subregion are reported. Further analysis and discussion of the relationships between spatial distribution of the sand waves and both the tidal current field from a numerical simulation and water depth led to some interesting conclusions. The current field determines the orientation of the sand wave, while the hydrodynamic conditions and water depth influence the shape, size, and density of sand waves to a certain degree.
Meyer, William R.; Tucci, Patrick
1979-01-01
Part of the Indiana Dunes National Lakeshore shares a common boundary with the Northern Indiana Public Service Company (NIPSCO). This area is underlain by unconsolidated deposits approximately 180 feet thick. NIPSCO accumulates fly ash from the burning of coal in electric-power generating units in settling ponds. Seepage from the ponds has raised ground-water levels above natural levels approximately 15 feet under the ponds and more than 10 feet within the Lakeshore. NIPSCO is presently (1977) constructing a nuclear powerplant, and construction activities include pumping ground water to dewater the construction site. The company has installed a slurry wall around the site to prevent lowering of ground-water levels within the Lakeshore. Plans call for continuous pumping through at least December 1979. A multilayered digital flow model was constructed to simulate the ground-water system. The model was used to demonstrate the effects of seepage from the fly-ash ponds on ground-water levels. Also, the model indicated a decline of 3 feet or less in the upper sand unit and 5 feet or less in the lower sand unit within the Lakeshore.
Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J
2014-11-01
Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nirmala, D. B.; Raviraj, S.
2016-06-01
This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.
Florin, David A; Davies, Stephen J; Olsen, Cara; Lawyer, Phillip; Lipnick, Robert; Schultz, George; Rowton, Edgar; Wilkerson, Richard; Keep, Lisa
2011-03-01
A morphometric and molecular study of adult male and female Lutzomyia shannoni (Dyar 1929) collected at seven different locations within the southeastern United States was conducted to assess the degree of divergence between the grouped specimens from each location. The collection locations were as follows: Fort Bragg, NC; Fort Campbell, KY; Fort Rucker, AL; Ossabaw Island, GA; Patuxent National Wildlife Research Refuge, MD; Suwannee National Wildlife Refuge, FL; and Baton Rouge, LA. Forty males and forty females from each location were analyzed morphometrically from 54 and 49 character measurements, respectively. In addition, the molecular markers consisting of the partial cytochrome c oxidase subunit I (from 105 sand flies: 15 specimens/collection site) and the partial internal transcribed spacer 2 (from 42 sand flies: six specimens/collection site) were compared. Multivariate analyses indicate that the low degree of variation between the grouped specimens from each collection site prevents the separation of any collection site into an entity that could be interpreted as a distinct population. The molecular analyses were in concordance with the morphometric study as no collection location grouped into a separate population based on the two partial markers. The grouped specimens from each collection site appear to be within the normal variance of the species, indicating a single population in the southeast United States. It is recommended that additional character analyses of L. shannoni based on more molecular markers, behavioral, ecological, and physiological characteristics, be conducted before ruling out the possibility of populations or a cryptic species complex within the southeastern United States.
Flórez, Mónica; Martínez, Junny Patricia; Gutiérrez, Reinaldo; Luna, Katherine Paola; Serrano, Victor Hugo; Ferro, Cristina; Angulo, Víctor Manuel; Sandoval, Claudia Magaly
2006-10-01
Between 1998 and 2000, the occurrence of 8 cases of American visceral leishmaniasis in children from a recently established human settlement in Guatiguará, in the municipality of Piedecuesta (Santander, Colombia) indicated the possible presence of Leishmania transmission in this locality. This observation motivated the current entomological investigation. To determine the relative frequency of Lutzomyia longipalpis inside houses and outdoors, and the natural infection of this vector with Leishmania spp. CDC light traps were used for sampling inside houses and outdoors, and sand flies were collected on human volunteers and domestic animals, and in resting places, during the period from May 1999 through September 2000. Natural infection was determined by PCR, in pools of female Lutzomyia longipalpis. A total of 7,391 phlebotomine sand flies were collected. The predominant species was Lutzomyia longipalpis (Lutz & Neiva), representing 99.5% of captures. In the sand flies collected with CDC light traps, L. longipalpis was more frequently collected indoors than outdoors (p = 0.0001). The total rate of natural infection was 1.93% and a positive correlation was observed between months with higher abundance and the number of infected females entering human dwellings. The results indicate that in Guatiguará Lutzomyia longipalpis, shows marked tendency for the indoors, which has important implications for leishmaniasis transmission. Furthermore, transmission risk is increased during the months of higher abundance due to the entry of a higher number of infected females. From the standpoint of control, this behaviour permits the design of strategies to reduce indoor transmission.
Vivero, Rafael José; Contreras-Gutiérrez, Maria Angélica; Bejarano, Eduar Elías
2007-09-01
Lutzomyia sand flies are involved in the transmission of the parasite Leishmania spp. in America. The taxonomy of these vectors is traditionally based on morphological features of the adult stage, particularly the paired structures of the head and genitalia. Although these characters are useful to distinguish most species of Lutzomyia, morphological identification may be complicated by the similarities within subgenera and species group. To evaluate the utility of mitochondrial serine transfer RNA tRNA Ser for taxonomic identification of Lutzomyia. Seven sand fly species, each representing one of the 27 taxonomic subdivisions in genus Lutzomyia, were analyzed including L. trinidadensis (Oswaldoi group), L. (Psychodopygus) panamensis, L.(Micropygomyia) cayennensis cayennensis, L. dubitans (Migonei group), L. (Lutzomyia) gomezi, L. rangeliana (ungrouped) and L. evansi (Verrucarum group). The mitochondrial tRNA Ser gene, flanked by the cytochrome b and NAD dehydrogenase subunit one genes, was extracted, amplified and sequenced from each specimen. Secondary structure of the tRNA Ser was predicted by comparisons with previously described homologous structures from other dipteran species. The tRNA Ser gene ranged in size from 66 base pairs in L. gomezi to 69 base pairs in L. trinidadensis. Fourteen polymorphic sites, including four insertion-deletion events, were observed in the aligned 70 nucleotide positions. The majority of the substitutions were located in the dihydrouridine, ribothymidine-pseudouridine-cytosine and variable loops, as well as in the basal extreme of the anticodon arm. Changes of primary sequence of the tRNASer provided useful molecular characters for taxonomic identification of the sand fly species under consideration.
Tentative to use wastes from thermal power plants for construction building materials
NASA Astrophysics Data System (ADS)
Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien
2018-04-01
Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).
Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.
2009-01-01
Beach sand contains fecal indicator bacteria, often in densities greatly exceeding the adjacent swimming waters. We examined the transferability of Escherichia coli and F+ coliphage (MS2) from beach sand to hands in order to estimate the potential subsequent health risk. Sand with high initial E. coli concentrations was collected from a Chicago beach. Individuals manipulated the sand for 60 seconds, and rinse water was analysed for E. coli and coliphage. E. coli densities transferred were correlated with density in sand rather than surface area of an individual's hand, and the amount of coliphage transferred from seeded sand was different among individuals. In sequential rinsing, percentage reduction was 92% for E. coli and 98% for coliphage. Using dose-response estimates developed for swimming water, it was determined that the number of individuals per thousand that would develop gastrointestinal symptoms would be 11 if all E. coli on the fingertip were ingested or 33 if all E. coli on the hand were ingested. These results suggest that beach sand may be an important medium for microbial exposure; bacteria transfer is related to initial concentration in the sand; and rinsing may be effective in limiting oral exposure to sand-borne microbes of human concern.
Mathis, Alexander; Depaquit, Jérôme; Dvořák, Vit; Tuten, Holly; Bañuls, Anne-Laure; Halada, Petr; Zapata, Sonia; Lehrter, Véronique; Hlavačková, Kristýna; Prudhomme, Jorian; Volf, Petr; Sereno, Denis; Kaufmann, Christian; Pflüger, Valentin; Schaffner, Francis
2015-05-10
Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.
Remoli, Maria Elena; Jiménez, Maribel; Fortuna, Claudia; Benedetti, Eleonora; Marchi, Antonella; Genovese, Domenico; Gramiccia, Marina; Molina, Ricardo; Ciufolini, Maria Grazia
2016-04-13
Phlebotomus-borne (PhB-) viruses are distributed in large areas of the Old World and are widespread throughout the Mediterranean basin, where recent investigations have indicated that virus diversity is higher than initially suspected. Some of these viruses are causes of meningitis, encephalitis and febrile illnesses. In order to monitor the viral presence and the infection rate of PhB-viruses in a recently identified and well characterized human zoonotic leishmaniasis focus in southwestern Madrid, Spain, a sand fly collection was carried out. Sand fly insects were collected in four stations using CDC light traps during 2012-2013 summer seasons. Screening for Phlebovirus presence both via isolation on Vero cells and via polymerase chain reaction (PCR), using degenerated primers targeting a portion of the L segment, was performed. The serological identity and phylogenetic relationships on the three genomic segments of the viral isolates were carried out. Six viral isolates belonging to different serological complexes of the genus Phlebovirus were obtained from fifty pools on a total of 963 P. perniciosus (202 females). Phylogenetic analysis and serological assays allowed the identification of two isolates of Toscana virus (TOSV) B genotype, three isolates strongly related to Italian Arbia virus (ARBV), and one isolate of a novel putative Phlebovirus related to the recently characterized Arrabida virus in South Portugal, tentatively named Arrabida-like virus. Positive male sand fly pools suggested that transovarial or venereal transmission could occur under natural conditions. Our findings highlighted the presence of different Phlebovirus species in the South-West area of the Madrid Autonomous Community where an outbreak of cutaneous and visceral human leishmaniasis has been recently described. The evidence of viral species never identified before in Spain, as ARBV and Arrabida-like virus, and TOSV B genotype focus stability was demonstrated. Environmental aspects such as climate change, growing urbanization, socio-economic development could have contributed to the genesis of this wide ecological niche of PhB-viruses and Leishmania spp. The potential role of vertebrates as reservoir for the phleboviruses identified and the possibility of Phleboviruses-Leishmania co-infection in the same sand fly should be assessed. Furthermore the PhB-viruses impact on human health should be implemented.
2013-03-22
insects, such as mosquitoes and sand flies. Currently, in the Afghanistan area of operations (AO), there is an intermediate to high risk for vector...Agency (EPA) to kill flies, mosquitoes , gnats, bedbugs, and other arthropod pests. Available in two sizes, the strips are hung in an enclosed room with...toluamide (DEET) to repel biting insects, further assists in protecting exposed personnel. Buildings and areas are also protected from insects by
NASA Astrophysics Data System (ADS)
Biel, R.; Hacker, S.; Ruggiero, P.
2016-12-01
Coastal dunes provide valuable infrastructure for mitigating flooding and erosion hazard exposure by dissipating wave energy. Although vegetation is essential for foredune establishment and growth by facilitating sand deposition and stabilization, few have examined how plant distribution and abundance relates to foredune morphology in the field. The US Pacific Northwest coastal dune system presents an excellent case study for examining ecomorphodynamic processes on sand dunes. It exhibits a diverse array of geomorphological conditions, including a range of dissipative to reflective beaches and highly varied foredune morphology. Ecologically, the region contains two invasive, dune-building beachgrasses of the same genus (Ammophila arenaria and A. breviligulata). To explore how geomorphological and ecological drivers alter foredune morphology, we used a Bayesian network to assess the role of nearshore bathymetry, sand supply (measured as shoreline change rate), and beachgrass species identity and density in determining foredune morphology. At a finer scale, we also examined whether beachgrass density and species identity altered sand accretion between 2012 and 2014 at multiple points across the foredune using a mixed model. Our Bayesian network analysis indicates that nearshore slope, shoreline change rate, beach width, and beachgrass density directly or indirectly affect foredune width, slope, and height. However, we observed no relationships between species identity and foredune morphology. When examining the finer-scale relationship between beachgrass density and sand accretion at points along the foredune, we found that sand accretion was correlated with beachgrass stem density in 2012, new stem growth between 2012 and 2014, beach width, and elevation. Moreover, A. arenaria accreted more sand than A. breviligulata on the foredune face, suggesting that subtle differences in beachgrass morphology or growth patterns may produce differing accretion patterns across the foredune. Both analyses indicate that beachgrass density alters foredune morphology. Although A. arenaria and A. breviligulata exhibit differing sand accretion patterns at points across the foredune face, it is unclear whether these fine-scale differences produce coarse-scale changes in foredune morphology.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.
Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao
2015-08-21
Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.
Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash
Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao
2015-01-01
Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518
Detection of Bartonella bacilliformis by Real-Time PCR in Naturally Infected Sand Flies
2004-03-04
pp 231-298. 81 Maguiña, C. 1998. Bartonellosis o Enfermedad de...Carrion, nuevos aspectos de una vieja enfermedad . A.F.A. Editores Importadores. Lima, Peru Malqui, V., Speelmon, E., Verastegui, M., Maguina, C
Installation report : experimental mix using foamed asphalt.
DOT National Transportation Integrated Search
1982-01-01
This report describes the first foam asphalt mix produced and used in a highway pavement in Virginia. The aggregate used was a local Eastern Shore sand modified with 5% fly ash to improve the gradation. A foam asphalt chamber on a portable pug-mixer ...
Řehounková, Klára; Čížek, Lukáš; Řehounek, Jiří; Šebelíková, Lenka; Tropek, Robert; Lencová, Kamila; Bogusch, Petr; Marhoul, Pavel; Máca, Jan
2016-07-01
Open interior sands represent a highly threatened habitat in Europe. In recent times, their associated organisms have often found secondary refuges outside their natural habitats, mainly in sand pits. We investigated the effects of different restoration approaches, i.e. spontaneous succession without additional disturbances, spontaneous succession with additional disturbances caused by recreational activities, and forestry reclamation, on the diversity and conservation values of spiders, beetles, flies, bees and wasps, orthopterans and vascular plants in a large sand pit in the Czech Republic, Central Europe. Out of 406 species recorded in total, 112 were classified as open sand specialists and 71 as threatened. The sites restored through spontaneous succession with additional disturbances hosted the largest proportion of open sand specialists and threatened species. The forestry reclamations, in contrast, hosted few such species. The sites with spontaneous succession without disturbances represent a transition between these two approaches. While restoration through spontaneous succession favours biodiversity in contrast to forestry reclamation, additional disturbances are necessary to maintain early successional habitats essential for threatened species and open sand specialists. Therefore, recreational activities seem to be an economically efficient restoration tool that will also benefit biodiversity in sand pits.
2014-01-01
Background The development of a protective vaccine against canine visceral leishmaniasis (CVL) is an alternative approach for interrupting the domestic cycle of Leishmania infantum. Given the importance of sand fly salivary proteins as potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in the last few decades. In this context, we previously immunized dogs with a vaccine composed of L. braziliensis antigens plus saponin as the adjuvant and sand fly salivary gland extract (LBSapSal vaccine). This vaccine elicited an increase in both anti-saliva and anti-Leishmania IgG isotypes, higher counts of specific circulating CD8+ T cells, and high NO production. Methods We investigated the immunogenicity and protective effect of LBSapSal vaccination after intradermal challenge with 1 × 107 late-log-phase L. infantum promastigotes in the presence of sand fly saliva of Lutzomyia longipalpis. The dogs were followed for up to 885 days after challenge. Results The LBSapSal vaccine presents extensive antigenic diversity with persistent humoral and cellular immune responses, indicating resistance against CVL is triggered by high levels of total IgG and its subtypes (IgG1 and IgG2); expansion of circulating CD5+, CD4+, and CD8+ T lymphocytes and is Leishmania-specific; and reduction of splenic parasite load. Conclusions These results encourage further study of vaccine strategies addressing Leishmania antigens in combination with proteins present in the saliva of the vector. PMID:24507702
Neal, Allison T; Ross, Max S; Schall, Jos J; Vardo-Zalik, Anne M
2016-10-18
The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.
Pérez-Doria, Alveiro; Bejarano, Eduar Elías; Sierra, Diana; Vélez, Iván Darío
2008-07-01
The phlebotomine sand flies Lutzomyia pia (Fairchild & Hertig 1961) and Lutzomyia tihuiliensis Le Pont, Torrez-Espejo & Dujardin 1997 (Diptera: Psychodidae) belong to the pia series of the Lu. verrucarum species group, which includes several species that bite humans in Andean foci of leishmaniasis. The females of these two species exhibit isometry and isomorphism in anatomical structures of the head and terminalia commonly used in taxonomic identification of sand flies. They can only be differentiated based on subtle differences in the pigmentation of the pleura. In Lu. tihuiliensis, this is restricted to the basal portions of the katepimeron and katepisternum, whereas in Lu. pia both structures are totally pigmented. Taking into account the subtle morphological differences between these species, the objective of the current study was to evaluate the specific taxonomic status of Lu. tihuiliensis with respect to Lu. pia. A 475-bp portion of the mitochondrial genome was sequenced, composed of the 3' end of the cytochrome b gene, intergenic spacer 1, the transfer RNA gene for serine, intergenic spacer 2, and the 3' end of the gene NAD dehydrogenase 1. Genetic analysis confirms that Lu. tihuiliensis and Lu. pia constitute two distinct species and this is supported by four strong lines of evidence, i.e., the paired genetic distances, size differences and amino acid composition of the cytochrome b protein, presence and absence of intergenic spacer one and divergence observed in the sequence of the transfer RNA gene for serine. It also confirms the validity of the pleural pigmentation pattern as a species diagnostic character and the importance of performing a detailed examination of this character during morphological determination of phlebotomine sand flies in the series pia.
Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.
2014-01-01
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571
Chi, Michael W; Griffith, Leslie C; Vecsey, Christopher G
2014-08-11
Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.
Taxonomy and Biology of Phlebotomine Vectors of Human Disease
1987-12-31
Cien., Rio de Janeiro, 195 p. 24. Mery, A., N. Pasteur, J. Trovillet & G. Vattier-Bernard. 1983. Polymorphisme des phosphoglucoisomerases chez...New records of phlebotomine sand flies from Peru with a description of Lutzomyia oligodonta, n. sp. from the Rimac Valley (Diptera: Psychodidae). J
Vélez, Iván D; Carrillo, Lina M; López, Liliana; Rodríguez, Erwin; Robledo, Sara M
2012-05-01
The largest recorded outbreak of cutaneous leishmaniasis in Colombia's history occurred during 2005-2009 in soldiers of the Colombian Army, with ~40,000 cases. This outbreak was caused by the influx of military personnel into the jungle with the mission of combat illicit crops and the guerrilla. The soldiers remain for long periods within the rainforest and are exposed to the bite of infected sand flies. During the military activities, soldiers work with dogs specially trained to detect landmines, and therefore, dogs are also exposed to the infected sand flies and show high incidence of cutaneous leishmaniasis (CL). This work describes an epidemic outbreak of canine CL caused by Leishmania braziliensis and Leishmania panamensis in Colombia, South America. The clinical features of the disease and the response to treatment with pentavalent antimonials observed in 72 guard dogs from the Colombian Army are described. A program for prevention and control of canine CL is also discussed.
Mukhopadhyay, J; Ghosh, K; Ferro, C; Munstermann, L E
2001-03-01
Genetic variability of eight Colombian field populations and two laboratory colonies of a tropical forest sand fly, Lutzomyia shannoni Dyar, was assessed by comparing allozyme frequencies at 20 enzyme loci. Substantial genetic variability was noted in all strains, with mean heterozygosities of 13-21% and alleles per locus of 2.0-2.8. Four loci were monomorphic. Six populations in north and central Colombia showed close genetic similarity (Nei's distances, 0.01-0.09), despite mountainous environment, discontinuous forest habitat, and elevation differences from 125 to 1,220 m. Two samples representing the Orinoco (near Villavicencio) and Amazon (near Leticia) river basins were similar (Nei's distance, 0.08) but diverged substantially from the central six samples (Nei's distances, 0.26-0.40). Although the range of L. shannoni extends from the southeastern United States to northern Argentina, three genetically distinct, geographically discrete, groups were discerned by the current analysis: Orinoco-Amazon river basins, north-central Colombia, and eastern United States.
Vélez, Iván D.; Carrillo, Lina M.; López, Liliana; Rodríguez, Erwin; Robledo, Sara M.
2012-01-01
The largest recorded outbreak of cutaneous leishmaniasis in Colombia's history occurred during 2005–2009 in soldiers of the Colombian Army, with ∼40,000 cases. This outbreak was caused by the influx of military personnel into the jungle with the mission of combat illicit crops and the guerrilla. The soldiers remain for long periods within the rainforest and are exposed to the bite of infected sand flies. During the military activities, soldiers work with dogs specially trained to detect landmines, and therefore, dogs are also exposed to the infected sand flies and show high incidence of cutaneous leishmaniasis (CL). This work describes an epidemic outbreak of canine CL caused by Leishmania braziliensis and Leishmania panamensis in Colombia, South America. The clinical features of the disease and the response to treatment with pentavalent antimonials observed in 72 guard dogs from the Colombian Army are described. A program for prevention and control of canine CL is also discussed. PMID:22556078
Steverding, Dietmar
2017-02-15
In this review article the history of leishmaniasis is discussed regarding the origin of the genus Leishmania in the Mesozoic era and its subsequent geographical distribution, initial evidence of the disease in ancient times, first accounts of the infection in the Middle Ages, and the discovery of Leishmania parasites as causative agents of leishmaniasis in modern times. With respect to the origin and dispersal of Leishmania parasites, the three currently debated hypotheses (Palaearctic, Neotropical and supercontinental origin, respectively) are presented. Ancient documents and paleoparasitological data indicate that leishmaniasis was already widespread in antiquity. Identification of Leishmania parasites as etiological agents and sand flies as the transmission vectors of leishmaniasis started at the beginning of the 20 th century and the discovery of new Leishmania and sand fly species continued well into the 21 st century. Lately, the Syrian civil war and refugee crises have shown that leishmaniasis epidemics can happen any time in conflict areas and neighbouring regions where the disease was previously endemic.
Afonso, Margarete Martins dos Santos; Duarte, Rosemere; Miranda, José Carlos; Caranha, Lindenbergh; Rangel, Elizabeth Ferreira
2012-01-01
The aim of this study was to identify potential blood feeding sources of L. (L.) longipalpis specimens from populations in Northeastern Brazil, endemic areas of American Visceral Leishmaniasis (AVL) and its correlation with the transmission of L. (L.) i. chagasi. The ELISA technique was applied using bird, dog, goat, opossum, equine, feline, human, sheep, and rodent antisera to analyze 609 females, resulting in an overall positivity of 60%. In all municipalities, females showed higher positivity for bird followed by dog antiserum and sand fly specimens were also positive for equine, feline, human, sheep, goat, opossum, and rodent antisera. The finding for 17 combinations of two or three types of blood in some females corroborates the opportunistic habit of this sand fly species. The results demonstrating the association between L. (L.) longipalpis and opossum suggest the need for further evaluation of the real role of this synanthropic mammal in the eco-epidemiology of AVL. PMID:22315621
Vieira, Vivaldo Pim; Ferreira, Adelson Luiz; Biral dos Santos, Claudiney; Leite, Gustavo Rocha; Ferreira, Gabriel Eduardo Melim; Falqueto, Aloísio
2012-01-01
The occurrence of American cutaneous leishmaniasis (ACL) in areas modified by humans indicates that phlebotomine sand fly vectors breed close to human habitations. Potential peridomiciliary breeding sites of phlebotomines were sampled in an area of transmission of Leishmania (Viannia) braziliensis in Southeastern Brazil. Three concentric circles rounding houses and domestic animal shelters, with radii of 20, 40, and 60 m, defined the area to be monitored using adult emergence traps. Of the 67 phlebotomines collected, Lutzomyia intermedia comprised 71.6%; Lutzomyia schreiberi, 20.9%; and Lutzomyia migonei, 4.5%. The predominance of L. intermedia, the main species suspected of transmitting L. (V.) braziliensis in Southeastern Brazil, indicates its participation in the domiciliary transmission of ACL, providing evidence that the domiciliary ACL transmission cycle might be maintained by phlebotomines that breed close to human habitations. This finding might also help in planning measures that would make the peridomiciliary environment less favorable for phlebotomine breeding sites. PMID:23091196
Constitutive Soil Properties for Mason Sand and Kennedy Space Center
NASA Technical Reports Server (NTRS)
Thomas, Michael A.; Chitty, Daniel E.
2011-01-01
Accurate soil models are required for numerical simulations of land landings for the Orion Crew Exploration Vehicle (CEV). This report provides constitutive material models for two soil conditions at Kennedy Space Center (KSC) and four conditions of Mason Sand. The Mason Sand is the test sand for LaRC s drop tests and swing tests of the Orion. The soil models are based on mechanical and compressive behavior observed during geotechnical laboratory testing of remolded soil samples. The test specimens were reconstituted to measured in situ density and moisture content. Tests included: triaxial compression, hydrostatic compression, and uniaxial strain. A fit to the triaxial test results defines the strength envelope. Hydrostatic and uniaxial tests define the compressibility. The constitutive properties are presented in the format of LSDYNA Material Model 5: Soil and Foam. However, the laboratory test data provided can be used to construct other material models. The soil models are intended to be specific to the soil conditions they were tested at. The two KSC models represent two conditions at KSC: low density dry sand and high density in-situ moisture sand. The Mason Sand model was tested at four conditions which encompass measured conditions at LaRC s drop test site.
Mild-Vectolysis: A nondestructive DNA extraction method for vouchering sand flies and mosquitoes
USDA-ARS?s Scientific Manuscript database
Nondestructive techniques allow the isolation of genomic DNA, without damaging the morphological features of the specimens. Though such techniques are available for numerous insect groups, they have not been applied to any member of the medically important families of mosquitoes (Diptera: Culicidae)...
Earth Observations taken by the Expedition 17 Crew
2008-09-15
ISS017-E-016521 (15 Sept. 2008) --- Sandy Cape and Fraser Island, Australia are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Fraser Island, the world's largest sand island, includes Great Sandy National Park and is located along the coastline of Queensland, Australia. The island was designated a World Heritage site in 1992, in part due to its outstanding preservation of geological processes related to sand dune formation. According to scientists, the island's dune fields preserve a record of sand deposition and movement related to sea level rise and fall extending back over 700,000 years. In addition to sand dunes, the island also preserves an interesting range of vegetation -- including vine rainforest, stands of eucalypt trees, and mangroves -- and diverse fauna including crabs, parrots, sugar gliders and flying foxes. This view highlights the northernmost portion of the island, known as Sandy Cape. Active white sand dunes contrast with dark green vegetation that anchors older dune sets. Irregular patches of sand dunes surrounded by vegetation are known as sand blows (or blowouts), formed when the vegetation cover is disturbed -- by wind, fire, or human activities. The exposed underlying sand can then move and form new dunes, sometimes at rates of up to one meter per year. Coastal sand dune fields -- such as the one located along the eastern side of Sandy Cape (center) -- will remain active until anchored by vegetation, or until no more sand is available to form new dunes.
NASA Astrophysics Data System (ADS)
Desai, Bhagyashree; Mokashi, Pavani; Anand, R. L.; Burli, S. B.; Khandal, S. V.
2016-09-01
The experimental study aims to underseek the effect of various additives on the green sand molding properties as a particular combination of additives could yield desired sand properties. The input parameters (factors) selected were water and powder (Fly ash, Coconut shell and Tamarind) in three levels. Experiments were planned using design of experiments (DOE). On the basis of plans, experiments were conducted to understand the behavior of sand mould properties such as compression strength, shear strength, permeability number with various additives. From the experimental results it could be concluded that the factors have significant effect on the sand properties as P-value found to be less than 0.05 for all the cases studied. The optimization based on quality loss function was also performed. The study revealed that the quality loss associated with the tamarind powder was lesser compared to other additives selected for the study. The optimization based on quality loss function and the parametric analysis using ANOVA suggested that the tamarind powder of 8 gm per Kg of molding sand and moisture content of 7% yield better properties to obtain sound castings.
Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach.
Whitman, Richard L; Nevers, Meredith B
2003-09-01
Swimming advisories due to excessive Escherichia coli concentrations are common at 63rd Street Beach, Chicago, Ill. An intensive study was undertaken to characterize the source and fate of E. coli in beach water and sand at the beach. From April through September 2000, water and sand samples were collected daily or twice daily at two depths on three consecutive days per week (water samples, n = 1,747; sand samples, n = 858); hydrometeorological conditions and bird and bather distributions were also recorded. E. coli concentrations in sand and water were significantly correlated, with the highest concentration being found in foreshore sand, followed by those in submerged sediment and water of increasing depth. Gull contributions to E. coli densities in sand and water were most apparent on the day following gull activity in a given area. E. coli recolonized newly placed foreshore sand within 2 weeks. Analysis of variance, correlation, cluster analyses, concentration gradients, temporal-spatial distribution, demographic patterns, and DNA fingerprinting suggest that E. coli may be able to sustain population density in temperate beach sand during summer months without external inputs. This research presents evidence that foreshore beach sand (i) plays a major role in bacterial lake water quality, (ii) is an important non-point source of E. coli to lake water rather than a net sink, (iii) may be environmentally, and perhaps hygienically, problematic, and (iv) is possibly capable of supporting an autochthonous, high density of indicator bacteria for sustained periods, independent of lake, human, or animal input.
Sand Volcano Following Earthquake
NASA Technical Reports Server (NTRS)
1989-01-01
Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)
USDA-ARS?s Scientific Manuscript database
Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis, widespread in intertropical and temperate regions of the world. Previous cloning, expression, and biochemical characterization of recombinant P. papatasi acetylcholinesterase 1 (PpAChE1) revealed 85% amino acid sequence identity to mosq...
Mosquito Control Techniques Developed for the US Military and an Update on the AMCA
USDA-ARS?s Scientific Manuscript database
Scientists at the USDA Center for Medical, Agricultural and Veterinary Entomology developed and field tested novel techniques to protect deployed military troops from diseases transmitted by mosquitoes and sand flies. Methods that proved to be very effective included (1) novel military personal prot...
Polar cuticular lipids differ in male and female sandflies (Phlebotomus papatasi)
USDA-ARS?s Scientific Manuscript database
The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of Leishmania major, which causes zoonotic cutaneous leishmaniasis in parts of the Afro-Eurasian region. Polar cuticular lipids in P. papatasi were analyzed by high resolution mass spectrometry. Blood-fed females, no...
USDA-ARS?s Scientific Manuscript database
Phlebotomine sand flies are small hematophagous vectors of human and zoonotic leishmaniases present throughout tropical and subtropical areas of the world. Phlebotomus papatasi is a principal vector of human cutaneous leishmaniasis that has presented serious problems for military operations and resi...
The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand
NASA Astrophysics Data System (ADS)
Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul
2018-03-01
The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.
Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.
The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sandmore » specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.« less
Study on Strength Behavior of Organic Soil Stabilized with Fly Ash
Molla, Md. Keramat Ali; Sarkar, Grytan
2017-01-01
The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881
A mobile app for military operational entomology pesticide applications.
Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Yans, Matthew W; Hill, David W; Obenauer, Peter J; Hoffman, Eric R
2014-09-01
Multiple field studies conducted for the Deployed War-Fighter Protection (DWFP) research program have generated more than 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treatments in 6 ecological regions against a range of mosquito, sand fly, and filth fly nuisance and disease-vector threats. To synthesize and operationalize these DWFP field and laboratory efficacy data we developed an interactive iOS and Android mobile software application, the Pesticide App, consisting of specific pesticide application guidance organized by environment and target insect vector species.
Changes of the soil environment affected by fly ash dumping site of the electric power plant
NASA Astrophysics Data System (ADS)
Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej
2014-05-01
In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.
Gomez, D.M.; Anthony, R.G.; Hayes, J.P.
2005-01-01
We investigated the effects of thinning young (35- to 45-yr-old) Douglas-fir (Pseudotsuga menziesii) forests on density, survival, body mass, movements, and diets of northern flying squirrels (Glaucomys sabrinus) in the northern coast range of Oregon. We used a repeated measures, randomized block design with 3 treatments (control, moderate thinning, and heavy thinning) and 4 replicates to study diets and population characteristics from 1994-1997. Densities of flying squirrels were variable in space and time, but they were positively correlated to biomass and frequency of fungal sporocarps, suggesting they were responding to food resources rather than forest structure. Fungal sporocarps comprised a major portion of the squirrel's diet, and other vegetative material made up the remainder of the diet. Several fungal genera including Gautieria, Geopora, Hymenogaster, Hysterangium, Melanogaster, and Rhizopogon were found more frequently in diets than on the trapping grids and therefore appeared to be selected by the squirrels. Flying squirrel movements were negatively correlated with the frequency of occurrence of fungal sporocarps at trap stations, suggesting that squirrels traveled greater distances to find fungal sporocarps where these food items were more sparsely distributed. We hypothesized that flying squirrel densities would be relatively low in these young, structurally simple forests; however, densities on some of the grids were >1.5 squirrels/ha, which was comparable to densities described for the species in late-successional forests. Our results indicated that commercial thinning did not have measurable short-term effects on density, survival, or body mass of flying squirrels.
Manning, Tom; Hagar, Joan C.; McComb, Brenda C.
2012-01-01
Large-scale commercial thinning of young forests in the Pacific Northwest is currently promoted on public lands to accelerate the development of late-seral forest structure for the benefit of wildlife species such as northern spotted owls (Strix occidentalis caurina) and their prey, including the northern flying squirrel (Glaucomys sabrinus). Attempts to measure the impact of commercial thinning on northern flying squirrels have mostly addressed short-term effects (2–5 years post-thinning) and the few published studies of longer-term results have been contradictory. We measured densities of northern flying squirrels 11–13 years after thinning of young (55–65 years) Douglas-fir forest stands in the Cascade Range of Oregon, as part of the Young Stand Thinning & Diversity Study. The study includes four replicate blocks, each consisting of an unthinned control stand and one stand each of the following thinning treatments: Heavy Thin; Light Thin; and Light Thin with Gaps. Thinning decreased density of northern flying squirrels, and squirrel densities were significantly lower in heavily thinned stands than in more lightly thinned stands. Regression analysis revealed a strong positive relationship of flying squirrel density with density of large (>30 cm diameter) standing dead trees and a negative relationship with percent cover of low understory shrubs. Maintaining sufficient area and connectivity of dense, closed canopy forest is recommended as a strategy to assure that long-term goals of promoting late-seral structure do not conflict with short-term habitat requirements of this important species.
Host status of Vaccinium reticulatum (Ericaceae) to invasive tephritid fruit flies in Hawaii.
Follett, Peter A; Zee, Francis T
2011-04-01
Ohelo (Vaccicinium reticulatum Small) (Ericaceae) is a native Hawaiian plant that has commercial potential in Hawaii as a nursery crop to be transplanted for berry production or for sale as a potted ornamental. No-choice infestation studies were conducted to determine whether ohelo fruit are hosts for four invasive tephritid fruit fly species. Ohelo berries were exposed to gravid female flies ofBactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), Bactrocera cucurbitae Coquillet (melon fly),or Bactrocera latifrons (Hendel) in screen cages outdoors for 24 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Only B. dorsalis successfully attacked and developed in ohelo berries. In total, 1570 berries produced 10 puparia, all of which emerged as adults, for a fruit infestation rate of 0.0064% and an average of 0.0053 puparia per gram of fruit. By comparison, papaya fruit used as controls produced an average of 1.44 B. dorsalis puparia per g of fruit. Ohelo berry is a marginal host for B. dorsalis and apparently a nonhost for C. capitata, B. cucurbitae, and B. latifrons. Commercial plantings of ohelo will rarely be attacked by fruit flies in Hawaii.
Effect of Alkali Concentration on Fly Ash Geopolymers
NASA Astrophysics Data System (ADS)
Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin
2018-03-01
This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.
Annual Progress Report--Fiscal Year 1979
1979-10-01
fever virus Ebola fever virus Korean hemorrhagic fever virus Rift Valley fever virus Bolivian hemorrhagic fever virus...Machupo) Argentinian hemorrhagic fever virus (Junin) Dengue fever virus Congo/Crimean hemorrhagic fever virus Sand fly fever virus Eastern encephalitis...virus Western encephalitis virus Venezuelan fever virus Japanese B fever virus Chikungunya virus Tacaribe virus Pichinde virus Yellow fever
USDA-ARS?s Scientific Manuscript database
The sand fly Phlebotomus papatasi is an important blood feeder and the main vector of the trypanosomatid protozoa Leishmania major, which causes leishmaniasis in parts of the Afro-Eurasian region. The black- legged tick Ixodes scapularis is the primary tick vector of the bacterium Borrelia burgdorfe...
Insecticide-Treated Rodent Baits for Sand Fly Control
2013-04-28
Agricul- tural Research Institute study area (KARI; lat 0.47, long 36.00) was comprised of land used for small-scale farming and for forage by goats ...study area. The sites at the KARI and Bogoria study areas had large numbers of a variety of non-reservoir ani- mals, including other small mammals, goats
Laboratory Validation of the Sand Fly Fever Virus Antigen Assay
2015-12-01
several commercially available assays from VecTOR Test Systems Inc. for malaria, West Nile virus, Rift Valley fever virus, dengue , chikungunya, and...Sabin AB. 1955. Recent advances in our knowledge of dengue and sandfly fever. Am J Trop Med Hyg 4:198–207. Sather GE. 1970. Catalogue of arthropod
Compressive strength of marine material mixed concrete
NASA Astrophysics Data System (ADS)
Adnan; Parung, H.; Tjaronge, M. W.; Djamaluddin, R.
2017-11-01
Many cement factories have been incorporated fly ash with clinker cement to produce blended cement. PCC is a type of blended cement incorporated fly ash that produced in Indonesia cement factories. To promote the sustainable development in the remote islands this present paper attempted to study the suitability of sea water, marine sand that available abundantly surround the remote island with Portland Composite Cement (PCC) and crushed river stone to produce concrete. Slump test was conducted to evaluate the workability of fresh concrete and also compressive strength with stress-strain relationship was carried out to evaluate the hardened concrete that cured with two curing condition (e.g. sea water curing, and tap water-wet burlap curing). Test result indicated that fresh concrete had proper workability and all hardened specimens appeared a good compaction result. Compressive strength of specimens cured which sea water was higher than the specimens which cured by tap water-wet burlap where stress-strain behavior of specimens made with sea water, marine sand, and PCC had similar behavior with specimens which made with PCC and tap water.
Montoya-Lerma, J; Cadena, H; Oviedo, M; Ready, P D; Barazarte, R; Travi, B L; Lane, R P
2003-01-01
The infection rates and development of Leishmania chagasi in two sandfly species, Lutzomyia evansi and Lutzomyia longipalpis, were evaluated under natural and experimental conditions. Natural infection rates of Lu. evansi in San Andrés de Sotavento (Colombia) and Montañas de Peraza (Venezuela) (0.05 and 0.2%, respectively) were similar to those previously recorded for this species in Colombia and Venezuela and for Lu. longipalpis in many foci of American Visceral Leishmaniasis (AVL). Both sand fly species were able to support the development of two Colombian strains of L. chagasi experimentally acquired from dogs, hamsters or membrane feeders. However, the experimental infection rates and the sequence of parasite development in the guts of these sand flies revealed that parasite colonisation, differentiation, migration and attachment were more frequent and uniform in Lu. longipalpis than in Lu. evansi. This is consistent with a more recent association between L. chagasi and Lu. evansi, and these results might help to explain the irregularity of AVL outbreaks in foci where Lu. evansi has been reported as the sole vector. Copyright 2002 Elsevier Science B.V.
[Dog (Canis familiaris) infectivity to Lutzomyia youngi in Trujillo, Venezuela].
Hernández, Dalila; Rojas, Elina; Scorza, José Vicente; Jorquera, Alicia
2006-10-01
In Trujillo, Venezuela the prevalence for American tegumentary leishmaniasis (ATL) is 38 per 100,000 inhabitants. In a periurban, rural settlement of the capital city Trujillo, we studied the potential capability of the domestic dog (Canis familiaris) as a source of infection for Lutzomyia youngi, a phlebotomine sand fly species abundant in the study area and whose domestic vectorial activity has been proven. Dogs with dermal lesions suggestive of ATL and parasitological confirmation of infection, were selected for xenodiagnosis by allowing sylvatic phlebotomines from a ATL free area, to feed ad libitum over each animal's entire body surface. The insects' intestinal tracts were dissected 5 days after the blood meal in order to look for flagellate forms. When these were found, parasitological identification was performed by the multiplex-PCR technique. Four hundred and fifty five sand flies engorged over two dogs in three different assays; promastigotes were found in 4 (0.88%) of the specimens on only one occasion. PCR identified DNA of the Leishmania Viannia subgenus. The household dog has the potential of being a domestic risk factor in the ATL transmission cycle.
Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus).
Calibeo-Hayes, Dawn; Denning, Steve S; Stringham, S M; Guy, James S; Smith, Lynda G; Watson, D Wes
2003-01-01
Domestic houseflies (Musca domestica Linnaeaus) were examined for their ability to harbor and transmit turkey coronavirus (TCV). Laboratory-reared flies were experimentally exposed to TCV by allowing flies to imbibe an inoculum comprised of turkey embryo-propagated virus (NC95 strain). TCV was detected in dissected crops from exposed flies for up to 9 hr postexposure; no virus was detected in crops of sham-exposed flies. TCV was not detected in dissected intestinal tissues collected from exposed or sham-exposed flies at any time postexposure. The potential of the housefly to directly transmit TCV to live turkey poults was examined by placing 7-day-old turkey poults in contact with TCV-exposed houseflies 3 hr after flies consumed TCV inoculum. TCV infection was detected in turkeys placed in contact with TCV-exposed flies at densities as low as one fly/bird (TCV antigens detected at 3 days post fly contact in tissues of 3/12 turkeys); however, increased rates of infection were observed with higher fly densities (TCV antigens detected in 9/12 turkeys after contact with 10 flies/bird). This study demonstrates the potential of the housefly to serve as a mechanical vector of TCV.
Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate
Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.
2012-01-01
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093
Orion Landing Simulation Eight Soil Model Comparison
NASA Technical Reports Server (NTRS)
Mark, Stephen D.
2009-01-01
LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.
Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Vermilion Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieland, D.R.; Meriwether, J.
1977-11-16
Two sand intervals, Sand No. 3 and Sand No. 1, were independently tested during our program. Sand No. 3 was the deepeer zone and was tested first. A gamma ray--neutron log of these zones, and the intervals perforated, are shown. The gamma ray log run in 1968 showed Sand No. 1 to be a fairly uniform section with few shale breaks and our original plans were to perforate the entire interval. After obtaining the more recent GR log big shale breaks were shown to exist throughout the zone, so a smaller interval was selected. A net sand thickness of 48more » ft. was used for Sand No. 3 and 30 ft. for Sand No. 1. There was no data available to indicate whether these zones became thicker or thinner away from the wellbore; therefore, these values were used as net thickness in the reservoir calculations. The procedure used to perforate the two sands were different. Both were perforated with 0.33 inch jets at a density of 4 shots per foot; however, Sand No. 3 was perforated in two runs using a stand-off gun, whereas Sand No. 1 was perforated in one run using a centralized gun with the jet density being 4 shots per foot but oriented alternately at 180 degrees.« less
McCarthy, Christina B; Santini, María Soledad; Pimenta, Paulo F P; Diambra, Luis A
2013-01-01
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi).
Coutinho-Abreu, Iliano V; Sharma, Narinder K; Robles-Murguia, Maricela; Ramalho-Ortigao, Marcelo
2013-01-01
The peritrophic matrix (PM) plays a key role in compartmentalization of the blood meal and as barrier to pathogens in many disease vectors. To establish an infection in sand flies, Leishmania must escape from the endoperitrophic space to prevent excretion with remnants of the blood meal digestion. In spite of the role played regarding Leishmania survival, little is known about sand fly PM molecular components and structural organization. We characterized three peritrophins (PpPer1, PpPer2, and PpPer3) from Phlebotomus papatasi. PpPer1 and PpPer2 display, respectively, four and one chitin-binding domains (CBDs). PpPer3 on the other hand has two CBDs, one mucin-like domain, and a putative domain with hallmarks of a CBD, but with changes in key amino acids. Temporal and spatial expression analyses show that PpPer1 is expressed specifically in the female midgut after blood feeding. PpPer2 and PpPer3 mRNAs were constitutively expressed in midgut and hindgut, with PpPer3 also being expressed in Malpighian tubules. PpPer2 was the only gene expressed in developmental stages. Interestingly, PpPer1 and PpPer3 expression are regulated by Le. major infection. Recombinant PpPer1, PpPer2 and PpPer3 were obtained and shown to display similar biochemical profiles as the native; we also show that PpPer1 and PpPer2 are able to bind chitin. Knockdown of PpPer1 led to a 44% reduction in protein, which in spite of producing an effect on the percentage of infected sand flies, resulted in a 39% increase of parasite load at 48 h. Our data suggest that PpPer1 is a component for the P. papatasi PM and likely involved in the PM role as barrier against Le. major infection.
McCarthy, Christina B.; Santini, María Soledad; Pimenta, Paulo F. P.; Diambra, Luis A.
2013-01-01
Leishmaniasis is a vector-borne disease with a complex epidemiology and ecology. Visceral leishmaniasis (VL) is its most severe clinical form as it results in death if not treated. In Latin America VL is caused by the protist parasite Leishmania infantum (syn. chagasi) and transmitted by Lutzomyia longipalpis. This phlebotomine sand fly is only found in the New World, from Mexico to Argentina. However, due to deforestation, migration and urbanisation, among others, VL in Latin America is undergoing an evident geographic expansion as well as dramatic changes in its transmission patterns. In this context, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases. Insect vector transcriptomic analyses enable the identification of molecules involved in the insect's biology and vector-parasite interaction. Previous studies on laboratory reared Lu. longipalpis have provided a descriptive repertoire of gene expression in the whole insect, midgut, salivary gland and male reproductive organs. Nevertheless, the study of wild specimens would contribute a unique insight into the development of novel bioinsecticides. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. In this study, total RNA was extracted from the sand flies, submitted to sequence independent amplification and high-throughput pyrosequencing. This is the first time an unbiased and comprehensive transcriptomic approach has been used to analyse an infectious disease vector in its natural environment. Transcripts identified in the sand flies showed characteristic profiles which correlated with the environment of origin and with taxa previously identified in these same specimens. Among these, various genes represented putative targets for vector control via RNA interference (RNAi). PMID:23554910
Potential impact of climate change on emerging vector-borne and other infections in the UK.
Baylis, Matthew
2017-12-05
Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.
Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá
Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael
2014-01-01
Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503
Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne
2014-01-01
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.
Prevalence of Cutaneous Leishmaniasis in Districts of High and Low Endemicity in Mali.
Traoré, Bourama; Oliveira, Fabiano; Faye, Ousmane; Dicko, Adama; Coulibaly, Cheick A; Sissoko, Ibrahim M; Sibiry, Samake; Sogoba, Nafomon; Sangare, Moussa Brema; Coulibaly, Yaya I; Traore, Pierre; Traore, Sekou F; Anderson, Jennifer M; Keita, Somita; Valenzuela, Jesus G; Kamhawi, Shaden; Doumbia, Seydou
2016-11-01
Historically the western sahelian dry regions of Mali are known to be highly endemic for cutaneous leishmaniasis (CL) caused by Leishmania major, while cases are rarely reported from the Southern savanna forest of the country. Here, we report baseline prevalence of CL infection in 3 ecologically distinct districts of Mali (dry sahelian, north savanna and southern savanna forest areas). We screened 195 to 250 subjects from 50 to 60 randomly selected households in each of the 6 villages (four from the western sahelian district of Diema in Kayes region, one from the central district of Kolokani and one from the southern savanna district of Kolodieba, region of Sikasso). The screening consisted of: 1] A Leishmanin Skin Test (LST) for detection of exposure to Leishmania parasites; 2] clinical examination of suspected lesions, followed by validation with PCR and 3] finger prick blood sample to determine antibody levels to sand fly saliva. LST positivity was higher in the western district of Diema (49.9%) than in Kolokani (24.9%) and was much lower in Kolondieba (2.6%). LST positivity increased with age rising from 13.8% to 88% in Diema for age groups 2-5 years and 41-65 years, respectively. All eight PCR-confirmed L. major CL cases were diagnosed in subjects below 18 years of age and all were residents of the district of Diema. Exposure to sand fly bites, measured by anti-saliva antibody titers, was comparable in individuals living in all three districts. However, antibody titers were significantly higher in LST positive individuals (P<0.0001). In conclusion, CL transmission remains active in the western region of Mali where lesions were mainly prevalent among children under 18 years old. LST positivity correlated to higher levels of antibodies to sand fly salivary proteins, suggesting their potential as a risk marker for CL acquisition in Mali.
1989-10-17
Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An
2004-10-15
This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Notmore » limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauul J. Tikalsky
2004-10-31
This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis andmore » leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less
Flying-plate detonator using a high-density high explosive
Stroud, John R.; Ornellas, Donald L.
1988-01-01
A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).
1984-02-01
propellants. This type of propellant produces an erosive exhaust gas,/ whlch is the best condition for evaluating the ablative coating formula - tions. Other...RFCOMMFNDATrIONS 93 i. I Finail Formula lions 93 -..-.... ,.-...... ., ..... .’-.’.....,. .,.,. .. I ... .% " , 4.2 Cost Analysis of Toscanite 95 4.3...ing Pedestal 15 7 Density Plot, Sand, NCO/OH Ratio 1.0 18 P, Density Plot, Glass feads, NCO/OH Ratio 1.0 18 9 Density Plot, Sand, NCO/OH Ratio 0.9 19 10
Taheri, Mehrshad; Braeckman, Ulrike; Vincx, Magda; Vanaverbeke, Jan
2014-08-01
The responses of nematode communities to short-term hypoxia (1 and 7 days) were investigated in three North Sea stations with different sediment types (coarse silt, fine sand and medium sand). In the field, nematode density, diversity, vertical distribution and community structure differ among the stations. In the laboratory, oxic and hypoxic treatments were established for 1 and 7 days for all sediment types. Comparison between field control and oxic day 1 treatments showed that experimental sediment handling did not affect nematode characteristics. Our results revealed that short-term hypoxia did not affect total density, diversity, community composition, vertical density profiles (except in the fine sand) and densities of five dominant species in all sediment types. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Endo, Noritaka
2016-12-01
A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.
Jang, Seok-Joon; Rokugo, Keitetsu; Park, Wan-Shin; Yun, Hyun-Do
2014-01-01
This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior. PMID:28788522
USDA-ARS?s Scientific Manuscript database
The cattle tick, Rhipicephalus (Boophilus) microplus (Bm), and the sand fly, Phlebotomus papatasi (Pp), are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from Bm (BmAChE1) and Pp (PpAchE) compared to h...
USDA-ARS?s Scientific Manuscript database
We conducted 2 experiments to determine the best configuration of CDC-trap for catching male and female Phlebotomus papatasi. Darker traps caught significantly more male sand flies; significantly more females were captured by traps with either all black or a combination of black and white features. ...
USDA-ARS?s Scientific Manuscript database
One component of the Department of Defense (DoD) pest management system is ultra-low volume (ULV) and/or thermal fog aerosol pesticide application. Despite widespread implementations of this and other components of the system, such as use of repellents and permethrin, US military operations in hot-a...
Mullens, Bradley A; Watson, D Wes; Gerry, Alec C; Sandelin, Broc A; Soto, Diane; Rawls, Diana; Denning, Steve; Guisewite, Lena; Cammack, Jonathan
2017-10-15
Adult horn fly populations were tracked on cattle for 2-week periods before, during and after multiple treatments (every 3-4days) with two repellents in a mineral oil carrier. Cattle were sprayed four times in a two-week period either with 2% geraniol (125ml/cow) or a 15% mixture of short chain fatty acids (C8-C9-C10)(250ml/cow), and there were untreated control cattle. Trials were conducted in California and North Carolina for 3 summers. Short-term fly counts (same day) on treated cattle were reduced by 61-99%, depending on material and trial, and the fatty acid mixture provided better control than geraniol. Horn fly counts were suppressed for 1-3 d and rebounded somewhat after both treatments. Consecutive treatments showed evidence of persistent impact in California where herds were more isolated. Rebounds to pre-treatment levels 3-4 d after treatment occurred more often in North Carolina, where other infested cattle were closer to treated herds. By 3-4 d post-treatment, horn flies were reduced by 29-61% in California and 0-83% in North Carolina, relative to pre-treatment. Background behavior frequencies were assessed from hundreds of counts on untreated, infested California cattle, where horn flies were the only abundant biting fly. Behavior averages were 16.5 tail flicks, 7.6 skin twitches, 1.2 head throws, or 0.2 leg stamps per 2min observation period. At horn fly densities from about 200 to more than 1000 flies per animal (moderate to high numbers), fly defensive behaviors on control cattle were poorly related (or unrelated) to fly numbers. Immediately after repellent application, however, flies were almost absent and behavior frequencies dropped distinctly. Cattle fly defensive behaviors therefore seem to be quite sensitive to low (less than 100 flies/animal) horn fly densities, and behaviors would be a poor quantitative tool to track fly stress at moderate densities and above. Both geraniol and the fatty acids show promise for horn fly control, especially in organic agriculture. Treatments at 1-2 d intervals probably would keep infestations below the economic threshold (200 flies/cow). Copyright © 2017 Elsevier B.V. All rights reserved.
Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin
2017-10-19
In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.
Molina, Jorge Alberto; Ortiz, Mario Iván; Guhl, Felipe
2008-08-01
The bionomics of sand flies (Diptera: Phlebotominae) was studied monthly for two consecutive years in alluvial gallery forests in the department of Casanare, Northeastern Colombia. A total of 2,365 specimens and 10 species were captured using CDC light traps and Shannon traps, and from diurnal resting places, and human landing collections. Lutzomyia fairtigi Martins (55%), Lutzomyia micropyga (Mangabeira) (20.9%), and Lutzomyia antunesi (Coutinho) (13.5%) were the predominant species in the region. Lutzomyia flaviscutellata and Lutzomyia panamensis, potential vectors of Leishmania in Colombia and neighboring countries, were also collected, but in low numbers. Lu. fairtigi is an endemic species to Colombia, and minimal data are available on its biology and distribution. The present study provides additional information about Lu. fairtigi, such as the diurnal activity displayed by females on cloudy days, the greater density during the rainy season (April to October), marked anthropophilia, and the presence of flagellates in the midgut of one female.
Bray, D. P.; Bandi, K. K.; Brazil, R. P.; Oliveira, A. G.; Hamilton, J.G.C.
2011-01-01
Improving vector control remains a key goal in reducing the world’s burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly as vaccines are unavailable and treatment is prohibitively expensive. The causative agent of AVL, Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae) is transmitted between animal and human hosts by blood-feeding female sand flies, attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results demonstrate the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world’s most important neglected diseases, American visceral leishmaniasis (AVL). We showed that a synthetic pheromone, (±)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. Then by formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, demonstrating the general applicability of this novel approach for developing new tools for use in vector control. PMID:19496409
Bray, D P; Bandi, K K; Brazil, R P; Oliveira, A G; Hamilton, J G C
2009-05-01
Improving vector control remains a key goal in reducing the world's burden of infectious diseases. More cost-effective approaches to vector control are urgently needed, particularly because vaccines are unavailable and treatment is prohibitively expensive. The causative agent of American visceral leishmaniasis (AVL), Leishmania chagasi, Cunha and Chagas (Kinetoplastida: Trypanosomatidae), is transmitted between animal and human hosts by blood-feeding female sand flies attracted to mating aggregations formed on or above host animals by male-produced sex pheromones. Our results show the potential of using synthetic pheromones to control populations of Lutzomyia longipalpis Lutz and Neiva (Diptera: Psychodidae), the sand fly vector of one of the world's most important neglected diseases, AVL. We showed that a synthetic pheromone, (+/-)-9-methylgermacrene-B, produced from a low-cost plant intermediate, attracted females in the laboratory. By formulating dispensers that released this pheromone at a rate similar to that released by aggregating males, we were able to attract flies of both sexes to traps in the field. These dispensers worked equally well when deployed with mechanical light traps and inexpensive sticky traps. If deployed effectively, pheromone-based traps could be used to decrease AVL transmission rates through specific targeting and reduction of L. longipalpis populations. This is the first study to show attraction of a human disease-transmitting insect to a synthetic pheromone in the field, showing the general applicability of this novel approach for developing new tools for use in vector control.
Status and habitat relationships of northern flying squirrels on Mount Desert Island, Maine
O'Connell, A.F.; Servello, F.; Higgins, J.; Halteman, W.
2001-01-01
Northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels occur in Maine, but there is uncertainty about range overlap in southcentral Maine where the southern flying squirrel reaches its geographic range limit. We surveyed flying squirrels on Mount Desert Island (MDI), located along the central Maine coast, to update the current status and distribution of these species. We captured only northern flying squirrels, and populations (> 2 individuals) were located in two conifer stands and one mixed conifer-hardwood stand. All three stands were located in relatively older forests, outside a large area burned in a 1947 fire. Tree diameters were similar between trap stations with and without captures, under-story density was low overall, and there was a trend of higher seedling density at capture locations. Low understory density may allow squirrels more effective gliding movements between trees, which may enhance predator avoidance. Although the southern flying squirrel was reported from MDI numerous times during the 20th century, no voucher specimens exist, and species identification and localities have been poorly documented. Future surveys on MDI should consider collection of voucher specimens to validate subsequent survey efforts and effectively document changes in local biodiversity.
Assessment of sand encroachment in Kuwait using GIS
NASA Astrophysics Data System (ADS)
Al-Helal, Anwar B.; Al-Awadhi, Jasem M.
2006-04-01
Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques, in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors, depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy; (2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships. Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides with the northwesterly dominant wind direction.
Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete
NASA Astrophysics Data System (ADS)
Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.
2018-03-01
This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.
Vertical distribution of three namatode species in relation to certain soil properties.
Brodie, B B
1976-07-01
Population densities of Belonolaimus longicaudatus, Pratylenchus brachyurus, and Trichodorus christiei were determined from soil samples taken weekly in Tifton, Georgia during a 14-month period (except for April and May) at 15-cm increments to a depth of 105 cm. Belonolaimus longicaudatus predominately inhabited the top 30 cm of soil that was 87-88% sand, 6-7% silt, and 5-7% clay. No specimens were found below 60 cm where the soil was 76-79% sand, 5-6% silt, and 15-19% clay. Highest population densities occurred during June through September when temperature in the top 30 cm of soil was 22-25 C and soil moisture was from 9 to 20% by volume. Pratylenchus brachyurus was found at all depths, but population densities were greatest 45-75 cm deep where the soil was 78-79% sand, 6% silt, and 15-16% clay. In the months monitored, highest population densities occurred during March, June, and December when the soil temperature 45-75 cm deep was 14-17 C and soil moisture was 22-42%. Trichodorus christiei was found at all depths, but population densities were highest 30 cm deep where the soil was 83% sand, 5% silt, and 12% clay. Highest population densities occurred during December through March when the soil temperature 30 cm deep was 11-17 C and soil moisture was 18-23%.
Robards, Martin D.; Anthony, Jill A.; Rose, George A.; Piatt, John F.
1999-01-01
Mean dry-weight energy values of adult Pacific sand lance (Ammodytes hexapterus) peaked in spring and early summer (20.91 kJg−1 for males, 21.08 kJg−1 for females), then declined by about 25% during late summer and fall (15.91 kJg−1 for males, 15.74 kJg−1 for females). Late summer declines in energy density paralleled gonadal development. Gender differences in energy density (males
Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)
2008-04-01
1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20
Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting
Wolfe, Marlene K.; Dentz, Holly N.; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J.
2017-01-01
Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. PMID:27956654
Passive Baited Sequential Fly Trap
USDA-ARS?s Scientific Manuscript database
Sampling fly populations associated with human populations is needed to understand diel behavior and to monitor population densities before and after control operations. Population control measures are dependent on the results of monitoring efforts as they may provide insight into the fly behavior ...
Sand Fly Surveillance and Control on Camp Ramadi, Iraq, as Part of a Leishmaniasis Control Program
2013-12-01
Environmental Science, Research Triangle Park, NC, U.S.A.) and Anvil® 10+10 ULV (Clarke Mosquito Control Products, Roselle , IL, U.S.A). Scourge® was...contract personnel using a Clarke Pro-Mist ULV machine (Clarke Mosquito Control Products, Roselle , IL): April (n=2), May (n=6), June (n=6), July
USDA-ARS?s Scientific Manuscript database
One component of the Department of Defense (DoD) pest management system is ultra-low volume (ULV) and/or thermal fog aerosol pesticide application. Despite widespread implementations of this and other components of the system, such as use of repellents and permethrin, US military operations in hot-a...
Pita-Pereira, Daniela de; Souza, Getúlio D; Pereira, Thaís de Araújo; Zwetsch, Adriana; Britto, Constança; Rangel, Elizabeth F
2011-12-01
In order to determine natural Leishmania (Viannia) infection in Lutzomyia (Pintomyia) fischeri, a multiplex PCR methodology coupled to non-isotopic hybridization was adopted for the analysis of sand fly samples collected by CDC light traps in an endemic area of American Cutaneous Leishmaniasis (ACL) in the periurban region of the municipality of Porto Alegre, Rio Grande do Sul State, Brazil. We analyzed by PCR methodology 560 specimens of Lutzomyia (Pintomyia) fischeri (520 females and 40 males). The wild sand flies were grouped into 56 pools (52 females and 4 males) of 10 each, and positive results were detected in 2 of the 52 female pools, representing a minimum infection rate of 0.38% based on the presence of at least 1 infected insect in the pool. This result associated with some local evidence such as anthopophily, spatial distribution in accordance with the transmission area and human case incidence, suggests that L. (P.)fischeri may be considered as a secondary vector of ACL in the studied locality. Copyright © 2011 Elsevier B.V. All rights reserved.
Andrade-Filho, J D; Scholte, R G C; Amaral, A L G; Shimabukuro, P H F; Carvalho, O S; Caldeira, R L
2017-09-01
Leishmaniases are serious diseases caused by trypanosomatid protozoans of the genus Leishmania transmitted by the bite of phlebotomine sand flies. We analyzed records pertaining to Lutzomyia longipalpis (Lutz and Neiva, 1912) and Lutzomyia cruzi (Mangabeira, 1938) in Brazil from the following sources: the collection of phlebotomine sand flies of the Centro de Pesquisas René Rachou/Fiocruz (FIOCRUZ-COLFLEB), the "SpeciesLink" (CRIA) database, from systematic surveys of scientific articles and gray literature (dissertations, theses, and communications), and disease data obtained from the Information System for Notifiable Diseases/Ministry of Health (SINAN/MS). Environmental data and ecological niche modeling (ESMS) using the approach of MaxEnt algorithm produced maps of occurrence probability for both Lu. longipalpis and Lu. cruzi. Lutzomyia longipalpis was found in 229 Brazilian municipalities and Lu. cruzi in 27. The species were sympatric in 16 municipalities of the Central-West region of Brazil. Our results show that Lu. longipalpis is widely distributed and associated with the high number of cases of visceral leishmaniasis reported in Brazil. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Carvalho, Gustavo Mayr de Lima; Brazil, Reginaldo Peçanha; Ramos, Mariana Campos das Neves Farah; Serra e Meira, Paula Cavalcante Lamy; Zenóbio, Ana Paula Lusardo de Almeida; Botelho, Helbert Antônio; Sanguinette, Cristiani de Castilho; Saraiva, Lara; Andrade Filho, José Dilermando
2013-01-01
Phlebotomines are invertebrate hosts of Leishmania genus species which are etiological agents of leishmaniases in humans and other mammals. Sandflies are often collected in entomological studies of caves both in the inner area and the adjacent environments. Caves are ecotypes clearly different from the external environment. Several caves have been opened to public visitation before any studies were performed and the places do not have scientific monitoring of the fauna, flora, geological and geographical characteristics. These events can lead to the loss of geological and biological information. Considering these aspects, this study aimed to describe the sand fly fauna, including the ecological features, in a limestone cave at the Speleological Province of Bambuí (Minas Gerais State, Brazil). A total of 8,354 specimens of sandflies belonging to 29 species were analyzed: Lutzomyia cavernicola (20%), Nyssomyia intermedia (15%), Martinsmyia oliveirai (13%), Evandromyia spelunca (12%), Evandromyia sallesi (11%), Migonemyia migonei (9%), Nyssomyia whitmani (9%), Sciopemyia sordellii (4%) and Lutzomyia longipalpis (2%). The others species represent 5% of the total. This manuscript presents data found on richness, diversity, evenness and seasonality, comparing the sand fly fauna trapped in the cave and its surroundings.
Carvalho, Gustavo Mayr de Lima; Brazil, Reginaldo Peçanha; Ramos, Mariana Campos das Neves Farah; Serra e Meira, Paula Cavalcante Lamy; Zenóbio, Ana Paula Lusardo de Almeida; Botelho, Helbert Antônio; Sanguinette, Cristiani de Castilho; Saraiva, Lara; Andrade Filho, José Dilermando
2013-01-01
Phlebotomines are invertebrate hosts of Leishmania genus species which are etiological agents of leishmaniases in humans and other mammals. Sandflies are often collected in entomological studies of caves both in the inner area and the adjacent environments. Caves are ecotypes clearly different from the external environment. Several caves have been opened to public visitation before any studies were performed and the places do not have scientific monitoring of the fauna, flora, geological and geographical characteristics. These events can lead to the loss of geological and biological information. Considering these aspects, this study aimed to describe the sand fly fauna, including the ecological features, in a limestone cave at the Speleological Province of Bambuí (Minas Gerais State, Brazil). A total of 8,354 specimens of sandflies belonging to 29 species were analyzed: Lutzomyia cavernicola (20%), Nyssomyia intermedia (15%), Martinsmyia oliveirai (13%), Evandromyia spelunca (12%), Evandromyia sallesi (11%), Migonemyia migonei (9%), Nyssomyia whitmani (9%), Sciopemyia sordellii (4%) and Lutzomyia longipalpis (2%). The others species represent 5% of the total. This manuscript presents data found on richness, diversity, evenness and seasonality, comparing the sand fly fauna trapped in the cave and its surroundings. PMID:24130847
Zahraei-Ramazani, Alireza; Kumar, Dinesh; Mirhendi, Hossein; Sundar, Shyam; Mishra, Rajnikan; Moin-Vaziri, Vahideh; Soleimani, Hassan; Shirzadi, Mohammad Reza; Jafari, Reza; Hanafi-Bojd, Ahmad Ali; Shahraky, Sodabe Hamedi; Yaghoobi-Ershadi, Mohammad Reza
2015-06-01
Female sand flies of subgenus Adlerius are considered as probable vectors of visceral leishmaniasis in Iran. The objective of this study was to determine the morphological and genotypic variations in the populations of this subgenus in the country. Sand flies collected using sticky traps from 17 provinces during 2008-2010. The morphometric measurements were conducted with an Ocular Micrometer. Data was analyzed by SPSS. The Cytb gene was used to estimate population genetic diversity and identify the female specimens. UPGMA phenetic tree was used for DNA haplotypes of Cytb gene. Six species of subgenus Adlerius identified from which one species, P. (Adlerius) kabulensis, is new record. The identification key is provided for males. Results revealed the molecular systematic in the species of subgenus Adlerius and determine the relationship of three females of P. comatus, P. balcanicus and P. halepensis. The positions of three females and the males in the UPGMA tree are correct and the similarities among them confirm our results. The branches of each species are not genetically distinct which justify the overlapping morphological characters among them. Molecular sequencing of Cytb-mtDNA haplotypes can be used for female identification for different species of subgenus Adlerius in Iran.
Recent studies showing an association between fecal indicator organisms (FIOs and gastrointestinal (GI) illness among beachgoers wit sand contact have important public health implicatons because of the large numbers of people who recreate at beaches and engage in sand contact act...
Impact of Rotylenchulus reniformis on Cotton Yield as Affected by Soil Texture and Irrigation
Herring, Stephanie L.; Heitman, Joshua L.
2010-01-01
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation. PMID:22736865